sky2.c 89 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411
  1. /*
  2. * New driver for Marvell Yukon 2 chipset.
  3. * Based on earlier sk98lin, and skge driver.
  4. *
  5. * This driver intentionally does not support all the features
  6. * of the original driver such as link fail-over and link management because
  7. * those should be done at higher levels.
  8. *
  9. * Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/config.h>
  26. #include <linux/crc32.h>
  27. #include <linux/kernel.h>
  28. #include <linux/version.h>
  29. #include <linux/module.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/dma-mapping.h>
  32. #include <linux/etherdevice.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/pci.h>
  35. #include <linux/ip.h>
  36. #include <linux/tcp.h>
  37. #include <linux/in.h>
  38. #include <linux/delay.h>
  39. #include <linux/workqueue.h>
  40. #include <linux/if_vlan.h>
  41. #include <linux/prefetch.h>
  42. #include <linux/mii.h>
  43. #include <asm/irq.h>
  44. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  45. #define SKY2_VLAN_TAG_USED 1
  46. #endif
  47. #include "sky2.h"
  48. #define DRV_NAME "sky2"
  49. #define DRV_VERSION "0.15"
  50. #define PFX DRV_NAME " "
  51. /*
  52. * The Yukon II chipset takes 64 bit command blocks (called list elements)
  53. * that are organized into three (receive, transmit, status) different rings
  54. * similar to Tigon3. A transmit can require several elements;
  55. * a receive requires one (or two if using 64 bit dma).
  56. */
  57. #define is_ec_a1(hw) \
  58. unlikely((hw)->chip_id == CHIP_ID_YUKON_EC && \
  59. (hw)->chip_rev == CHIP_REV_YU_EC_A1)
  60. #define RX_LE_SIZE 512
  61. #define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le))
  62. #define RX_MAX_PENDING (RX_LE_SIZE/2 - 2)
  63. #define RX_DEF_PENDING RX_MAX_PENDING
  64. #define RX_SKB_ALIGN 8
  65. #define TX_RING_SIZE 512
  66. #define TX_DEF_PENDING (TX_RING_SIZE - 1)
  67. #define TX_MIN_PENDING 64
  68. #define MAX_SKB_TX_LE (4 + 2*MAX_SKB_FRAGS)
  69. #define STATUS_RING_SIZE 2048 /* 2 ports * (TX + 2*RX) */
  70. #define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le))
  71. #define ETH_JUMBO_MTU 9000
  72. #define TX_WATCHDOG (5 * HZ)
  73. #define NAPI_WEIGHT 64
  74. #define PHY_RETRIES 1000
  75. static const u32 default_msg =
  76. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  77. | NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR
  78. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  79. static int debug = -1; /* defaults above */
  80. module_param(debug, int, 0);
  81. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  82. static int copybreak __read_mostly = 256;
  83. module_param(copybreak, int, 0);
  84. MODULE_PARM_DESC(copybreak, "Receive copy threshold");
  85. static int disable_msi = 0;
  86. module_param(disable_msi, int, 0);
  87. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  88. static const struct pci_device_id sky2_id_table[] = {
  89. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) },
  90. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) },
  91. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b00) },
  92. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },
  93. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) },
  94. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) },
  95. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) },
  96. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) },
  97. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) },
  98. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) },
  99. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) },
  100. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) },
  101. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) },
  102. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) },
  103. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) },
  104. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) },
  105. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) },
  106. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) },
  107. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) },
  108. { 0 }
  109. };
  110. MODULE_DEVICE_TABLE(pci, sky2_id_table);
  111. /* Avoid conditionals by using array */
  112. static const unsigned txqaddr[] = { Q_XA1, Q_XA2 };
  113. static const unsigned rxqaddr[] = { Q_R1, Q_R2 };
  114. /* This driver supports yukon2 chipset only */
  115. static const char *yukon2_name[] = {
  116. "XL", /* 0xb3 */
  117. "EC Ultra", /* 0xb4 */
  118. "UNKNOWN", /* 0xb5 */
  119. "EC", /* 0xb6 */
  120. "FE", /* 0xb7 */
  121. };
  122. /* Access to external PHY */
  123. static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val)
  124. {
  125. int i;
  126. gma_write16(hw, port, GM_SMI_DATA, val);
  127. gma_write16(hw, port, GM_SMI_CTRL,
  128. GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg));
  129. for (i = 0; i < PHY_RETRIES; i++) {
  130. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  131. return 0;
  132. udelay(1);
  133. }
  134. printk(KERN_WARNING PFX "%s: phy write timeout\n", hw->dev[port]->name);
  135. return -ETIMEDOUT;
  136. }
  137. static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val)
  138. {
  139. int i;
  140. gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV)
  141. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  142. for (i = 0; i < PHY_RETRIES; i++) {
  143. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) {
  144. *val = gma_read16(hw, port, GM_SMI_DATA);
  145. return 0;
  146. }
  147. udelay(1);
  148. }
  149. return -ETIMEDOUT;
  150. }
  151. static u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg)
  152. {
  153. u16 v;
  154. if (__gm_phy_read(hw, port, reg, &v) != 0)
  155. printk(KERN_WARNING PFX "%s: phy read timeout\n", hw->dev[port]->name);
  156. return v;
  157. }
  158. static int sky2_set_power_state(struct sky2_hw *hw, pci_power_t state)
  159. {
  160. u16 power_control;
  161. u32 reg1;
  162. int vaux;
  163. int ret = 0;
  164. pr_debug("sky2_set_power_state %d\n", state);
  165. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  166. pci_read_config_word(hw->pdev, hw->pm_cap + PCI_PM_PMC, &power_control);
  167. vaux = (sky2_read16(hw, B0_CTST) & Y2_VAUX_AVAIL) &&
  168. (power_control & PCI_PM_CAP_PME_D3cold);
  169. pci_read_config_word(hw->pdev, hw->pm_cap + PCI_PM_CTRL, &power_control);
  170. power_control |= PCI_PM_CTRL_PME_STATUS;
  171. power_control &= ~(PCI_PM_CTRL_STATE_MASK);
  172. switch (state) {
  173. case PCI_D0:
  174. /* switch power to VCC (WA for VAUX problem) */
  175. sky2_write8(hw, B0_POWER_CTRL,
  176. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  177. /* disable Core Clock Division, */
  178. sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
  179. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  180. /* enable bits are inverted */
  181. sky2_write8(hw, B2_Y2_CLK_GATE,
  182. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  183. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  184. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  185. else
  186. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  187. /* Turn off phy power saving */
  188. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg1);
  189. reg1 &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
  190. /* looks like this XL is back asswards .. */
  191. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1) {
  192. reg1 |= PCI_Y2_PHY1_COMA;
  193. if (hw->ports > 1)
  194. reg1 |= PCI_Y2_PHY2_COMA;
  195. }
  196. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg1);
  197. break;
  198. case PCI_D3hot:
  199. case PCI_D3cold:
  200. /* Turn on phy power saving */
  201. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg1);
  202. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  203. reg1 &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
  204. else
  205. reg1 |= (PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
  206. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg1);
  207. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  208. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  209. else
  210. /* enable bits are inverted */
  211. sky2_write8(hw, B2_Y2_CLK_GATE,
  212. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  213. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  214. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  215. /* switch power to VAUX */
  216. if (vaux && state != PCI_D3cold)
  217. sky2_write8(hw, B0_POWER_CTRL,
  218. (PC_VAUX_ENA | PC_VCC_ENA |
  219. PC_VAUX_ON | PC_VCC_OFF));
  220. break;
  221. default:
  222. printk(KERN_ERR PFX "Unknown power state %d\n", state);
  223. ret = -1;
  224. }
  225. pci_write_config_byte(hw->pdev, hw->pm_cap + PCI_PM_CTRL, power_control);
  226. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  227. return ret;
  228. }
  229. static void sky2_phy_reset(struct sky2_hw *hw, unsigned port)
  230. {
  231. u16 reg;
  232. /* disable all GMAC IRQ's */
  233. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  234. /* disable PHY IRQs */
  235. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  236. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  237. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  238. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  239. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  240. reg = gma_read16(hw, port, GM_RX_CTRL);
  241. reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
  242. gma_write16(hw, port, GM_RX_CTRL, reg);
  243. }
  244. static void sky2_phy_init(struct sky2_hw *hw, unsigned port)
  245. {
  246. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  247. u16 ctrl, ct1000, adv, pg, ledctrl, ledover;
  248. if (sky2->autoneg == AUTONEG_ENABLE && hw->chip_id != CHIP_ID_YUKON_XL) {
  249. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  250. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  251. PHY_M_EC_MAC_S_MSK);
  252. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  253. if (hw->chip_id == CHIP_ID_YUKON_EC)
  254. ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA;
  255. else
  256. ectrl |= PHY_M_EC_M_DSC(2) | PHY_M_EC_S_DSC(3);
  257. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  258. }
  259. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  260. if (hw->copper) {
  261. if (hw->chip_id == CHIP_ID_YUKON_FE) {
  262. /* enable automatic crossover */
  263. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1;
  264. } else {
  265. /* disable energy detect */
  266. ctrl &= ~PHY_M_PC_EN_DET_MSK;
  267. /* enable automatic crossover */
  268. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO);
  269. if (sky2->autoneg == AUTONEG_ENABLE &&
  270. hw->chip_id == CHIP_ID_YUKON_XL) {
  271. ctrl &= ~PHY_M_PC_DSC_MSK;
  272. ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA;
  273. }
  274. }
  275. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  276. } else {
  277. /* workaround for deviation #4.88 (CRC errors) */
  278. /* disable Automatic Crossover */
  279. ctrl &= ~PHY_M_PC_MDIX_MSK;
  280. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  281. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  282. /* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */
  283. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
  284. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  285. ctrl &= ~PHY_M_MAC_MD_MSK;
  286. ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX);
  287. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  288. /* select page 1 to access Fiber registers */
  289. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1);
  290. }
  291. }
  292. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  293. if (sky2->autoneg == AUTONEG_DISABLE)
  294. ctrl &= ~PHY_CT_ANE;
  295. else
  296. ctrl |= PHY_CT_ANE;
  297. ctrl |= PHY_CT_RESET;
  298. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  299. ctrl = 0;
  300. ct1000 = 0;
  301. adv = PHY_AN_CSMA;
  302. if (sky2->autoneg == AUTONEG_ENABLE) {
  303. if (hw->copper) {
  304. if (sky2->advertising & ADVERTISED_1000baseT_Full)
  305. ct1000 |= PHY_M_1000C_AFD;
  306. if (sky2->advertising & ADVERTISED_1000baseT_Half)
  307. ct1000 |= PHY_M_1000C_AHD;
  308. if (sky2->advertising & ADVERTISED_100baseT_Full)
  309. adv |= PHY_M_AN_100_FD;
  310. if (sky2->advertising & ADVERTISED_100baseT_Half)
  311. adv |= PHY_M_AN_100_HD;
  312. if (sky2->advertising & ADVERTISED_10baseT_Full)
  313. adv |= PHY_M_AN_10_FD;
  314. if (sky2->advertising & ADVERTISED_10baseT_Half)
  315. adv |= PHY_M_AN_10_HD;
  316. } else /* special defines for FIBER (88E1011S only) */
  317. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  318. /* Set Flow-control capabilities */
  319. if (sky2->tx_pause && sky2->rx_pause)
  320. adv |= PHY_AN_PAUSE_CAP; /* symmetric */
  321. else if (sky2->rx_pause && !sky2->tx_pause)
  322. adv |= PHY_AN_PAUSE_ASYM | PHY_AN_PAUSE_CAP;
  323. else if (!sky2->rx_pause && sky2->tx_pause)
  324. adv |= PHY_AN_PAUSE_ASYM; /* local */
  325. /* Restart Auto-negotiation */
  326. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  327. } else {
  328. /* forced speed/duplex settings */
  329. ct1000 = PHY_M_1000C_MSE;
  330. if (sky2->duplex == DUPLEX_FULL)
  331. ctrl |= PHY_CT_DUP_MD;
  332. switch (sky2->speed) {
  333. case SPEED_1000:
  334. ctrl |= PHY_CT_SP1000;
  335. break;
  336. case SPEED_100:
  337. ctrl |= PHY_CT_SP100;
  338. break;
  339. }
  340. ctrl |= PHY_CT_RESET;
  341. }
  342. if (hw->chip_id != CHIP_ID_YUKON_FE)
  343. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  344. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  345. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  346. /* Setup Phy LED's */
  347. ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
  348. ledover = 0;
  349. switch (hw->chip_id) {
  350. case CHIP_ID_YUKON_FE:
  351. /* on 88E3082 these bits are at 11..9 (shifted left) */
  352. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
  353. ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR);
  354. /* delete ACT LED control bits */
  355. ctrl &= ~PHY_M_FELP_LED1_MSK;
  356. /* change ACT LED control to blink mode */
  357. ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL);
  358. gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl);
  359. break;
  360. case CHIP_ID_YUKON_XL:
  361. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  362. /* select page 3 to access LED control register */
  363. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  364. /* set LED Function Control register */
  365. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  366. PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */
  367. PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
  368. PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */
  369. /* set Polarity Control register */
  370. gm_phy_write(hw, port, PHY_MARV_PHY_STAT,
  371. (PHY_M_POLC_LS1_P_MIX(4) |
  372. PHY_M_POLC_IS0_P_MIX(4) |
  373. PHY_M_POLC_LOS_CTRL(2) |
  374. PHY_M_POLC_INIT_CTRL(2) |
  375. PHY_M_POLC_STA1_CTRL(2) |
  376. PHY_M_POLC_STA0_CTRL(2)));
  377. /* restore page register */
  378. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  379. break;
  380. default:
  381. /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
  382. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
  383. /* turn off the Rx LED (LED_RX) */
  384. ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
  385. }
  386. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  387. if (sky2->autoneg == AUTONEG_DISABLE || sky2->speed == SPEED_100) {
  388. /* turn on 100 Mbps LED (LED_LINK100) */
  389. ledover |= PHY_M_LED_MO_100(MO_LED_ON);
  390. }
  391. if (ledover)
  392. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  393. /* Enable phy interrupt on auto-negotiation complete (or link up) */
  394. if (sky2->autoneg == AUTONEG_ENABLE)
  395. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
  396. else
  397. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  398. }
  399. /* Force a renegotiation */
  400. static void sky2_phy_reinit(struct sky2_port *sky2)
  401. {
  402. down(&sky2->phy_sema);
  403. sky2_phy_init(sky2->hw, sky2->port);
  404. up(&sky2->phy_sema);
  405. }
  406. static void sky2_mac_init(struct sky2_hw *hw, unsigned port)
  407. {
  408. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  409. u16 reg;
  410. int i;
  411. const u8 *addr = hw->dev[port]->dev_addr;
  412. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  413. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR|GPC_ENA_PAUSE);
  414. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  415. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 1) {
  416. /* WA DEV_472 -- looks like crossed wires on port 2 */
  417. /* clear GMAC 1 Control reset */
  418. sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR);
  419. do {
  420. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET);
  421. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR);
  422. } while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL ||
  423. gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 ||
  424. gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0);
  425. }
  426. if (sky2->autoneg == AUTONEG_DISABLE) {
  427. reg = gma_read16(hw, port, GM_GP_CTRL);
  428. reg |= GM_GPCR_AU_ALL_DIS;
  429. gma_write16(hw, port, GM_GP_CTRL, reg);
  430. gma_read16(hw, port, GM_GP_CTRL);
  431. switch (sky2->speed) {
  432. case SPEED_1000:
  433. reg |= GM_GPCR_SPEED_1000;
  434. /* fallthru */
  435. case SPEED_100:
  436. reg |= GM_GPCR_SPEED_100;
  437. }
  438. if (sky2->duplex == DUPLEX_FULL)
  439. reg |= GM_GPCR_DUP_FULL;
  440. } else
  441. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  442. if (!sky2->tx_pause && !sky2->rx_pause) {
  443. sky2_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  444. reg |=
  445. GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  446. } else if (sky2->tx_pause && !sky2->rx_pause) {
  447. /* disable Rx flow-control */
  448. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  449. }
  450. gma_write16(hw, port, GM_GP_CTRL, reg);
  451. sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  452. down(&sky2->phy_sema);
  453. sky2_phy_init(hw, port);
  454. up(&sky2->phy_sema);
  455. /* MIB clear */
  456. reg = gma_read16(hw, port, GM_PHY_ADDR);
  457. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  458. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  459. gma_read16(hw, port, GM_MIB_CNT_BASE + 8 * i);
  460. gma_write16(hw, port, GM_PHY_ADDR, reg);
  461. /* transmit control */
  462. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  463. /* receive control reg: unicast + multicast + no FCS */
  464. gma_write16(hw, port, GM_RX_CTRL,
  465. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  466. /* transmit flow control */
  467. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  468. /* transmit parameter */
  469. gma_write16(hw, port, GM_TX_PARAM,
  470. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  471. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  472. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) |
  473. TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
  474. /* serial mode register */
  475. reg = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  476. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  477. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  478. reg |= GM_SMOD_JUMBO_ENA;
  479. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  480. /* virtual address for data */
  481. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  482. /* physical address: used for pause frames */
  483. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  484. /* ignore counter overflows */
  485. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  486. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  487. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  488. /* Configure Rx MAC FIFO */
  489. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  490. sky2_write16(hw, SK_REG(port, RX_GMF_CTRL_T),
  491. GMF_RX_CTRL_DEF);
  492. /* Flush Rx MAC FIFO on any flow control or error */
  493. sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
  494. /* Set threshold to 0xa (64 bytes)
  495. * ASF disabled so no need to do WA dev #4.30
  496. */
  497. sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
  498. /* Configure Tx MAC FIFO */
  499. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  500. sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  501. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  502. sky2_write8(hw, SK_REG(port, RX_GMF_LP_THR), 768/8);
  503. sky2_write8(hw, SK_REG(port, RX_GMF_UP_THR), 1024/8);
  504. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  505. /* set Tx GMAC FIFO Almost Empty Threshold */
  506. sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR), 0x180);
  507. /* Disable Store & Forward mode for TX */
  508. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS);
  509. }
  510. }
  511. }
  512. /* Assign Ram Buffer allocation.
  513. * start and end are in units of 4k bytes
  514. * ram registers are in units of 64bit words
  515. */
  516. static void sky2_ramset(struct sky2_hw *hw, u16 q, u8 startk, u8 endk)
  517. {
  518. u32 start, end;
  519. start = startk * 4096/8;
  520. end = (endk * 4096/8) - 1;
  521. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  522. sky2_write32(hw, RB_ADDR(q, RB_START), start);
  523. sky2_write32(hw, RB_ADDR(q, RB_END), end);
  524. sky2_write32(hw, RB_ADDR(q, RB_WP), start);
  525. sky2_write32(hw, RB_ADDR(q, RB_RP), start);
  526. if (q == Q_R1 || q == Q_R2) {
  527. u32 space = (endk - startk) * 4096/8;
  528. u32 tp = space - space/4;
  529. /* On receive queue's set the thresholds
  530. * give receiver priority when > 3/4 full
  531. * send pause when down to 2K
  532. */
  533. sky2_write32(hw, RB_ADDR(q, RB_RX_UTHP), tp);
  534. sky2_write32(hw, RB_ADDR(q, RB_RX_LTHP), space/2);
  535. tp = space - 2048/8;
  536. sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
  537. sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
  538. } else {
  539. /* Enable store & forward on Tx queue's because
  540. * Tx FIFO is only 1K on Yukon
  541. */
  542. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  543. }
  544. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  545. sky2_read8(hw, RB_ADDR(q, RB_CTRL));
  546. }
  547. /* Setup Bus Memory Interface */
  548. static void sky2_qset(struct sky2_hw *hw, u16 q)
  549. {
  550. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET);
  551. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT);
  552. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON);
  553. sky2_write32(hw, Q_ADDR(q, Q_WM), BMU_WM_DEFAULT);
  554. }
  555. /* Setup prefetch unit registers. This is the interface between
  556. * hardware and driver list elements
  557. */
  558. static void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr,
  559. u64 addr, u32 last)
  560. {
  561. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  562. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR);
  563. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), addr >> 32);
  564. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), (u32) addr);
  565. sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last);
  566. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON);
  567. sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL));
  568. }
  569. static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2)
  570. {
  571. struct sky2_tx_le *le = sky2->tx_le + sky2->tx_prod;
  572. sky2->tx_prod = (sky2->tx_prod + 1) % TX_RING_SIZE;
  573. return le;
  574. }
  575. /*
  576. * This is a workaround code taken from SysKonnect sk98lin driver
  577. * to deal with chip bug on Yukon EC rev 0 in the wraparound case.
  578. */
  579. static void sky2_put_idx(struct sky2_hw *hw, unsigned q,
  580. u16 idx, u16 *last, u16 size)
  581. {
  582. wmb();
  583. if (is_ec_a1(hw) && idx < *last) {
  584. u16 hwget = sky2_read16(hw, Y2_QADDR(q, PREF_UNIT_GET_IDX));
  585. if (hwget == 0) {
  586. /* Start prefetching again */
  587. sky2_write8(hw, Y2_QADDR(q, PREF_UNIT_FIFO_WM), 0xe0);
  588. goto setnew;
  589. }
  590. if (hwget == size - 1) {
  591. /* set watermark to one list element */
  592. sky2_write8(hw, Y2_QADDR(q, PREF_UNIT_FIFO_WM), 8);
  593. /* set put index to first list element */
  594. sky2_write16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX), 0);
  595. } else /* have hardware go to end of list */
  596. sky2_write16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX),
  597. size - 1);
  598. } else {
  599. setnew:
  600. sky2_write16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX), idx);
  601. }
  602. *last = idx;
  603. mmiowb();
  604. }
  605. static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2)
  606. {
  607. struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put;
  608. sky2->rx_put = (sky2->rx_put + 1) % RX_LE_SIZE;
  609. return le;
  610. }
  611. /* Return high part of DMA address (could be 32 or 64 bit) */
  612. static inline u32 high32(dma_addr_t a)
  613. {
  614. return sizeof(a) > sizeof(u32) ? (a >> 16) >> 16 : 0;
  615. }
  616. /* Build description to hardware about buffer */
  617. static void sky2_rx_add(struct sky2_port *sky2, dma_addr_t map)
  618. {
  619. struct sky2_rx_le *le;
  620. u32 hi = high32(map);
  621. u16 len = sky2->rx_bufsize;
  622. if (sky2->rx_addr64 != hi) {
  623. le = sky2_next_rx(sky2);
  624. le->addr = cpu_to_le32(hi);
  625. le->ctrl = 0;
  626. le->opcode = OP_ADDR64 | HW_OWNER;
  627. sky2->rx_addr64 = high32(map + len);
  628. }
  629. le = sky2_next_rx(sky2);
  630. le->addr = cpu_to_le32((u32) map);
  631. le->length = cpu_to_le16(len);
  632. le->ctrl = 0;
  633. le->opcode = OP_PACKET | HW_OWNER;
  634. }
  635. /* Tell chip where to start receive checksum.
  636. * Actually has two checksums, but set both same to avoid possible byte
  637. * order problems.
  638. */
  639. static void rx_set_checksum(struct sky2_port *sky2)
  640. {
  641. struct sky2_rx_le *le;
  642. le = sky2_next_rx(sky2);
  643. le->addr = (ETH_HLEN << 16) | ETH_HLEN;
  644. le->ctrl = 0;
  645. le->opcode = OP_TCPSTART | HW_OWNER;
  646. sky2_write32(sky2->hw,
  647. Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  648. sky2->rx_csum ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  649. }
  650. /*
  651. * The RX Stop command will not work for Yukon-2 if the BMU does not
  652. * reach the end of packet and since we can't make sure that we have
  653. * incoming data, we must reset the BMU while it is not doing a DMA
  654. * transfer. Since it is possible that the RX path is still active,
  655. * the RX RAM buffer will be stopped first, so any possible incoming
  656. * data will not trigger a DMA. After the RAM buffer is stopped, the
  657. * BMU is polled until any DMA in progress is ended and only then it
  658. * will be reset.
  659. */
  660. static void sky2_rx_stop(struct sky2_port *sky2)
  661. {
  662. struct sky2_hw *hw = sky2->hw;
  663. unsigned rxq = rxqaddr[sky2->port];
  664. int i;
  665. /* disable the RAM Buffer receive queue */
  666. sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
  667. for (i = 0; i < 0xffff; i++)
  668. if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL))
  669. == sky2_read8(hw, RB_ADDR(rxq, Q_RL)))
  670. goto stopped;
  671. printk(KERN_WARNING PFX "%s: receiver stop failed\n",
  672. sky2->netdev->name);
  673. stopped:
  674. sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
  675. /* reset the Rx prefetch unit */
  676. sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  677. }
  678. /* Clean out receive buffer area, assumes receiver hardware stopped */
  679. static void sky2_rx_clean(struct sky2_port *sky2)
  680. {
  681. unsigned i;
  682. memset(sky2->rx_le, 0, RX_LE_BYTES);
  683. for (i = 0; i < sky2->rx_pending; i++) {
  684. struct ring_info *re = sky2->rx_ring + i;
  685. if (re->skb) {
  686. pci_unmap_single(sky2->hw->pdev,
  687. re->mapaddr, sky2->rx_bufsize,
  688. PCI_DMA_FROMDEVICE);
  689. kfree_skb(re->skb);
  690. re->skb = NULL;
  691. }
  692. }
  693. }
  694. /* Basic MII support */
  695. static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  696. {
  697. struct mii_ioctl_data *data = if_mii(ifr);
  698. struct sky2_port *sky2 = netdev_priv(dev);
  699. struct sky2_hw *hw = sky2->hw;
  700. int err = -EOPNOTSUPP;
  701. if (!netif_running(dev))
  702. return -ENODEV; /* Phy still in reset */
  703. switch(cmd) {
  704. case SIOCGMIIPHY:
  705. data->phy_id = PHY_ADDR_MARV;
  706. /* fallthru */
  707. case SIOCGMIIREG: {
  708. u16 val = 0;
  709. down(&sky2->phy_sema);
  710. err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val);
  711. up(&sky2->phy_sema);
  712. data->val_out = val;
  713. break;
  714. }
  715. case SIOCSMIIREG:
  716. if (!capable(CAP_NET_ADMIN))
  717. return -EPERM;
  718. down(&sky2->phy_sema);
  719. err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f,
  720. data->val_in);
  721. up(&sky2->phy_sema);
  722. break;
  723. }
  724. return err;
  725. }
  726. #ifdef SKY2_VLAN_TAG_USED
  727. static void sky2_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  728. {
  729. struct sky2_port *sky2 = netdev_priv(dev);
  730. struct sky2_hw *hw = sky2->hw;
  731. u16 port = sky2->port;
  732. spin_lock_bh(&sky2->tx_lock);
  733. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_ON);
  734. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_ON);
  735. sky2->vlgrp = grp;
  736. spin_unlock_bh(&sky2->tx_lock);
  737. }
  738. static void sky2_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  739. {
  740. struct sky2_port *sky2 = netdev_priv(dev);
  741. struct sky2_hw *hw = sky2->hw;
  742. u16 port = sky2->port;
  743. spin_lock_bh(&sky2->tx_lock);
  744. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF);
  745. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF);
  746. if (sky2->vlgrp)
  747. sky2->vlgrp->vlan_devices[vid] = NULL;
  748. spin_unlock_bh(&sky2->tx_lock);
  749. }
  750. #endif
  751. /*
  752. * It appears the hardware has a bug in the FIFO logic that
  753. * cause it to hang if the FIFO gets overrun and the receive buffer
  754. * is not aligned. ALso alloc_skb() won't align properly if slab
  755. * debugging is enabled.
  756. */
  757. static inline struct sk_buff *sky2_alloc_skb(unsigned int size, gfp_t gfp_mask)
  758. {
  759. struct sk_buff *skb;
  760. skb = alloc_skb(size + RX_SKB_ALIGN, gfp_mask);
  761. if (likely(skb)) {
  762. unsigned long p = (unsigned long) skb->data;
  763. skb_reserve(skb,
  764. ((p + RX_SKB_ALIGN - 1) & ~(RX_SKB_ALIGN - 1)) - p);
  765. }
  766. return skb;
  767. }
  768. /*
  769. * Allocate and setup receiver buffer pool.
  770. * In case of 64 bit dma, there are 2X as many list elements
  771. * available as ring entries
  772. * and need to reserve one list element so we don't wrap around.
  773. */
  774. static int sky2_rx_start(struct sky2_port *sky2)
  775. {
  776. struct sky2_hw *hw = sky2->hw;
  777. unsigned rxq = rxqaddr[sky2->port];
  778. int i;
  779. sky2->rx_put = sky2->rx_next = 0;
  780. sky2_qset(hw, rxq);
  781. sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1);
  782. rx_set_checksum(sky2);
  783. for (i = 0; i < sky2->rx_pending; i++) {
  784. struct ring_info *re = sky2->rx_ring + i;
  785. re->skb = sky2_alloc_skb(sky2->rx_bufsize, GFP_KERNEL);
  786. if (!re->skb)
  787. goto nomem;
  788. re->mapaddr = pci_map_single(hw->pdev, re->skb->data,
  789. sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
  790. sky2_rx_add(sky2, re->mapaddr);
  791. }
  792. /* Tell chip about available buffers */
  793. sky2_write16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX), sky2->rx_put);
  794. sky2->rx_last_put = sky2_read16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX));
  795. return 0;
  796. nomem:
  797. sky2_rx_clean(sky2);
  798. return -ENOMEM;
  799. }
  800. /* Bring up network interface. */
  801. static int sky2_up(struct net_device *dev)
  802. {
  803. struct sky2_port *sky2 = netdev_priv(dev);
  804. struct sky2_hw *hw = sky2->hw;
  805. unsigned port = sky2->port;
  806. u32 ramsize, rxspace;
  807. int err = -ENOMEM;
  808. if (netif_msg_ifup(sky2))
  809. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  810. /* must be power of 2 */
  811. sky2->tx_le = pci_alloc_consistent(hw->pdev,
  812. TX_RING_SIZE *
  813. sizeof(struct sky2_tx_le),
  814. &sky2->tx_le_map);
  815. if (!sky2->tx_le)
  816. goto err_out;
  817. sky2->tx_ring = kcalloc(TX_RING_SIZE, sizeof(struct tx_ring_info),
  818. GFP_KERNEL);
  819. if (!sky2->tx_ring)
  820. goto err_out;
  821. sky2->tx_prod = sky2->tx_cons = 0;
  822. sky2->rx_le = pci_alloc_consistent(hw->pdev, RX_LE_BYTES,
  823. &sky2->rx_le_map);
  824. if (!sky2->rx_le)
  825. goto err_out;
  826. memset(sky2->rx_le, 0, RX_LE_BYTES);
  827. sky2->rx_ring = kcalloc(sky2->rx_pending, sizeof(struct ring_info),
  828. GFP_KERNEL);
  829. if (!sky2->rx_ring)
  830. goto err_out;
  831. sky2_mac_init(hw, port);
  832. /* Determine available ram buffer space (in 4K blocks).
  833. * Note: not sure about the FE setting below yet
  834. */
  835. if (hw->chip_id == CHIP_ID_YUKON_FE)
  836. ramsize = 4;
  837. else
  838. ramsize = sky2_read8(hw, B2_E_0);
  839. /* Give transmitter one third (rounded up) */
  840. rxspace = ramsize - (ramsize + 2) / 3;
  841. sky2_ramset(hw, rxqaddr[port], 0, rxspace);
  842. sky2_ramset(hw, txqaddr[port], rxspace, ramsize);
  843. /* Make sure SyncQ is disabled */
  844. sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL),
  845. RB_RST_SET);
  846. sky2_qset(hw, txqaddr[port]);
  847. if (hw->chip_id == CHIP_ID_YUKON_EC_U)
  848. sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), 0x1a0);
  849. sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map,
  850. TX_RING_SIZE - 1);
  851. err = sky2_rx_start(sky2);
  852. if (err)
  853. goto err_out;
  854. /* Enable interrupts from phy/mac for port */
  855. hw->intr_mask |= (port == 0) ? Y2_IS_PORT_1 : Y2_IS_PORT_2;
  856. sky2_write32(hw, B0_IMSK, hw->intr_mask);
  857. return 0;
  858. err_out:
  859. if (sky2->rx_le) {
  860. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  861. sky2->rx_le, sky2->rx_le_map);
  862. sky2->rx_le = NULL;
  863. }
  864. if (sky2->tx_le) {
  865. pci_free_consistent(hw->pdev,
  866. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  867. sky2->tx_le, sky2->tx_le_map);
  868. sky2->tx_le = NULL;
  869. }
  870. kfree(sky2->tx_ring);
  871. kfree(sky2->rx_ring);
  872. sky2->tx_ring = NULL;
  873. sky2->rx_ring = NULL;
  874. return err;
  875. }
  876. /* Modular subtraction in ring */
  877. static inline int tx_dist(unsigned tail, unsigned head)
  878. {
  879. return (head - tail) % TX_RING_SIZE;
  880. }
  881. /* Number of list elements available for next tx */
  882. static inline int tx_avail(const struct sky2_port *sky2)
  883. {
  884. return sky2->tx_pending - tx_dist(sky2->tx_cons, sky2->tx_prod);
  885. }
  886. /* Estimate of number of transmit list elements required */
  887. static unsigned tx_le_req(const struct sk_buff *skb)
  888. {
  889. unsigned count;
  890. count = sizeof(dma_addr_t) / sizeof(u32);
  891. count += skb_shinfo(skb)->nr_frags * count;
  892. if (skb_shinfo(skb)->tso_size)
  893. ++count;
  894. if (skb->ip_summed == CHECKSUM_HW)
  895. ++count;
  896. return count;
  897. }
  898. /*
  899. * Put one packet in ring for transmit.
  900. * A single packet can generate multiple list elements, and
  901. * the number of ring elements will probably be less than the number
  902. * of list elements used.
  903. *
  904. * No BH disabling for tx_lock here (like tg3)
  905. */
  906. static int sky2_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  907. {
  908. struct sky2_port *sky2 = netdev_priv(dev);
  909. struct sky2_hw *hw = sky2->hw;
  910. struct sky2_tx_le *le = NULL;
  911. struct tx_ring_info *re;
  912. unsigned i, len;
  913. dma_addr_t mapping;
  914. u32 addr64;
  915. u16 mss;
  916. u8 ctrl;
  917. /* No BH disabling for tx_lock here. We are running in BH disabled
  918. * context and TX reclaim runs via poll inside of a software
  919. * interrupt, and no related locks in IRQ processing.
  920. */
  921. if (!spin_trylock(&sky2->tx_lock))
  922. return NETDEV_TX_LOCKED;
  923. if (unlikely(tx_avail(sky2) < tx_le_req(skb))) {
  924. /* There is a known but harmless race with lockless tx
  925. * and netif_stop_queue.
  926. */
  927. if (!netif_queue_stopped(dev)) {
  928. netif_stop_queue(dev);
  929. if (net_ratelimit())
  930. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  931. dev->name);
  932. }
  933. spin_unlock(&sky2->tx_lock);
  934. return NETDEV_TX_BUSY;
  935. }
  936. if (unlikely(netif_msg_tx_queued(sky2)))
  937. printk(KERN_DEBUG "%s: tx queued, slot %u, len %d\n",
  938. dev->name, sky2->tx_prod, skb->len);
  939. len = skb_headlen(skb);
  940. mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  941. addr64 = high32(mapping);
  942. re = sky2->tx_ring + sky2->tx_prod;
  943. /* Send high bits if changed or crosses boundary */
  944. if (addr64 != sky2->tx_addr64 || high32(mapping + len) != sky2->tx_addr64) {
  945. le = get_tx_le(sky2);
  946. le->tx.addr = cpu_to_le32(addr64);
  947. le->ctrl = 0;
  948. le->opcode = OP_ADDR64 | HW_OWNER;
  949. sky2->tx_addr64 = high32(mapping + len);
  950. }
  951. /* Check for TCP Segmentation Offload */
  952. mss = skb_shinfo(skb)->tso_size;
  953. if (mss != 0) {
  954. /* just drop the packet if non-linear expansion fails */
  955. if (skb_header_cloned(skb) &&
  956. pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
  957. dev_kfree_skb_any(skb);
  958. goto out_unlock;
  959. }
  960. mss += ((skb->h.th->doff - 5) * 4); /* TCP options */
  961. mss += (skb->nh.iph->ihl * 4) + sizeof(struct tcphdr);
  962. mss += ETH_HLEN;
  963. }
  964. if (mss != sky2->tx_last_mss) {
  965. le = get_tx_le(sky2);
  966. le->tx.tso.size = cpu_to_le16(mss);
  967. le->tx.tso.rsvd = 0;
  968. le->opcode = OP_LRGLEN | HW_OWNER;
  969. le->ctrl = 0;
  970. sky2->tx_last_mss = mss;
  971. }
  972. ctrl = 0;
  973. #ifdef SKY2_VLAN_TAG_USED
  974. /* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */
  975. if (sky2->vlgrp && vlan_tx_tag_present(skb)) {
  976. if (!le) {
  977. le = get_tx_le(sky2);
  978. le->tx.addr = 0;
  979. le->opcode = OP_VLAN|HW_OWNER;
  980. le->ctrl = 0;
  981. } else
  982. le->opcode |= OP_VLAN;
  983. le->length = cpu_to_be16(vlan_tx_tag_get(skb));
  984. ctrl |= INS_VLAN;
  985. }
  986. #endif
  987. /* Handle TCP checksum offload */
  988. if (skb->ip_summed == CHECKSUM_HW) {
  989. u16 hdr = skb->h.raw - skb->data;
  990. u16 offset = hdr + skb->csum;
  991. ctrl = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
  992. if (skb->nh.iph->protocol == IPPROTO_UDP)
  993. ctrl |= UDPTCP;
  994. le = get_tx_le(sky2);
  995. le->tx.csum.start = cpu_to_le16(hdr);
  996. le->tx.csum.offset = cpu_to_le16(offset);
  997. le->length = 0; /* initial checksum value */
  998. le->ctrl = 1; /* one packet */
  999. le->opcode = OP_TCPLISW | HW_OWNER;
  1000. }
  1001. le = get_tx_le(sky2);
  1002. le->tx.addr = cpu_to_le32((u32) mapping);
  1003. le->length = cpu_to_le16(len);
  1004. le->ctrl = ctrl;
  1005. le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER);
  1006. /* Record the transmit mapping info */
  1007. re->skb = skb;
  1008. pci_unmap_addr_set(re, mapaddr, mapping);
  1009. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1010. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1011. struct tx_ring_info *fre;
  1012. mapping = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1013. frag->size, PCI_DMA_TODEVICE);
  1014. addr64 = high32(mapping);
  1015. if (addr64 != sky2->tx_addr64) {
  1016. le = get_tx_le(sky2);
  1017. le->tx.addr = cpu_to_le32(addr64);
  1018. le->ctrl = 0;
  1019. le->opcode = OP_ADDR64 | HW_OWNER;
  1020. sky2->tx_addr64 = addr64;
  1021. }
  1022. le = get_tx_le(sky2);
  1023. le->tx.addr = cpu_to_le32((u32) mapping);
  1024. le->length = cpu_to_le16(frag->size);
  1025. le->ctrl = ctrl;
  1026. le->opcode = OP_BUFFER | HW_OWNER;
  1027. fre = sky2->tx_ring
  1028. + ((re - sky2->tx_ring) + i + 1) % TX_RING_SIZE;
  1029. pci_unmap_addr_set(fre, mapaddr, mapping);
  1030. }
  1031. re->idx = sky2->tx_prod;
  1032. le->ctrl |= EOP;
  1033. sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod,
  1034. &sky2->tx_last_put, TX_RING_SIZE);
  1035. if (tx_avail(sky2) <= MAX_SKB_TX_LE)
  1036. netif_stop_queue(dev);
  1037. out_unlock:
  1038. spin_unlock(&sky2->tx_lock);
  1039. dev->trans_start = jiffies;
  1040. return NETDEV_TX_OK;
  1041. }
  1042. /*
  1043. * Free ring elements from starting at tx_cons until "done"
  1044. *
  1045. * NB: the hardware will tell us about partial completion of multi-part
  1046. * buffers; these are deferred until completion.
  1047. */
  1048. static void sky2_tx_complete(struct sky2_port *sky2, u16 done)
  1049. {
  1050. struct net_device *dev = sky2->netdev;
  1051. struct pci_dev *pdev = sky2->hw->pdev;
  1052. u16 nxt, put;
  1053. unsigned i;
  1054. BUG_ON(done >= TX_RING_SIZE);
  1055. if (unlikely(netif_msg_tx_done(sky2)))
  1056. printk(KERN_DEBUG "%s: tx done, up to %u\n",
  1057. dev->name, done);
  1058. for (put = sky2->tx_cons; put != done; put = nxt) {
  1059. struct tx_ring_info *re = sky2->tx_ring + put;
  1060. struct sk_buff *skb = re->skb;
  1061. nxt = re->idx;
  1062. BUG_ON(nxt >= TX_RING_SIZE);
  1063. prefetch(sky2->tx_ring + nxt);
  1064. /* Check for partial status */
  1065. if (tx_dist(put, done) < tx_dist(put, nxt))
  1066. break;
  1067. skb = re->skb;
  1068. pci_unmap_single(pdev, pci_unmap_addr(re, mapaddr),
  1069. skb_headlen(skb), PCI_DMA_TODEVICE);
  1070. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1071. struct tx_ring_info *fre;
  1072. fre = sky2->tx_ring + (put + i + 1) % TX_RING_SIZE;
  1073. pci_unmap_page(pdev, pci_unmap_addr(fre, mapaddr),
  1074. skb_shinfo(skb)->frags[i].size,
  1075. PCI_DMA_TODEVICE);
  1076. }
  1077. dev_kfree_skb_any(skb);
  1078. }
  1079. sky2->tx_cons = put;
  1080. if (netif_queue_stopped(dev) && tx_avail(sky2) > MAX_SKB_TX_LE)
  1081. netif_wake_queue(dev);
  1082. }
  1083. /* Cleanup all untransmitted buffers, assume transmitter not running */
  1084. static void sky2_tx_clean(struct sky2_port *sky2)
  1085. {
  1086. spin_lock_bh(&sky2->tx_lock);
  1087. sky2_tx_complete(sky2, sky2->tx_prod);
  1088. spin_unlock_bh(&sky2->tx_lock);
  1089. }
  1090. /* Network shutdown */
  1091. static int sky2_down(struct net_device *dev)
  1092. {
  1093. struct sky2_port *sky2 = netdev_priv(dev);
  1094. struct sky2_hw *hw = sky2->hw;
  1095. unsigned port = sky2->port;
  1096. u16 ctrl;
  1097. /* Never really got started! */
  1098. if (!sky2->tx_le)
  1099. return 0;
  1100. if (netif_msg_ifdown(sky2))
  1101. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1102. /* Stop more packets from being queued */
  1103. netif_stop_queue(dev);
  1104. /* Disable port IRQ */
  1105. local_irq_disable();
  1106. hw->intr_mask &= ~((sky2->port == 0) ? Y2_IS_IRQ_PHY1 : Y2_IS_IRQ_PHY2);
  1107. sky2_write32(hw, B0_IMSK, hw->intr_mask);
  1108. local_irq_enable();
  1109. flush_scheduled_work();
  1110. sky2_phy_reset(hw, port);
  1111. /* Stop transmitter */
  1112. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP);
  1113. sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR));
  1114. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1115. RB_RST_SET | RB_DIS_OP_MD);
  1116. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1117. ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA);
  1118. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1119. sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1120. /* Workaround shared GMAC reset */
  1121. if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0
  1122. && port == 0 && hw->dev[1] && netif_running(hw->dev[1])))
  1123. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1124. /* Disable Force Sync bit and Enable Alloc bit */
  1125. sky2_write8(hw, SK_REG(port, TXA_CTRL),
  1126. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1127. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1128. sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1129. sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1130. /* Reset the PCI FIFO of the async Tx queue */
  1131. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR),
  1132. BMU_RST_SET | BMU_FIFO_RST);
  1133. /* Reset the Tx prefetch units */
  1134. sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL),
  1135. PREF_UNIT_RST_SET);
  1136. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1137. sky2_rx_stop(sky2);
  1138. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1139. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1140. /* turn off LED's */
  1141. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  1142. synchronize_irq(hw->pdev->irq);
  1143. sky2_tx_clean(sky2);
  1144. sky2_rx_clean(sky2);
  1145. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  1146. sky2->rx_le, sky2->rx_le_map);
  1147. kfree(sky2->rx_ring);
  1148. pci_free_consistent(hw->pdev,
  1149. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  1150. sky2->tx_le, sky2->tx_le_map);
  1151. kfree(sky2->tx_ring);
  1152. sky2->tx_le = NULL;
  1153. sky2->rx_le = NULL;
  1154. sky2->rx_ring = NULL;
  1155. sky2->tx_ring = NULL;
  1156. return 0;
  1157. }
  1158. static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux)
  1159. {
  1160. if (!hw->copper)
  1161. return SPEED_1000;
  1162. if (hw->chip_id == CHIP_ID_YUKON_FE)
  1163. return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
  1164. switch (aux & PHY_M_PS_SPEED_MSK) {
  1165. case PHY_M_PS_SPEED_1000:
  1166. return SPEED_1000;
  1167. case PHY_M_PS_SPEED_100:
  1168. return SPEED_100;
  1169. default:
  1170. return SPEED_10;
  1171. }
  1172. }
  1173. static void sky2_link_up(struct sky2_port *sky2)
  1174. {
  1175. struct sky2_hw *hw = sky2->hw;
  1176. unsigned port = sky2->port;
  1177. u16 reg;
  1178. /* Enable Transmit FIFO Underrun */
  1179. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1180. reg = gma_read16(hw, port, GM_GP_CTRL);
  1181. if (sky2->duplex == DUPLEX_FULL || sky2->autoneg == AUTONEG_ENABLE)
  1182. reg |= GM_GPCR_DUP_FULL;
  1183. /* enable Rx/Tx */
  1184. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1185. gma_write16(hw, port, GM_GP_CTRL, reg);
  1186. gma_read16(hw, port, GM_GP_CTRL);
  1187. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1188. netif_carrier_on(sky2->netdev);
  1189. netif_wake_queue(sky2->netdev);
  1190. /* Turn on link LED */
  1191. sky2_write8(hw, SK_REG(port, LNK_LED_REG),
  1192. LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF);
  1193. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  1194. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  1195. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  1196. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  1197. PHY_M_LEDC_INIT_CTRL(sky2->speed ==
  1198. SPEED_10 ? 7 : 0) |
  1199. PHY_M_LEDC_STA1_CTRL(sky2->speed ==
  1200. SPEED_100 ? 7 : 0) |
  1201. PHY_M_LEDC_STA0_CTRL(sky2->speed ==
  1202. SPEED_1000 ? 7 : 0));
  1203. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  1204. }
  1205. if (netif_msg_link(sky2))
  1206. printk(KERN_INFO PFX
  1207. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  1208. sky2->netdev->name, sky2->speed,
  1209. sky2->duplex == DUPLEX_FULL ? "full" : "half",
  1210. (sky2->tx_pause && sky2->rx_pause) ? "both" :
  1211. sky2->tx_pause ? "tx" : sky2->rx_pause ? "rx" : "none");
  1212. }
  1213. static void sky2_link_down(struct sky2_port *sky2)
  1214. {
  1215. struct sky2_hw *hw = sky2->hw;
  1216. unsigned port = sky2->port;
  1217. u16 reg;
  1218. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1219. reg = gma_read16(hw, port, GM_GP_CTRL);
  1220. reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1221. gma_write16(hw, port, GM_GP_CTRL, reg);
  1222. gma_read16(hw, port, GM_GP_CTRL); /* PCI post */
  1223. if (sky2->rx_pause && !sky2->tx_pause) {
  1224. /* restore Asymmetric Pause bit */
  1225. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1226. gm_phy_read(hw, port, PHY_MARV_AUNE_ADV)
  1227. | PHY_M_AN_ASP);
  1228. }
  1229. netif_carrier_off(sky2->netdev);
  1230. netif_stop_queue(sky2->netdev);
  1231. /* Turn on link LED */
  1232. sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  1233. if (netif_msg_link(sky2))
  1234. printk(KERN_INFO PFX "%s: Link is down.\n", sky2->netdev->name);
  1235. sky2_phy_init(hw, port);
  1236. }
  1237. static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux)
  1238. {
  1239. struct sky2_hw *hw = sky2->hw;
  1240. unsigned port = sky2->port;
  1241. u16 lpa;
  1242. lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP);
  1243. if (lpa & PHY_M_AN_RF) {
  1244. printk(KERN_ERR PFX "%s: remote fault", sky2->netdev->name);
  1245. return -1;
  1246. }
  1247. if (hw->chip_id != CHIP_ID_YUKON_FE &&
  1248. gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1249. printk(KERN_ERR PFX "%s: master/slave fault",
  1250. sky2->netdev->name);
  1251. return -1;
  1252. }
  1253. if (!(aux & PHY_M_PS_SPDUP_RES)) {
  1254. printk(KERN_ERR PFX "%s: speed/duplex mismatch",
  1255. sky2->netdev->name);
  1256. return -1;
  1257. }
  1258. sky2->duplex = (aux & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1259. sky2->speed = sky2_phy_speed(hw, aux);
  1260. /* Pause bits are offset (9..8) */
  1261. if (hw->chip_id == CHIP_ID_YUKON_XL)
  1262. aux >>= 6;
  1263. sky2->rx_pause = (aux & PHY_M_PS_RX_P_EN) != 0;
  1264. sky2->tx_pause = (aux & PHY_M_PS_TX_P_EN) != 0;
  1265. if ((sky2->tx_pause || sky2->rx_pause)
  1266. && !(sky2->speed < SPEED_1000 && sky2->duplex == DUPLEX_HALF))
  1267. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1268. else
  1269. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1270. return 0;
  1271. }
  1272. /*
  1273. * Interrupt from PHY are handled outside of interrupt context
  1274. * because accessing phy registers requires spin wait which might
  1275. * cause excess interrupt latency.
  1276. */
  1277. static void sky2_phy_task(void *arg)
  1278. {
  1279. struct sky2_port *sky2 = arg;
  1280. struct sky2_hw *hw = sky2->hw;
  1281. u16 istatus, phystat;
  1282. down(&sky2->phy_sema);
  1283. istatus = gm_phy_read(hw, sky2->port, PHY_MARV_INT_STAT);
  1284. phystat = gm_phy_read(hw, sky2->port, PHY_MARV_PHY_STAT);
  1285. if (netif_msg_intr(sky2))
  1286. printk(KERN_INFO PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1287. sky2->netdev->name, istatus, phystat);
  1288. if (istatus & PHY_M_IS_AN_COMPL) {
  1289. if (sky2_autoneg_done(sky2, phystat) == 0)
  1290. sky2_link_up(sky2);
  1291. goto out;
  1292. }
  1293. if (istatus & PHY_M_IS_LSP_CHANGE)
  1294. sky2->speed = sky2_phy_speed(hw, phystat);
  1295. if (istatus & PHY_M_IS_DUP_CHANGE)
  1296. sky2->duplex =
  1297. (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1298. if (istatus & PHY_M_IS_LST_CHANGE) {
  1299. if (phystat & PHY_M_PS_LINK_UP)
  1300. sky2_link_up(sky2);
  1301. else
  1302. sky2_link_down(sky2);
  1303. }
  1304. out:
  1305. up(&sky2->phy_sema);
  1306. local_irq_disable();
  1307. hw->intr_mask |= (sky2->port == 0) ? Y2_IS_IRQ_PHY1 : Y2_IS_IRQ_PHY2;
  1308. sky2_write32(hw, B0_IMSK, hw->intr_mask);
  1309. local_irq_enable();
  1310. }
  1311. /* Transmit timeout is only called if we are running, carries is up
  1312. * and tx queue is full (stopped).
  1313. */
  1314. static void sky2_tx_timeout(struct net_device *dev)
  1315. {
  1316. struct sky2_port *sky2 = netdev_priv(dev);
  1317. struct sky2_hw *hw = sky2->hw;
  1318. unsigned txq = txqaddr[sky2->port];
  1319. u16 ridx;
  1320. /* Maybe we just missed an status interrupt */
  1321. spin_lock(&sky2->tx_lock);
  1322. ridx = sky2_read16(hw,
  1323. sky2->port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX);
  1324. sky2_tx_complete(sky2, ridx);
  1325. spin_unlock(&sky2->tx_lock);
  1326. if (!netif_queue_stopped(dev)) {
  1327. if (net_ratelimit())
  1328. pr_info(PFX "transmit interrupt missed? recovered\n");
  1329. return;
  1330. }
  1331. if (netif_msg_timer(sky2))
  1332. printk(KERN_ERR PFX "%s: tx timeout\n", dev->name);
  1333. sky2_write32(hw, Q_ADDR(txq, Q_CSR), BMU_STOP);
  1334. sky2_write32(hw, Y2_QADDR(txq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  1335. sky2_tx_clean(sky2);
  1336. sky2_qset(hw, txq);
  1337. sky2_prefetch_init(hw, txq, sky2->tx_le_map, TX_RING_SIZE - 1);
  1338. }
  1339. #define roundup(x, y) ((((x)+((y)-1))/(y))*(y))
  1340. /* Want receive buffer size to be multiple of 64 bits, and incl room for vlan */
  1341. static inline unsigned sky2_buf_size(int mtu)
  1342. {
  1343. return roundup(mtu + ETH_HLEN + 4, 8);
  1344. }
  1345. static int sky2_change_mtu(struct net_device *dev, int new_mtu)
  1346. {
  1347. struct sky2_port *sky2 = netdev_priv(dev);
  1348. struct sky2_hw *hw = sky2->hw;
  1349. int err;
  1350. u16 ctl, mode;
  1351. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  1352. return -EINVAL;
  1353. if (hw->chip_id == CHIP_ID_YUKON_EC_U && new_mtu > ETH_DATA_LEN)
  1354. return -EINVAL;
  1355. if (!netif_running(dev)) {
  1356. dev->mtu = new_mtu;
  1357. return 0;
  1358. }
  1359. sky2_write32(hw, B0_IMSK, 0);
  1360. dev->trans_start = jiffies; /* prevent tx timeout */
  1361. netif_stop_queue(dev);
  1362. netif_poll_disable(hw->dev[0]);
  1363. ctl = gma_read16(hw, sky2->port, GM_GP_CTRL);
  1364. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
  1365. sky2_rx_stop(sky2);
  1366. sky2_rx_clean(sky2);
  1367. dev->mtu = new_mtu;
  1368. sky2->rx_bufsize = sky2_buf_size(new_mtu);
  1369. mode = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  1370. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1371. if (dev->mtu > ETH_DATA_LEN)
  1372. mode |= GM_SMOD_JUMBO_ENA;
  1373. gma_write16(hw, sky2->port, GM_SERIAL_MODE, mode);
  1374. sky2_write8(hw, RB_ADDR(rxqaddr[sky2->port], RB_CTRL), RB_ENA_OP_MD);
  1375. err = sky2_rx_start(sky2);
  1376. sky2_write32(hw, B0_IMSK, hw->intr_mask);
  1377. if (err)
  1378. dev_close(dev);
  1379. else {
  1380. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl);
  1381. netif_poll_enable(hw->dev[0]);
  1382. netif_wake_queue(dev);
  1383. }
  1384. return err;
  1385. }
  1386. /*
  1387. * Receive one packet.
  1388. * For small packets or errors, just reuse existing skb.
  1389. * For larger packets, get new buffer.
  1390. */
  1391. static struct sk_buff *sky2_receive(struct sky2_port *sky2,
  1392. u16 length, u32 status)
  1393. {
  1394. struct ring_info *re = sky2->rx_ring + sky2->rx_next;
  1395. struct sk_buff *skb = NULL;
  1396. if (unlikely(netif_msg_rx_status(sky2)))
  1397. printk(KERN_DEBUG PFX "%s: rx slot %u status 0x%x len %d\n",
  1398. sky2->netdev->name, sky2->rx_next, status, length);
  1399. sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending;
  1400. prefetch(sky2->rx_ring + sky2->rx_next);
  1401. if (status & GMR_FS_ANY_ERR)
  1402. goto error;
  1403. if (!(status & GMR_FS_RX_OK))
  1404. goto resubmit;
  1405. if ((status >> 16) != length || length > sky2->rx_bufsize)
  1406. goto oversize;
  1407. if (length < copybreak) {
  1408. skb = alloc_skb(length + 2, GFP_ATOMIC);
  1409. if (!skb)
  1410. goto resubmit;
  1411. skb_reserve(skb, 2);
  1412. pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->mapaddr,
  1413. length, PCI_DMA_FROMDEVICE);
  1414. memcpy(skb->data, re->skb->data, length);
  1415. skb->ip_summed = re->skb->ip_summed;
  1416. skb->csum = re->skb->csum;
  1417. pci_dma_sync_single_for_device(sky2->hw->pdev, re->mapaddr,
  1418. length, PCI_DMA_FROMDEVICE);
  1419. } else {
  1420. struct sk_buff *nskb;
  1421. nskb = sky2_alloc_skb(sky2->rx_bufsize, GFP_ATOMIC);
  1422. if (!nskb)
  1423. goto resubmit;
  1424. skb = re->skb;
  1425. re->skb = nskb;
  1426. pci_unmap_single(sky2->hw->pdev, re->mapaddr,
  1427. sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
  1428. prefetch(skb->data);
  1429. re->mapaddr = pci_map_single(sky2->hw->pdev, nskb->data,
  1430. sky2->rx_bufsize, PCI_DMA_FROMDEVICE);
  1431. }
  1432. skb_put(skb, length);
  1433. resubmit:
  1434. re->skb->ip_summed = CHECKSUM_NONE;
  1435. sky2_rx_add(sky2, re->mapaddr);
  1436. /* Tell receiver about new buffers. */
  1437. sky2_put_idx(sky2->hw, rxqaddr[sky2->port], sky2->rx_put,
  1438. &sky2->rx_last_put, RX_LE_SIZE);
  1439. return skb;
  1440. oversize:
  1441. ++sky2->net_stats.rx_over_errors;
  1442. goto resubmit;
  1443. error:
  1444. ++sky2->net_stats.rx_errors;
  1445. if (netif_msg_rx_err(sky2) && net_ratelimit())
  1446. printk(KERN_INFO PFX "%s: rx error, status 0x%x length %d\n",
  1447. sky2->netdev->name, status, length);
  1448. if (status & (GMR_FS_LONG_ERR | GMR_FS_UN_SIZE))
  1449. sky2->net_stats.rx_length_errors++;
  1450. if (status & GMR_FS_FRAGMENT)
  1451. sky2->net_stats.rx_frame_errors++;
  1452. if (status & GMR_FS_CRC_ERR)
  1453. sky2->net_stats.rx_crc_errors++;
  1454. if (status & GMR_FS_RX_FF_OV)
  1455. sky2->net_stats.rx_fifo_errors++;
  1456. goto resubmit;
  1457. }
  1458. /*
  1459. * Check for transmit complete
  1460. */
  1461. #define TX_NO_STATUS 0xffff
  1462. static void sky2_tx_check(struct sky2_hw *hw, int port, u16 last)
  1463. {
  1464. if (last != TX_NO_STATUS) {
  1465. struct net_device *dev = hw->dev[port];
  1466. if (dev && netif_running(dev)) {
  1467. struct sky2_port *sky2 = netdev_priv(dev);
  1468. spin_lock(&sky2->tx_lock);
  1469. sky2_tx_complete(sky2, last);
  1470. spin_unlock(&sky2->tx_lock);
  1471. }
  1472. }
  1473. }
  1474. /*
  1475. * Both ports share the same status interrupt, therefore there is only
  1476. * one poll routine.
  1477. */
  1478. static int sky2_poll(struct net_device *dev0, int *budget)
  1479. {
  1480. struct sky2_hw *hw = ((struct sky2_port *) netdev_priv(dev0))->hw;
  1481. unsigned int to_do = min(dev0->quota, *budget);
  1482. unsigned int work_done = 0;
  1483. u16 hwidx;
  1484. u16 tx_done[2] = { TX_NO_STATUS, TX_NO_STATUS };
  1485. sky2_write32(hw, STAT_CTRL, SC_STAT_CLR_IRQ);
  1486. hwidx = sky2_read16(hw, STAT_PUT_IDX);
  1487. BUG_ON(hwidx >= STATUS_RING_SIZE);
  1488. rmb();
  1489. while (hwidx != hw->st_idx) {
  1490. struct sky2_status_le *le = hw->st_le + hw->st_idx;
  1491. struct net_device *dev;
  1492. struct sky2_port *sky2;
  1493. struct sk_buff *skb;
  1494. u32 status;
  1495. u16 length;
  1496. le = hw->st_le + hw->st_idx;
  1497. hw->st_idx = (hw->st_idx + 1) % STATUS_RING_SIZE;
  1498. prefetch(hw->st_le + hw->st_idx);
  1499. BUG_ON(le->link >= 2);
  1500. dev = hw->dev[le->link];
  1501. if (dev == NULL || !netif_running(dev))
  1502. continue;
  1503. sky2 = netdev_priv(dev);
  1504. status = le32_to_cpu(le->status);
  1505. length = le16_to_cpu(le->length);
  1506. switch (le->opcode & ~HW_OWNER) {
  1507. case OP_RXSTAT:
  1508. skb = sky2_receive(sky2, length, status);
  1509. if (!skb)
  1510. break;
  1511. skb->dev = dev;
  1512. skb->protocol = eth_type_trans(skb, dev);
  1513. dev->last_rx = jiffies;
  1514. #ifdef SKY2_VLAN_TAG_USED
  1515. if (sky2->vlgrp && (status & GMR_FS_VLAN)) {
  1516. vlan_hwaccel_receive_skb(skb,
  1517. sky2->vlgrp,
  1518. be16_to_cpu(sky2->rx_tag));
  1519. } else
  1520. #endif
  1521. netif_receive_skb(skb);
  1522. if (++work_done >= to_do)
  1523. goto exit_loop;
  1524. break;
  1525. #ifdef SKY2_VLAN_TAG_USED
  1526. case OP_RXVLAN:
  1527. sky2->rx_tag = length;
  1528. break;
  1529. case OP_RXCHKSVLAN:
  1530. sky2->rx_tag = length;
  1531. /* fall through */
  1532. #endif
  1533. case OP_RXCHKS:
  1534. skb = sky2->rx_ring[sky2->rx_next].skb;
  1535. skb->ip_summed = CHECKSUM_HW;
  1536. skb->csum = le16_to_cpu(status);
  1537. break;
  1538. case OP_TXINDEXLE:
  1539. /* TX index reports status for both ports */
  1540. tx_done[0] = status & 0xffff;
  1541. tx_done[1] = ((status >> 24) & 0xff)
  1542. | (u16)(length & 0xf) << 8;
  1543. break;
  1544. default:
  1545. if (net_ratelimit())
  1546. printk(KERN_WARNING PFX
  1547. "unknown status opcode 0x%x\n", le->opcode);
  1548. break;
  1549. }
  1550. }
  1551. exit_loop:
  1552. sky2_tx_check(hw, 0, tx_done[0]);
  1553. sky2_tx_check(hw, 1, tx_done[1]);
  1554. if (likely(work_done < to_do)) {
  1555. /* need to restart TX timer */
  1556. if (is_ec_a1(hw)) {
  1557. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  1558. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  1559. }
  1560. netif_rx_complete(dev0);
  1561. hw->intr_mask |= Y2_IS_STAT_BMU;
  1562. sky2_write32(hw, B0_IMSK, hw->intr_mask);
  1563. return 0;
  1564. } else {
  1565. *budget -= work_done;
  1566. dev0->quota -= work_done;
  1567. return 1;
  1568. }
  1569. }
  1570. static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status)
  1571. {
  1572. struct net_device *dev = hw->dev[port];
  1573. if (net_ratelimit())
  1574. printk(KERN_INFO PFX "%s: hw error interrupt status 0x%x\n",
  1575. dev->name, status);
  1576. if (status & Y2_IS_PAR_RD1) {
  1577. if (net_ratelimit())
  1578. printk(KERN_ERR PFX "%s: ram data read parity error\n",
  1579. dev->name);
  1580. /* Clear IRQ */
  1581. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR);
  1582. }
  1583. if (status & Y2_IS_PAR_WR1) {
  1584. if (net_ratelimit())
  1585. printk(KERN_ERR PFX "%s: ram data write parity error\n",
  1586. dev->name);
  1587. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR);
  1588. }
  1589. if (status & Y2_IS_PAR_MAC1) {
  1590. if (net_ratelimit())
  1591. printk(KERN_ERR PFX "%s: MAC parity error\n", dev->name);
  1592. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE);
  1593. }
  1594. if (status & Y2_IS_PAR_RX1) {
  1595. if (net_ratelimit())
  1596. printk(KERN_ERR PFX "%s: RX parity error\n", dev->name);
  1597. sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR);
  1598. }
  1599. if (status & Y2_IS_TCP_TXA1) {
  1600. if (net_ratelimit())
  1601. printk(KERN_ERR PFX "%s: TCP segmentation error\n",
  1602. dev->name);
  1603. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP);
  1604. }
  1605. }
  1606. static void sky2_hw_intr(struct sky2_hw *hw)
  1607. {
  1608. u32 status = sky2_read32(hw, B0_HWE_ISRC);
  1609. if (status & Y2_IS_TIST_OV)
  1610. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1611. if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) {
  1612. u16 pci_err;
  1613. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_err);
  1614. if (net_ratelimit())
  1615. printk(KERN_ERR PFX "%s: pci hw error (0x%x)\n",
  1616. pci_name(hw->pdev), pci_err);
  1617. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1618. pci_write_config_word(hw->pdev, PCI_STATUS,
  1619. pci_err | PCI_STATUS_ERROR_BITS);
  1620. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1621. }
  1622. if (status & Y2_IS_PCI_EXP) {
  1623. /* PCI-Express uncorrectable Error occurred */
  1624. u32 pex_err;
  1625. pci_read_config_dword(hw->pdev, PEX_UNC_ERR_STAT, &pex_err);
  1626. if (net_ratelimit())
  1627. printk(KERN_ERR PFX "%s: pci express error (0x%x)\n",
  1628. pci_name(hw->pdev), pex_err);
  1629. /* clear the interrupt */
  1630. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1631. pci_write_config_dword(hw->pdev, PEX_UNC_ERR_STAT,
  1632. 0xffffffffUL);
  1633. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1634. if (pex_err & PEX_FATAL_ERRORS) {
  1635. u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK);
  1636. hwmsk &= ~Y2_IS_PCI_EXP;
  1637. sky2_write32(hw, B0_HWE_IMSK, hwmsk);
  1638. }
  1639. }
  1640. if (status & Y2_HWE_L1_MASK)
  1641. sky2_hw_error(hw, 0, status);
  1642. status >>= 8;
  1643. if (status & Y2_HWE_L1_MASK)
  1644. sky2_hw_error(hw, 1, status);
  1645. }
  1646. static void sky2_mac_intr(struct sky2_hw *hw, unsigned port)
  1647. {
  1648. struct net_device *dev = hw->dev[port];
  1649. struct sky2_port *sky2 = netdev_priv(dev);
  1650. u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1651. if (netif_msg_intr(sky2))
  1652. printk(KERN_INFO PFX "%s: mac interrupt status 0x%x\n",
  1653. dev->name, status);
  1654. if (status & GM_IS_RX_FF_OR) {
  1655. ++sky2->net_stats.rx_fifo_errors;
  1656. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1657. }
  1658. if (status & GM_IS_TX_FF_UR) {
  1659. ++sky2->net_stats.tx_fifo_errors;
  1660. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1661. }
  1662. }
  1663. static void sky2_phy_intr(struct sky2_hw *hw, unsigned port)
  1664. {
  1665. struct net_device *dev = hw->dev[port];
  1666. struct sky2_port *sky2 = netdev_priv(dev);
  1667. hw->intr_mask &= ~(port == 0 ? Y2_IS_IRQ_PHY1 : Y2_IS_IRQ_PHY2);
  1668. sky2_write32(hw, B0_IMSK, hw->intr_mask);
  1669. schedule_work(&sky2->phy_task);
  1670. }
  1671. static irqreturn_t sky2_intr(int irq, void *dev_id, struct pt_regs *regs)
  1672. {
  1673. struct sky2_hw *hw = dev_id;
  1674. struct net_device *dev0 = hw->dev[0];
  1675. u32 status;
  1676. status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  1677. if (status == 0 || status == ~0)
  1678. return IRQ_NONE;
  1679. if (status & Y2_IS_HW_ERR)
  1680. sky2_hw_intr(hw);
  1681. /* Do NAPI for Rx and Tx status */
  1682. if (status & Y2_IS_STAT_BMU) {
  1683. hw->intr_mask &= ~Y2_IS_STAT_BMU;
  1684. sky2_write32(hw, B0_IMSK, hw->intr_mask);
  1685. if (likely(__netif_rx_schedule_prep(dev0))) {
  1686. prefetch(&hw->st_le[hw->st_idx]);
  1687. __netif_rx_schedule(dev0);
  1688. }
  1689. }
  1690. if (status & Y2_IS_IRQ_PHY1)
  1691. sky2_phy_intr(hw, 0);
  1692. if (status & Y2_IS_IRQ_PHY2)
  1693. sky2_phy_intr(hw, 1);
  1694. if (status & Y2_IS_IRQ_MAC1)
  1695. sky2_mac_intr(hw, 0);
  1696. if (status & Y2_IS_IRQ_MAC2)
  1697. sky2_mac_intr(hw, 1);
  1698. sky2_write32(hw, B0_Y2_SP_ICR, 2);
  1699. sky2_read32(hw, B0_IMSK);
  1700. return IRQ_HANDLED;
  1701. }
  1702. #ifdef CONFIG_NET_POLL_CONTROLLER
  1703. static void sky2_netpoll(struct net_device *dev)
  1704. {
  1705. struct sky2_port *sky2 = netdev_priv(dev);
  1706. sky2_intr(sky2->hw->pdev->irq, sky2->hw, NULL);
  1707. }
  1708. #endif
  1709. /* Chip internal frequency for clock calculations */
  1710. static inline u32 sky2_mhz(const struct sky2_hw *hw)
  1711. {
  1712. switch (hw->chip_id) {
  1713. case CHIP_ID_YUKON_EC:
  1714. case CHIP_ID_YUKON_EC_U:
  1715. return 125; /* 125 Mhz */
  1716. case CHIP_ID_YUKON_FE:
  1717. return 100; /* 100 Mhz */
  1718. default: /* YUKON_XL */
  1719. return 156; /* 156 Mhz */
  1720. }
  1721. }
  1722. static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us)
  1723. {
  1724. return sky2_mhz(hw) * us;
  1725. }
  1726. static inline u32 sky2_clk2us(const struct sky2_hw *hw, u32 clk)
  1727. {
  1728. return clk / sky2_mhz(hw);
  1729. }
  1730. static int sky2_reset(struct sky2_hw *hw)
  1731. {
  1732. u16 status;
  1733. u8 t8, pmd_type;
  1734. int i, err;
  1735. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1736. hw->chip_id = sky2_read8(hw, B2_CHIP_ID);
  1737. if (hw->chip_id < CHIP_ID_YUKON_XL || hw->chip_id > CHIP_ID_YUKON_FE) {
  1738. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  1739. pci_name(hw->pdev), hw->chip_id);
  1740. return -EOPNOTSUPP;
  1741. }
  1742. /* disable ASF */
  1743. if (hw->chip_id <= CHIP_ID_YUKON_EC) {
  1744. sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
  1745. sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE);
  1746. }
  1747. /* do a SW reset */
  1748. sky2_write8(hw, B0_CTST, CS_RST_SET);
  1749. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1750. /* clear PCI errors, if any */
  1751. err = pci_read_config_word(hw->pdev, PCI_STATUS, &status);
  1752. if (err)
  1753. goto pci_err;
  1754. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1755. err = pci_write_config_word(hw->pdev, PCI_STATUS,
  1756. status | PCI_STATUS_ERROR_BITS);
  1757. if (err)
  1758. goto pci_err;
  1759. sky2_write8(hw, B0_CTST, CS_MRST_CLR);
  1760. /* clear any PEX errors */
  1761. if (pci_find_capability(hw->pdev, PCI_CAP_ID_EXP)) {
  1762. err = pci_write_config_dword(hw->pdev, PEX_UNC_ERR_STAT,
  1763. 0xffffffffUL);
  1764. if (err)
  1765. goto pci_err;
  1766. }
  1767. pmd_type = sky2_read8(hw, B2_PMD_TYP);
  1768. hw->copper = !(pmd_type == 'L' || pmd_type == 'S');
  1769. hw->ports = 1;
  1770. t8 = sky2_read8(hw, B2_Y2_HW_RES);
  1771. if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) {
  1772. if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
  1773. ++hw->ports;
  1774. }
  1775. hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4;
  1776. sky2_set_power_state(hw, PCI_D0);
  1777. for (i = 0; i < hw->ports; i++) {
  1778. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  1779. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  1780. }
  1781. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1782. /* Clear I2C IRQ noise */
  1783. sky2_write32(hw, B2_I2C_IRQ, 1);
  1784. /* turn off hardware timer (unused) */
  1785. sky2_write8(hw, B2_TI_CTRL, TIM_STOP);
  1786. sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  1787. sky2_write8(hw, B0_Y2LED, LED_STAT_ON);
  1788. /* Turn off descriptor polling */
  1789. sky2_write32(hw, B28_DPT_CTRL, DPT_STOP);
  1790. /* Turn off receive timestamp */
  1791. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP);
  1792. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1793. /* enable the Tx Arbiters */
  1794. for (i = 0; i < hw->ports; i++)
  1795. sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  1796. /* Initialize ram interface */
  1797. for (i = 0; i < hw->ports; i++) {
  1798. sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
  1799. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53);
  1800. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53);
  1801. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53);
  1802. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53);
  1803. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53);
  1804. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53);
  1805. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53);
  1806. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53);
  1807. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53);
  1808. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53);
  1809. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53);
  1810. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53);
  1811. }
  1812. sky2_write32(hw, B0_HWE_IMSK, Y2_HWE_ALL_MASK);
  1813. for (i = 0; i < hw->ports; i++)
  1814. sky2_phy_reset(hw, i);
  1815. memset(hw->st_le, 0, STATUS_LE_BYTES);
  1816. hw->st_idx = 0;
  1817. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET);
  1818. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR);
  1819. sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma);
  1820. sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32);
  1821. /* Set the list last index */
  1822. sky2_write16(hw, STAT_LAST_IDX, STATUS_RING_SIZE - 1);
  1823. /* These status setup values are copied from SysKonnect's driver */
  1824. if (is_ec_a1(hw)) {
  1825. /* WA for dev. #4.3 */
  1826. sky2_write16(hw, STAT_TX_IDX_TH, 0xfff); /* Tx Threshold */
  1827. /* set Status-FIFO watermark */
  1828. sky2_write8(hw, STAT_FIFO_WM, 0x21); /* WA for dev. #4.18 */
  1829. /* set Status-FIFO ISR watermark */
  1830. sky2_write8(hw, STAT_FIFO_ISR_WM, 0x07); /* WA for dev. #4.18 */
  1831. sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, 10000));
  1832. } else {
  1833. sky2_write16(hw, STAT_TX_IDX_TH, 10);
  1834. sky2_write8(hw, STAT_FIFO_WM, 16);
  1835. /* set Status-FIFO ISR watermark */
  1836. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0)
  1837. sky2_write8(hw, STAT_FIFO_ISR_WM, 4);
  1838. else
  1839. sky2_write8(hw, STAT_FIFO_ISR_WM, 16);
  1840. sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, 1000));
  1841. sky2_write32(hw, STAT_LEV_TIMER_INI, sky2_us2clk(hw, 100));
  1842. sky2_write32(hw, STAT_ISR_TIMER_INI, sky2_us2clk(hw, 20));
  1843. }
  1844. /* enable status unit */
  1845. sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON);
  1846. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  1847. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  1848. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  1849. return 0;
  1850. pci_err:
  1851. /* This is to catch a BIOS bug workaround where
  1852. * mmconfig table doesn't have other buses.
  1853. */
  1854. printk(KERN_ERR PFX "%s: can't access PCI config space\n",
  1855. pci_name(hw->pdev));
  1856. return err;
  1857. }
  1858. static u32 sky2_supported_modes(const struct sky2_hw *hw)
  1859. {
  1860. u32 modes;
  1861. if (hw->copper) {
  1862. modes = SUPPORTED_10baseT_Half
  1863. | SUPPORTED_10baseT_Full
  1864. | SUPPORTED_100baseT_Half
  1865. | SUPPORTED_100baseT_Full
  1866. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1867. if (hw->chip_id != CHIP_ID_YUKON_FE)
  1868. modes |= SUPPORTED_1000baseT_Half
  1869. | SUPPORTED_1000baseT_Full;
  1870. } else
  1871. modes = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1872. | SUPPORTED_Autoneg;
  1873. return modes;
  1874. }
  1875. static int sky2_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  1876. {
  1877. struct sky2_port *sky2 = netdev_priv(dev);
  1878. struct sky2_hw *hw = sky2->hw;
  1879. ecmd->transceiver = XCVR_INTERNAL;
  1880. ecmd->supported = sky2_supported_modes(hw);
  1881. ecmd->phy_address = PHY_ADDR_MARV;
  1882. if (hw->copper) {
  1883. ecmd->supported = SUPPORTED_10baseT_Half
  1884. | SUPPORTED_10baseT_Full
  1885. | SUPPORTED_100baseT_Half
  1886. | SUPPORTED_100baseT_Full
  1887. | SUPPORTED_1000baseT_Half
  1888. | SUPPORTED_1000baseT_Full
  1889. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1890. ecmd->port = PORT_TP;
  1891. } else
  1892. ecmd->port = PORT_FIBRE;
  1893. ecmd->advertising = sky2->advertising;
  1894. ecmd->autoneg = sky2->autoneg;
  1895. ecmd->speed = sky2->speed;
  1896. ecmd->duplex = sky2->duplex;
  1897. return 0;
  1898. }
  1899. static int sky2_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  1900. {
  1901. struct sky2_port *sky2 = netdev_priv(dev);
  1902. const struct sky2_hw *hw = sky2->hw;
  1903. u32 supported = sky2_supported_modes(hw);
  1904. if (ecmd->autoneg == AUTONEG_ENABLE) {
  1905. ecmd->advertising = supported;
  1906. sky2->duplex = -1;
  1907. sky2->speed = -1;
  1908. } else {
  1909. u32 setting;
  1910. switch (ecmd->speed) {
  1911. case SPEED_1000:
  1912. if (ecmd->duplex == DUPLEX_FULL)
  1913. setting = SUPPORTED_1000baseT_Full;
  1914. else if (ecmd->duplex == DUPLEX_HALF)
  1915. setting = SUPPORTED_1000baseT_Half;
  1916. else
  1917. return -EINVAL;
  1918. break;
  1919. case SPEED_100:
  1920. if (ecmd->duplex == DUPLEX_FULL)
  1921. setting = SUPPORTED_100baseT_Full;
  1922. else if (ecmd->duplex == DUPLEX_HALF)
  1923. setting = SUPPORTED_100baseT_Half;
  1924. else
  1925. return -EINVAL;
  1926. break;
  1927. case SPEED_10:
  1928. if (ecmd->duplex == DUPLEX_FULL)
  1929. setting = SUPPORTED_10baseT_Full;
  1930. else if (ecmd->duplex == DUPLEX_HALF)
  1931. setting = SUPPORTED_10baseT_Half;
  1932. else
  1933. return -EINVAL;
  1934. break;
  1935. default:
  1936. return -EINVAL;
  1937. }
  1938. if ((setting & supported) == 0)
  1939. return -EINVAL;
  1940. sky2->speed = ecmd->speed;
  1941. sky2->duplex = ecmd->duplex;
  1942. }
  1943. sky2->autoneg = ecmd->autoneg;
  1944. sky2->advertising = ecmd->advertising;
  1945. if (netif_running(dev))
  1946. sky2_phy_reinit(sky2);
  1947. return 0;
  1948. }
  1949. static void sky2_get_drvinfo(struct net_device *dev,
  1950. struct ethtool_drvinfo *info)
  1951. {
  1952. struct sky2_port *sky2 = netdev_priv(dev);
  1953. strcpy(info->driver, DRV_NAME);
  1954. strcpy(info->version, DRV_VERSION);
  1955. strcpy(info->fw_version, "N/A");
  1956. strcpy(info->bus_info, pci_name(sky2->hw->pdev));
  1957. }
  1958. static const struct sky2_stat {
  1959. char name[ETH_GSTRING_LEN];
  1960. u16 offset;
  1961. } sky2_stats[] = {
  1962. { "tx_bytes", GM_TXO_OK_HI },
  1963. { "rx_bytes", GM_RXO_OK_HI },
  1964. { "tx_broadcast", GM_TXF_BC_OK },
  1965. { "rx_broadcast", GM_RXF_BC_OK },
  1966. { "tx_multicast", GM_TXF_MC_OK },
  1967. { "rx_multicast", GM_RXF_MC_OK },
  1968. { "tx_unicast", GM_TXF_UC_OK },
  1969. { "rx_unicast", GM_RXF_UC_OK },
  1970. { "tx_mac_pause", GM_TXF_MPAUSE },
  1971. { "rx_mac_pause", GM_RXF_MPAUSE },
  1972. { "collisions", GM_TXF_SNG_COL },
  1973. { "late_collision",GM_TXF_LAT_COL },
  1974. { "aborted", GM_TXF_ABO_COL },
  1975. { "multi_collisions", GM_TXF_MUL_COL },
  1976. { "fifo_underrun", GM_TXE_FIFO_UR },
  1977. { "fifo_overflow", GM_RXE_FIFO_OV },
  1978. { "rx_toolong", GM_RXF_LNG_ERR },
  1979. { "rx_jabber", GM_RXF_JAB_PKT },
  1980. { "rx_runt", GM_RXE_FRAG },
  1981. { "rx_too_long", GM_RXF_LNG_ERR },
  1982. { "rx_fcs_error", GM_RXF_FCS_ERR },
  1983. };
  1984. static u32 sky2_get_rx_csum(struct net_device *dev)
  1985. {
  1986. struct sky2_port *sky2 = netdev_priv(dev);
  1987. return sky2->rx_csum;
  1988. }
  1989. static int sky2_set_rx_csum(struct net_device *dev, u32 data)
  1990. {
  1991. struct sky2_port *sky2 = netdev_priv(dev);
  1992. sky2->rx_csum = data;
  1993. sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  1994. data ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  1995. return 0;
  1996. }
  1997. static u32 sky2_get_msglevel(struct net_device *netdev)
  1998. {
  1999. struct sky2_port *sky2 = netdev_priv(netdev);
  2000. return sky2->msg_enable;
  2001. }
  2002. static int sky2_nway_reset(struct net_device *dev)
  2003. {
  2004. struct sky2_port *sky2 = netdev_priv(dev);
  2005. if (sky2->autoneg != AUTONEG_ENABLE)
  2006. return -EINVAL;
  2007. sky2_phy_reinit(sky2);
  2008. return 0;
  2009. }
  2010. static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count)
  2011. {
  2012. struct sky2_hw *hw = sky2->hw;
  2013. unsigned port = sky2->port;
  2014. int i;
  2015. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  2016. | (u64) gma_read32(hw, port, GM_TXO_OK_LO);
  2017. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  2018. | (u64) gma_read32(hw, port, GM_RXO_OK_LO);
  2019. for (i = 2; i < count; i++)
  2020. data[i] = (u64) gma_read32(hw, port, sky2_stats[i].offset);
  2021. }
  2022. static void sky2_set_msglevel(struct net_device *netdev, u32 value)
  2023. {
  2024. struct sky2_port *sky2 = netdev_priv(netdev);
  2025. sky2->msg_enable = value;
  2026. }
  2027. static int sky2_get_stats_count(struct net_device *dev)
  2028. {
  2029. return ARRAY_SIZE(sky2_stats);
  2030. }
  2031. static void sky2_get_ethtool_stats(struct net_device *dev,
  2032. struct ethtool_stats *stats, u64 * data)
  2033. {
  2034. struct sky2_port *sky2 = netdev_priv(dev);
  2035. sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats));
  2036. }
  2037. static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data)
  2038. {
  2039. int i;
  2040. switch (stringset) {
  2041. case ETH_SS_STATS:
  2042. for (i = 0; i < ARRAY_SIZE(sky2_stats); i++)
  2043. memcpy(data + i * ETH_GSTRING_LEN,
  2044. sky2_stats[i].name, ETH_GSTRING_LEN);
  2045. break;
  2046. }
  2047. }
  2048. /* Use hardware MIB variables for critical path statistics and
  2049. * transmit feedback not reported at interrupt.
  2050. * Other errors are accounted for in interrupt handler.
  2051. */
  2052. static struct net_device_stats *sky2_get_stats(struct net_device *dev)
  2053. {
  2054. struct sky2_port *sky2 = netdev_priv(dev);
  2055. u64 data[13];
  2056. sky2_phy_stats(sky2, data, ARRAY_SIZE(data));
  2057. sky2->net_stats.tx_bytes = data[0];
  2058. sky2->net_stats.rx_bytes = data[1];
  2059. sky2->net_stats.tx_packets = data[2] + data[4] + data[6];
  2060. sky2->net_stats.rx_packets = data[3] + data[5] + data[7];
  2061. sky2->net_stats.multicast = data[5] + data[7];
  2062. sky2->net_stats.collisions = data[10];
  2063. sky2->net_stats.tx_aborted_errors = data[12];
  2064. return &sky2->net_stats;
  2065. }
  2066. static int sky2_set_mac_address(struct net_device *dev, void *p)
  2067. {
  2068. struct sky2_port *sky2 = netdev_priv(dev);
  2069. struct sky2_hw *hw = sky2->hw;
  2070. unsigned port = sky2->port;
  2071. const struct sockaddr *addr = p;
  2072. if (!is_valid_ether_addr(addr->sa_data))
  2073. return -EADDRNOTAVAIL;
  2074. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2075. memcpy_toio(hw->regs + B2_MAC_1 + port * 8,
  2076. dev->dev_addr, ETH_ALEN);
  2077. memcpy_toio(hw->regs + B2_MAC_2 + port * 8,
  2078. dev->dev_addr, ETH_ALEN);
  2079. /* virtual address for data */
  2080. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2081. /* physical address: used for pause frames */
  2082. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2083. return 0;
  2084. }
  2085. static void sky2_set_multicast(struct net_device *dev)
  2086. {
  2087. struct sky2_port *sky2 = netdev_priv(dev);
  2088. struct sky2_hw *hw = sky2->hw;
  2089. unsigned port = sky2->port;
  2090. struct dev_mc_list *list = dev->mc_list;
  2091. u16 reg;
  2092. u8 filter[8];
  2093. memset(filter, 0, sizeof(filter));
  2094. reg = gma_read16(hw, port, GM_RX_CTRL);
  2095. reg |= GM_RXCR_UCF_ENA;
  2096. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2097. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2098. else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > 16) /* all multicast */
  2099. memset(filter, 0xff, sizeof(filter));
  2100. else if (dev->mc_count == 0) /* no multicast */
  2101. reg &= ~GM_RXCR_MCF_ENA;
  2102. else {
  2103. int i;
  2104. reg |= GM_RXCR_MCF_ENA;
  2105. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2106. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2107. filter[bit / 8] |= 1 << (bit % 8);
  2108. }
  2109. }
  2110. gma_write16(hw, port, GM_MC_ADDR_H1,
  2111. (u16) filter[0] | ((u16) filter[1] << 8));
  2112. gma_write16(hw, port, GM_MC_ADDR_H2,
  2113. (u16) filter[2] | ((u16) filter[3] << 8));
  2114. gma_write16(hw, port, GM_MC_ADDR_H3,
  2115. (u16) filter[4] | ((u16) filter[5] << 8));
  2116. gma_write16(hw, port, GM_MC_ADDR_H4,
  2117. (u16) filter[6] | ((u16) filter[7] << 8));
  2118. gma_write16(hw, port, GM_RX_CTRL, reg);
  2119. }
  2120. /* Can have one global because blinking is controlled by
  2121. * ethtool and that is always under RTNL mutex
  2122. */
  2123. static void sky2_led(struct sky2_hw *hw, unsigned port, int on)
  2124. {
  2125. u16 pg;
  2126. switch (hw->chip_id) {
  2127. case CHIP_ID_YUKON_XL:
  2128. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2129. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2130. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  2131. on ? (PHY_M_LEDC_LOS_CTRL(1) |
  2132. PHY_M_LEDC_INIT_CTRL(7) |
  2133. PHY_M_LEDC_STA1_CTRL(7) |
  2134. PHY_M_LEDC_STA0_CTRL(7))
  2135. : 0);
  2136. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2137. break;
  2138. default:
  2139. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  2140. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  2141. on ? PHY_M_LED_MO_DUP(MO_LED_ON) |
  2142. PHY_M_LED_MO_10(MO_LED_ON) |
  2143. PHY_M_LED_MO_100(MO_LED_ON) |
  2144. PHY_M_LED_MO_1000(MO_LED_ON) |
  2145. PHY_M_LED_MO_RX(MO_LED_ON)
  2146. : PHY_M_LED_MO_DUP(MO_LED_OFF) |
  2147. PHY_M_LED_MO_10(MO_LED_OFF) |
  2148. PHY_M_LED_MO_100(MO_LED_OFF) |
  2149. PHY_M_LED_MO_1000(MO_LED_OFF) |
  2150. PHY_M_LED_MO_RX(MO_LED_OFF));
  2151. }
  2152. }
  2153. /* blink LED's for finding board */
  2154. static int sky2_phys_id(struct net_device *dev, u32 data)
  2155. {
  2156. struct sky2_port *sky2 = netdev_priv(dev);
  2157. struct sky2_hw *hw = sky2->hw;
  2158. unsigned port = sky2->port;
  2159. u16 ledctrl, ledover = 0;
  2160. long ms;
  2161. int interrupted;
  2162. int onoff = 1;
  2163. if (!data || data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ))
  2164. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT);
  2165. else
  2166. ms = data * 1000;
  2167. /* save initial values */
  2168. down(&sky2->phy_sema);
  2169. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2170. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2171. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2172. ledctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  2173. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2174. } else {
  2175. ledctrl = gm_phy_read(hw, port, PHY_MARV_LED_CTRL);
  2176. ledover = gm_phy_read(hw, port, PHY_MARV_LED_OVER);
  2177. }
  2178. interrupted = 0;
  2179. while (!interrupted && ms > 0) {
  2180. sky2_led(hw, port, onoff);
  2181. onoff = !onoff;
  2182. up(&sky2->phy_sema);
  2183. interrupted = msleep_interruptible(250);
  2184. down(&sky2->phy_sema);
  2185. ms -= 250;
  2186. }
  2187. /* resume regularly scheduled programming */
  2188. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2189. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2190. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2191. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ledctrl);
  2192. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2193. } else {
  2194. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  2195. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  2196. }
  2197. up(&sky2->phy_sema);
  2198. return 0;
  2199. }
  2200. static void sky2_get_pauseparam(struct net_device *dev,
  2201. struct ethtool_pauseparam *ecmd)
  2202. {
  2203. struct sky2_port *sky2 = netdev_priv(dev);
  2204. ecmd->tx_pause = sky2->tx_pause;
  2205. ecmd->rx_pause = sky2->rx_pause;
  2206. ecmd->autoneg = sky2->autoneg;
  2207. }
  2208. static int sky2_set_pauseparam(struct net_device *dev,
  2209. struct ethtool_pauseparam *ecmd)
  2210. {
  2211. struct sky2_port *sky2 = netdev_priv(dev);
  2212. int err = 0;
  2213. sky2->autoneg = ecmd->autoneg;
  2214. sky2->tx_pause = ecmd->tx_pause != 0;
  2215. sky2->rx_pause = ecmd->rx_pause != 0;
  2216. sky2_phy_reinit(sky2);
  2217. return err;
  2218. }
  2219. #ifdef CONFIG_PM
  2220. static void sky2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2221. {
  2222. struct sky2_port *sky2 = netdev_priv(dev);
  2223. wol->supported = WAKE_MAGIC;
  2224. wol->wolopts = sky2->wol ? WAKE_MAGIC : 0;
  2225. }
  2226. static int sky2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2227. {
  2228. struct sky2_port *sky2 = netdev_priv(dev);
  2229. struct sky2_hw *hw = sky2->hw;
  2230. if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  2231. return -EOPNOTSUPP;
  2232. sky2->wol = wol->wolopts == WAKE_MAGIC;
  2233. if (sky2->wol) {
  2234. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  2235. sky2_write16(hw, WOL_CTRL_STAT,
  2236. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  2237. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  2238. } else
  2239. sky2_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  2240. return 0;
  2241. }
  2242. #endif
  2243. static int sky2_get_coalesce(struct net_device *dev,
  2244. struct ethtool_coalesce *ecmd)
  2245. {
  2246. struct sky2_port *sky2 = netdev_priv(dev);
  2247. struct sky2_hw *hw = sky2->hw;
  2248. if (sky2_read8(hw, STAT_TX_TIMER_CTRL) == TIM_STOP)
  2249. ecmd->tx_coalesce_usecs = 0;
  2250. else {
  2251. u32 clks = sky2_read32(hw, STAT_TX_TIMER_INI);
  2252. ecmd->tx_coalesce_usecs = sky2_clk2us(hw, clks);
  2253. }
  2254. ecmd->tx_max_coalesced_frames = sky2_read16(hw, STAT_TX_IDX_TH);
  2255. if (sky2_read8(hw, STAT_LEV_TIMER_CTRL) == TIM_STOP)
  2256. ecmd->rx_coalesce_usecs = 0;
  2257. else {
  2258. u32 clks = sky2_read32(hw, STAT_LEV_TIMER_INI);
  2259. ecmd->rx_coalesce_usecs = sky2_clk2us(hw, clks);
  2260. }
  2261. ecmd->rx_max_coalesced_frames = sky2_read8(hw, STAT_FIFO_WM);
  2262. if (sky2_read8(hw, STAT_ISR_TIMER_CTRL) == TIM_STOP)
  2263. ecmd->rx_coalesce_usecs_irq = 0;
  2264. else {
  2265. u32 clks = sky2_read32(hw, STAT_ISR_TIMER_INI);
  2266. ecmd->rx_coalesce_usecs_irq = sky2_clk2us(hw, clks);
  2267. }
  2268. ecmd->rx_max_coalesced_frames_irq = sky2_read8(hw, STAT_FIFO_ISR_WM);
  2269. return 0;
  2270. }
  2271. /* Note: this affect both ports */
  2272. static int sky2_set_coalesce(struct net_device *dev,
  2273. struct ethtool_coalesce *ecmd)
  2274. {
  2275. struct sky2_port *sky2 = netdev_priv(dev);
  2276. struct sky2_hw *hw = sky2->hw;
  2277. const u32 tmin = sky2_clk2us(hw, 1);
  2278. const u32 tmax = 5000;
  2279. if (ecmd->tx_coalesce_usecs != 0 &&
  2280. (ecmd->tx_coalesce_usecs < tmin || ecmd->tx_coalesce_usecs > tmax))
  2281. return -EINVAL;
  2282. if (ecmd->rx_coalesce_usecs != 0 &&
  2283. (ecmd->rx_coalesce_usecs < tmin || ecmd->rx_coalesce_usecs > tmax))
  2284. return -EINVAL;
  2285. if (ecmd->rx_coalesce_usecs_irq != 0 &&
  2286. (ecmd->rx_coalesce_usecs_irq < tmin || ecmd->rx_coalesce_usecs_irq > tmax))
  2287. return -EINVAL;
  2288. if (ecmd->tx_max_coalesced_frames > 0xffff)
  2289. return -EINVAL;
  2290. if (ecmd->rx_max_coalesced_frames > 0xff)
  2291. return -EINVAL;
  2292. if (ecmd->rx_max_coalesced_frames_irq > 0xff)
  2293. return -EINVAL;
  2294. if (ecmd->tx_coalesce_usecs == 0)
  2295. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  2296. else {
  2297. sky2_write32(hw, STAT_TX_TIMER_INI,
  2298. sky2_us2clk(hw, ecmd->tx_coalesce_usecs));
  2299. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  2300. }
  2301. sky2_write16(hw, STAT_TX_IDX_TH, ecmd->tx_max_coalesced_frames);
  2302. if (ecmd->rx_coalesce_usecs == 0)
  2303. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_STOP);
  2304. else {
  2305. sky2_write32(hw, STAT_LEV_TIMER_INI,
  2306. sky2_us2clk(hw, ecmd->rx_coalesce_usecs));
  2307. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  2308. }
  2309. sky2_write8(hw, STAT_FIFO_WM, ecmd->rx_max_coalesced_frames);
  2310. if (ecmd->rx_coalesce_usecs_irq == 0)
  2311. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_STOP);
  2312. else {
  2313. sky2_write32(hw, STAT_ISR_TIMER_INI,
  2314. sky2_us2clk(hw, ecmd->rx_coalesce_usecs_irq));
  2315. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  2316. }
  2317. sky2_write8(hw, STAT_FIFO_ISR_WM, ecmd->rx_max_coalesced_frames_irq);
  2318. return 0;
  2319. }
  2320. static void sky2_get_ringparam(struct net_device *dev,
  2321. struct ethtool_ringparam *ering)
  2322. {
  2323. struct sky2_port *sky2 = netdev_priv(dev);
  2324. ering->rx_max_pending = RX_MAX_PENDING;
  2325. ering->rx_mini_max_pending = 0;
  2326. ering->rx_jumbo_max_pending = 0;
  2327. ering->tx_max_pending = TX_RING_SIZE - 1;
  2328. ering->rx_pending = sky2->rx_pending;
  2329. ering->rx_mini_pending = 0;
  2330. ering->rx_jumbo_pending = 0;
  2331. ering->tx_pending = sky2->tx_pending;
  2332. }
  2333. static int sky2_set_ringparam(struct net_device *dev,
  2334. struct ethtool_ringparam *ering)
  2335. {
  2336. struct sky2_port *sky2 = netdev_priv(dev);
  2337. int err = 0;
  2338. if (ering->rx_pending > RX_MAX_PENDING ||
  2339. ering->rx_pending < 8 ||
  2340. ering->tx_pending < MAX_SKB_TX_LE ||
  2341. ering->tx_pending > TX_RING_SIZE - 1)
  2342. return -EINVAL;
  2343. if (netif_running(dev))
  2344. sky2_down(dev);
  2345. sky2->rx_pending = ering->rx_pending;
  2346. sky2->tx_pending = ering->tx_pending;
  2347. if (netif_running(dev)) {
  2348. err = sky2_up(dev);
  2349. if (err)
  2350. dev_close(dev);
  2351. else
  2352. sky2_set_multicast(dev);
  2353. }
  2354. return err;
  2355. }
  2356. static int sky2_get_regs_len(struct net_device *dev)
  2357. {
  2358. return 0x4000;
  2359. }
  2360. /*
  2361. * Returns copy of control register region
  2362. * Note: access to the RAM address register set will cause timeouts.
  2363. */
  2364. static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  2365. void *p)
  2366. {
  2367. const struct sky2_port *sky2 = netdev_priv(dev);
  2368. const void __iomem *io = sky2->hw->regs;
  2369. BUG_ON(regs->len < B3_RI_WTO_R1);
  2370. regs->version = 1;
  2371. memset(p, 0, regs->len);
  2372. memcpy_fromio(p, io, B3_RAM_ADDR);
  2373. memcpy_fromio(p + B3_RI_WTO_R1,
  2374. io + B3_RI_WTO_R1,
  2375. regs->len - B3_RI_WTO_R1);
  2376. }
  2377. static struct ethtool_ops sky2_ethtool_ops = {
  2378. .get_settings = sky2_get_settings,
  2379. .set_settings = sky2_set_settings,
  2380. .get_drvinfo = sky2_get_drvinfo,
  2381. .get_msglevel = sky2_get_msglevel,
  2382. .set_msglevel = sky2_set_msglevel,
  2383. .nway_reset = sky2_nway_reset,
  2384. .get_regs_len = sky2_get_regs_len,
  2385. .get_regs = sky2_get_regs,
  2386. .get_link = ethtool_op_get_link,
  2387. .get_sg = ethtool_op_get_sg,
  2388. .set_sg = ethtool_op_set_sg,
  2389. .get_tx_csum = ethtool_op_get_tx_csum,
  2390. .set_tx_csum = ethtool_op_set_tx_csum,
  2391. .get_tso = ethtool_op_get_tso,
  2392. .set_tso = ethtool_op_set_tso,
  2393. .get_rx_csum = sky2_get_rx_csum,
  2394. .set_rx_csum = sky2_set_rx_csum,
  2395. .get_strings = sky2_get_strings,
  2396. .get_coalesce = sky2_get_coalesce,
  2397. .set_coalesce = sky2_set_coalesce,
  2398. .get_ringparam = sky2_get_ringparam,
  2399. .set_ringparam = sky2_set_ringparam,
  2400. .get_pauseparam = sky2_get_pauseparam,
  2401. .set_pauseparam = sky2_set_pauseparam,
  2402. #ifdef CONFIG_PM
  2403. .get_wol = sky2_get_wol,
  2404. .set_wol = sky2_set_wol,
  2405. #endif
  2406. .phys_id = sky2_phys_id,
  2407. .get_stats_count = sky2_get_stats_count,
  2408. .get_ethtool_stats = sky2_get_ethtool_stats,
  2409. .get_perm_addr = ethtool_op_get_perm_addr,
  2410. };
  2411. /* Initialize network device */
  2412. static __devinit struct net_device *sky2_init_netdev(struct sky2_hw *hw,
  2413. unsigned port, int highmem)
  2414. {
  2415. struct sky2_port *sky2;
  2416. struct net_device *dev = alloc_etherdev(sizeof(*sky2));
  2417. if (!dev) {
  2418. printk(KERN_ERR "sky2 etherdev alloc failed");
  2419. return NULL;
  2420. }
  2421. SET_MODULE_OWNER(dev);
  2422. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2423. dev->irq = hw->pdev->irq;
  2424. dev->open = sky2_up;
  2425. dev->stop = sky2_down;
  2426. dev->do_ioctl = sky2_ioctl;
  2427. dev->hard_start_xmit = sky2_xmit_frame;
  2428. dev->get_stats = sky2_get_stats;
  2429. dev->set_multicast_list = sky2_set_multicast;
  2430. dev->set_mac_address = sky2_set_mac_address;
  2431. dev->change_mtu = sky2_change_mtu;
  2432. SET_ETHTOOL_OPS(dev, &sky2_ethtool_ops);
  2433. dev->tx_timeout = sky2_tx_timeout;
  2434. dev->watchdog_timeo = TX_WATCHDOG;
  2435. if (port == 0)
  2436. dev->poll = sky2_poll;
  2437. dev->weight = NAPI_WEIGHT;
  2438. #ifdef CONFIG_NET_POLL_CONTROLLER
  2439. dev->poll_controller = sky2_netpoll;
  2440. #endif
  2441. sky2 = netdev_priv(dev);
  2442. sky2->netdev = dev;
  2443. sky2->hw = hw;
  2444. sky2->msg_enable = netif_msg_init(debug, default_msg);
  2445. spin_lock_init(&sky2->tx_lock);
  2446. /* Auto speed and flow control */
  2447. sky2->autoneg = AUTONEG_ENABLE;
  2448. sky2->tx_pause = 1;
  2449. sky2->rx_pause = 1;
  2450. sky2->duplex = -1;
  2451. sky2->speed = -1;
  2452. sky2->advertising = sky2_supported_modes(hw);
  2453. /* Receive checksum disabled for Yukon XL
  2454. * because of observed problems with incorrect
  2455. * values when multiple packets are received in one interrupt
  2456. */
  2457. sky2->rx_csum = (hw->chip_id != CHIP_ID_YUKON_XL);
  2458. INIT_WORK(&sky2->phy_task, sky2_phy_task, sky2);
  2459. init_MUTEX(&sky2->phy_sema);
  2460. sky2->tx_pending = TX_DEF_PENDING;
  2461. sky2->rx_pending = is_ec_a1(hw) ? 8 : RX_DEF_PENDING;
  2462. sky2->rx_bufsize = sky2_buf_size(ETH_DATA_LEN);
  2463. hw->dev[port] = dev;
  2464. sky2->port = port;
  2465. dev->features |= NETIF_F_LLTX;
  2466. if (hw->chip_id != CHIP_ID_YUKON_EC_U)
  2467. dev->features |= NETIF_F_TSO;
  2468. if (highmem)
  2469. dev->features |= NETIF_F_HIGHDMA;
  2470. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2471. #ifdef SKY2_VLAN_TAG_USED
  2472. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  2473. dev->vlan_rx_register = sky2_vlan_rx_register;
  2474. dev->vlan_rx_kill_vid = sky2_vlan_rx_kill_vid;
  2475. #endif
  2476. /* read the mac address */
  2477. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8, ETH_ALEN);
  2478. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2479. /* device is off until link detection */
  2480. netif_carrier_off(dev);
  2481. netif_stop_queue(dev);
  2482. return dev;
  2483. }
  2484. static void __devinit sky2_show_addr(struct net_device *dev)
  2485. {
  2486. const struct sky2_port *sky2 = netdev_priv(dev);
  2487. if (netif_msg_probe(sky2))
  2488. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2489. dev->name,
  2490. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2491. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2492. }
  2493. /* Handle software interrupt used during MSI test */
  2494. static irqreturn_t __devinit sky2_test_intr(int irq, void *dev_id,
  2495. struct pt_regs *regs)
  2496. {
  2497. struct sky2_hw *hw = dev_id;
  2498. u32 status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  2499. if (status == 0)
  2500. return IRQ_NONE;
  2501. if (status & Y2_IS_IRQ_SW) {
  2502. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2503. hw->msi = 1;
  2504. }
  2505. sky2_write32(hw, B0_Y2_SP_ICR, 2);
  2506. sky2_read32(hw, B0_IMSK);
  2507. return IRQ_HANDLED;
  2508. }
  2509. /* Test interrupt path by forcing a a software IRQ */
  2510. static int __devinit sky2_test_msi(struct sky2_hw *hw)
  2511. {
  2512. struct pci_dev *pdev = hw->pdev;
  2513. int i, err;
  2514. sky2_write32(hw, B0_IMSK, Y2_IS_IRQ_SW);
  2515. err = request_irq(pdev->irq, sky2_test_intr, SA_SHIRQ, DRV_NAME, hw);
  2516. if (err) {
  2517. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2518. pci_name(pdev), pdev->irq);
  2519. return err;
  2520. }
  2521. sky2_write8(hw, B0_CTST, CS_ST_SW_IRQ);
  2522. wmb();
  2523. for (i = 0; i < 10; i++) {
  2524. barrier();
  2525. if (hw->msi)
  2526. goto found;
  2527. mdelay(1);
  2528. }
  2529. err = -EOPNOTSUPP;
  2530. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2531. found:
  2532. sky2_write32(hw, B0_IMSK, 0);
  2533. free_irq(pdev->irq, hw);
  2534. return err;
  2535. }
  2536. static int __devinit sky2_probe(struct pci_dev *pdev,
  2537. const struct pci_device_id *ent)
  2538. {
  2539. struct net_device *dev, *dev1 = NULL;
  2540. struct sky2_hw *hw;
  2541. int err, pm_cap, using_dac = 0;
  2542. err = pci_enable_device(pdev);
  2543. if (err) {
  2544. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2545. pci_name(pdev));
  2546. goto err_out;
  2547. }
  2548. err = pci_request_regions(pdev, DRV_NAME);
  2549. if (err) {
  2550. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2551. pci_name(pdev));
  2552. goto err_out;
  2553. }
  2554. pci_set_master(pdev);
  2555. /* Find power-management capability. */
  2556. pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  2557. if (pm_cap == 0) {
  2558. printk(KERN_ERR PFX "Cannot find PowerManagement capability, "
  2559. "aborting.\n");
  2560. err = -EIO;
  2561. goto err_out_free_regions;
  2562. }
  2563. if (sizeof(dma_addr_t) > sizeof(u32) &&
  2564. !(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  2565. using_dac = 1;
  2566. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2567. if (err < 0) {
  2568. printk(KERN_ERR PFX "%s unable to obtain 64 bit DMA "
  2569. "for consistent allocations\n", pci_name(pdev));
  2570. goto err_out_free_regions;
  2571. }
  2572. } else {
  2573. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2574. if (err) {
  2575. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2576. pci_name(pdev));
  2577. goto err_out_free_regions;
  2578. }
  2579. }
  2580. #ifdef __BIG_ENDIAN
  2581. /* byte swap descriptors in hardware */
  2582. {
  2583. u32 reg;
  2584. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2585. reg |= PCI_REV_DESC;
  2586. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2587. }
  2588. #endif
  2589. err = -ENOMEM;
  2590. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2591. if (!hw) {
  2592. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2593. pci_name(pdev));
  2594. goto err_out_free_regions;
  2595. }
  2596. hw->pdev = pdev;
  2597. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2598. if (!hw->regs) {
  2599. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2600. pci_name(pdev));
  2601. goto err_out_free_hw;
  2602. }
  2603. hw->pm_cap = pm_cap;
  2604. /* ring for status responses */
  2605. hw->st_le = pci_alloc_consistent(hw->pdev, STATUS_LE_BYTES,
  2606. &hw->st_dma);
  2607. if (!hw->st_le)
  2608. goto err_out_iounmap;
  2609. err = sky2_reset(hw);
  2610. if (err)
  2611. goto err_out_iounmap;
  2612. printk(KERN_INFO PFX "v%s addr 0x%lx irq %d Yukon-%s (0x%x) rev %d\n",
  2613. DRV_VERSION, pci_resource_start(pdev, 0), pdev->irq,
  2614. yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  2615. hw->chip_id, hw->chip_rev);
  2616. dev = sky2_init_netdev(hw, 0, using_dac);
  2617. if (!dev)
  2618. goto err_out_free_pci;
  2619. err = register_netdev(dev);
  2620. if (err) {
  2621. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2622. pci_name(pdev));
  2623. goto err_out_free_netdev;
  2624. }
  2625. sky2_show_addr(dev);
  2626. if (hw->ports > 1 && (dev1 = sky2_init_netdev(hw, 1, using_dac))) {
  2627. if (register_netdev(dev1) == 0)
  2628. sky2_show_addr(dev1);
  2629. else {
  2630. /* Failure to register second port need not be fatal */
  2631. printk(KERN_WARNING PFX
  2632. "register of second port failed\n");
  2633. hw->dev[1] = NULL;
  2634. free_netdev(dev1);
  2635. }
  2636. }
  2637. if (!disable_msi && pci_enable_msi(pdev) == 0) {
  2638. err = sky2_test_msi(hw);
  2639. if (err == -EOPNOTSUPP) {
  2640. /* MSI test failed, go back to INTx mode */
  2641. printk(KERN_WARNING PFX "%s: No interrupt was generated using MSI, "
  2642. "switching to INTx mode. Please report this failure to "
  2643. "the PCI maintainer and include system chipset information.\n",
  2644. pci_name(pdev));
  2645. pci_disable_msi(pdev);
  2646. }
  2647. else if (err)
  2648. goto err_out_unregister;
  2649. }
  2650. err = request_irq(pdev->irq, sky2_intr, SA_SHIRQ | SA_SAMPLE_RANDOM,
  2651. DRV_NAME, hw);
  2652. if (err) {
  2653. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2654. pci_name(pdev), pdev->irq);
  2655. goto err_out_unregister;
  2656. }
  2657. hw->intr_mask = Y2_IS_BASE;
  2658. sky2_write32(hw, B0_IMSK, hw->intr_mask);
  2659. pci_set_drvdata(pdev, hw);
  2660. return 0;
  2661. err_out_unregister:
  2662. if (hw->msi)
  2663. pci_disable_msi(pdev);
  2664. if (dev1) {
  2665. unregister_netdev(dev1);
  2666. free_netdev(dev1);
  2667. }
  2668. unregister_netdev(dev);
  2669. err_out_free_netdev:
  2670. free_netdev(dev);
  2671. err_out_free_pci:
  2672. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2673. pci_free_consistent(hw->pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2674. err_out_iounmap:
  2675. iounmap(hw->regs);
  2676. err_out_free_hw:
  2677. kfree(hw);
  2678. err_out_free_regions:
  2679. pci_release_regions(pdev);
  2680. pci_disable_device(pdev);
  2681. err_out:
  2682. return err;
  2683. }
  2684. static void __devexit sky2_remove(struct pci_dev *pdev)
  2685. {
  2686. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2687. struct net_device *dev0, *dev1;
  2688. if (!hw)
  2689. return;
  2690. dev0 = hw->dev[0];
  2691. dev1 = hw->dev[1];
  2692. if (dev1)
  2693. unregister_netdev(dev1);
  2694. unregister_netdev(dev0);
  2695. sky2_write32(hw, B0_IMSK, 0);
  2696. sky2_set_power_state(hw, PCI_D3hot);
  2697. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  2698. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2699. sky2_read8(hw, B0_CTST);
  2700. free_irq(pdev->irq, hw);
  2701. if (hw->msi)
  2702. pci_disable_msi(pdev);
  2703. pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2704. pci_release_regions(pdev);
  2705. pci_disable_device(pdev);
  2706. if (dev1)
  2707. free_netdev(dev1);
  2708. free_netdev(dev0);
  2709. iounmap(hw->regs);
  2710. kfree(hw);
  2711. pci_set_drvdata(pdev, NULL);
  2712. }
  2713. #ifdef CONFIG_PM
  2714. static int sky2_suspend(struct pci_dev *pdev, pm_message_t state)
  2715. {
  2716. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2717. int i;
  2718. for (i = 0; i < 2; i++) {
  2719. struct net_device *dev = hw->dev[i];
  2720. if (dev) {
  2721. if (!netif_running(dev))
  2722. continue;
  2723. sky2_down(dev);
  2724. netif_device_detach(dev);
  2725. }
  2726. }
  2727. return sky2_set_power_state(hw, pci_choose_state(pdev, state));
  2728. }
  2729. static int sky2_resume(struct pci_dev *pdev)
  2730. {
  2731. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2732. int i, err;
  2733. pci_restore_state(pdev);
  2734. pci_enable_wake(pdev, PCI_D0, 0);
  2735. err = sky2_set_power_state(hw, PCI_D0);
  2736. if (err)
  2737. goto out;
  2738. err = sky2_reset(hw);
  2739. if (err)
  2740. goto out;
  2741. for (i = 0; i < 2; i++) {
  2742. struct net_device *dev = hw->dev[i];
  2743. if (dev && netif_running(dev)) {
  2744. netif_device_attach(dev);
  2745. err = sky2_up(dev);
  2746. if (err) {
  2747. printk(KERN_ERR PFX "%s: could not up: %d\n",
  2748. dev->name, err);
  2749. dev_close(dev);
  2750. break;
  2751. }
  2752. }
  2753. }
  2754. out:
  2755. return err;
  2756. }
  2757. #endif
  2758. static struct pci_driver sky2_driver = {
  2759. .name = DRV_NAME,
  2760. .id_table = sky2_id_table,
  2761. .probe = sky2_probe,
  2762. .remove = __devexit_p(sky2_remove),
  2763. #ifdef CONFIG_PM
  2764. .suspend = sky2_suspend,
  2765. .resume = sky2_resume,
  2766. #endif
  2767. };
  2768. static int __init sky2_init_module(void)
  2769. {
  2770. return pci_register_driver(&sky2_driver);
  2771. }
  2772. static void __exit sky2_cleanup_module(void)
  2773. {
  2774. pci_unregister_driver(&sky2_driver);
  2775. }
  2776. module_init(sky2_init_module);
  2777. module_exit(sky2_cleanup_module);
  2778. MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver");
  2779. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  2780. MODULE_LICENSE("GPL");
  2781. MODULE_VERSION(DRV_VERSION);