slub.c 111 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemtrace.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/mempolicy.h>
  24. #include <linux/ctype.h>
  25. #include <linux/debugobjects.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/memory.h>
  28. #include <linux/math64.h>
  29. #include <linux/fault-inject.h>
  30. /*
  31. * Lock order:
  32. * 1. slab_lock(page)
  33. * 2. slab->list_lock
  34. *
  35. * The slab_lock protects operations on the object of a particular
  36. * slab and its metadata in the page struct. If the slab lock
  37. * has been taken then no allocations nor frees can be performed
  38. * on the objects in the slab nor can the slab be added or removed
  39. * from the partial or full lists since this would mean modifying
  40. * the page_struct of the slab.
  41. *
  42. * The list_lock protects the partial and full list on each node and
  43. * the partial slab counter. If taken then no new slabs may be added or
  44. * removed from the lists nor make the number of partial slabs be modified.
  45. * (Note that the total number of slabs is an atomic value that may be
  46. * modified without taking the list lock).
  47. *
  48. * The list_lock is a centralized lock and thus we avoid taking it as
  49. * much as possible. As long as SLUB does not have to handle partial
  50. * slabs, operations can continue without any centralized lock. F.e.
  51. * allocating a long series of objects that fill up slabs does not require
  52. * the list lock.
  53. *
  54. * The lock order is sometimes inverted when we are trying to get a slab
  55. * off a list. We take the list_lock and then look for a page on the list
  56. * to use. While we do that objects in the slabs may be freed. We can
  57. * only operate on the slab if we have also taken the slab_lock. So we use
  58. * a slab_trylock() on the slab. If trylock was successful then no frees
  59. * can occur anymore and we can use the slab for allocations etc. If the
  60. * slab_trylock() does not succeed then frees are in progress in the slab and
  61. * we must stay away from it for a while since we may cause a bouncing
  62. * cacheline if we try to acquire the lock. So go onto the next slab.
  63. * If all pages are busy then we may allocate a new slab instead of reusing
  64. * a partial slab. A new slab has noone operating on it and thus there is
  65. * no danger of cacheline contention.
  66. *
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #ifdef CONFIG_SLUB_DEBUG
  108. #define SLABDEBUG 1
  109. #else
  110. #define SLABDEBUG 0
  111. #endif
  112. /*
  113. * Issues still to be resolved:
  114. *
  115. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  116. *
  117. * - Variable sizing of the per node arrays
  118. */
  119. /* Enable to test recovery from slab corruption on boot */
  120. #undef SLUB_RESILIENCY_TEST
  121. /*
  122. * Mininum number of partial slabs. These will be left on the partial
  123. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  124. */
  125. #define MIN_PARTIAL 5
  126. /*
  127. * Maximum number of desirable partial slabs.
  128. * The existence of more partial slabs makes kmem_cache_shrink
  129. * sort the partial list by the number of objects in the.
  130. */
  131. #define MAX_PARTIAL 10
  132. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  133. SLAB_POISON | SLAB_STORE_USER)
  134. /*
  135. * Set of flags that will prevent slab merging
  136. */
  137. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  138. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
  139. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  140. SLAB_CACHE_DMA | SLAB_NOTRACK)
  141. #ifndef ARCH_KMALLOC_MINALIGN
  142. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  143. #endif
  144. #ifndef ARCH_SLAB_MINALIGN
  145. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  146. #endif
  147. #define OO_SHIFT 16
  148. #define OO_MASK ((1 << OO_SHIFT) - 1)
  149. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  150. /* Internal SLUB flags */
  151. #define __OBJECT_POISON 0x80000000 /* Poison object */
  152. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  153. static int kmem_size = sizeof(struct kmem_cache);
  154. #ifdef CONFIG_SMP
  155. static struct notifier_block slab_notifier;
  156. #endif
  157. static enum {
  158. DOWN, /* No slab functionality available */
  159. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  160. UP, /* Everything works but does not show up in sysfs */
  161. SYSFS /* Sysfs up */
  162. } slab_state = DOWN;
  163. /* A list of all slab caches on the system */
  164. static DECLARE_RWSEM(slub_lock);
  165. static LIST_HEAD(slab_caches);
  166. /*
  167. * Tracking user of a slab.
  168. */
  169. struct track {
  170. unsigned long addr; /* Called from address */
  171. int cpu; /* Was running on cpu */
  172. int pid; /* Pid context */
  173. unsigned long when; /* When did the operation occur */
  174. };
  175. enum track_item { TRACK_ALLOC, TRACK_FREE };
  176. #ifdef CONFIG_SLUB_DEBUG
  177. static int sysfs_slab_add(struct kmem_cache *);
  178. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  179. static void sysfs_slab_remove(struct kmem_cache *);
  180. #else
  181. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  182. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  183. { return 0; }
  184. static inline void sysfs_slab_remove(struct kmem_cache *s)
  185. {
  186. kfree(s);
  187. }
  188. #endif
  189. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  190. {
  191. #ifdef CONFIG_SLUB_STATS
  192. c->stat[si]++;
  193. #endif
  194. }
  195. /********************************************************************
  196. * Core slab cache functions
  197. *******************************************************************/
  198. int slab_is_available(void)
  199. {
  200. return slab_state >= UP;
  201. }
  202. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  203. {
  204. #ifdef CONFIG_NUMA
  205. return s->node[node];
  206. #else
  207. return &s->local_node;
  208. #endif
  209. }
  210. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  211. {
  212. #ifdef CONFIG_SMP
  213. return s->cpu_slab[cpu];
  214. #else
  215. return &s->cpu_slab;
  216. #endif
  217. }
  218. /* Verify that a pointer has an address that is valid within a slab page */
  219. static inline int check_valid_pointer(struct kmem_cache *s,
  220. struct page *page, const void *object)
  221. {
  222. void *base;
  223. if (!object)
  224. return 1;
  225. base = page_address(page);
  226. if (object < base || object >= base + page->objects * s->size ||
  227. (object - base) % s->size) {
  228. return 0;
  229. }
  230. return 1;
  231. }
  232. /*
  233. * Slow version of get and set free pointer.
  234. *
  235. * This version requires touching the cache lines of kmem_cache which
  236. * we avoid to do in the fast alloc free paths. There we obtain the offset
  237. * from the page struct.
  238. */
  239. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  240. {
  241. return *(void **)(object + s->offset);
  242. }
  243. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  244. {
  245. *(void **)(object + s->offset) = fp;
  246. }
  247. /* Loop over all objects in a slab */
  248. #define for_each_object(__p, __s, __addr, __objects) \
  249. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  250. __p += (__s)->size)
  251. /* Scan freelist */
  252. #define for_each_free_object(__p, __s, __free) \
  253. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  254. /* Determine object index from a given position */
  255. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  256. {
  257. return (p - addr) / s->size;
  258. }
  259. static inline struct kmem_cache_order_objects oo_make(int order,
  260. unsigned long size)
  261. {
  262. struct kmem_cache_order_objects x = {
  263. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  264. };
  265. return x;
  266. }
  267. static inline int oo_order(struct kmem_cache_order_objects x)
  268. {
  269. return x.x >> OO_SHIFT;
  270. }
  271. static inline int oo_objects(struct kmem_cache_order_objects x)
  272. {
  273. return x.x & OO_MASK;
  274. }
  275. #ifdef CONFIG_SLUB_DEBUG
  276. /*
  277. * Debug settings:
  278. */
  279. #ifdef CONFIG_SLUB_DEBUG_ON
  280. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  281. #else
  282. static int slub_debug;
  283. #endif
  284. static char *slub_debug_slabs;
  285. /*
  286. * Object debugging
  287. */
  288. static void print_section(char *text, u8 *addr, unsigned int length)
  289. {
  290. int i, offset;
  291. int newline = 1;
  292. char ascii[17];
  293. ascii[16] = 0;
  294. for (i = 0; i < length; i++) {
  295. if (newline) {
  296. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  297. newline = 0;
  298. }
  299. printk(KERN_CONT " %02x", addr[i]);
  300. offset = i % 16;
  301. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  302. if (offset == 15) {
  303. printk(KERN_CONT " %s\n", ascii);
  304. newline = 1;
  305. }
  306. }
  307. if (!newline) {
  308. i %= 16;
  309. while (i < 16) {
  310. printk(KERN_CONT " ");
  311. ascii[i] = ' ';
  312. i++;
  313. }
  314. printk(KERN_CONT " %s\n", ascii);
  315. }
  316. }
  317. static struct track *get_track(struct kmem_cache *s, void *object,
  318. enum track_item alloc)
  319. {
  320. struct track *p;
  321. if (s->offset)
  322. p = object + s->offset + sizeof(void *);
  323. else
  324. p = object + s->inuse;
  325. return p + alloc;
  326. }
  327. static void set_track(struct kmem_cache *s, void *object,
  328. enum track_item alloc, unsigned long addr)
  329. {
  330. struct track *p = get_track(s, object, alloc);
  331. if (addr) {
  332. p->addr = addr;
  333. p->cpu = smp_processor_id();
  334. p->pid = current->pid;
  335. p->when = jiffies;
  336. } else
  337. memset(p, 0, sizeof(struct track));
  338. }
  339. static void init_tracking(struct kmem_cache *s, void *object)
  340. {
  341. if (!(s->flags & SLAB_STORE_USER))
  342. return;
  343. set_track(s, object, TRACK_FREE, 0UL);
  344. set_track(s, object, TRACK_ALLOC, 0UL);
  345. }
  346. static void print_track(const char *s, struct track *t)
  347. {
  348. if (!t->addr)
  349. return;
  350. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  351. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  352. }
  353. static void print_tracking(struct kmem_cache *s, void *object)
  354. {
  355. if (!(s->flags & SLAB_STORE_USER))
  356. return;
  357. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  358. print_track("Freed", get_track(s, object, TRACK_FREE));
  359. }
  360. static void print_page_info(struct page *page)
  361. {
  362. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  363. page, page->objects, page->inuse, page->freelist, page->flags);
  364. }
  365. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  366. {
  367. va_list args;
  368. char buf[100];
  369. va_start(args, fmt);
  370. vsnprintf(buf, sizeof(buf), fmt, args);
  371. va_end(args);
  372. printk(KERN_ERR "========================================"
  373. "=====================================\n");
  374. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  375. printk(KERN_ERR "----------------------------------------"
  376. "-------------------------------------\n\n");
  377. }
  378. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  379. {
  380. va_list args;
  381. char buf[100];
  382. va_start(args, fmt);
  383. vsnprintf(buf, sizeof(buf), fmt, args);
  384. va_end(args);
  385. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  386. }
  387. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  388. {
  389. unsigned int off; /* Offset of last byte */
  390. u8 *addr = page_address(page);
  391. print_tracking(s, p);
  392. print_page_info(page);
  393. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  394. p, p - addr, get_freepointer(s, p));
  395. if (p > addr + 16)
  396. print_section("Bytes b4", p - 16, 16);
  397. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  398. if (s->flags & SLAB_RED_ZONE)
  399. print_section("Redzone", p + s->objsize,
  400. s->inuse - s->objsize);
  401. if (s->offset)
  402. off = s->offset + sizeof(void *);
  403. else
  404. off = s->inuse;
  405. if (s->flags & SLAB_STORE_USER)
  406. off += 2 * sizeof(struct track);
  407. if (off != s->size)
  408. /* Beginning of the filler is the free pointer */
  409. print_section("Padding", p + off, s->size - off);
  410. dump_stack();
  411. }
  412. static void object_err(struct kmem_cache *s, struct page *page,
  413. u8 *object, char *reason)
  414. {
  415. slab_bug(s, "%s", reason);
  416. print_trailer(s, page, object);
  417. }
  418. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  419. {
  420. va_list args;
  421. char buf[100];
  422. va_start(args, fmt);
  423. vsnprintf(buf, sizeof(buf), fmt, args);
  424. va_end(args);
  425. slab_bug(s, "%s", buf);
  426. print_page_info(page);
  427. dump_stack();
  428. }
  429. static void init_object(struct kmem_cache *s, void *object, int active)
  430. {
  431. u8 *p = object;
  432. if (s->flags & __OBJECT_POISON) {
  433. memset(p, POISON_FREE, s->objsize - 1);
  434. p[s->objsize - 1] = POISON_END;
  435. }
  436. if (s->flags & SLAB_RED_ZONE)
  437. memset(p + s->objsize,
  438. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  439. s->inuse - s->objsize);
  440. }
  441. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  442. {
  443. while (bytes) {
  444. if (*start != (u8)value)
  445. return start;
  446. start++;
  447. bytes--;
  448. }
  449. return NULL;
  450. }
  451. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  452. void *from, void *to)
  453. {
  454. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  455. memset(from, data, to - from);
  456. }
  457. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  458. u8 *object, char *what,
  459. u8 *start, unsigned int value, unsigned int bytes)
  460. {
  461. u8 *fault;
  462. u8 *end;
  463. fault = check_bytes(start, value, bytes);
  464. if (!fault)
  465. return 1;
  466. end = start + bytes;
  467. while (end > fault && end[-1] == value)
  468. end--;
  469. slab_bug(s, "%s overwritten", what);
  470. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  471. fault, end - 1, fault[0], value);
  472. print_trailer(s, page, object);
  473. restore_bytes(s, what, value, fault, end);
  474. return 0;
  475. }
  476. /*
  477. * Object layout:
  478. *
  479. * object address
  480. * Bytes of the object to be managed.
  481. * If the freepointer may overlay the object then the free
  482. * pointer is the first word of the object.
  483. *
  484. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  485. * 0xa5 (POISON_END)
  486. *
  487. * object + s->objsize
  488. * Padding to reach word boundary. This is also used for Redzoning.
  489. * Padding is extended by another word if Redzoning is enabled and
  490. * objsize == inuse.
  491. *
  492. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  493. * 0xcc (RED_ACTIVE) for objects in use.
  494. *
  495. * object + s->inuse
  496. * Meta data starts here.
  497. *
  498. * A. Free pointer (if we cannot overwrite object on free)
  499. * B. Tracking data for SLAB_STORE_USER
  500. * C. Padding to reach required alignment boundary or at mininum
  501. * one word if debugging is on to be able to detect writes
  502. * before the word boundary.
  503. *
  504. * Padding is done using 0x5a (POISON_INUSE)
  505. *
  506. * object + s->size
  507. * Nothing is used beyond s->size.
  508. *
  509. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  510. * ignored. And therefore no slab options that rely on these boundaries
  511. * may be used with merged slabcaches.
  512. */
  513. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  514. {
  515. unsigned long off = s->inuse; /* The end of info */
  516. if (s->offset)
  517. /* Freepointer is placed after the object. */
  518. off += sizeof(void *);
  519. if (s->flags & SLAB_STORE_USER)
  520. /* We also have user information there */
  521. off += 2 * sizeof(struct track);
  522. if (s->size == off)
  523. return 1;
  524. return check_bytes_and_report(s, page, p, "Object padding",
  525. p + off, POISON_INUSE, s->size - off);
  526. }
  527. /* Check the pad bytes at the end of a slab page */
  528. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  529. {
  530. u8 *start;
  531. u8 *fault;
  532. u8 *end;
  533. int length;
  534. int remainder;
  535. if (!(s->flags & SLAB_POISON))
  536. return 1;
  537. start = page_address(page);
  538. length = (PAGE_SIZE << compound_order(page));
  539. end = start + length;
  540. remainder = length % s->size;
  541. if (!remainder)
  542. return 1;
  543. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  544. if (!fault)
  545. return 1;
  546. while (end > fault && end[-1] == POISON_INUSE)
  547. end--;
  548. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  549. print_section("Padding", end - remainder, remainder);
  550. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  551. return 0;
  552. }
  553. static int check_object(struct kmem_cache *s, struct page *page,
  554. void *object, int active)
  555. {
  556. u8 *p = object;
  557. u8 *endobject = object + s->objsize;
  558. if (s->flags & SLAB_RED_ZONE) {
  559. unsigned int red =
  560. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  561. if (!check_bytes_and_report(s, page, object, "Redzone",
  562. endobject, red, s->inuse - s->objsize))
  563. return 0;
  564. } else {
  565. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  566. check_bytes_and_report(s, page, p, "Alignment padding",
  567. endobject, POISON_INUSE, s->inuse - s->objsize);
  568. }
  569. }
  570. if (s->flags & SLAB_POISON) {
  571. if (!active && (s->flags & __OBJECT_POISON) &&
  572. (!check_bytes_and_report(s, page, p, "Poison", p,
  573. POISON_FREE, s->objsize - 1) ||
  574. !check_bytes_and_report(s, page, p, "Poison",
  575. p + s->objsize - 1, POISON_END, 1)))
  576. return 0;
  577. /*
  578. * check_pad_bytes cleans up on its own.
  579. */
  580. check_pad_bytes(s, page, p);
  581. }
  582. if (!s->offset && active)
  583. /*
  584. * Object and freepointer overlap. Cannot check
  585. * freepointer while object is allocated.
  586. */
  587. return 1;
  588. /* Check free pointer validity */
  589. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  590. object_err(s, page, p, "Freepointer corrupt");
  591. /*
  592. * No choice but to zap it and thus lose the remainder
  593. * of the free objects in this slab. May cause
  594. * another error because the object count is now wrong.
  595. */
  596. set_freepointer(s, p, NULL);
  597. return 0;
  598. }
  599. return 1;
  600. }
  601. static int check_slab(struct kmem_cache *s, struct page *page)
  602. {
  603. int maxobj;
  604. VM_BUG_ON(!irqs_disabled());
  605. if (!PageSlab(page)) {
  606. slab_err(s, page, "Not a valid slab page");
  607. return 0;
  608. }
  609. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  610. if (page->objects > maxobj) {
  611. slab_err(s, page, "objects %u > max %u",
  612. s->name, page->objects, maxobj);
  613. return 0;
  614. }
  615. if (page->inuse > page->objects) {
  616. slab_err(s, page, "inuse %u > max %u",
  617. s->name, page->inuse, page->objects);
  618. return 0;
  619. }
  620. /* Slab_pad_check fixes things up after itself */
  621. slab_pad_check(s, page);
  622. return 1;
  623. }
  624. /*
  625. * Determine if a certain object on a page is on the freelist. Must hold the
  626. * slab lock to guarantee that the chains are in a consistent state.
  627. */
  628. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  629. {
  630. int nr = 0;
  631. void *fp = page->freelist;
  632. void *object = NULL;
  633. unsigned long max_objects;
  634. while (fp && nr <= page->objects) {
  635. if (fp == search)
  636. return 1;
  637. if (!check_valid_pointer(s, page, fp)) {
  638. if (object) {
  639. object_err(s, page, object,
  640. "Freechain corrupt");
  641. set_freepointer(s, object, NULL);
  642. break;
  643. } else {
  644. slab_err(s, page, "Freepointer corrupt");
  645. page->freelist = NULL;
  646. page->inuse = page->objects;
  647. slab_fix(s, "Freelist cleared");
  648. return 0;
  649. }
  650. break;
  651. }
  652. object = fp;
  653. fp = get_freepointer(s, object);
  654. nr++;
  655. }
  656. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  657. if (max_objects > MAX_OBJS_PER_PAGE)
  658. max_objects = MAX_OBJS_PER_PAGE;
  659. if (page->objects != max_objects) {
  660. slab_err(s, page, "Wrong number of objects. Found %d but "
  661. "should be %d", page->objects, max_objects);
  662. page->objects = max_objects;
  663. slab_fix(s, "Number of objects adjusted.");
  664. }
  665. if (page->inuse != page->objects - nr) {
  666. slab_err(s, page, "Wrong object count. Counter is %d but "
  667. "counted were %d", page->inuse, page->objects - nr);
  668. page->inuse = page->objects - nr;
  669. slab_fix(s, "Object count adjusted.");
  670. }
  671. return search == NULL;
  672. }
  673. static void trace(struct kmem_cache *s, struct page *page, void *object,
  674. int alloc)
  675. {
  676. if (s->flags & SLAB_TRACE) {
  677. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  678. s->name,
  679. alloc ? "alloc" : "free",
  680. object, page->inuse,
  681. page->freelist);
  682. if (!alloc)
  683. print_section("Object", (void *)object, s->objsize);
  684. dump_stack();
  685. }
  686. }
  687. /*
  688. * Tracking of fully allocated slabs for debugging purposes.
  689. */
  690. static void add_full(struct kmem_cache_node *n, struct page *page)
  691. {
  692. spin_lock(&n->list_lock);
  693. list_add(&page->lru, &n->full);
  694. spin_unlock(&n->list_lock);
  695. }
  696. static void remove_full(struct kmem_cache *s, struct page *page)
  697. {
  698. struct kmem_cache_node *n;
  699. if (!(s->flags & SLAB_STORE_USER))
  700. return;
  701. n = get_node(s, page_to_nid(page));
  702. spin_lock(&n->list_lock);
  703. list_del(&page->lru);
  704. spin_unlock(&n->list_lock);
  705. }
  706. /* Tracking of the number of slabs for debugging purposes */
  707. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  708. {
  709. struct kmem_cache_node *n = get_node(s, node);
  710. return atomic_long_read(&n->nr_slabs);
  711. }
  712. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  713. {
  714. return atomic_long_read(&n->nr_slabs);
  715. }
  716. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  717. {
  718. struct kmem_cache_node *n = get_node(s, node);
  719. /*
  720. * May be called early in order to allocate a slab for the
  721. * kmem_cache_node structure. Solve the chicken-egg
  722. * dilemma by deferring the increment of the count during
  723. * bootstrap (see early_kmem_cache_node_alloc).
  724. */
  725. if (!NUMA_BUILD || n) {
  726. atomic_long_inc(&n->nr_slabs);
  727. atomic_long_add(objects, &n->total_objects);
  728. }
  729. }
  730. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  731. {
  732. struct kmem_cache_node *n = get_node(s, node);
  733. atomic_long_dec(&n->nr_slabs);
  734. atomic_long_sub(objects, &n->total_objects);
  735. }
  736. /* Object debug checks for alloc/free paths */
  737. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  738. void *object)
  739. {
  740. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  741. return;
  742. init_object(s, object, 0);
  743. init_tracking(s, object);
  744. }
  745. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  746. void *object, unsigned long addr)
  747. {
  748. if (!check_slab(s, page))
  749. goto bad;
  750. if (!on_freelist(s, page, object)) {
  751. object_err(s, page, object, "Object already allocated");
  752. goto bad;
  753. }
  754. if (!check_valid_pointer(s, page, object)) {
  755. object_err(s, page, object, "Freelist Pointer check fails");
  756. goto bad;
  757. }
  758. if (!check_object(s, page, object, 0))
  759. goto bad;
  760. /* Success perform special debug activities for allocs */
  761. if (s->flags & SLAB_STORE_USER)
  762. set_track(s, object, TRACK_ALLOC, addr);
  763. trace(s, page, object, 1);
  764. init_object(s, object, 1);
  765. return 1;
  766. bad:
  767. if (PageSlab(page)) {
  768. /*
  769. * If this is a slab page then lets do the best we can
  770. * to avoid issues in the future. Marking all objects
  771. * as used avoids touching the remaining objects.
  772. */
  773. slab_fix(s, "Marking all objects used");
  774. page->inuse = page->objects;
  775. page->freelist = NULL;
  776. }
  777. return 0;
  778. }
  779. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  780. void *object, unsigned long addr)
  781. {
  782. if (!check_slab(s, page))
  783. goto fail;
  784. if (!check_valid_pointer(s, page, object)) {
  785. slab_err(s, page, "Invalid object pointer 0x%p", object);
  786. goto fail;
  787. }
  788. if (on_freelist(s, page, object)) {
  789. object_err(s, page, object, "Object already free");
  790. goto fail;
  791. }
  792. if (!check_object(s, page, object, 1))
  793. return 0;
  794. if (unlikely(s != page->slab)) {
  795. if (!PageSlab(page)) {
  796. slab_err(s, page, "Attempt to free object(0x%p) "
  797. "outside of slab", object);
  798. } else if (!page->slab) {
  799. printk(KERN_ERR
  800. "SLUB <none>: no slab for object 0x%p.\n",
  801. object);
  802. dump_stack();
  803. } else
  804. object_err(s, page, object,
  805. "page slab pointer corrupt.");
  806. goto fail;
  807. }
  808. /* Special debug activities for freeing objects */
  809. if (!PageSlubFrozen(page) && !page->freelist)
  810. remove_full(s, page);
  811. if (s->flags & SLAB_STORE_USER)
  812. set_track(s, object, TRACK_FREE, addr);
  813. trace(s, page, object, 0);
  814. init_object(s, object, 0);
  815. return 1;
  816. fail:
  817. slab_fix(s, "Object at 0x%p not freed", object);
  818. return 0;
  819. }
  820. static int __init setup_slub_debug(char *str)
  821. {
  822. slub_debug = DEBUG_DEFAULT_FLAGS;
  823. if (*str++ != '=' || !*str)
  824. /*
  825. * No options specified. Switch on full debugging.
  826. */
  827. goto out;
  828. if (*str == ',')
  829. /*
  830. * No options but restriction on slabs. This means full
  831. * debugging for slabs matching a pattern.
  832. */
  833. goto check_slabs;
  834. slub_debug = 0;
  835. if (*str == '-')
  836. /*
  837. * Switch off all debugging measures.
  838. */
  839. goto out;
  840. /*
  841. * Determine which debug features should be switched on
  842. */
  843. for (; *str && *str != ','; str++) {
  844. switch (tolower(*str)) {
  845. case 'f':
  846. slub_debug |= SLAB_DEBUG_FREE;
  847. break;
  848. case 'z':
  849. slub_debug |= SLAB_RED_ZONE;
  850. break;
  851. case 'p':
  852. slub_debug |= SLAB_POISON;
  853. break;
  854. case 'u':
  855. slub_debug |= SLAB_STORE_USER;
  856. break;
  857. case 't':
  858. slub_debug |= SLAB_TRACE;
  859. break;
  860. default:
  861. printk(KERN_ERR "slub_debug option '%c' "
  862. "unknown. skipped\n", *str);
  863. }
  864. }
  865. check_slabs:
  866. if (*str == ',')
  867. slub_debug_slabs = str + 1;
  868. out:
  869. return 1;
  870. }
  871. __setup("slub_debug", setup_slub_debug);
  872. static unsigned long kmem_cache_flags(unsigned long objsize,
  873. unsigned long flags, const char *name,
  874. void (*ctor)(void *))
  875. {
  876. /*
  877. * Enable debugging if selected on the kernel commandline.
  878. */
  879. if (slub_debug && (!slub_debug_slabs ||
  880. strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
  881. flags |= slub_debug;
  882. return flags;
  883. }
  884. #else
  885. static inline void setup_object_debug(struct kmem_cache *s,
  886. struct page *page, void *object) {}
  887. static inline int alloc_debug_processing(struct kmem_cache *s,
  888. struct page *page, void *object, unsigned long addr) { return 0; }
  889. static inline int free_debug_processing(struct kmem_cache *s,
  890. struct page *page, void *object, unsigned long addr) { return 0; }
  891. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  892. { return 1; }
  893. static inline int check_object(struct kmem_cache *s, struct page *page,
  894. void *object, int active) { return 1; }
  895. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  896. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  897. unsigned long flags, const char *name,
  898. void (*ctor)(void *))
  899. {
  900. return flags;
  901. }
  902. #define slub_debug 0
  903. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  904. { return 0; }
  905. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  906. { return 0; }
  907. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  908. int objects) {}
  909. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  910. int objects) {}
  911. #endif
  912. /*
  913. * Slab allocation and freeing
  914. */
  915. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  916. struct kmem_cache_order_objects oo)
  917. {
  918. int order = oo_order(oo);
  919. flags |= __GFP_NOTRACK;
  920. if (node == -1)
  921. return alloc_pages(flags, order);
  922. else
  923. return alloc_pages_node(node, flags, order);
  924. }
  925. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  926. {
  927. struct page *page;
  928. struct kmem_cache_order_objects oo = s->oo;
  929. gfp_t alloc_gfp;
  930. flags |= s->allocflags;
  931. /*
  932. * Let the initial higher-order allocation fail under memory pressure
  933. * so we fall-back to the minimum order allocation.
  934. */
  935. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  936. page = alloc_slab_page(alloc_gfp, node, oo);
  937. if (unlikely(!page)) {
  938. oo = s->min;
  939. /*
  940. * Allocation may have failed due to fragmentation.
  941. * Try a lower order alloc if possible
  942. */
  943. page = alloc_slab_page(flags, node, oo);
  944. if (!page)
  945. return NULL;
  946. stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
  947. }
  948. if (kmemcheck_enabled
  949. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  950. int pages = 1 << oo_order(oo);
  951. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  952. /*
  953. * Objects from caches that have a constructor don't get
  954. * cleared when they're allocated, so we need to do it here.
  955. */
  956. if (s->ctor)
  957. kmemcheck_mark_uninitialized_pages(page, pages);
  958. else
  959. kmemcheck_mark_unallocated_pages(page, pages);
  960. }
  961. page->objects = oo_objects(oo);
  962. mod_zone_page_state(page_zone(page),
  963. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  964. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  965. 1 << oo_order(oo));
  966. return page;
  967. }
  968. static void setup_object(struct kmem_cache *s, struct page *page,
  969. void *object)
  970. {
  971. setup_object_debug(s, page, object);
  972. if (unlikely(s->ctor))
  973. s->ctor(object);
  974. }
  975. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  976. {
  977. struct page *page;
  978. void *start;
  979. void *last;
  980. void *p;
  981. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  982. page = allocate_slab(s,
  983. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  984. if (!page)
  985. goto out;
  986. inc_slabs_node(s, page_to_nid(page), page->objects);
  987. page->slab = s;
  988. page->flags |= 1 << PG_slab;
  989. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  990. SLAB_STORE_USER | SLAB_TRACE))
  991. __SetPageSlubDebug(page);
  992. start = page_address(page);
  993. if (unlikely(s->flags & SLAB_POISON))
  994. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  995. last = start;
  996. for_each_object(p, s, start, page->objects) {
  997. setup_object(s, page, last);
  998. set_freepointer(s, last, p);
  999. last = p;
  1000. }
  1001. setup_object(s, page, last);
  1002. set_freepointer(s, last, NULL);
  1003. page->freelist = start;
  1004. page->inuse = 0;
  1005. out:
  1006. return page;
  1007. }
  1008. static void __free_slab(struct kmem_cache *s, struct page *page)
  1009. {
  1010. int order = compound_order(page);
  1011. int pages = 1 << order;
  1012. if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
  1013. void *p;
  1014. slab_pad_check(s, page);
  1015. for_each_object(p, s, page_address(page),
  1016. page->objects)
  1017. check_object(s, page, p, 0);
  1018. __ClearPageSlubDebug(page);
  1019. }
  1020. kmemcheck_free_shadow(page, compound_order(page));
  1021. mod_zone_page_state(page_zone(page),
  1022. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1023. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1024. -pages);
  1025. __ClearPageSlab(page);
  1026. reset_page_mapcount(page);
  1027. if (current->reclaim_state)
  1028. current->reclaim_state->reclaimed_slab += pages;
  1029. __free_pages(page, order);
  1030. }
  1031. static void rcu_free_slab(struct rcu_head *h)
  1032. {
  1033. struct page *page;
  1034. page = container_of((struct list_head *)h, struct page, lru);
  1035. __free_slab(page->slab, page);
  1036. }
  1037. static void free_slab(struct kmem_cache *s, struct page *page)
  1038. {
  1039. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1040. /*
  1041. * RCU free overloads the RCU head over the LRU
  1042. */
  1043. struct rcu_head *head = (void *)&page->lru;
  1044. call_rcu(head, rcu_free_slab);
  1045. } else
  1046. __free_slab(s, page);
  1047. }
  1048. static void discard_slab(struct kmem_cache *s, struct page *page)
  1049. {
  1050. dec_slabs_node(s, page_to_nid(page), page->objects);
  1051. free_slab(s, page);
  1052. }
  1053. /*
  1054. * Per slab locking using the pagelock
  1055. */
  1056. static __always_inline void slab_lock(struct page *page)
  1057. {
  1058. bit_spin_lock(PG_locked, &page->flags);
  1059. }
  1060. static __always_inline void slab_unlock(struct page *page)
  1061. {
  1062. __bit_spin_unlock(PG_locked, &page->flags);
  1063. }
  1064. static __always_inline int slab_trylock(struct page *page)
  1065. {
  1066. int rc = 1;
  1067. rc = bit_spin_trylock(PG_locked, &page->flags);
  1068. return rc;
  1069. }
  1070. /*
  1071. * Management of partially allocated slabs
  1072. */
  1073. static void add_partial(struct kmem_cache_node *n,
  1074. struct page *page, int tail)
  1075. {
  1076. spin_lock(&n->list_lock);
  1077. n->nr_partial++;
  1078. if (tail)
  1079. list_add_tail(&page->lru, &n->partial);
  1080. else
  1081. list_add(&page->lru, &n->partial);
  1082. spin_unlock(&n->list_lock);
  1083. }
  1084. static void remove_partial(struct kmem_cache *s, struct page *page)
  1085. {
  1086. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1087. spin_lock(&n->list_lock);
  1088. list_del(&page->lru);
  1089. n->nr_partial--;
  1090. spin_unlock(&n->list_lock);
  1091. }
  1092. /*
  1093. * Lock slab and remove from the partial list.
  1094. *
  1095. * Must hold list_lock.
  1096. */
  1097. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1098. struct page *page)
  1099. {
  1100. if (slab_trylock(page)) {
  1101. list_del(&page->lru);
  1102. n->nr_partial--;
  1103. __SetPageSlubFrozen(page);
  1104. return 1;
  1105. }
  1106. return 0;
  1107. }
  1108. /*
  1109. * Try to allocate a partial slab from a specific node.
  1110. */
  1111. static struct page *get_partial_node(struct kmem_cache_node *n)
  1112. {
  1113. struct page *page;
  1114. /*
  1115. * Racy check. If we mistakenly see no partial slabs then we
  1116. * just allocate an empty slab. If we mistakenly try to get a
  1117. * partial slab and there is none available then get_partials()
  1118. * will return NULL.
  1119. */
  1120. if (!n || !n->nr_partial)
  1121. return NULL;
  1122. spin_lock(&n->list_lock);
  1123. list_for_each_entry(page, &n->partial, lru)
  1124. if (lock_and_freeze_slab(n, page))
  1125. goto out;
  1126. page = NULL;
  1127. out:
  1128. spin_unlock(&n->list_lock);
  1129. return page;
  1130. }
  1131. /*
  1132. * Get a page from somewhere. Search in increasing NUMA distances.
  1133. */
  1134. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1135. {
  1136. #ifdef CONFIG_NUMA
  1137. struct zonelist *zonelist;
  1138. struct zoneref *z;
  1139. struct zone *zone;
  1140. enum zone_type high_zoneidx = gfp_zone(flags);
  1141. struct page *page;
  1142. /*
  1143. * The defrag ratio allows a configuration of the tradeoffs between
  1144. * inter node defragmentation and node local allocations. A lower
  1145. * defrag_ratio increases the tendency to do local allocations
  1146. * instead of attempting to obtain partial slabs from other nodes.
  1147. *
  1148. * If the defrag_ratio is set to 0 then kmalloc() always
  1149. * returns node local objects. If the ratio is higher then kmalloc()
  1150. * may return off node objects because partial slabs are obtained
  1151. * from other nodes and filled up.
  1152. *
  1153. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1154. * defrag_ratio = 1000) then every (well almost) allocation will
  1155. * first attempt to defrag slab caches on other nodes. This means
  1156. * scanning over all nodes to look for partial slabs which may be
  1157. * expensive if we do it every time we are trying to find a slab
  1158. * with available objects.
  1159. */
  1160. if (!s->remote_node_defrag_ratio ||
  1161. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1162. return NULL;
  1163. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1164. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1165. struct kmem_cache_node *n;
  1166. n = get_node(s, zone_to_nid(zone));
  1167. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1168. n->nr_partial > s->min_partial) {
  1169. page = get_partial_node(n);
  1170. if (page)
  1171. return page;
  1172. }
  1173. }
  1174. #endif
  1175. return NULL;
  1176. }
  1177. /*
  1178. * Get a partial page, lock it and return it.
  1179. */
  1180. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1181. {
  1182. struct page *page;
  1183. int searchnode = (node == -1) ? numa_node_id() : node;
  1184. page = get_partial_node(get_node(s, searchnode));
  1185. if (page || (flags & __GFP_THISNODE))
  1186. return page;
  1187. return get_any_partial(s, flags);
  1188. }
  1189. /*
  1190. * Move a page back to the lists.
  1191. *
  1192. * Must be called with the slab lock held.
  1193. *
  1194. * On exit the slab lock will have been dropped.
  1195. */
  1196. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1197. {
  1198. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1199. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1200. __ClearPageSlubFrozen(page);
  1201. if (page->inuse) {
  1202. if (page->freelist) {
  1203. add_partial(n, page, tail);
  1204. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1205. } else {
  1206. stat(c, DEACTIVATE_FULL);
  1207. if (SLABDEBUG && PageSlubDebug(page) &&
  1208. (s->flags & SLAB_STORE_USER))
  1209. add_full(n, page);
  1210. }
  1211. slab_unlock(page);
  1212. } else {
  1213. stat(c, DEACTIVATE_EMPTY);
  1214. if (n->nr_partial < s->min_partial) {
  1215. /*
  1216. * Adding an empty slab to the partial slabs in order
  1217. * to avoid page allocator overhead. This slab needs
  1218. * to come after the other slabs with objects in
  1219. * so that the others get filled first. That way the
  1220. * size of the partial list stays small.
  1221. *
  1222. * kmem_cache_shrink can reclaim any empty slabs from
  1223. * the partial list.
  1224. */
  1225. add_partial(n, page, 1);
  1226. slab_unlock(page);
  1227. } else {
  1228. slab_unlock(page);
  1229. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1230. discard_slab(s, page);
  1231. }
  1232. }
  1233. }
  1234. /*
  1235. * Remove the cpu slab
  1236. */
  1237. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1238. {
  1239. struct page *page = c->page;
  1240. int tail = 1;
  1241. if (page->freelist)
  1242. stat(c, DEACTIVATE_REMOTE_FREES);
  1243. /*
  1244. * Merge cpu freelist into slab freelist. Typically we get here
  1245. * because both freelists are empty. So this is unlikely
  1246. * to occur.
  1247. */
  1248. while (unlikely(c->freelist)) {
  1249. void **object;
  1250. tail = 0; /* Hot objects. Put the slab first */
  1251. /* Retrieve object from cpu_freelist */
  1252. object = c->freelist;
  1253. c->freelist = c->freelist[c->offset];
  1254. /* And put onto the regular freelist */
  1255. object[c->offset] = page->freelist;
  1256. page->freelist = object;
  1257. page->inuse--;
  1258. }
  1259. c->page = NULL;
  1260. unfreeze_slab(s, page, tail);
  1261. }
  1262. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1263. {
  1264. stat(c, CPUSLAB_FLUSH);
  1265. slab_lock(c->page);
  1266. deactivate_slab(s, c);
  1267. }
  1268. /*
  1269. * Flush cpu slab.
  1270. *
  1271. * Called from IPI handler with interrupts disabled.
  1272. */
  1273. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1274. {
  1275. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1276. if (likely(c && c->page))
  1277. flush_slab(s, c);
  1278. }
  1279. static void flush_cpu_slab(void *d)
  1280. {
  1281. struct kmem_cache *s = d;
  1282. __flush_cpu_slab(s, smp_processor_id());
  1283. }
  1284. static void flush_all(struct kmem_cache *s)
  1285. {
  1286. on_each_cpu(flush_cpu_slab, s, 1);
  1287. }
  1288. /*
  1289. * Check if the objects in a per cpu structure fit numa
  1290. * locality expectations.
  1291. */
  1292. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1293. {
  1294. #ifdef CONFIG_NUMA
  1295. if (node != -1 && c->node != node)
  1296. return 0;
  1297. #endif
  1298. return 1;
  1299. }
  1300. static int count_free(struct page *page)
  1301. {
  1302. return page->objects - page->inuse;
  1303. }
  1304. static unsigned long count_partial(struct kmem_cache_node *n,
  1305. int (*get_count)(struct page *))
  1306. {
  1307. unsigned long flags;
  1308. unsigned long x = 0;
  1309. struct page *page;
  1310. spin_lock_irqsave(&n->list_lock, flags);
  1311. list_for_each_entry(page, &n->partial, lru)
  1312. x += get_count(page);
  1313. spin_unlock_irqrestore(&n->list_lock, flags);
  1314. return x;
  1315. }
  1316. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1317. {
  1318. #ifdef CONFIG_SLUB_DEBUG
  1319. return atomic_long_read(&n->total_objects);
  1320. #else
  1321. return 0;
  1322. #endif
  1323. }
  1324. static noinline void
  1325. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1326. {
  1327. int node;
  1328. printk(KERN_WARNING
  1329. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1330. nid, gfpflags);
  1331. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1332. "default order: %d, min order: %d\n", s->name, s->objsize,
  1333. s->size, oo_order(s->oo), oo_order(s->min));
  1334. for_each_online_node(node) {
  1335. struct kmem_cache_node *n = get_node(s, node);
  1336. unsigned long nr_slabs;
  1337. unsigned long nr_objs;
  1338. unsigned long nr_free;
  1339. if (!n)
  1340. continue;
  1341. nr_free = count_partial(n, count_free);
  1342. nr_slabs = node_nr_slabs(n);
  1343. nr_objs = node_nr_objs(n);
  1344. printk(KERN_WARNING
  1345. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1346. node, nr_slabs, nr_objs, nr_free);
  1347. }
  1348. }
  1349. /*
  1350. * Slow path. The lockless freelist is empty or we need to perform
  1351. * debugging duties.
  1352. *
  1353. * Interrupts are disabled.
  1354. *
  1355. * Processing is still very fast if new objects have been freed to the
  1356. * regular freelist. In that case we simply take over the regular freelist
  1357. * as the lockless freelist and zap the regular freelist.
  1358. *
  1359. * If that is not working then we fall back to the partial lists. We take the
  1360. * first element of the freelist as the object to allocate now and move the
  1361. * rest of the freelist to the lockless freelist.
  1362. *
  1363. * And if we were unable to get a new slab from the partial slab lists then
  1364. * we need to allocate a new slab. This is the slowest path since it involves
  1365. * a call to the page allocator and the setup of a new slab.
  1366. */
  1367. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1368. unsigned long addr, struct kmem_cache_cpu *c)
  1369. {
  1370. void **object;
  1371. struct page *new;
  1372. /* We handle __GFP_ZERO in the caller */
  1373. gfpflags &= ~__GFP_ZERO;
  1374. if (!c->page)
  1375. goto new_slab;
  1376. slab_lock(c->page);
  1377. if (unlikely(!node_match(c, node)))
  1378. goto another_slab;
  1379. stat(c, ALLOC_REFILL);
  1380. load_freelist:
  1381. object = c->page->freelist;
  1382. if (unlikely(!object))
  1383. goto another_slab;
  1384. if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
  1385. goto debug;
  1386. c->freelist = object[c->offset];
  1387. c->page->inuse = c->page->objects;
  1388. c->page->freelist = NULL;
  1389. c->node = page_to_nid(c->page);
  1390. unlock_out:
  1391. slab_unlock(c->page);
  1392. stat(c, ALLOC_SLOWPATH);
  1393. return object;
  1394. another_slab:
  1395. deactivate_slab(s, c);
  1396. new_slab:
  1397. new = get_partial(s, gfpflags, node);
  1398. if (new) {
  1399. c->page = new;
  1400. stat(c, ALLOC_FROM_PARTIAL);
  1401. goto load_freelist;
  1402. }
  1403. if (gfpflags & __GFP_WAIT)
  1404. local_irq_enable();
  1405. new = new_slab(s, gfpflags, node);
  1406. if (gfpflags & __GFP_WAIT)
  1407. local_irq_disable();
  1408. if (new) {
  1409. c = get_cpu_slab(s, smp_processor_id());
  1410. stat(c, ALLOC_SLAB);
  1411. if (c->page)
  1412. flush_slab(s, c);
  1413. slab_lock(new);
  1414. __SetPageSlubFrozen(new);
  1415. c->page = new;
  1416. goto load_freelist;
  1417. }
  1418. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1419. slab_out_of_memory(s, gfpflags, node);
  1420. return NULL;
  1421. debug:
  1422. if (!alloc_debug_processing(s, c->page, object, addr))
  1423. goto another_slab;
  1424. c->page->inuse++;
  1425. c->page->freelist = object[c->offset];
  1426. c->node = -1;
  1427. goto unlock_out;
  1428. }
  1429. /*
  1430. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1431. * have the fastpath folded into their functions. So no function call
  1432. * overhead for requests that can be satisfied on the fastpath.
  1433. *
  1434. * The fastpath works by first checking if the lockless freelist can be used.
  1435. * If not then __slab_alloc is called for slow processing.
  1436. *
  1437. * Otherwise we can simply pick the next object from the lockless free list.
  1438. */
  1439. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1440. gfp_t gfpflags, int node, unsigned long addr)
  1441. {
  1442. void **object;
  1443. struct kmem_cache_cpu *c;
  1444. unsigned long flags;
  1445. unsigned int objsize;
  1446. gfpflags &= gfp_allowed_mask;
  1447. lockdep_trace_alloc(gfpflags);
  1448. might_sleep_if(gfpflags & __GFP_WAIT);
  1449. if (should_failslab(s->objsize, gfpflags))
  1450. return NULL;
  1451. local_irq_save(flags);
  1452. c = get_cpu_slab(s, smp_processor_id());
  1453. objsize = c->objsize;
  1454. if (unlikely(!c->freelist || !node_match(c, node)))
  1455. object = __slab_alloc(s, gfpflags, node, addr, c);
  1456. else {
  1457. object = c->freelist;
  1458. c->freelist = object[c->offset];
  1459. stat(c, ALLOC_FASTPATH);
  1460. }
  1461. local_irq_restore(flags);
  1462. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1463. memset(object, 0, objsize);
  1464. kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
  1465. kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
  1466. return object;
  1467. }
  1468. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1469. {
  1470. void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
  1471. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1472. return ret;
  1473. }
  1474. EXPORT_SYMBOL(kmem_cache_alloc);
  1475. #ifdef CONFIG_KMEMTRACE
  1476. void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  1477. {
  1478. return slab_alloc(s, gfpflags, -1, _RET_IP_);
  1479. }
  1480. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  1481. #endif
  1482. #ifdef CONFIG_NUMA
  1483. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1484. {
  1485. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1486. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1487. s->objsize, s->size, gfpflags, node);
  1488. return ret;
  1489. }
  1490. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1491. #endif
  1492. #ifdef CONFIG_KMEMTRACE
  1493. void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  1494. gfp_t gfpflags,
  1495. int node)
  1496. {
  1497. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1498. }
  1499. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  1500. #endif
  1501. /*
  1502. * Slow patch handling. This may still be called frequently since objects
  1503. * have a longer lifetime than the cpu slabs in most processing loads.
  1504. *
  1505. * So we still attempt to reduce cache line usage. Just take the slab
  1506. * lock and free the item. If there is no additional partial page
  1507. * handling required then we can return immediately.
  1508. */
  1509. static void __slab_free(struct kmem_cache *s, struct page *page,
  1510. void *x, unsigned long addr, unsigned int offset)
  1511. {
  1512. void *prior;
  1513. void **object = (void *)x;
  1514. struct kmem_cache_cpu *c;
  1515. c = get_cpu_slab(s, raw_smp_processor_id());
  1516. stat(c, FREE_SLOWPATH);
  1517. slab_lock(page);
  1518. if (unlikely(SLABDEBUG && PageSlubDebug(page)))
  1519. goto debug;
  1520. checks_ok:
  1521. prior = object[offset] = page->freelist;
  1522. page->freelist = object;
  1523. page->inuse--;
  1524. if (unlikely(PageSlubFrozen(page))) {
  1525. stat(c, FREE_FROZEN);
  1526. goto out_unlock;
  1527. }
  1528. if (unlikely(!page->inuse))
  1529. goto slab_empty;
  1530. /*
  1531. * Objects left in the slab. If it was not on the partial list before
  1532. * then add it.
  1533. */
  1534. if (unlikely(!prior)) {
  1535. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1536. stat(c, FREE_ADD_PARTIAL);
  1537. }
  1538. out_unlock:
  1539. slab_unlock(page);
  1540. return;
  1541. slab_empty:
  1542. if (prior) {
  1543. /*
  1544. * Slab still on the partial list.
  1545. */
  1546. remove_partial(s, page);
  1547. stat(c, FREE_REMOVE_PARTIAL);
  1548. }
  1549. slab_unlock(page);
  1550. stat(c, FREE_SLAB);
  1551. discard_slab(s, page);
  1552. return;
  1553. debug:
  1554. if (!free_debug_processing(s, page, x, addr))
  1555. goto out_unlock;
  1556. goto checks_ok;
  1557. }
  1558. /*
  1559. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1560. * can perform fastpath freeing without additional function calls.
  1561. *
  1562. * The fastpath is only possible if we are freeing to the current cpu slab
  1563. * of this processor. This typically the case if we have just allocated
  1564. * the item before.
  1565. *
  1566. * If fastpath is not possible then fall back to __slab_free where we deal
  1567. * with all sorts of special processing.
  1568. */
  1569. static __always_inline void slab_free(struct kmem_cache *s,
  1570. struct page *page, void *x, unsigned long addr)
  1571. {
  1572. void **object = (void *)x;
  1573. struct kmem_cache_cpu *c;
  1574. unsigned long flags;
  1575. kmemleak_free_recursive(x, s->flags);
  1576. local_irq_save(flags);
  1577. c = get_cpu_slab(s, smp_processor_id());
  1578. kmemcheck_slab_free(s, object, c->objsize);
  1579. debug_check_no_locks_freed(object, c->objsize);
  1580. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1581. debug_check_no_obj_freed(object, c->objsize);
  1582. if (likely(page == c->page && c->node >= 0)) {
  1583. object[c->offset] = c->freelist;
  1584. c->freelist = object;
  1585. stat(c, FREE_FASTPATH);
  1586. } else
  1587. __slab_free(s, page, x, addr, c->offset);
  1588. local_irq_restore(flags);
  1589. }
  1590. void kmem_cache_free(struct kmem_cache *s, void *x)
  1591. {
  1592. struct page *page;
  1593. page = virt_to_head_page(x);
  1594. slab_free(s, page, x, _RET_IP_);
  1595. trace_kmem_cache_free(_RET_IP_, x);
  1596. }
  1597. EXPORT_SYMBOL(kmem_cache_free);
  1598. /* Figure out on which slab page the object resides */
  1599. static struct page *get_object_page(const void *x)
  1600. {
  1601. struct page *page = virt_to_head_page(x);
  1602. if (!PageSlab(page))
  1603. return NULL;
  1604. return page;
  1605. }
  1606. /*
  1607. * Object placement in a slab is made very easy because we always start at
  1608. * offset 0. If we tune the size of the object to the alignment then we can
  1609. * get the required alignment by putting one properly sized object after
  1610. * another.
  1611. *
  1612. * Notice that the allocation order determines the sizes of the per cpu
  1613. * caches. Each processor has always one slab available for allocations.
  1614. * Increasing the allocation order reduces the number of times that slabs
  1615. * must be moved on and off the partial lists and is therefore a factor in
  1616. * locking overhead.
  1617. */
  1618. /*
  1619. * Mininum / Maximum order of slab pages. This influences locking overhead
  1620. * and slab fragmentation. A higher order reduces the number of partial slabs
  1621. * and increases the number of allocations possible without having to
  1622. * take the list_lock.
  1623. */
  1624. static int slub_min_order;
  1625. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1626. static int slub_min_objects;
  1627. /*
  1628. * Merge control. If this is set then no merging of slab caches will occur.
  1629. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1630. */
  1631. static int slub_nomerge;
  1632. /*
  1633. * Calculate the order of allocation given an slab object size.
  1634. *
  1635. * The order of allocation has significant impact on performance and other
  1636. * system components. Generally order 0 allocations should be preferred since
  1637. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1638. * be problematic to put into order 0 slabs because there may be too much
  1639. * unused space left. We go to a higher order if more than 1/16th of the slab
  1640. * would be wasted.
  1641. *
  1642. * In order to reach satisfactory performance we must ensure that a minimum
  1643. * number of objects is in one slab. Otherwise we may generate too much
  1644. * activity on the partial lists which requires taking the list_lock. This is
  1645. * less a concern for large slabs though which are rarely used.
  1646. *
  1647. * slub_max_order specifies the order where we begin to stop considering the
  1648. * number of objects in a slab as critical. If we reach slub_max_order then
  1649. * we try to keep the page order as low as possible. So we accept more waste
  1650. * of space in favor of a small page order.
  1651. *
  1652. * Higher order allocations also allow the placement of more objects in a
  1653. * slab and thereby reduce object handling overhead. If the user has
  1654. * requested a higher mininum order then we start with that one instead of
  1655. * the smallest order which will fit the object.
  1656. */
  1657. static inline int slab_order(int size, int min_objects,
  1658. int max_order, int fract_leftover)
  1659. {
  1660. int order;
  1661. int rem;
  1662. int min_order = slub_min_order;
  1663. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1664. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1665. for (order = max(min_order,
  1666. fls(min_objects * size - 1) - PAGE_SHIFT);
  1667. order <= max_order; order++) {
  1668. unsigned long slab_size = PAGE_SIZE << order;
  1669. if (slab_size < min_objects * size)
  1670. continue;
  1671. rem = slab_size % size;
  1672. if (rem <= slab_size / fract_leftover)
  1673. break;
  1674. }
  1675. return order;
  1676. }
  1677. static inline int calculate_order(int size)
  1678. {
  1679. int order;
  1680. int min_objects;
  1681. int fraction;
  1682. int max_objects;
  1683. /*
  1684. * Attempt to find best configuration for a slab. This
  1685. * works by first attempting to generate a layout with
  1686. * the best configuration and backing off gradually.
  1687. *
  1688. * First we reduce the acceptable waste in a slab. Then
  1689. * we reduce the minimum objects required in a slab.
  1690. */
  1691. min_objects = slub_min_objects;
  1692. if (!min_objects)
  1693. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1694. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1695. min_objects = min(min_objects, max_objects);
  1696. while (min_objects > 1) {
  1697. fraction = 16;
  1698. while (fraction >= 4) {
  1699. order = slab_order(size, min_objects,
  1700. slub_max_order, fraction);
  1701. if (order <= slub_max_order)
  1702. return order;
  1703. fraction /= 2;
  1704. }
  1705. min_objects--;
  1706. }
  1707. /*
  1708. * We were unable to place multiple objects in a slab. Now
  1709. * lets see if we can place a single object there.
  1710. */
  1711. order = slab_order(size, 1, slub_max_order, 1);
  1712. if (order <= slub_max_order)
  1713. return order;
  1714. /*
  1715. * Doh this slab cannot be placed using slub_max_order.
  1716. */
  1717. order = slab_order(size, 1, MAX_ORDER, 1);
  1718. if (order < MAX_ORDER)
  1719. return order;
  1720. return -ENOSYS;
  1721. }
  1722. /*
  1723. * Figure out what the alignment of the objects will be.
  1724. */
  1725. static unsigned long calculate_alignment(unsigned long flags,
  1726. unsigned long align, unsigned long size)
  1727. {
  1728. /*
  1729. * If the user wants hardware cache aligned objects then follow that
  1730. * suggestion if the object is sufficiently large.
  1731. *
  1732. * The hardware cache alignment cannot override the specified
  1733. * alignment though. If that is greater then use it.
  1734. */
  1735. if (flags & SLAB_HWCACHE_ALIGN) {
  1736. unsigned long ralign = cache_line_size();
  1737. while (size <= ralign / 2)
  1738. ralign /= 2;
  1739. align = max(align, ralign);
  1740. }
  1741. if (align < ARCH_SLAB_MINALIGN)
  1742. align = ARCH_SLAB_MINALIGN;
  1743. return ALIGN(align, sizeof(void *));
  1744. }
  1745. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1746. struct kmem_cache_cpu *c)
  1747. {
  1748. c->page = NULL;
  1749. c->freelist = NULL;
  1750. c->node = 0;
  1751. c->offset = s->offset / sizeof(void *);
  1752. c->objsize = s->objsize;
  1753. #ifdef CONFIG_SLUB_STATS
  1754. memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
  1755. #endif
  1756. }
  1757. static void
  1758. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1759. {
  1760. n->nr_partial = 0;
  1761. spin_lock_init(&n->list_lock);
  1762. INIT_LIST_HEAD(&n->partial);
  1763. #ifdef CONFIG_SLUB_DEBUG
  1764. atomic_long_set(&n->nr_slabs, 0);
  1765. atomic_long_set(&n->total_objects, 0);
  1766. INIT_LIST_HEAD(&n->full);
  1767. #endif
  1768. }
  1769. #ifdef CONFIG_SMP
  1770. /*
  1771. * Per cpu array for per cpu structures.
  1772. *
  1773. * The per cpu array places all kmem_cache_cpu structures from one processor
  1774. * close together meaning that it becomes possible that multiple per cpu
  1775. * structures are contained in one cacheline. This may be particularly
  1776. * beneficial for the kmalloc caches.
  1777. *
  1778. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1779. * likely able to get per cpu structures for all caches from the array defined
  1780. * here. We must be able to cover all kmalloc caches during bootstrap.
  1781. *
  1782. * If the per cpu array is exhausted then fall back to kmalloc
  1783. * of individual cachelines. No sharing is possible then.
  1784. */
  1785. #define NR_KMEM_CACHE_CPU 100
  1786. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1787. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1788. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1789. static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
  1790. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1791. int cpu, gfp_t flags)
  1792. {
  1793. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1794. if (c)
  1795. per_cpu(kmem_cache_cpu_free, cpu) =
  1796. (void *)c->freelist;
  1797. else {
  1798. /* Table overflow: So allocate ourselves */
  1799. c = kmalloc_node(
  1800. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1801. flags, cpu_to_node(cpu));
  1802. if (!c)
  1803. return NULL;
  1804. }
  1805. init_kmem_cache_cpu(s, c);
  1806. return c;
  1807. }
  1808. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1809. {
  1810. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1811. c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1812. kfree(c);
  1813. return;
  1814. }
  1815. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1816. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1817. }
  1818. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1819. {
  1820. int cpu;
  1821. for_each_online_cpu(cpu) {
  1822. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1823. if (c) {
  1824. s->cpu_slab[cpu] = NULL;
  1825. free_kmem_cache_cpu(c, cpu);
  1826. }
  1827. }
  1828. }
  1829. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1830. {
  1831. int cpu;
  1832. for_each_online_cpu(cpu) {
  1833. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1834. if (c)
  1835. continue;
  1836. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1837. if (!c) {
  1838. free_kmem_cache_cpus(s);
  1839. return 0;
  1840. }
  1841. s->cpu_slab[cpu] = c;
  1842. }
  1843. return 1;
  1844. }
  1845. /*
  1846. * Initialize the per cpu array.
  1847. */
  1848. static void init_alloc_cpu_cpu(int cpu)
  1849. {
  1850. int i;
  1851. if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
  1852. return;
  1853. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1854. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1855. cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
  1856. }
  1857. static void __init init_alloc_cpu(void)
  1858. {
  1859. int cpu;
  1860. for_each_online_cpu(cpu)
  1861. init_alloc_cpu_cpu(cpu);
  1862. }
  1863. #else
  1864. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1865. static inline void init_alloc_cpu(void) {}
  1866. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1867. {
  1868. init_kmem_cache_cpu(s, &s->cpu_slab);
  1869. return 1;
  1870. }
  1871. #endif
  1872. #ifdef CONFIG_NUMA
  1873. /*
  1874. * No kmalloc_node yet so do it by hand. We know that this is the first
  1875. * slab on the node for this slabcache. There are no concurrent accesses
  1876. * possible.
  1877. *
  1878. * Note that this function only works on the kmalloc_node_cache
  1879. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1880. * memory on a fresh node that has no slab structures yet.
  1881. */
  1882. static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
  1883. {
  1884. struct page *page;
  1885. struct kmem_cache_node *n;
  1886. unsigned long flags;
  1887. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1888. page = new_slab(kmalloc_caches, gfpflags, node);
  1889. BUG_ON(!page);
  1890. if (page_to_nid(page) != node) {
  1891. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1892. "node %d\n", node);
  1893. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1894. "in order to be able to continue\n");
  1895. }
  1896. n = page->freelist;
  1897. BUG_ON(!n);
  1898. page->freelist = get_freepointer(kmalloc_caches, n);
  1899. page->inuse++;
  1900. kmalloc_caches->node[node] = n;
  1901. #ifdef CONFIG_SLUB_DEBUG
  1902. init_object(kmalloc_caches, n, 1);
  1903. init_tracking(kmalloc_caches, n);
  1904. #endif
  1905. init_kmem_cache_node(n, kmalloc_caches);
  1906. inc_slabs_node(kmalloc_caches, node, page->objects);
  1907. /*
  1908. * lockdep requires consistent irq usage for each lock
  1909. * so even though there cannot be a race this early in
  1910. * the boot sequence, we still disable irqs.
  1911. */
  1912. local_irq_save(flags);
  1913. add_partial(n, page, 0);
  1914. local_irq_restore(flags);
  1915. }
  1916. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1917. {
  1918. int node;
  1919. for_each_node_state(node, N_NORMAL_MEMORY) {
  1920. struct kmem_cache_node *n = s->node[node];
  1921. if (n && n != &s->local_node)
  1922. kmem_cache_free(kmalloc_caches, n);
  1923. s->node[node] = NULL;
  1924. }
  1925. }
  1926. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1927. {
  1928. int node;
  1929. int local_node;
  1930. if (slab_state >= UP)
  1931. local_node = page_to_nid(virt_to_page(s));
  1932. else
  1933. local_node = 0;
  1934. for_each_node_state(node, N_NORMAL_MEMORY) {
  1935. struct kmem_cache_node *n;
  1936. if (local_node == node)
  1937. n = &s->local_node;
  1938. else {
  1939. if (slab_state == DOWN) {
  1940. early_kmem_cache_node_alloc(gfpflags, node);
  1941. continue;
  1942. }
  1943. n = kmem_cache_alloc_node(kmalloc_caches,
  1944. gfpflags, node);
  1945. if (!n) {
  1946. free_kmem_cache_nodes(s);
  1947. return 0;
  1948. }
  1949. }
  1950. s->node[node] = n;
  1951. init_kmem_cache_node(n, s);
  1952. }
  1953. return 1;
  1954. }
  1955. #else
  1956. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1957. {
  1958. }
  1959. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1960. {
  1961. init_kmem_cache_node(&s->local_node, s);
  1962. return 1;
  1963. }
  1964. #endif
  1965. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1966. {
  1967. if (min < MIN_PARTIAL)
  1968. min = MIN_PARTIAL;
  1969. else if (min > MAX_PARTIAL)
  1970. min = MAX_PARTIAL;
  1971. s->min_partial = min;
  1972. }
  1973. /*
  1974. * calculate_sizes() determines the order and the distribution of data within
  1975. * a slab object.
  1976. */
  1977. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1978. {
  1979. unsigned long flags = s->flags;
  1980. unsigned long size = s->objsize;
  1981. unsigned long align = s->align;
  1982. int order;
  1983. /*
  1984. * Round up object size to the next word boundary. We can only
  1985. * place the free pointer at word boundaries and this determines
  1986. * the possible location of the free pointer.
  1987. */
  1988. size = ALIGN(size, sizeof(void *));
  1989. #ifdef CONFIG_SLUB_DEBUG
  1990. /*
  1991. * Determine if we can poison the object itself. If the user of
  1992. * the slab may touch the object after free or before allocation
  1993. * then we should never poison the object itself.
  1994. */
  1995. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1996. !s->ctor)
  1997. s->flags |= __OBJECT_POISON;
  1998. else
  1999. s->flags &= ~__OBJECT_POISON;
  2000. /*
  2001. * If we are Redzoning then check if there is some space between the
  2002. * end of the object and the free pointer. If not then add an
  2003. * additional word to have some bytes to store Redzone information.
  2004. */
  2005. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  2006. size += sizeof(void *);
  2007. #endif
  2008. /*
  2009. * With that we have determined the number of bytes in actual use
  2010. * by the object. This is the potential offset to the free pointer.
  2011. */
  2012. s->inuse = size;
  2013. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2014. s->ctor)) {
  2015. /*
  2016. * Relocate free pointer after the object if it is not
  2017. * permitted to overwrite the first word of the object on
  2018. * kmem_cache_free.
  2019. *
  2020. * This is the case if we do RCU, have a constructor or
  2021. * destructor or are poisoning the objects.
  2022. */
  2023. s->offset = size;
  2024. size += sizeof(void *);
  2025. }
  2026. #ifdef CONFIG_SLUB_DEBUG
  2027. if (flags & SLAB_STORE_USER)
  2028. /*
  2029. * Need to store information about allocs and frees after
  2030. * the object.
  2031. */
  2032. size += 2 * sizeof(struct track);
  2033. if (flags & SLAB_RED_ZONE)
  2034. /*
  2035. * Add some empty padding so that we can catch
  2036. * overwrites from earlier objects rather than let
  2037. * tracking information or the free pointer be
  2038. * corrupted if a user writes before the start
  2039. * of the object.
  2040. */
  2041. size += sizeof(void *);
  2042. #endif
  2043. /*
  2044. * Determine the alignment based on various parameters that the
  2045. * user specified and the dynamic determination of cache line size
  2046. * on bootup.
  2047. */
  2048. align = calculate_alignment(flags, align, s->objsize);
  2049. /*
  2050. * SLUB stores one object immediately after another beginning from
  2051. * offset 0. In order to align the objects we have to simply size
  2052. * each object to conform to the alignment.
  2053. */
  2054. size = ALIGN(size, align);
  2055. s->size = size;
  2056. if (forced_order >= 0)
  2057. order = forced_order;
  2058. else
  2059. order = calculate_order(size);
  2060. if (order < 0)
  2061. return 0;
  2062. s->allocflags = 0;
  2063. if (order)
  2064. s->allocflags |= __GFP_COMP;
  2065. if (s->flags & SLAB_CACHE_DMA)
  2066. s->allocflags |= SLUB_DMA;
  2067. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2068. s->allocflags |= __GFP_RECLAIMABLE;
  2069. /*
  2070. * Determine the number of objects per slab
  2071. */
  2072. s->oo = oo_make(order, size);
  2073. s->min = oo_make(get_order(size), size);
  2074. if (oo_objects(s->oo) > oo_objects(s->max))
  2075. s->max = s->oo;
  2076. return !!oo_objects(s->oo);
  2077. }
  2078. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  2079. const char *name, size_t size,
  2080. size_t align, unsigned long flags,
  2081. void (*ctor)(void *))
  2082. {
  2083. memset(s, 0, kmem_size);
  2084. s->name = name;
  2085. s->ctor = ctor;
  2086. s->objsize = size;
  2087. s->align = align;
  2088. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2089. if (!calculate_sizes(s, -1))
  2090. goto error;
  2091. /*
  2092. * The larger the object size is, the more pages we want on the partial
  2093. * list to avoid pounding the page allocator excessively.
  2094. */
  2095. set_min_partial(s, ilog2(s->size));
  2096. s->refcount = 1;
  2097. #ifdef CONFIG_NUMA
  2098. s->remote_node_defrag_ratio = 1000;
  2099. #endif
  2100. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  2101. goto error;
  2102. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  2103. return 1;
  2104. free_kmem_cache_nodes(s);
  2105. error:
  2106. if (flags & SLAB_PANIC)
  2107. panic("Cannot create slab %s size=%lu realsize=%u "
  2108. "order=%u offset=%u flags=%lx\n",
  2109. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2110. s->offset, flags);
  2111. return 0;
  2112. }
  2113. /*
  2114. * Check if a given pointer is valid
  2115. */
  2116. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2117. {
  2118. struct page *page;
  2119. page = get_object_page(object);
  2120. if (!page || s != page->slab)
  2121. /* No slab or wrong slab */
  2122. return 0;
  2123. if (!check_valid_pointer(s, page, object))
  2124. return 0;
  2125. /*
  2126. * We could also check if the object is on the slabs freelist.
  2127. * But this would be too expensive and it seems that the main
  2128. * purpose of kmem_ptr_valid() is to check if the object belongs
  2129. * to a certain slab.
  2130. */
  2131. return 1;
  2132. }
  2133. EXPORT_SYMBOL(kmem_ptr_validate);
  2134. /*
  2135. * Determine the size of a slab object
  2136. */
  2137. unsigned int kmem_cache_size(struct kmem_cache *s)
  2138. {
  2139. return s->objsize;
  2140. }
  2141. EXPORT_SYMBOL(kmem_cache_size);
  2142. const char *kmem_cache_name(struct kmem_cache *s)
  2143. {
  2144. return s->name;
  2145. }
  2146. EXPORT_SYMBOL(kmem_cache_name);
  2147. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2148. const char *text)
  2149. {
  2150. #ifdef CONFIG_SLUB_DEBUG
  2151. void *addr = page_address(page);
  2152. void *p;
  2153. DECLARE_BITMAP(map, page->objects);
  2154. bitmap_zero(map, page->objects);
  2155. slab_err(s, page, "%s", text);
  2156. slab_lock(page);
  2157. for_each_free_object(p, s, page->freelist)
  2158. set_bit(slab_index(p, s, addr), map);
  2159. for_each_object(p, s, addr, page->objects) {
  2160. if (!test_bit(slab_index(p, s, addr), map)) {
  2161. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2162. p, p - addr);
  2163. print_tracking(s, p);
  2164. }
  2165. }
  2166. slab_unlock(page);
  2167. #endif
  2168. }
  2169. /*
  2170. * Attempt to free all partial slabs on a node.
  2171. */
  2172. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2173. {
  2174. unsigned long flags;
  2175. struct page *page, *h;
  2176. spin_lock_irqsave(&n->list_lock, flags);
  2177. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2178. if (!page->inuse) {
  2179. list_del(&page->lru);
  2180. discard_slab(s, page);
  2181. n->nr_partial--;
  2182. } else {
  2183. list_slab_objects(s, page,
  2184. "Objects remaining on kmem_cache_close()");
  2185. }
  2186. }
  2187. spin_unlock_irqrestore(&n->list_lock, flags);
  2188. }
  2189. /*
  2190. * Release all resources used by a slab cache.
  2191. */
  2192. static inline int kmem_cache_close(struct kmem_cache *s)
  2193. {
  2194. int node;
  2195. flush_all(s);
  2196. /* Attempt to free all objects */
  2197. free_kmem_cache_cpus(s);
  2198. for_each_node_state(node, N_NORMAL_MEMORY) {
  2199. struct kmem_cache_node *n = get_node(s, node);
  2200. free_partial(s, n);
  2201. if (n->nr_partial || slabs_node(s, node))
  2202. return 1;
  2203. }
  2204. free_kmem_cache_nodes(s);
  2205. return 0;
  2206. }
  2207. /*
  2208. * Close a cache and release the kmem_cache structure
  2209. * (must be used for caches created using kmem_cache_create)
  2210. */
  2211. void kmem_cache_destroy(struct kmem_cache *s)
  2212. {
  2213. if (s->flags & SLAB_DESTROY_BY_RCU)
  2214. rcu_barrier();
  2215. down_write(&slub_lock);
  2216. s->refcount--;
  2217. if (!s->refcount) {
  2218. list_del(&s->list);
  2219. up_write(&slub_lock);
  2220. if (kmem_cache_close(s)) {
  2221. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2222. "still has objects.\n", s->name, __func__);
  2223. dump_stack();
  2224. }
  2225. sysfs_slab_remove(s);
  2226. } else
  2227. up_write(&slub_lock);
  2228. }
  2229. EXPORT_SYMBOL(kmem_cache_destroy);
  2230. /********************************************************************
  2231. * Kmalloc subsystem
  2232. *******************************************************************/
  2233. struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
  2234. EXPORT_SYMBOL(kmalloc_caches);
  2235. static int __init setup_slub_min_order(char *str)
  2236. {
  2237. get_option(&str, &slub_min_order);
  2238. return 1;
  2239. }
  2240. __setup("slub_min_order=", setup_slub_min_order);
  2241. static int __init setup_slub_max_order(char *str)
  2242. {
  2243. get_option(&str, &slub_max_order);
  2244. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2245. return 1;
  2246. }
  2247. __setup("slub_max_order=", setup_slub_max_order);
  2248. static int __init setup_slub_min_objects(char *str)
  2249. {
  2250. get_option(&str, &slub_min_objects);
  2251. return 1;
  2252. }
  2253. __setup("slub_min_objects=", setup_slub_min_objects);
  2254. static int __init setup_slub_nomerge(char *str)
  2255. {
  2256. slub_nomerge = 1;
  2257. return 1;
  2258. }
  2259. __setup("slub_nomerge", setup_slub_nomerge);
  2260. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2261. const char *name, int size, gfp_t gfp_flags)
  2262. {
  2263. unsigned int flags = 0;
  2264. if (gfp_flags & SLUB_DMA)
  2265. flags = SLAB_CACHE_DMA;
  2266. /*
  2267. * This function is called with IRQs disabled during early-boot on
  2268. * single CPU so there's no need to take slub_lock here.
  2269. */
  2270. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2271. flags, NULL))
  2272. goto panic;
  2273. list_add(&s->list, &slab_caches);
  2274. if (sysfs_slab_add(s))
  2275. goto panic;
  2276. return s;
  2277. panic:
  2278. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2279. }
  2280. #ifdef CONFIG_ZONE_DMA
  2281. static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
  2282. static void sysfs_add_func(struct work_struct *w)
  2283. {
  2284. struct kmem_cache *s;
  2285. down_write(&slub_lock);
  2286. list_for_each_entry(s, &slab_caches, list) {
  2287. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2288. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2289. sysfs_slab_add(s);
  2290. }
  2291. }
  2292. up_write(&slub_lock);
  2293. }
  2294. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2295. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2296. {
  2297. struct kmem_cache *s;
  2298. char *text;
  2299. size_t realsize;
  2300. unsigned long slabflags;
  2301. s = kmalloc_caches_dma[index];
  2302. if (s)
  2303. return s;
  2304. /* Dynamically create dma cache */
  2305. if (flags & __GFP_WAIT)
  2306. down_write(&slub_lock);
  2307. else {
  2308. if (!down_write_trylock(&slub_lock))
  2309. goto out;
  2310. }
  2311. if (kmalloc_caches_dma[index])
  2312. goto unlock_out;
  2313. realsize = kmalloc_caches[index].objsize;
  2314. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2315. (unsigned int)realsize);
  2316. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2317. /*
  2318. * Must defer sysfs creation to a workqueue because we don't know
  2319. * what context we are called from. Before sysfs comes up, we don't
  2320. * need to do anything because our sysfs initcall will start by
  2321. * adding all existing slabs to sysfs.
  2322. */
  2323. slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
  2324. if (slab_state >= SYSFS)
  2325. slabflags |= __SYSFS_ADD_DEFERRED;
  2326. if (!s || !text || !kmem_cache_open(s, flags, text,
  2327. realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
  2328. kfree(s);
  2329. kfree(text);
  2330. goto unlock_out;
  2331. }
  2332. list_add(&s->list, &slab_caches);
  2333. kmalloc_caches_dma[index] = s;
  2334. if (slab_state >= SYSFS)
  2335. schedule_work(&sysfs_add_work);
  2336. unlock_out:
  2337. up_write(&slub_lock);
  2338. out:
  2339. return kmalloc_caches_dma[index];
  2340. }
  2341. #endif
  2342. /*
  2343. * Conversion table for small slabs sizes / 8 to the index in the
  2344. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2345. * of two cache sizes there. The size of larger slabs can be determined using
  2346. * fls.
  2347. */
  2348. static s8 size_index[24] = {
  2349. 3, /* 8 */
  2350. 4, /* 16 */
  2351. 5, /* 24 */
  2352. 5, /* 32 */
  2353. 6, /* 40 */
  2354. 6, /* 48 */
  2355. 6, /* 56 */
  2356. 6, /* 64 */
  2357. 1, /* 72 */
  2358. 1, /* 80 */
  2359. 1, /* 88 */
  2360. 1, /* 96 */
  2361. 7, /* 104 */
  2362. 7, /* 112 */
  2363. 7, /* 120 */
  2364. 7, /* 128 */
  2365. 2, /* 136 */
  2366. 2, /* 144 */
  2367. 2, /* 152 */
  2368. 2, /* 160 */
  2369. 2, /* 168 */
  2370. 2, /* 176 */
  2371. 2, /* 184 */
  2372. 2 /* 192 */
  2373. };
  2374. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2375. {
  2376. int index;
  2377. if (size <= 192) {
  2378. if (!size)
  2379. return ZERO_SIZE_PTR;
  2380. index = size_index[(size - 1) / 8];
  2381. } else
  2382. index = fls(size - 1);
  2383. #ifdef CONFIG_ZONE_DMA
  2384. if (unlikely((flags & SLUB_DMA)))
  2385. return dma_kmalloc_cache(index, flags);
  2386. #endif
  2387. return &kmalloc_caches[index];
  2388. }
  2389. void *__kmalloc(size_t size, gfp_t flags)
  2390. {
  2391. struct kmem_cache *s;
  2392. void *ret;
  2393. if (unlikely(size > SLUB_MAX_SIZE))
  2394. return kmalloc_large(size, flags);
  2395. s = get_slab(size, flags);
  2396. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2397. return s;
  2398. ret = slab_alloc(s, flags, -1, _RET_IP_);
  2399. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2400. return ret;
  2401. }
  2402. EXPORT_SYMBOL(__kmalloc);
  2403. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2404. {
  2405. struct page *page;
  2406. void *ptr = NULL;
  2407. flags |= __GFP_COMP | __GFP_NOTRACK;
  2408. page = alloc_pages_node(node, flags, get_order(size));
  2409. if (page)
  2410. ptr = page_address(page);
  2411. kmemleak_alloc(ptr, size, 1, flags);
  2412. return ptr;
  2413. }
  2414. #ifdef CONFIG_NUMA
  2415. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2416. {
  2417. struct kmem_cache *s;
  2418. void *ret;
  2419. if (unlikely(size > SLUB_MAX_SIZE)) {
  2420. ret = kmalloc_large_node(size, flags, node);
  2421. trace_kmalloc_node(_RET_IP_, ret,
  2422. size, PAGE_SIZE << get_order(size),
  2423. flags, node);
  2424. return ret;
  2425. }
  2426. s = get_slab(size, flags);
  2427. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2428. return s;
  2429. ret = slab_alloc(s, flags, node, _RET_IP_);
  2430. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2431. return ret;
  2432. }
  2433. EXPORT_SYMBOL(__kmalloc_node);
  2434. #endif
  2435. size_t ksize(const void *object)
  2436. {
  2437. struct page *page;
  2438. struct kmem_cache *s;
  2439. if (unlikely(object == ZERO_SIZE_PTR))
  2440. return 0;
  2441. page = virt_to_head_page(object);
  2442. if (unlikely(!PageSlab(page))) {
  2443. WARN_ON(!PageCompound(page));
  2444. return PAGE_SIZE << compound_order(page);
  2445. }
  2446. s = page->slab;
  2447. #ifdef CONFIG_SLUB_DEBUG
  2448. /*
  2449. * Debugging requires use of the padding between object
  2450. * and whatever may come after it.
  2451. */
  2452. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2453. return s->objsize;
  2454. #endif
  2455. /*
  2456. * If we have the need to store the freelist pointer
  2457. * back there or track user information then we can
  2458. * only use the space before that information.
  2459. */
  2460. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2461. return s->inuse;
  2462. /*
  2463. * Else we can use all the padding etc for the allocation
  2464. */
  2465. return s->size;
  2466. }
  2467. EXPORT_SYMBOL(ksize);
  2468. void kfree(const void *x)
  2469. {
  2470. struct page *page;
  2471. void *object = (void *)x;
  2472. trace_kfree(_RET_IP_, x);
  2473. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2474. return;
  2475. page = virt_to_head_page(x);
  2476. if (unlikely(!PageSlab(page))) {
  2477. BUG_ON(!PageCompound(page));
  2478. kmemleak_free(x);
  2479. put_page(page);
  2480. return;
  2481. }
  2482. slab_free(page->slab, page, object, _RET_IP_);
  2483. }
  2484. EXPORT_SYMBOL(kfree);
  2485. /*
  2486. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2487. * the remaining slabs by the number of items in use. The slabs with the
  2488. * most items in use come first. New allocations will then fill those up
  2489. * and thus they can be removed from the partial lists.
  2490. *
  2491. * The slabs with the least items are placed last. This results in them
  2492. * being allocated from last increasing the chance that the last objects
  2493. * are freed in them.
  2494. */
  2495. int kmem_cache_shrink(struct kmem_cache *s)
  2496. {
  2497. int node;
  2498. int i;
  2499. struct kmem_cache_node *n;
  2500. struct page *page;
  2501. struct page *t;
  2502. int objects = oo_objects(s->max);
  2503. struct list_head *slabs_by_inuse =
  2504. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2505. unsigned long flags;
  2506. if (!slabs_by_inuse)
  2507. return -ENOMEM;
  2508. flush_all(s);
  2509. for_each_node_state(node, N_NORMAL_MEMORY) {
  2510. n = get_node(s, node);
  2511. if (!n->nr_partial)
  2512. continue;
  2513. for (i = 0; i < objects; i++)
  2514. INIT_LIST_HEAD(slabs_by_inuse + i);
  2515. spin_lock_irqsave(&n->list_lock, flags);
  2516. /*
  2517. * Build lists indexed by the items in use in each slab.
  2518. *
  2519. * Note that concurrent frees may occur while we hold the
  2520. * list_lock. page->inuse here is the upper limit.
  2521. */
  2522. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2523. if (!page->inuse && slab_trylock(page)) {
  2524. /*
  2525. * Must hold slab lock here because slab_free
  2526. * may have freed the last object and be
  2527. * waiting to release the slab.
  2528. */
  2529. list_del(&page->lru);
  2530. n->nr_partial--;
  2531. slab_unlock(page);
  2532. discard_slab(s, page);
  2533. } else {
  2534. list_move(&page->lru,
  2535. slabs_by_inuse + page->inuse);
  2536. }
  2537. }
  2538. /*
  2539. * Rebuild the partial list with the slabs filled up most
  2540. * first and the least used slabs at the end.
  2541. */
  2542. for (i = objects - 1; i >= 0; i--)
  2543. list_splice(slabs_by_inuse + i, n->partial.prev);
  2544. spin_unlock_irqrestore(&n->list_lock, flags);
  2545. }
  2546. kfree(slabs_by_inuse);
  2547. return 0;
  2548. }
  2549. EXPORT_SYMBOL(kmem_cache_shrink);
  2550. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2551. static int slab_mem_going_offline_callback(void *arg)
  2552. {
  2553. struct kmem_cache *s;
  2554. down_read(&slub_lock);
  2555. list_for_each_entry(s, &slab_caches, list)
  2556. kmem_cache_shrink(s);
  2557. up_read(&slub_lock);
  2558. return 0;
  2559. }
  2560. static void slab_mem_offline_callback(void *arg)
  2561. {
  2562. struct kmem_cache_node *n;
  2563. struct kmem_cache *s;
  2564. struct memory_notify *marg = arg;
  2565. int offline_node;
  2566. offline_node = marg->status_change_nid;
  2567. /*
  2568. * If the node still has available memory. we need kmem_cache_node
  2569. * for it yet.
  2570. */
  2571. if (offline_node < 0)
  2572. return;
  2573. down_read(&slub_lock);
  2574. list_for_each_entry(s, &slab_caches, list) {
  2575. n = get_node(s, offline_node);
  2576. if (n) {
  2577. /*
  2578. * if n->nr_slabs > 0, slabs still exist on the node
  2579. * that is going down. We were unable to free them,
  2580. * and offline_pages() function shoudn't call this
  2581. * callback. So, we must fail.
  2582. */
  2583. BUG_ON(slabs_node(s, offline_node));
  2584. s->node[offline_node] = NULL;
  2585. kmem_cache_free(kmalloc_caches, n);
  2586. }
  2587. }
  2588. up_read(&slub_lock);
  2589. }
  2590. static int slab_mem_going_online_callback(void *arg)
  2591. {
  2592. struct kmem_cache_node *n;
  2593. struct kmem_cache *s;
  2594. struct memory_notify *marg = arg;
  2595. int nid = marg->status_change_nid;
  2596. int ret = 0;
  2597. /*
  2598. * If the node's memory is already available, then kmem_cache_node is
  2599. * already created. Nothing to do.
  2600. */
  2601. if (nid < 0)
  2602. return 0;
  2603. /*
  2604. * We are bringing a node online. No memory is available yet. We must
  2605. * allocate a kmem_cache_node structure in order to bring the node
  2606. * online.
  2607. */
  2608. down_read(&slub_lock);
  2609. list_for_each_entry(s, &slab_caches, list) {
  2610. /*
  2611. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2612. * since memory is not yet available from the node that
  2613. * is brought up.
  2614. */
  2615. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2616. if (!n) {
  2617. ret = -ENOMEM;
  2618. goto out;
  2619. }
  2620. init_kmem_cache_node(n, s);
  2621. s->node[nid] = n;
  2622. }
  2623. out:
  2624. up_read(&slub_lock);
  2625. return ret;
  2626. }
  2627. static int slab_memory_callback(struct notifier_block *self,
  2628. unsigned long action, void *arg)
  2629. {
  2630. int ret = 0;
  2631. switch (action) {
  2632. case MEM_GOING_ONLINE:
  2633. ret = slab_mem_going_online_callback(arg);
  2634. break;
  2635. case MEM_GOING_OFFLINE:
  2636. ret = slab_mem_going_offline_callback(arg);
  2637. break;
  2638. case MEM_OFFLINE:
  2639. case MEM_CANCEL_ONLINE:
  2640. slab_mem_offline_callback(arg);
  2641. break;
  2642. case MEM_ONLINE:
  2643. case MEM_CANCEL_OFFLINE:
  2644. break;
  2645. }
  2646. if (ret)
  2647. ret = notifier_from_errno(ret);
  2648. else
  2649. ret = NOTIFY_OK;
  2650. return ret;
  2651. }
  2652. #endif /* CONFIG_MEMORY_HOTPLUG */
  2653. /********************************************************************
  2654. * Basic setup of slabs
  2655. *******************************************************************/
  2656. void __init kmem_cache_init(void)
  2657. {
  2658. int i;
  2659. int caches = 0;
  2660. init_alloc_cpu();
  2661. #ifdef CONFIG_NUMA
  2662. /*
  2663. * Must first have the slab cache available for the allocations of the
  2664. * struct kmem_cache_node's. There is special bootstrap code in
  2665. * kmem_cache_open for slab_state == DOWN.
  2666. */
  2667. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2668. sizeof(struct kmem_cache_node), GFP_NOWAIT);
  2669. kmalloc_caches[0].refcount = -1;
  2670. caches++;
  2671. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2672. #endif
  2673. /* Able to allocate the per node structures */
  2674. slab_state = PARTIAL;
  2675. /* Caches that are not of the two-to-the-power-of size */
  2676. if (KMALLOC_MIN_SIZE <= 64) {
  2677. create_kmalloc_cache(&kmalloc_caches[1],
  2678. "kmalloc-96", 96, GFP_NOWAIT);
  2679. caches++;
  2680. create_kmalloc_cache(&kmalloc_caches[2],
  2681. "kmalloc-192", 192, GFP_NOWAIT);
  2682. caches++;
  2683. }
  2684. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2685. create_kmalloc_cache(&kmalloc_caches[i],
  2686. "kmalloc", 1 << i, GFP_NOWAIT);
  2687. caches++;
  2688. }
  2689. /*
  2690. * Patch up the size_index table if we have strange large alignment
  2691. * requirements for the kmalloc array. This is only the case for
  2692. * MIPS it seems. The standard arches will not generate any code here.
  2693. *
  2694. * Largest permitted alignment is 256 bytes due to the way we
  2695. * handle the index determination for the smaller caches.
  2696. *
  2697. * Make sure that nothing crazy happens if someone starts tinkering
  2698. * around with ARCH_KMALLOC_MINALIGN
  2699. */
  2700. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2701. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2702. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2703. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2704. if (KMALLOC_MIN_SIZE == 128) {
  2705. /*
  2706. * The 192 byte sized cache is not used if the alignment
  2707. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2708. * instead.
  2709. */
  2710. for (i = 128 + 8; i <= 192; i += 8)
  2711. size_index[(i - 1) / 8] = 8;
  2712. }
  2713. slab_state = UP;
  2714. /* Provide the correct kmalloc names now that the caches are up */
  2715. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
  2716. kmalloc_caches[i]. name =
  2717. kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2718. #ifdef CONFIG_SMP
  2719. register_cpu_notifier(&slab_notifier);
  2720. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2721. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2722. #else
  2723. kmem_size = sizeof(struct kmem_cache);
  2724. #endif
  2725. printk(KERN_INFO
  2726. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2727. " CPUs=%d, Nodes=%d\n",
  2728. caches, cache_line_size(),
  2729. slub_min_order, slub_max_order, slub_min_objects,
  2730. nr_cpu_ids, nr_node_ids);
  2731. }
  2732. void __init kmem_cache_init_late(void)
  2733. {
  2734. }
  2735. /*
  2736. * Find a mergeable slab cache
  2737. */
  2738. static int slab_unmergeable(struct kmem_cache *s)
  2739. {
  2740. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2741. return 1;
  2742. if (s->ctor)
  2743. return 1;
  2744. /*
  2745. * We may have set a slab to be unmergeable during bootstrap.
  2746. */
  2747. if (s->refcount < 0)
  2748. return 1;
  2749. return 0;
  2750. }
  2751. static struct kmem_cache *find_mergeable(size_t size,
  2752. size_t align, unsigned long flags, const char *name,
  2753. void (*ctor)(void *))
  2754. {
  2755. struct kmem_cache *s;
  2756. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2757. return NULL;
  2758. if (ctor)
  2759. return NULL;
  2760. size = ALIGN(size, sizeof(void *));
  2761. align = calculate_alignment(flags, align, size);
  2762. size = ALIGN(size, align);
  2763. flags = kmem_cache_flags(size, flags, name, NULL);
  2764. list_for_each_entry(s, &slab_caches, list) {
  2765. if (slab_unmergeable(s))
  2766. continue;
  2767. if (size > s->size)
  2768. continue;
  2769. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2770. continue;
  2771. /*
  2772. * Check if alignment is compatible.
  2773. * Courtesy of Adrian Drzewiecki
  2774. */
  2775. if ((s->size & ~(align - 1)) != s->size)
  2776. continue;
  2777. if (s->size - size >= sizeof(void *))
  2778. continue;
  2779. return s;
  2780. }
  2781. return NULL;
  2782. }
  2783. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2784. size_t align, unsigned long flags, void (*ctor)(void *))
  2785. {
  2786. struct kmem_cache *s;
  2787. down_write(&slub_lock);
  2788. s = find_mergeable(size, align, flags, name, ctor);
  2789. if (s) {
  2790. int cpu;
  2791. s->refcount++;
  2792. /*
  2793. * Adjust the object sizes so that we clear
  2794. * the complete object on kzalloc.
  2795. */
  2796. s->objsize = max(s->objsize, (int)size);
  2797. /*
  2798. * And then we need to update the object size in the
  2799. * per cpu structures
  2800. */
  2801. for_each_online_cpu(cpu)
  2802. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2803. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2804. up_write(&slub_lock);
  2805. if (sysfs_slab_alias(s, name)) {
  2806. down_write(&slub_lock);
  2807. s->refcount--;
  2808. up_write(&slub_lock);
  2809. goto err;
  2810. }
  2811. return s;
  2812. }
  2813. s = kmalloc(kmem_size, GFP_KERNEL);
  2814. if (s) {
  2815. if (kmem_cache_open(s, GFP_KERNEL, name,
  2816. size, align, flags, ctor)) {
  2817. list_add(&s->list, &slab_caches);
  2818. up_write(&slub_lock);
  2819. if (sysfs_slab_add(s)) {
  2820. down_write(&slub_lock);
  2821. list_del(&s->list);
  2822. up_write(&slub_lock);
  2823. kfree(s);
  2824. goto err;
  2825. }
  2826. return s;
  2827. }
  2828. kfree(s);
  2829. }
  2830. up_write(&slub_lock);
  2831. err:
  2832. if (flags & SLAB_PANIC)
  2833. panic("Cannot create slabcache %s\n", name);
  2834. else
  2835. s = NULL;
  2836. return s;
  2837. }
  2838. EXPORT_SYMBOL(kmem_cache_create);
  2839. #ifdef CONFIG_SMP
  2840. /*
  2841. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2842. * necessary.
  2843. */
  2844. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2845. unsigned long action, void *hcpu)
  2846. {
  2847. long cpu = (long)hcpu;
  2848. struct kmem_cache *s;
  2849. unsigned long flags;
  2850. switch (action) {
  2851. case CPU_UP_PREPARE:
  2852. case CPU_UP_PREPARE_FROZEN:
  2853. init_alloc_cpu_cpu(cpu);
  2854. down_read(&slub_lock);
  2855. list_for_each_entry(s, &slab_caches, list)
  2856. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2857. GFP_KERNEL);
  2858. up_read(&slub_lock);
  2859. break;
  2860. case CPU_UP_CANCELED:
  2861. case CPU_UP_CANCELED_FROZEN:
  2862. case CPU_DEAD:
  2863. case CPU_DEAD_FROZEN:
  2864. down_read(&slub_lock);
  2865. list_for_each_entry(s, &slab_caches, list) {
  2866. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2867. local_irq_save(flags);
  2868. __flush_cpu_slab(s, cpu);
  2869. local_irq_restore(flags);
  2870. free_kmem_cache_cpu(c, cpu);
  2871. s->cpu_slab[cpu] = NULL;
  2872. }
  2873. up_read(&slub_lock);
  2874. break;
  2875. default:
  2876. break;
  2877. }
  2878. return NOTIFY_OK;
  2879. }
  2880. static struct notifier_block __cpuinitdata slab_notifier = {
  2881. .notifier_call = slab_cpuup_callback
  2882. };
  2883. #endif
  2884. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2885. {
  2886. struct kmem_cache *s;
  2887. void *ret;
  2888. if (unlikely(size > SLUB_MAX_SIZE))
  2889. return kmalloc_large(size, gfpflags);
  2890. s = get_slab(size, gfpflags);
  2891. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2892. return s;
  2893. ret = slab_alloc(s, gfpflags, -1, caller);
  2894. /* Honor the call site pointer we recieved. */
  2895. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2896. return ret;
  2897. }
  2898. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2899. int node, unsigned long caller)
  2900. {
  2901. struct kmem_cache *s;
  2902. void *ret;
  2903. if (unlikely(size > SLUB_MAX_SIZE))
  2904. return kmalloc_large_node(size, gfpflags, node);
  2905. s = get_slab(size, gfpflags);
  2906. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2907. return s;
  2908. ret = slab_alloc(s, gfpflags, node, caller);
  2909. /* Honor the call site pointer we recieved. */
  2910. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2911. return ret;
  2912. }
  2913. #ifdef CONFIG_SLUB_DEBUG
  2914. static int count_inuse(struct page *page)
  2915. {
  2916. return page->inuse;
  2917. }
  2918. static int count_total(struct page *page)
  2919. {
  2920. return page->objects;
  2921. }
  2922. static int validate_slab(struct kmem_cache *s, struct page *page,
  2923. unsigned long *map)
  2924. {
  2925. void *p;
  2926. void *addr = page_address(page);
  2927. if (!check_slab(s, page) ||
  2928. !on_freelist(s, page, NULL))
  2929. return 0;
  2930. /* Now we know that a valid freelist exists */
  2931. bitmap_zero(map, page->objects);
  2932. for_each_free_object(p, s, page->freelist) {
  2933. set_bit(slab_index(p, s, addr), map);
  2934. if (!check_object(s, page, p, 0))
  2935. return 0;
  2936. }
  2937. for_each_object(p, s, addr, page->objects)
  2938. if (!test_bit(slab_index(p, s, addr), map))
  2939. if (!check_object(s, page, p, 1))
  2940. return 0;
  2941. return 1;
  2942. }
  2943. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2944. unsigned long *map)
  2945. {
  2946. if (slab_trylock(page)) {
  2947. validate_slab(s, page, map);
  2948. slab_unlock(page);
  2949. } else
  2950. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2951. s->name, page);
  2952. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2953. if (!PageSlubDebug(page))
  2954. printk(KERN_ERR "SLUB %s: SlubDebug not set "
  2955. "on slab 0x%p\n", s->name, page);
  2956. } else {
  2957. if (PageSlubDebug(page))
  2958. printk(KERN_ERR "SLUB %s: SlubDebug set on "
  2959. "slab 0x%p\n", s->name, page);
  2960. }
  2961. }
  2962. static int validate_slab_node(struct kmem_cache *s,
  2963. struct kmem_cache_node *n, unsigned long *map)
  2964. {
  2965. unsigned long count = 0;
  2966. struct page *page;
  2967. unsigned long flags;
  2968. spin_lock_irqsave(&n->list_lock, flags);
  2969. list_for_each_entry(page, &n->partial, lru) {
  2970. validate_slab_slab(s, page, map);
  2971. count++;
  2972. }
  2973. if (count != n->nr_partial)
  2974. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2975. "counter=%ld\n", s->name, count, n->nr_partial);
  2976. if (!(s->flags & SLAB_STORE_USER))
  2977. goto out;
  2978. list_for_each_entry(page, &n->full, lru) {
  2979. validate_slab_slab(s, page, map);
  2980. count++;
  2981. }
  2982. if (count != atomic_long_read(&n->nr_slabs))
  2983. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2984. "counter=%ld\n", s->name, count,
  2985. atomic_long_read(&n->nr_slabs));
  2986. out:
  2987. spin_unlock_irqrestore(&n->list_lock, flags);
  2988. return count;
  2989. }
  2990. static long validate_slab_cache(struct kmem_cache *s)
  2991. {
  2992. int node;
  2993. unsigned long count = 0;
  2994. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2995. sizeof(unsigned long), GFP_KERNEL);
  2996. if (!map)
  2997. return -ENOMEM;
  2998. flush_all(s);
  2999. for_each_node_state(node, N_NORMAL_MEMORY) {
  3000. struct kmem_cache_node *n = get_node(s, node);
  3001. count += validate_slab_node(s, n, map);
  3002. }
  3003. kfree(map);
  3004. return count;
  3005. }
  3006. #ifdef SLUB_RESILIENCY_TEST
  3007. static void resiliency_test(void)
  3008. {
  3009. u8 *p;
  3010. printk(KERN_ERR "SLUB resiliency testing\n");
  3011. printk(KERN_ERR "-----------------------\n");
  3012. printk(KERN_ERR "A. Corruption after allocation\n");
  3013. p = kzalloc(16, GFP_KERNEL);
  3014. p[16] = 0x12;
  3015. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3016. " 0x12->0x%p\n\n", p + 16);
  3017. validate_slab_cache(kmalloc_caches + 4);
  3018. /* Hmmm... The next two are dangerous */
  3019. p = kzalloc(32, GFP_KERNEL);
  3020. p[32 + sizeof(void *)] = 0x34;
  3021. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3022. " 0x34 -> -0x%p\n", p);
  3023. printk(KERN_ERR
  3024. "If allocated object is overwritten then not detectable\n\n");
  3025. validate_slab_cache(kmalloc_caches + 5);
  3026. p = kzalloc(64, GFP_KERNEL);
  3027. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3028. *p = 0x56;
  3029. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3030. p);
  3031. printk(KERN_ERR
  3032. "If allocated object is overwritten then not detectable\n\n");
  3033. validate_slab_cache(kmalloc_caches + 6);
  3034. printk(KERN_ERR "\nB. Corruption after free\n");
  3035. p = kzalloc(128, GFP_KERNEL);
  3036. kfree(p);
  3037. *p = 0x78;
  3038. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3039. validate_slab_cache(kmalloc_caches + 7);
  3040. p = kzalloc(256, GFP_KERNEL);
  3041. kfree(p);
  3042. p[50] = 0x9a;
  3043. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3044. p);
  3045. validate_slab_cache(kmalloc_caches + 8);
  3046. p = kzalloc(512, GFP_KERNEL);
  3047. kfree(p);
  3048. p[512] = 0xab;
  3049. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3050. validate_slab_cache(kmalloc_caches + 9);
  3051. }
  3052. #else
  3053. static void resiliency_test(void) {};
  3054. #endif
  3055. /*
  3056. * Generate lists of code addresses where slabcache objects are allocated
  3057. * and freed.
  3058. */
  3059. struct location {
  3060. unsigned long count;
  3061. unsigned long addr;
  3062. long long sum_time;
  3063. long min_time;
  3064. long max_time;
  3065. long min_pid;
  3066. long max_pid;
  3067. DECLARE_BITMAP(cpus, NR_CPUS);
  3068. nodemask_t nodes;
  3069. };
  3070. struct loc_track {
  3071. unsigned long max;
  3072. unsigned long count;
  3073. struct location *loc;
  3074. };
  3075. static void free_loc_track(struct loc_track *t)
  3076. {
  3077. if (t->max)
  3078. free_pages((unsigned long)t->loc,
  3079. get_order(sizeof(struct location) * t->max));
  3080. }
  3081. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3082. {
  3083. struct location *l;
  3084. int order;
  3085. order = get_order(sizeof(struct location) * max);
  3086. l = (void *)__get_free_pages(flags, order);
  3087. if (!l)
  3088. return 0;
  3089. if (t->count) {
  3090. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3091. free_loc_track(t);
  3092. }
  3093. t->max = max;
  3094. t->loc = l;
  3095. return 1;
  3096. }
  3097. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3098. const struct track *track)
  3099. {
  3100. long start, end, pos;
  3101. struct location *l;
  3102. unsigned long caddr;
  3103. unsigned long age = jiffies - track->when;
  3104. start = -1;
  3105. end = t->count;
  3106. for ( ; ; ) {
  3107. pos = start + (end - start + 1) / 2;
  3108. /*
  3109. * There is nothing at "end". If we end up there
  3110. * we need to add something to before end.
  3111. */
  3112. if (pos == end)
  3113. break;
  3114. caddr = t->loc[pos].addr;
  3115. if (track->addr == caddr) {
  3116. l = &t->loc[pos];
  3117. l->count++;
  3118. if (track->when) {
  3119. l->sum_time += age;
  3120. if (age < l->min_time)
  3121. l->min_time = age;
  3122. if (age > l->max_time)
  3123. l->max_time = age;
  3124. if (track->pid < l->min_pid)
  3125. l->min_pid = track->pid;
  3126. if (track->pid > l->max_pid)
  3127. l->max_pid = track->pid;
  3128. cpumask_set_cpu(track->cpu,
  3129. to_cpumask(l->cpus));
  3130. }
  3131. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3132. return 1;
  3133. }
  3134. if (track->addr < caddr)
  3135. end = pos;
  3136. else
  3137. start = pos;
  3138. }
  3139. /*
  3140. * Not found. Insert new tracking element.
  3141. */
  3142. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3143. return 0;
  3144. l = t->loc + pos;
  3145. if (pos < t->count)
  3146. memmove(l + 1, l,
  3147. (t->count - pos) * sizeof(struct location));
  3148. t->count++;
  3149. l->count = 1;
  3150. l->addr = track->addr;
  3151. l->sum_time = age;
  3152. l->min_time = age;
  3153. l->max_time = age;
  3154. l->min_pid = track->pid;
  3155. l->max_pid = track->pid;
  3156. cpumask_clear(to_cpumask(l->cpus));
  3157. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3158. nodes_clear(l->nodes);
  3159. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3160. return 1;
  3161. }
  3162. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3163. struct page *page, enum track_item alloc)
  3164. {
  3165. void *addr = page_address(page);
  3166. DECLARE_BITMAP(map, page->objects);
  3167. void *p;
  3168. bitmap_zero(map, page->objects);
  3169. for_each_free_object(p, s, page->freelist)
  3170. set_bit(slab_index(p, s, addr), map);
  3171. for_each_object(p, s, addr, page->objects)
  3172. if (!test_bit(slab_index(p, s, addr), map))
  3173. add_location(t, s, get_track(s, p, alloc));
  3174. }
  3175. static int list_locations(struct kmem_cache *s, char *buf,
  3176. enum track_item alloc)
  3177. {
  3178. int len = 0;
  3179. unsigned long i;
  3180. struct loc_track t = { 0, 0, NULL };
  3181. int node;
  3182. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3183. GFP_TEMPORARY))
  3184. return sprintf(buf, "Out of memory\n");
  3185. /* Push back cpu slabs */
  3186. flush_all(s);
  3187. for_each_node_state(node, N_NORMAL_MEMORY) {
  3188. struct kmem_cache_node *n = get_node(s, node);
  3189. unsigned long flags;
  3190. struct page *page;
  3191. if (!atomic_long_read(&n->nr_slabs))
  3192. continue;
  3193. spin_lock_irqsave(&n->list_lock, flags);
  3194. list_for_each_entry(page, &n->partial, lru)
  3195. process_slab(&t, s, page, alloc);
  3196. list_for_each_entry(page, &n->full, lru)
  3197. process_slab(&t, s, page, alloc);
  3198. spin_unlock_irqrestore(&n->list_lock, flags);
  3199. }
  3200. for (i = 0; i < t.count; i++) {
  3201. struct location *l = &t.loc[i];
  3202. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3203. break;
  3204. len += sprintf(buf + len, "%7ld ", l->count);
  3205. if (l->addr)
  3206. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3207. else
  3208. len += sprintf(buf + len, "<not-available>");
  3209. if (l->sum_time != l->min_time) {
  3210. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3211. l->min_time,
  3212. (long)div_u64(l->sum_time, l->count),
  3213. l->max_time);
  3214. } else
  3215. len += sprintf(buf + len, " age=%ld",
  3216. l->min_time);
  3217. if (l->min_pid != l->max_pid)
  3218. len += sprintf(buf + len, " pid=%ld-%ld",
  3219. l->min_pid, l->max_pid);
  3220. else
  3221. len += sprintf(buf + len, " pid=%ld",
  3222. l->min_pid);
  3223. if (num_online_cpus() > 1 &&
  3224. !cpumask_empty(to_cpumask(l->cpus)) &&
  3225. len < PAGE_SIZE - 60) {
  3226. len += sprintf(buf + len, " cpus=");
  3227. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3228. to_cpumask(l->cpus));
  3229. }
  3230. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3231. len < PAGE_SIZE - 60) {
  3232. len += sprintf(buf + len, " nodes=");
  3233. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3234. l->nodes);
  3235. }
  3236. len += sprintf(buf + len, "\n");
  3237. }
  3238. free_loc_track(&t);
  3239. if (!t.count)
  3240. len += sprintf(buf, "No data\n");
  3241. return len;
  3242. }
  3243. enum slab_stat_type {
  3244. SL_ALL, /* All slabs */
  3245. SL_PARTIAL, /* Only partially allocated slabs */
  3246. SL_CPU, /* Only slabs used for cpu caches */
  3247. SL_OBJECTS, /* Determine allocated objects not slabs */
  3248. SL_TOTAL /* Determine object capacity not slabs */
  3249. };
  3250. #define SO_ALL (1 << SL_ALL)
  3251. #define SO_PARTIAL (1 << SL_PARTIAL)
  3252. #define SO_CPU (1 << SL_CPU)
  3253. #define SO_OBJECTS (1 << SL_OBJECTS)
  3254. #define SO_TOTAL (1 << SL_TOTAL)
  3255. static ssize_t show_slab_objects(struct kmem_cache *s,
  3256. char *buf, unsigned long flags)
  3257. {
  3258. unsigned long total = 0;
  3259. int node;
  3260. int x;
  3261. unsigned long *nodes;
  3262. unsigned long *per_cpu;
  3263. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3264. if (!nodes)
  3265. return -ENOMEM;
  3266. per_cpu = nodes + nr_node_ids;
  3267. if (flags & SO_CPU) {
  3268. int cpu;
  3269. for_each_possible_cpu(cpu) {
  3270. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3271. if (!c || c->node < 0)
  3272. continue;
  3273. if (c->page) {
  3274. if (flags & SO_TOTAL)
  3275. x = c->page->objects;
  3276. else if (flags & SO_OBJECTS)
  3277. x = c->page->inuse;
  3278. else
  3279. x = 1;
  3280. total += x;
  3281. nodes[c->node] += x;
  3282. }
  3283. per_cpu[c->node]++;
  3284. }
  3285. }
  3286. if (flags & SO_ALL) {
  3287. for_each_node_state(node, N_NORMAL_MEMORY) {
  3288. struct kmem_cache_node *n = get_node(s, node);
  3289. if (flags & SO_TOTAL)
  3290. x = atomic_long_read(&n->total_objects);
  3291. else if (flags & SO_OBJECTS)
  3292. x = atomic_long_read(&n->total_objects) -
  3293. count_partial(n, count_free);
  3294. else
  3295. x = atomic_long_read(&n->nr_slabs);
  3296. total += x;
  3297. nodes[node] += x;
  3298. }
  3299. } else if (flags & SO_PARTIAL) {
  3300. for_each_node_state(node, N_NORMAL_MEMORY) {
  3301. struct kmem_cache_node *n = get_node(s, node);
  3302. if (flags & SO_TOTAL)
  3303. x = count_partial(n, count_total);
  3304. else if (flags & SO_OBJECTS)
  3305. x = count_partial(n, count_inuse);
  3306. else
  3307. x = n->nr_partial;
  3308. total += x;
  3309. nodes[node] += x;
  3310. }
  3311. }
  3312. x = sprintf(buf, "%lu", total);
  3313. #ifdef CONFIG_NUMA
  3314. for_each_node_state(node, N_NORMAL_MEMORY)
  3315. if (nodes[node])
  3316. x += sprintf(buf + x, " N%d=%lu",
  3317. node, nodes[node]);
  3318. #endif
  3319. kfree(nodes);
  3320. return x + sprintf(buf + x, "\n");
  3321. }
  3322. static int any_slab_objects(struct kmem_cache *s)
  3323. {
  3324. int node;
  3325. for_each_online_node(node) {
  3326. struct kmem_cache_node *n = get_node(s, node);
  3327. if (!n)
  3328. continue;
  3329. if (atomic_long_read(&n->total_objects))
  3330. return 1;
  3331. }
  3332. return 0;
  3333. }
  3334. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3335. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3336. struct slab_attribute {
  3337. struct attribute attr;
  3338. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3339. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3340. };
  3341. #define SLAB_ATTR_RO(_name) \
  3342. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3343. #define SLAB_ATTR(_name) \
  3344. static struct slab_attribute _name##_attr = \
  3345. __ATTR(_name, 0644, _name##_show, _name##_store)
  3346. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3347. {
  3348. return sprintf(buf, "%d\n", s->size);
  3349. }
  3350. SLAB_ATTR_RO(slab_size);
  3351. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3352. {
  3353. return sprintf(buf, "%d\n", s->align);
  3354. }
  3355. SLAB_ATTR_RO(align);
  3356. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3357. {
  3358. return sprintf(buf, "%d\n", s->objsize);
  3359. }
  3360. SLAB_ATTR_RO(object_size);
  3361. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3362. {
  3363. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3364. }
  3365. SLAB_ATTR_RO(objs_per_slab);
  3366. static ssize_t order_store(struct kmem_cache *s,
  3367. const char *buf, size_t length)
  3368. {
  3369. unsigned long order;
  3370. int err;
  3371. err = strict_strtoul(buf, 10, &order);
  3372. if (err)
  3373. return err;
  3374. if (order > slub_max_order || order < slub_min_order)
  3375. return -EINVAL;
  3376. calculate_sizes(s, order);
  3377. return length;
  3378. }
  3379. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3380. {
  3381. return sprintf(buf, "%d\n", oo_order(s->oo));
  3382. }
  3383. SLAB_ATTR(order);
  3384. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3385. {
  3386. return sprintf(buf, "%lu\n", s->min_partial);
  3387. }
  3388. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3389. size_t length)
  3390. {
  3391. unsigned long min;
  3392. int err;
  3393. err = strict_strtoul(buf, 10, &min);
  3394. if (err)
  3395. return err;
  3396. set_min_partial(s, min);
  3397. return length;
  3398. }
  3399. SLAB_ATTR(min_partial);
  3400. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3401. {
  3402. if (s->ctor) {
  3403. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3404. return n + sprintf(buf + n, "\n");
  3405. }
  3406. return 0;
  3407. }
  3408. SLAB_ATTR_RO(ctor);
  3409. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3410. {
  3411. return sprintf(buf, "%d\n", s->refcount - 1);
  3412. }
  3413. SLAB_ATTR_RO(aliases);
  3414. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3415. {
  3416. return show_slab_objects(s, buf, SO_ALL);
  3417. }
  3418. SLAB_ATTR_RO(slabs);
  3419. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3420. {
  3421. return show_slab_objects(s, buf, SO_PARTIAL);
  3422. }
  3423. SLAB_ATTR_RO(partial);
  3424. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3425. {
  3426. return show_slab_objects(s, buf, SO_CPU);
  3427. }
  3428. SLAB_ATTR_RO(cpu_slabs);
  3429. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3430. {
  3431. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3432. }
  3433. SLAB_ATTR_RO(objects);
  3434. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3435. {
  3436. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3437. }
  3438. SLAB_ATTR_RO(objects_partial);
  3439. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3440. {
  3441. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3442. }
  3443. SLAB_ATTR_RO(total_objects);
  3444. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3445. {
  3446. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3447. }
  3448. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3449. const char *buf, size_t length)
  3450. {
  3451. s->flags &= ~SLAB_DEBUG_FREE;
  3452. if (buf[0] == '1')
  3453. s->flags |= SLAB_DEBUG_FREE;
  3454. return length;
  3455. }
  3456. SLAB_ATTR(sanity_checks);
  3457. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3458. {
  3459. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3460. }
  3461. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3462. size_t length)
  3463. {
  3464. s->flags &= ~SLAB_TRACE;
  3465. if (buf[0] == '1')
  3466. s->flags |= SLAB_TRACE;
  3467. return length;
  3468. }
  3469. SLAB_ATTR(trace);
  3470. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3471. {
  3472. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3473. }
  3474. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3475. const char *buf, size_t length)
  3476. {
  3477. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3478. if (buf[0] == '1')
  3479. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3480. return length;
  3481. }
  3482. SLAB_ATTR(reclaim_account);
  3483. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3484. {
  3485. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3486. }
  3487. SLAB_ATTR_RO(hwcache_align);
  3488. #ifdef CONFIG_ZONE_DMA
  3489. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3490. {
  3491. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3492. }
  3493. SLAB_ATTR_RO(cache_dma);
  3494. #endif
  3495. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3496. {
  3497. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3498. }
  3499. SLAB_ATTR_RO(destroy_by_rcu);
  3500. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3501. {
  3502. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3503. }
  3504. static ssize_t red_zone_store(struct kmem_cache *s,
  3505. const char *buf, size_t length)
  3506. {
  3507. if (any_slab_objects(s))
  3508. return -EBUSY;
  3509. s->flags &= ~SLAB_RED_ZONE;
  3510. if (buf[0] == '1')
  3511. s->flags |= SLAB_RED_ZONE;
  3512. calculate_sizes(s, -1);
  3513. return length;
  3514. }
  3515. SLAB_ATTR(red_zone);
  3516. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3517. {
  3518. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3519. }
  3520. static ssize_t poison_store(struct kmem_cache *s,
  3521. const char *buf, size_t length)
  3522. {
  3523. if (any_slab_objects(s))
  3524. return -EBUSY;
  3525. s->flags &= ~SLAB_POISON;
  3526. if (buf[0] == '1')
  3527. s->flags |= SLAB_POISON;
  3528. calculate_sizes(s, -1);
  3529. return length;
  3530. }
  3531. SLAB_ATTR(poison);
  3532. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3533. {
  3534. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3535. }
  3536. static ssize_t store_user_store(struct kmem_cache *s,
  3537. const char *buf, size_t length)
  3538. {
  3539. if (any_slab_objects(s))
  3540. return -EBUSY;
  3541. s->flags &= ~SLAB_STORE_USER;
  3542. if (buf[0] == '1')
  3543. s->flags |= SLAB_STORE_USER;
  3544. calculate_sizes(s, -1);
  3545. return length;
  3546. }
  3547. SLAB_ATTR(store_user);
  3548. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3549. {
  3550. return 0;
  3551. }
  3552. static ssize_t validate_store(struct kmem_cache *s,
  3553. const char *buf, size_t length)
  3554. {
  3555. int ret = -EINVAL;
  3556. if (buf[0] == '1') {
  3557. ret = validate_slab_cache(s);
  3558. if (ret >= 0)
  3559. ret = length;
  3560. }
  3561. return ret;
  3562. }
  3563. SLAB_ATTR(validate);
  3564. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3565. {
  3566. return 0;
  3567. }
  3568. static ssize_t shrink_store(struct kmem_cache *s,
  3569. const char *buf, size_t length)
  3570. {
  3571. if (buf[0] == '1') {
  3572. int rc = kmem_cache_shrink(s);
  3573. if (rc)
  3574. return rc;
  3575. } else
  3576. return -EINVAL;
  3577. return length;
  3578. }
  3579. SLAB_ATTR(shrink);
  3580. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3581. {
  3582. if (!(s->flags & SLAB_STORE_USER))
  3583. return -ENOSYS;
  3584. return list_locations(s, buf, TRACK_ALLOC);
  3585. }
  3586. SLAB_ATTR_RO(alloc_calls);
  3587. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3588. {
  3589. if (!(s->flags & SLAB_STORE_USER))
  3590. return -ENOSYS;
  3591. return list_locations(s, buf, TRACK_FREE);
  3592. }
  3593. SLAB_ATTR_RO(free_calls);
  3594. #ifdef CONFIG_NUMA
  3595. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3596. {
  3597. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3598. }
  3599. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3600. const char *buf, size_t length)
  3601. {
  3602. unsigned long ratio;
  3603. int err;
  3604. err = strict_strtoul(buf, 10, &ratio);
  3605. if (err)
  3606. return err;
  3607. if (ratio <= 100)
  3608. s->remote_node_defrag_ratio = ratio * 10;
  3609. return length;
  3610. }
  3611. SLAB_ATTR(remote_node_defrag_ratio);
  3612. #endif
  3613. #ifdef CONFIG_SLUB_STATS
  3614. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3615. {
  3616. unsigned long sum = 0;
  3617. int cpu;
  3618. int len;
  3619. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3620. if (!data)
  3621. return -ENOMEM;
  3622. for_each_online_cpu(cpu) {
  3623. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3624. data[cpu] = x;
  3625. sum += x;
  3626. }
  3627. len = sprintf(buf, "%lu", sum);
  3628. #ifdef CONFIG_SMP
  3629. for_each_online_cpu(cpu) {
  3630. if (data[cpu] && len < PAGE_SIZE - 20)
  3631. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3632. }
  3633. #endif
  3634. kfree(data);
  3635. return len + sprintf(buf + len, "\n");
  3636. }
  3637. #define STAT_ATTR(si, text) \
  3638. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3639. { \
  3640. return show_stat(s, buf, si); \
  3641. } \
  3642. SLAB_ATTR_RO(text); \
  3643. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3644. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3645. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3646. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3647. STAT_ATTR(FREE_FROZEN, free_frozen);
  3648. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3649. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3650. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3651. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3652. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3653. STAT_ATTR(FREE_SLAB, free_slab);
  3654. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3655. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3656. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3657. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3658. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3659. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3660. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3661. #endif
  3662. static struct attribute *slab_attrs[] = {
  3663. &slab_size_attr.attr,
  3664. &object_size_attr.attr,
  3665. &objs_per_slab_attr.attr,
  3666. &order_attr.attr,
  3667. &min_partial_attr.attr,
  3668. &objects_attr.attr,
  3669. &objects_partial_attr.attr,
  3670. &total_objects_attr.attr,
  3671. &slabs_attr.attr,
  3672. &partial_attr.attr,
  3673. &cpu_slabs_attr.attr,
  3674. &ctor_attr.attr,
  3675. &aliases_attr.attr,
  3676. &align_attr.attr,
  3677. &sanity_checks_attr.attr,
  3678. &trace_attr.attr,
  3679. &hwcache_align_attr.attr,
  3680. &reclaim_account_attr.attr,
  3681. &destroy_by_rcu_attr.attr,
  3682. &red_zone_attr.attr,
  3683. &poison_attr.attr,
  3684. &store_user_attr.attr,
  3685. &validate_attr.attr,
  3686. &shrink_attr.attr,
  3687. &alloc_calls_attr.attr,
  3688. &free_calls_attr.attr,
  3689. #ifdef CONFIG_ZONE_DMA
  3690. &cache_dma_attr.attr,
  3691. #endif
  3692. #ifdef CONFIG_NUMA
  3693. &remote_node_defrag_ratio_attr.attr,
  3694. #endif
  3695. #ifdef CONFIG_SLUB_STATS
  3696. &alloc_fastpath_attr.attr,
  3697. &alloc_slowpath_attr.attr,
  3698. &free_fastpath_attr.attr,
  3699. &free_slowpath_attr.attr,
  3700. &free_frozen_attr.attr,
  3701. &free_add_partial_attr.attr,
  3702. &free_remove_partial_attr.attr,
  3703. &alloc_from_partial_attr.attr,
  3704. &alloc_slab_attr.attr,
  3705. &alloc_refill_attr.attr,
  3706. &free_slab_attr.attr,
  3707. &cpuslab_flush_attr.attr,
  3708. &deactivate_full_attr.attr,
  3709. &deactivate_empty_attr.attr,
  3710. &deactivate_to_head_attr.attr,
  3711. &deactivate_to_tail_attr.attr,
  3712. &deactivate_remote_frees_attr.attr,
  3713. &order_fallback_attr.attr,
  3714. #endif
  3715. NULL
  3716. };
  3717. static struct attribute_group slab_attr_group = {
  3718. .attrs = slab_attrs,
  3719. };
  3720. static ssize_t slab_attr_show(struct kobject *kobj,
  3721. struct attribute *attr,
  3722. char *buf)
  3723. {
  3724. struct slab_attribute *attribute;
  3725. struct kmem_cache *s;
  3726. int err;
  3727. attribute = to_slab_attr(attr);
  3728. s = to_slab(kobj);
  3729. if (!attribute->show)
  3730. return -EIO;
  3731. err = attribute->show(s, buf);
  3732. return err;
  3733. }
  3734. static ssize_t slab_attr_store(struct kobject *kobj,
  3735. struct attribute *attr,
  3736. const char *buf, size_t len)
  3737. {
  3738. struct slab_attribute *attribute;
  3739. struct kmem_cache *s;
  3740. int err;
  3741. attribute = to_slab_attr(attr);
  3742. s = to_slab(kobj);
  3743. if (!attribute->store)
  3744. return -EIO;
  3745. err = attribute->store(s, buf, len);
  3746. return err;
  3747. }
  3748. static void kmem_cache_release(struct kobject *kobj)
  3749. {
  3750. struct kmem_cache *s = to_slab(kobj);
  3751. kfree(s);
  3752. }
  3753. static struct sysfs_ops slab_sysfs_ops = {
  3754. .show = slab_attr_show,
  3755. .store = slab_attr_store,
  3756. };
  3757. static struct kobj_type slab_ktype = {
  3758. .sysfs_ops = &slab_sysfs_ops,
  3759. .release = kmem_cache_release
  3760. };
  3761. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3762. {
  3763. struct kobj_type *ktype = get_ktype(kobj);
  3764. if (ktype == &slab_ktype)
  3765. return 1;
  3766. return 0;
  3767. }
  3768. static struct kset_uevent_ops slab_uevent_ops = {
  3769. .filter = uevent_filter,
  3770. };
  3771. static struct kset *slab_kset;
  3772. #define ID_STR_LENGTH 64
  3773. /* Create a unique string id for a slab cache:
  3774. *
  3775. * Format :[flags-]size
  3776. */
  3777. static char *create_unique_id(struct kmem_cache *s)
  3778. {
  3779. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3780. char *p = name;
  3781. BUG_ON(!name);
  3782. *p++ = ':';
  3783. /*
  3784. * First flags affecting slabcache operations. We will only
  3785. * get here for aliasable slabs so we do not need to support
  3786. * too many flags. The flags here must cover all flags that
  3787. * are matched during merging to guarantee that the id is
  3788. * unique.
  3789. */
  3790. if (s->flags & SLAB_CACHE_DMA)
  3791. *p++ = 'd';
  3792. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3793. *p++ = 'a';
  3794. if (s->flags & SLAB_DEBUG_FREE)
  3795. *p++ = 'F';
  3796. if (!(s->flags & SLAB_NOTRACK))
  3797. *p++ = 't';
  3798. if (p != name + 1)
  3799. *p++ = '-';
  3800. p += sprintf(p, "%07d", s->size);
  3801. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3802. return name;
  3803. }
  3804. static int sysfs_slab_add(struct kmem_cache *s)
  3805. {
  3806. int err;
  3807. const char *name;
  3808. int unmergeable;
  3809. if (slab_state < SYSFS)
  3810. /* Defer until later */
  3811. return 0;
  3812. unmergeable = slab_unmergeable(s);
  3813. if (unmergeable) {
  3814. /*
  3815. * Slabcache can never be merged so we can use the name proper.
  3816. * This is typically the case for debug situations. In that
  3817. * case we can catch duplicate names easily.
  3818. */
  3819. sysfs_remove_link(&slab_kset->kobj, s->name);
  3820. name = s->name;
  3821. } else {
  3822. /*
  3823. * Create a unique name for the slab as a target
  3824. * for the symlinks.
  3825. */
  3826. name = create_unique_id(s);
  3827. }
  3828. s->kobj.kset = slab_kset;
  3829. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3830. if (err) {
  3831. kobject_put(&s->kobj);
  3832. return err;
  3833. }
  3834. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3835. if (err)
  3836. return err;
  3837. kobject_uevent(&s->kobj, KOBJ_ADD);
  3838. if (!unmergeable) {
  3839. /* Setup first alias */
  3840. sysfs_slab_alias(s, s->name);
  3841. kfree(name);
  3842. }
  3843. return 0;
  3844. }
  3845. static void sysfs_slab_remove(struct kmem_cache *s)
  3846. {
  3847. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3848. kobject_del(&s->kobj);
  3849. kobject_put(&s->kobj);
  3850. }
  3851. /*
  3852. * Need to buffer aliases during bootup until sysfs becomes
  3853. * available lest we lose that information.
  3854. */
  3855. struct saved_alias {
  3856. struct kmem_cache *s;
  3857. const char *name;
  3858. struct saved_alias *next;
  3859. };
  3860. static struct saved_alias *alias_list;
  3861. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3862. {
  3863. struct saved_alias *al;
  3864. if (slab_state == SYSFS) {
  3865. /*
  3866. * If we have a leftover link then remove it.
  3867. */
  3868. sysfs_remove_link(&slab_kset->kobj, name);
  3869. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3870. }
  3871. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3872. if (!al)
  3873. return -ENOMEM;
  3874. al->s = s;
  3875. al->name = name;
  3876. al->next = alias_list;
  3877. alias_list = al;
  3878. return 0;
  3879. }
  3880. static int __init slab_sysfs_init(void)
  3881. {
  3882. struct kmem_cache *s;
  3883. int err;
  3884. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3885. if (!slab_kset) {
  3886. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3887. return -ENOSYS;
  3888. }
  3889. slab_state = SYSFS;
  3890. list_for_each_entry(s, &slab_caches, list) {
  3891. err = sysfs_slab_add(s);
  3892. if (err)
  3893. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3894. " to sysfs\n", s->name);
  3895. }
  3896. while (alias_list) {
  3897. struct saved_alias *al = alias_list;
  3898. alias_list = alias_list->next;
  3899. err = sysfs_slab_alias(al->s, al->name);
  3900. if (err)
  3901. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3902. " %s to sysfs\n", s->name);
  3903. kfree(al);
  3904. }
  3905. resiliency_test();
  3906. return 0;
  3907. }
  3908. __initcall(slab_sysfs_init);
  3909. #endif
  3910. /*
  3911. * The /proc/slabinfo ABI
  3912. */
  3913. #ifdef CONFIG_SLABINFO
  3914. static void print_slabinfo_header(struct seq_file *m)
  3915. {
  3916. seq_puts(m, "slabinfo - version: 2.1\n");
  3917. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3918. "<objperslab> <pagesperslab>");
  3919. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3920. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3921. seq_putc(m, '\n');
  3922. }
  3923. static void *s_start(struct seq_file *m, loff_t *pos)
  3924. {
  3925. loff_t n = *pos;
  3926. down_read(&slub_lock);
  3927. if (!n)
  3928. print_slabinfo_header(m);
  3929. return seq_list_start(&slab_caches, *pos);
  3930. }
  3931. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3932. {
  3933. return seq_list_next(p, &slab_caches, pos);
  3934. }
  3935. static void s_stop(struct seq_file *m, void *p)
  3936. {
  3937. up_read(&slub_lock);
  3938. }
  3939. static int s_show(struct seq_file *m, void *p)
  3940. {
  3941. unsigned long nr_partials = 0;
  3942. unsigned long nr_slabs = 0;
  3943. unsigned long nr_inuse = 0;
  3944. unsigned long nr_objs = 0;
  3945. unsigned long nr_free = 0;
  3946. struct kmem_cache *s;
  3947. int node;
  3948. s = list_entry(p, struct kmem_cache, list);
  3949. for_each_online_node(node) {
  3950. struct kmem_cache_node *n = get_node(s, node);
  3951. if (!n)
  3952. continue;
  3953. nr_partials += n->nr_partial;
  3954. nr_slabs += atomic_long_read(&n->nr_slabs);
  3955. nr_objs += atomic_long_read(&n->total_objects);
  3956. nr_free += count_partial(n, count_free);
  3957. }
  3958. nr_inuse = nr_objs - nr_free;
  3959. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3960. nr_objs, s->size, oo_objects(s->oo),
  3961. (1 << oo_order(s->oo)));
  3962. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3963. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3964. 0UL);
  3965. seq_putc(m, '\n');
  3966. return 0;
  3967. }
  3968. static const struct seq_operations slabinfo_op = {
  3969. .start = s_start,
  3970. .next = s_next,
  3971. .stop = s_stop,
  3972. .show = s_show,
  3973. };
  3974. static int slabinfo_open(struct inode *inode, struct file *file)
  3975. {
  3976. return seq_open(file, &slabinfo_op);
  3977. }
  3978. static const struct file_operations proc_slabinfo_operations = {
  3979. .open = slabinfo_open,
  3980. .read = seq_read,
  3981. .llseek = seq_lseek,
  3982. .release = seq_release,
  3983. };
  3984. static int __init slab_proc_init(void)
  3985. {
  3986. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3987. return 0;
  3988. }
  3989. module_init(slab_proc_init);
  3990. #endif /* CONFIG_SLABINFO */