txrx.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869
  1. /*
  2. * Copyright (c) 2012 Qualcomm Atheros, Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/etherdevice.h>
  17. #include <net/ieee80211_radiotap.h>
  18. #include <linux/if_arp.h>
  19. #include <linux/moduleparam.h>
  20. #include "wil6210.h"
  21. #include "wmi.h"
  22. #include "txrx.h"
  23. #include "trace.h"
  24. static bool rtap_include_phy_info;
  25. module_param(rtap_include_phy_info, bool, S_IRUGO);
  26. MODULE_PARM_DESC(rtap_include_phy_info,
  27. " Include PHY info in the radiotap header, default - no");
  28. static inline int wil_vring_is_empty(struct vring *vring)
  29. {
  30. return vring->swhead == vring->swtail;
  31. }
  32. static inline u32 wil_vring_next_tail(struct vring *vring)
  33. {
  34. return (vring->swtail + 1) % vring->size;
  35. }
  36. static inline void wil_vring_advance_head(struct vring *vring, int n)
  37. {
  38. vring->swhead = (vring->swhead + n) % vring->size;
  39. }
  40. static inline int wil_vring_is_full(struct vring *vring)
  41. {
  42. return wil_vring_next_tail(vring) == vring->swhead;
  43. }
  44. /*
  45. * Available space in Tx Vring
  46. */
  47. static inline int wil_vring_avail_tx(struct vring *vring)
  48. {
  49. u32 swhead = vring->swhead;
  50. u32 swtail = vring->swtail;
  51. int used = (vring->size + swhead - swtail) % vring->size;
  52. return vring->size - used - 1;
  53. }
  54. static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring)
  55. {
  56. struct device *dev = wil_to_dev(wil);
  57. size_t sz = vring->size * sizeof(vring->va[0]);
  58. uint i;
  59. BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
  60. vring->swhead = 0;
  61. vring->swtail = 0;
  62. vring->ctx = kzalloc(vring->size * sizeof(vring->ctx[0]), GFP_KERNEL);
  63. if (!vring->ctx) {
  64. vring->va = NULL;
  65. return -ENOMEM;
  66. }
  67. /*
  68. * vring->va should be aligned on its size rounded up to power of 2
  69. * This is granted by the dma_alloc_coherent
  70. */
  71. vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
  72. if (!vring->va) {
  73. kfree(vring->ctx);
  74. vring->ctx = NULL;
  75. return -ENOMEM;
  76. }
  77. /* initially, all descriptors are SW owned
  78. * For Tx and Rx, ownership bit is at the same location, thus
  79. * we can use any
  80. */
  81. for (i = 0; i < vring->size; i++) {
  82. volatile struct vring_tx_desc *_d = &(vring->va[i].tx);
  83. _d->dma.status = TX_DMA_STATUS_DU;
  84. }
  85. wil_dbg_misc(wil, "vring[%d] 0x%p:0x%016llx 0x%p\n", vring->size,
  86. vring->va, (unsigned long long)vring->pa, vring->ctx);
  87. return 0;
  88. }
  89. static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring,
  90. int tx)
  91. {
  92. struct device *dev = wil_to_dev(wil);
  93. size_t sz = vring->size * sizeof(vring->va[0]);
  94. while (!wil_vring_is_empty(vring)) {
  95. dma_addr_t pa;
  96. struct sk_buff *skb;
  97. u16 dmalen;
  98. if (tx) {
  99. struct vring_tx_desc dd, *d = &dd;
  100. volatile struct vring_tx_desc *_d =
  101. &vring->va[vring->swtail].tx;
  102. *d = *_d;
  103. pa = wil_desc_addr(&d->dma.addr);
  104. dmalen = le16_to_cpu(d->dma.length);
  105. skb = vring->ctx[vring->swtail];
  106. if (skb) {
  107. dma_unmap_single(dev, pa, dmalen,
  108. DMA_TO_DEVICE);
  109. dev_kfree_skb_any(skb);
  110. vring->ctx[vring->swtail] = NULL;
  111. } else {
  112. dma_unmap_page(dev, pa, dmalen,
  113. DMA_TO_DEVICE);
  114. }
  115. vring->swtail = wil_vring_next_tail(vring);
  116. } else { /* rx */
  117. struct vring_rx_desc dd, *d = &dd;
  118. volatile struct vring_rx_desc *_d =
  119. &vring->va[vring->swtail].rx;
  120. *d = *_d;
  121. pa = wil_desc_addr(&d->dma.addr);
  122. dmalen = le16_to_cpu(d->dma.length);
  123. skb = vring->ctx[vring->swhead];
  124. dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
  125. kfree_skb(skb);
  126. wil_vring_advance_head(vring, 1);
  127. }
  128. }
  129. dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
  130. kfree(vring->ctx);
  131. vring->pa = 0;
  132. vring->va = NULL;
  133. vring->ctx = NULL;
  134. }
  135. /**
  136. * Allocate one skb for Rx VRING
  137. *
  138. * Safe to call from IRQ
  139. */
  140. static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring,
  141. u32 i, int headroom)
  142. {
  143. struct device *dev = wil_to_dev(wil);
  144. unsigned int sz = RX_BUF_LEN;
  145. struct vring_rx_desc dd, *d = &dd;
  146. volatile struct vring_rx_desc *_d = &(vring->va[i].rx);
  147. dma_addr_t pa;
  148. /* TODO align */
  149. struct sk_buff *skb = dev_alloc_skb(sz + headroom);
  150. if (unlikely(!skb))
  151. return -ENOMEM;
  152. skb_reserve(skb, headroom);
  153. skb_put(skb, sz);
  154. pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
  155. if (unlikely(dma_mapping_error(dev, pa))) {
  156. kfree_skb(skb);
  157. return -ENOMEM;
  158. }
  159. d->dma.d0 = BIT(9) | RX_DMA_D0_CMD_DMA_IT;
  160. wil_desc_addr_set(&d->dma.addr, pa);
  161. /* ip_length don't care */
  162. /* b11 don't care */
  163. /* error don't care */
  164. d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
  165. d->dma.length = cpu_to_le16(sz);
  166. *_d = *d;
  167. vring->ctx[i] = skb;
  168. return 0;
  169. }
  170. /**
  171. * Adds radiotap header
  172. *
  173. * Any error indicated as "Bad FCS"
  174. *
  175. * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
  176. * - Rx descriptor: 32 bytes
  177. * - Phy info
  178. */
  179. static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
  180. struct sk_buff *skb)
  181. {
  182. struct wireless_dev *wdev = wil->wdev;
  183. struct wil6210_rtap {
  184. struct ieee80211_radiotap_header rthdr;
  185. /* fields should be in the order of bits in rthdr.it_present */
  186. /* flags */
  187. u8 flags;
  188. /* channel */
  189. __le16 chnl_freq __aligned(2);
  190. __le16 chnl_flags;
  191. /* MCS */
  192. u8 mcs_present;
  193. u8 mcs_flags;
  194. u8 mcs_index;
  195. } __packed;
  196. struct wil6210_rtap_vendor {
  197. struct wil6210_rtap rtap;
  198. /* vendor */
  199. u8 vendor_oui[3] __aligned(2);
  200. u8 vendor_ns;
  201. __le16 vendor_skip;
  202. u8 vendor_data[0];
  203. } __packed;
  204. struct vring_rx_desc *d = wil_skb_rxdesc(skb);
  205. struct wil6210_rtap_vendor *rtap_vendor;
  206. int rtap_len = sizeof(struct wil6210_rtap);
  207. int phy_length = 0; /* phy info header size, bytes */
  208. static char phy_data[128];
  209. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  210. if (rtap_include_phy_info) {
  211. rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
  212. /* calculate additional length */
  213. if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
  214. /**
  215. * PHY info starts from 8-byte boundary
  216. * there are 8-byte lines, last line may be partially
  217. * written (HW bug), thus FW configures for last line
  218. * to be excessive. Driver skips this last line.
  219. */
  220. int len = min_t(int, 8 + sizeof(phy_data),
  221. wil_rxdesc_phy_length(d));
  222. if (len > 8) {
  223. void *p = skb_tail_pointer(skb);
  224. void *pa = PTR_ALIGN(p, 8);
  225. if (skb_tailroom(skb) >= len + (pa - p)) {
  226. phy_length = len - 8;
  227. memcpy(phy_data, pa, phy_length);
  228. }
  229. }
  230. }
  231. rtap_len += phy_length;
  232. }
  233. if (skb_headroom(skb) < rtap_len &&
  234. pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
  235. wil_err(wil, "Unable to expand headrom to %d\n", rtap_len);
  236. return;
  237. }
  238. rtap_vendor = (void *)skb_push(skb, rtap_len);
  239. memset(rtap_vendor, 0, rtap_len);
  240. rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
  241. rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
  242. rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
  243. (1 << IEEE80211_RADIOTAP_FLAGS) |
  244. (1 << IEEE80211_RADIOTAP_CHANNEL) |
  245. (1 << IEEE80211_RADIOTAP_MCS));
  246. if (d->dma.status & RX_DMA_STATUS_ERROR)
  247. rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;
  248. rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
  249. rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);
  250. rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
  251. rtap_vendor->rtap.mcs_flags = 0;
  252. rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);
  253. if (rtap_include_phy_info) {
  254. rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
  255. IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
  256. /* OUI for Wilocity 04:ce:14 */
  257. rtap_vendor->vendor_oui[0] = 0x04;
  258. rtap_vendor->vendor_oui[1] = 0xce;
  259. rtap_vendor->vendor_oui[2] = 0x14;
  260. rtap_vendor->vendor_ns = 1;
  261. /* Rx descriptor + PHY data */
  262. rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
  263. phy_length);
  264. memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
  265. memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
  266. phy_length);
  267. }
  268. }
  269. /*
  270. * Fast swap in place between 2 registers
  271. */
  272. static void wil_swap_u16(u16 *a, u16 *b)
  273. {
  274. *a ^= *b;
  275. *b ^= *a;
  276. *a ^= *b;
  277. }
  278. static void wil_swap_ethaddr(void *data)
  279. {
  280. struct ethhdr *eth = data;
  281. u16 *s = (u16 *)eth->h_source;
  282. u16 *d = (u16 *)eth->h_dest;
  283. wil_swap_u16(s++, d++);
  284. wil_swap_u16(s++, d++);
  285. wil_swap_u16(s, d);
  286. }
  287. /**
  288. * reap 1 frame from @swhead
  289. *
  290. * Rx descriptor copied to skb->cb
  291. *
  292. * Safe to call from IRQ
  293. */
  294. static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
  295. struct vring *vring)
  296. {
  297. struct device *dev = wil_to_dev(wil);
  298. struct net_device *ndev = wil_to_ndev(wil);
  299. volatile struct vring_rx_desc *_d;
  300. struct vring_rx_desc *d;
  301. struct sk_buff *skb;
  302. dma_addr_t pa;
  303. unsigned int sz = RX_BUF_LEN;
  304. u16 dmalen;
  305. u8 ftype;
  306. u8 ds_bits;
  307. BUILD_BUG_ON(sizeof(struct vring_rx_desc) > sizeof(skb->cb));
  308. if (wil_vring_is_empty(vring))
  309. return NULL;
  310. _d = &(vring->va[vring->swhead].rx);
  311. if (!(_d->dma.status & RX_DMA_STATUS_DU)) {
  312. /* it is not error, we just reached end of Rx done area */
  313. return NULL;
  314. }
  315. skb = vring->ctx[vring->swhead];
  316. d = wil_skb_rxdesc(skb);
  317. *d = *_d;
  318. pa = wil_desc_addr(&d->dma.addr);
  319. vring->ctx[vring->swhead] = NULL;
  320. wil_vring_advance_head(vring, 1);
  321. dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
  322. dmalen = le16_to_cpu(d->dma.length);
  323. trace_wil6210_rx(vring->swhead, d);
  324. wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", vring->swhead, dmalen);
  325. wil_hex_dump_txrx("Rx ", DUMP_PREFIX_NONE, 32, 4,
  326. (const void *)d, sizeof(*d), false);
  327. if (dmalen > sz) {
  328. wil_err(wil, "Rx size too large: %d bytes!\n", dmalen);
  329. kfree_skb(skb);
  330. return NULL;
  331. }
  332. skb_trim(skb, dmalen);
  333. wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
  334. skb->data, skb_headlen(skb), false);
  335. wil->stats.last_mcs_rx = wil_rxdesc_mcs(d);
  336. /* use radiotap header only if required */
  337. if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
  338. wil_rx_add_radiotap_header(wil, skb);
  339. /* no extra checks if in sniffer mode */
  340. if (ndev->type != ARPHRD_ETHER)
  341. return skb;
  342. /*
  343. * Non-data frames may be delivered through Rx DMA channel (ex: BAR)
  344. * Driver should recognize it by frame type, that is found
  345. * in Rx descriptor. If type is not data, it is 802.11 frame as is
  346. */
  347. ftype = wil_rxdesc_ftype(d) << 2;
  348. if (ftype != IEEE80211_FTYPE_DATA) {
  349. wil_dbg_txrx(wil, "Non-data frame ftype 0x%08x\n", ftype);
  350. /* TODO: process it */
  351. kfree_skb(skb);
  352. return NULL;
  353. }
  354. if (skb->len < ETH_HLEN) {
  355. wil_err(wil, "Short frame, len = %d\n", skb->len);
  356. /* TODO: process it (i.e. BAR) */
  357. kfree_skb(skb);
  358. return NULL;
  359. }
  360. ds_bits = wil_rxdesc_ds_bits(d);
  361. if (ds_bits == 1) {
  362. /*
  363. * HW bug - in ToDS mode, i.e. Rx on AP side,
  364. * addresses get swapped
  365. */
  366. wil_swap_ethaddr(skb->data);
  367. }
  368. return skb;
  369. }
  370. /**
  371. * allocate and fill up to @count buffers in rx ring
  372. * buffers posted at @swtail
  373. */
  374. static int wil_rx_refill(struct wil6210_priv *wil, int count)
  375. {
  376. struct net_device *ndev = wil_to_ndev(wil);
  377. struct vring *v = &wil->vring_rx;
  378. u32 next_tail;
  379. int rc = 0;
  380. int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
  381. WIL6210_RTAP_SIZE : 0;
  382. for (; next_tail = wil_vring_next_tail(v),
  383. (next_tail != v->swhead) && (count-- > 0);
  384. v->swtail = next_tail) {
  385. rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
  386. if (rc) {
  387. wil_err(wil, "Error %d in wil_rx_refill[%d]\n",
  388. rc, v->swtail);
  389. break;
  390. }
  391. }
  392. iowrite32(v->swtail, wil->csr + HOSTADDR(v->hwtail));
  393. return rc;
  394. }
  395. /*
  396. * Pass Rx packet to the netif. Update statistics.
  397. * Called in softirq context (NAPI poll).
  398. */
  399. static void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
  400. {
  401. int rc;
  402. unsigned int len = skb->len;
  403. skb_orphan(skb);
  404. rc = netif_receive_skb(skb);
  405. if (likely(rc == NET_RX_SUCCESS)) {
  406. ndev->stats.rx_packets++;
  407. ndev->stats.rx_bytes += len;
  408. } else {
  409. ndev->stats.rx_dropped++;
  410. }
  411. }
  412. /**
  413. * Proceed all completed skb's from Rx VRING
  414. *
  415. * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
  416. */
  417. void wil_rx_handle(struct wil6210_priv *wil, int *quota)
  418. {
  419. struct net_device *ndev = wil_to_ndev(wil);
  420. struct vring *v = &wil->vring_rx;
  421. struct sk_buff *skb;
  422. if (!v->va) {
  423. wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
  424. return;
  425. }
  426. wil_dbg_txrx(wil, "%s()\n", __func__);
  427. while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
  428. (*quota)--;
  429. if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
  430. skb->dev = ndev;
  431. skb_reset_mac_header(skb);
  432. skb->ip_summed = CHECKSUM_UNNECESSARY;
  433. skb->pkt_type = PACKET_OTHERHOST;
  434. skb->protocol = htons(ETH_P_802_2);
  435. } else {
  436. skb->protocol = eth_type_trans(skb, ndev);
  437. }
  438. wil_netif_rx_any(skb, ndev);
  439. }
  440. wil_rx_refill(wil, v->size);
  441. }
  442. int wil_rx_init(struct wil6210_priv *wil)
  443. {
  444. struct vring *vring = &wil->vring_rx;
  445. int rc;
  446. vring->size = WIL6210_RX_RING_SIZE;
  447. rc = wil_vring_alloc(wil, vring);
  448. if (rc)
  449. return rc;
  450. rc = wmi_rx_chain_add(wil, vring);
  451. if (rc)
  452. goto err_free;
  453. rc = wil_rx_refill(wil, vring->size);
  454. if (rc)
  455. goto err_free;
  456. return 0;
  457. err_free:
  458. wil_vring_free(wil, vring, 0);
  459. return rc;
  460. }
  461. void wil_rx_fini(struct wil6210_priv *wil)
  462. {
  463. struct vring *vring = &wil->vring_rx;
  464. if (vring->va)
  465. wil_vring_free(wil, vring, 0);
  466. }
  467. int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size,
  468. int cid, int tid)
  469. {
  470. int rc;
  471. struct wmi_vring_cfg_cmd cmd = {
  472. .action = cpu_to_le32(WMI_VRING_CMD_ADD),
  473. .vring_cfg = {
  474. .tx_sw_ring = {
  475. .max_mpdu_size = cpu_to_le16(TX_BUF_LEN),
  476. .ring_size = cpu_to_le16(size),
  477. },
  478. .ringid = id,
  479. .cidxtid = (cid & 0xf) | ((tid & 0xf) << 4),
  480. .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
  481. .mac_ctrl = 0,
  482. .to_resolution = 0,
  483. .agg_max_wsize = 16,
  484. .schd_params = {
  485. .priority = cpu_to_le16(0),
  486. .timeslot_us = cpu_to_le16(0xfff),
  487. },
  488. },
  489. };
  490. struct {
  491. struct wil6210_mbox_hdr_wmi wmi;
  492. struct wmi_vring_cfg_done_event cmd;
  493. } __packed reply;
  494. struct vring *vring = &wil->vring_tx[id];
  495. if (vring->va) {
  496. wil_err(wil, "Tx ring [%d] already allocated\n", id);
  497. rc = -EINVAL;
  498. goto out;
  499. }
  500. vring->size = size;
  501. rc = wil_vring_alloc(wil, vring);
  502. if (rc)
  503. goto out;
  504. cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
  505. rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd),
  506. WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
  507. if (rc)
  508. goto out_free;
  509. if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
  510. wil_err(wil, "Tx config failed, status 0x%02x\n",
  511. reply.cmd.status);
  512. rc = -EINVAL;
  513. goto out_free;
  514. }
  515. vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
  516. return 0;
  517. out_free:
  518. wil_vring_free(wil, vring, 1);
  519. out:
  520. return rc;
  521. }
  522. void wil_vring_fini_tx(struct wil6210_priv *wil, int id)
  523. {
  524. struct vring *vring = &wil->vring_tx[id];
  525. if (!vring->va)
  526. return;
  527. wil_vring_free(wil, vring, 1);
  528. }
  529. static struct vring *wil_find_tx_vring(struct wil6210_priv *wil,
  530. struct sk_buff *skb)
  531. {
  532. struct vring *v = &wil->vring_tx[0];
  533. if (v->va)
  534. return v;
  535. return NULL;
  536. }
  537. static int wil_tx_desc_map(struct vring_tx_desc *d, dma_addr_t pa, u32 len,
  538. int vring_index)
  539. {
  540. wil_desc_addr_set(&d->dma.addr, pa);
  541. d->dma.ip_length = 0;
  542. /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
  543. d->dma.b11 = 0/*14 | BIT(7)*/;
  544. d->dma.error = 0;
  545. d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
  546. d->dma.length = cpu_to_le16((u16)len);
  547. d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
  548. d->mac.d[0] = 0;
  549. d->mac.d[1] = 0;
  550. d->mac.d[2] = 0;
  551. d->mac.ucode_cmd = 0;
  552. /* use dst index 0 */
  553. d->mac.d[1] |= BIT(MAC_CFG_DESC_TX_1_DST_INDEX_EN_POS) |
  554. (0 << MAC_CFG_DESC_TX_1_DST_INDEX_POS);
  555. /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
  556. d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
  557. (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
  558. return 0;
  559. }
  560. static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
  561. struct sk_buff *skb)
  562. {
  563. struct device *dev = wil_to_dev(wil);
  564. struct vring_tx_desc dd, *d = &dd;
  565. volatile struct vring_tx_desc *_d;
  566. u32 swhead = vring->swhead;
  567. int avail = wil_vring_avail_tx(vring);
  568. int nr_frags = skb_shinfo(skb)->nr_frags;
  569. uint f;
  570. int vring_index = vring - wil->vring_tx;
  571. uint i = swhead;
  572. dma_addr_t pa;
  573. wil_dbg_txrx(wil, "%s()\n", __func__);
  574. if (avail < vring->size/8)
  575. netif_tx_stop_all_queues(wil_to_ndev(wil));
  576. if (avail < 1 + nr_frags) {
  577. wil_err(wil, "Tx ring full. No space for %d fragments\n",
  578. 1 + nr_frags);
  579. return -ENOMEM;
  580. }
  581. _d = &(vring->va[i].tx);
  582. /* FIXME FW can accept only unicast frames for the peer */
  583. memcpy(skb->data, wil->dst_addr[vring_index], ETH_ALEN);
  584. pa = dma_map_single(dev, skb->data,
  585. skb_headlen(skb), DMA_TO_DEVICE);
  586. wil_dbg_txrx(wil, "Tx skb %d bytes %p -> %#08llx\n", skb_headlen(skb),
  587. skb->data, (unsigned long long)pa);
  588. wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
  589. skb->data, skb_headlen(skb), false);
  590. if (unlikely(dma_mapping_error(dev, pa)))
  591. return -EINVAL;
  592. /* 1-st segment */
  593. wil_tx_desc_map(d, pa, skb_headlen(skb), vring_index);
  594. d->mac.d[2] |= ((nr_frags + 1) <<
  595. MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
  596. if (nr_frags)
  597. *_d = *d;
  598. /* middle segments */
  599. for (f = 0; f < nr_frags; f++) {
  600. const struct skb_frag_struct *frag =
  601. &skb_shinfo(skb)->frags[f];
  602. int len = skb_frag_size(frag);
  603. i = (swhead + f + 1) % vring->size;
  604. _d = &(vring->va[i].tx);
  605. pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
  606. DMA_TO_DEVICE);
  607. if (unlikely(dma_mapping_error(dev, pa)))
  608. goto dma_error;
  609. wil_tx_desc_map(d, pa, len, vring_index);
  610. vring->ctx[i] = NULL;
  611. *_d = *d;
  612. }
  613. /* for the last seg only */
  614. d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
  615. d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
  616. d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
  617. *_d = *d;
  618. wil_hex_dump_txrx("Tx ", DUMP_PREFIX_NONE, 32, 4,
  619. (const void *)d, sizeof(*d), false);
  620. /* advance swhead */
  621. wil_vring_advance_head(vring, nr_frags + 1);
  622. wil_dbg_txrx(wil, "Tx swhead %d -> %d\n", swhead, vring->swhead);
  623. trace_wil6210_tx(vring_index, swhead, skb->len, nr_frags);
  624. iowrite32(vring->swhead, wil->csr + HOSTADDR(vring->hwtail));
  625. /* hold reference to skb
  626. * to prevent skb release before accounting
  627. * in case of immediate "tx done"
  628. */
  629. vring->ctx[i] = skb_get(skb);
  630. return 0;
  631. dma_error:
  632. /* unmap what we have mapped */
  633. /* Note: increment @f to operate with positive index */
  634. for (f++; f > 0; f--) {
  635. u16 dmalen;
  636. i = (swhead + f) % vring->size;
  637. _d = &(vring->va[i].tx);
  638. *d = *_d;
  639. _d->dma.status = TX_DMA_STATUS_DU;
  640. pa = wil_desc_addr(&d->dma.addr);
  641. dmalen = le16_to_cpu(d->dma.length);
  642. if (vring->ctx[i])
  643. dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
  644. else
  645. dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
  646. }
  647. return -EINVAL;
  648. }
  649. netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  650. {
  651. struct wil6210_priv *wil = ndev_to_wil(ndev);
  652. struct vring *vring;
  653. int rc;
  654. wil_dbg_txrx(wil, "%s()\n", __func__);
  655. if (!test_bit(wil_status_fwready, &wil->status)) {
  656. wil_err(wil, "FW not ready\n");
  657. goto drop;
  658. }
  659. if (!test_bit(wil_status_fwconnected, &wil->status)) {
  660. wil_err(wil, "FW not connected\n");
  661. goto drop;
  662. }
  663. if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
  664. wil_err(wil, "Xmit in monitor mode not supported\n");
  665. goto drop;
  666. }
  667. /* find vring */
  668. vring = wil_find_tx_vring(wil, skb);
  669. if (!vring) {
  670. wil_err(wil, "No Tx VRING available\n");
  671. goto drop;
  672. }
  673. /* set up vring entry */
  674. rc = wil_tx_vring(wil, vring, skb);
  675. switch (rc) {
  676. case 0:
  677. /* statistics will be updated on the tx_complete */
  678. dev_kfree_skb_any(skb);
  679. return NETDEV_TX_OK;
  680. case -ENOMEM:
  681. return NETDEV_TX_BUSY;
  682. default:
  683. break; /* goto drop; */
  684. }
  685. drop:
  686. ndev->stats.tx_dropped++;
  687. dev_kfree_skb_any(skb);
  688. return NET_XMIT_DROP;
  689. }
  690. /**
  691. * Clean up transmitted skb's from the Tx VRING
  692. *
  693. * Return number of descriptors cleared
  694. *
  695. * Safe to call from IRQ
  696. */
  697. int wil_tx_complete(struct wil6210_priv *wil, int ringid)
  698. {
  699. struct net_device *ndev = wil_to_ndev(wil);
  700. struct device *dev = wil_to_dev(wil);
  701. struct vring *vring = &wil->vring_tx[ringid];
  702. int done = 0;
  703. if (!vring->va) {
  704. wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
  705. return 0;
  706. }
  707. wil_dbg_txrx(wil, "%s(%d)\n", __func__, ringid);
  708. while (!wil_vring_is_empty(vring)) {
  709. volatile struct vring_tx_desc *_d =
  710. &vring->va[vring->swtail].tx;
  711. struct vring_tx_desc dd, *d = &dd;
  712. dma_addr_t pa;
  713. struct sk_buff *skb;
  714. u16 dmalen;
  715. *d = *_d;
  716. if (!(d->dma.status & TX_DMA_STATUS_DU))
  717. break;
  718. dmalen = le16_to_cpu(d->dma.length);
  719. trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
  720. d->dma.error);
  721. wil_dbg_txrx(wil,
  722. "Tx[%3d] : %d bytes, status 0x%02x err 0x%02x\n",
  723. vring->swtail, dmalen, d->dma.status,
  724. d->dma.error);
  725. wil_hex_dump_txrx("TxC ", DUMP_PREFIX_NONE, 32, 4,
  726. (const void *)d, sizeof(*d), false);
  727. pa = wil_desc_addr(&d->dma.addr);
  728. skb = vring->ctx[vring->swtail];
  729. if (skb) {
  730. if (d->dma.error == 0) {
  731. ndev->stats.tx_packets++;
  732. ndev->stats.tx_bytes += skb->len;
  733. } else {
  734. ndev->stats.tx_errors++;
  735. }
  736. dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
  737. dev_kfree_skb_any(skb);
  738. vring->ctx[vring->swtail] = NULL;
  739. } else {
  740. dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
  741. }
  742. d->dma.addr.addr_low = 0;
  743. d->dma.addr.addr_high = 0;
  744. d->dma.length = 0;
  745. d->dma.status = TX_DMA_STATUS_DU;
  746. vring->swtail = wil_vring_next_tail(vring);
  747. done++;
  748. }
  749. if (wil_vring_avail_tx(vring) > vring->size/4)
  750. netif_tx_wake_all_queues(wil_to_ndev(wil));
  751. return done;
  752. }