xmit.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  46. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  47. struct ath_atx_tid *tid, struct sk_buff *skb);
  48. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  49. int tx_flags, struct ath_txq *txq);
  50. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  51. struct ath_txq *txq, struct list_head *bf_q,
  52. struct ath_tx_status *ts, int txok);
  53. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  54. struct list_head *head, bool internal);
  55. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  56. struct ath_tx_status *ts, int nframes, int nbad,
  57. int txok);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  61. struct ath_txq *txq,
  62. struct ath_atx_tid *tid,
  63. struct sk_buff *skb);
  64. enum {
  65. MCS_HT20,
  66. MCS_HT20_SGI,
  67. MCS_HT40,
  68. MCS_HT40_SGI,
  69. };
  70. /*********************/
  71. /* Aggregation logic */
  72. /*********************/
  73. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  74. __acquires(&txq->axq_lock)
  75. {
  76. spin_lock_bh(&txq->axq_lock);
  77. }
  78. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  79. __releases(&txq->axq_lock)
  80. {
  81. spin_unlock_bh(&txq->axq_lock);
  82. }
  83. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  84. __releases(&txq->axq_lock)
  85. {
  86. struct sk_buff_head q;
  87. struct sk_buff *skb;
  88. __skb_queue_head_init(&q);
  89. skb_queue_splice_init(&txq->complete_q, &q);
  90. spin_unlock_bh(&txq->axq_lock);
  91. while ((skb = __skb_dequeue(&q)))
  92. ieee80211_tx_status(sc->hw, skb);
  93. }
  94. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  95. {
  96. struct ath_atx_ac *ac = tid->ac;
  97. if (tid->paused)
  98. return;
  99. if (tid->sched)
  100. return;
  101. tid->sched = true;
  102. list_add_tail(&tid->list, &ac->tid_q);
  103. if (ac->sched)
  104. return;
  105. ac->sched = true;
  106. list_add_tail(&ac->list, &txq->axq_acq);
  107. }
  108. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  109. {
  110. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  111. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  112. sizeof(tx_info->rate_driver_data));
  113. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  114. }
  115. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  116. {
  117. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  118. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  119. }
  120. static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
  121. struct ath_buf *bf)
  122. {
  123. ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
  124. ARRAY_SIZE(bf->rates));
  125. }
  126. static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
  127. struct sk_buff *skb)
  128. {
  129. int q;
  130. q = skb_get_queue_mapping(skb);
  131. if (txq == sc->tx.uapsdq)
  132. txq = sc->tx.txq_map[q];
  133. if (txq != sc->tx.txq_map[q])
  134. return;
  135. if (WARN_ON(--txq->pending_frames < 0))
  136. txq->pending_frames = 0;
  137. if (txq->stopped &&
  138. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  139. ieee80211_wake_queue(sc->hw, q);
  140. txq->stopped = false;
  141. }
  142. }
  143. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  144. {
  145. struct ath_txq *txq = tid->ac->txq;
  146. struct sk_buff *skb;
  147. struct ath_buf *bf;
  148. struct list_head bf_head;
  149. struct ath_tx_status ts;
  150. struct ath_frame_info *fi;
  151. bool sendbar = false;
  152. INIT_LIST_HEAD(&bf_head);
  153. memset(&ts, 0, sizeof(ts));
  154. while ((skb = __skb_dequeue(&tid->buf_q))) {
  155. fi = get_frame_info(skb);
  156. bf = fi->bf;
  157. if (!bf) {
  158. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  159. if (!bf) {
  160. ath_txq_skb_done(sc, txq, skb);
  161. ieee80211_free_txskb(sc->hw, skb);
  162. continue;
  163. }
  164. }
  165. if (fi->retries) {
  166. list_add_tail(&bf->list, &bf_head);
  167. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  168. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  169. sendbar = true;
  170. } else {
  171. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  172. ath_tx_send_normal(sc, txq, NULL, skb);
  173. }
  174. }
  175. if (sendbar) {
  176. ath_txq_unlock(sc, txq);
  177. ath_send_bar(tid, tid->seq_start);
  178. ath_txq_lock(sc, txq);
  179. }
  180. }
  181. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  182. int seqno)
  183. {
  184. int index, cindex;
  185. index = ATH_BA_INDEX(tid->seq_start, seqno);
  186. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  187. __clear_bit(cindex, tid->tx_buf);
  188. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  189. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  190. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  191. if (tid->bar_index >= 0)
  192. tid->bar_index--;
  193. }
  194. }
  195. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  196. u16 seqno)
  197. {
  198. int index, cindex;
  199. index = ATH_BA_INDEX(tid->seq_start, seqno);
  200. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  201. __set_bit(cindex, tid->tx_buf);
  202. if (index >= ((tid->baw_tail - tid->baw_head) &
  203. (ATH_TID_MAX_BUFS - 1))) {
  204. tid->baw_tail = cindex;
  205. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  206. }
  207. }
  208. /*
  209. * TODO: For frame(s) that are in the retry state, we will reuse the
  210. * sequence number(s) without setting the retry bit. The
  211. * alternative is to give up on these and BAR the receiver's window
  212. * forward.
  213. */
  214. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  215. struct ath_atx_tid *tid)
  216. {
  217. struct sk_buff *skb;
  218. struct ath_buf *bf;
  219. struct list_head bf_head;
  220. struct ath_tx_status ts;
  221. struct ath_frame_info *fi;
  222. memset(&ts, 0, sizeof(ts));
  223. INIT_LIST_HEAD(&bf_head);
  224. while ((skb = __skb_dequeue(&tid->buf_q))) {
  225. fi = get_frame_info(skb);
  226. bf = fi->bf;
  227. if (!bf) {
  228. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  229. continue;
  230. }
  231. list_add_tail(&bf->list, &bf_head);
  232. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  233. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  234. }
  235. tid->seq_next = tid->seq_start;
  236. tid->baw_tail = tid->baw_head;
  237. tid->bar_index = -1;
  238. }
  239. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  240. struct sk_buff *skb, int count)
  241. {
  242. struct ath_frame_info *fi = get_frame_info(skb);
  243. struct ath_buf *bf = fi->bf;
  244. struct ieee80211_hdr *hdr;
  245. int prev = fi->retries;
  246. TX_STAT_INC(txq->axq_qnum, a_retries);
  247. fi->retries += count;
  248. if (prev > 0)
  249. return;
  250. hdr = (struct ieee80211_hdr *)skb->data;
  251. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  252. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  253. sizeof(*hdr), DMA_TO_DEVICE);
  254. }
  255. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  256. {
  257. struct ath_buf *bf = NULL;
  258. spin_lock_bh(&sc->tx.txbuflock);
  259. if (unlikely(list_empty(&sc->tx.txbuf))) {
  260. spin_unlock_bh(&sc->tx.txbuflock);
  261. return NULL;
  262. }
  263. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  264. list_del(&bf->list);
  265. spin_unlock_bh(&sc->tx.txbuflock);
  266. return bf;
  267. }
  268. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  269. {
  270. spin_lock_bh(&sc->tx.txbuflock);
  271. list_add_tail(&bf->list, &sc->tx.txbuf);
  272. spin_unlock_bh(&sc->tx.txbuflock);
  273. }
  274. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  275. {
  276. struct ath_buf *tbf;
  277. tbf = ath_tx_get_buffer(sc);
  278. if (WARN_ON(!tbf))
  279. return NULL;
  280. ATH_TXBUF_RESET(tbf);
  281. tbf->bf_mpdu = bf->bf_mpdu;
  282. tbf->bf_buf_addr = bf->bf_buf_addr;
  283. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  284. tbf->bf_state = bf->bf_state;
  285. return tbf;
  286. }
  287. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  288. struct ath_tx_status *ts, int txok,
  289. int *nframes, int *nbad)
  290. {
  291. struct ath_frame_info *fi;
  292. u16 seq_st = 0;
  293. u32 ba[WME_BA_BMP_SIZE >> 5];
  294. int ba_index;
  295. int isaggr = 0;
  296. *nbad = 0;
  297. *nframes = 0;
  298. isaggr = bf_isaggr(bf);
  299. if (isaggr) {
  300. seq_st = ts->ts_seqnum;
  301. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  302. }
  303. while (bf) {
  304. fi = get_frame_info(bf->bf_mpdu);
  305. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  306. (*nframes)++;
  307. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  308. (*nbad)++;
  309. bf = bf->bf_next;
  310. }
  311. }
  312. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  313. struct ath_buf *bf, struct list_head *bf_q,
  314. struct ath_tx_status *ts, int txok)
  315. {
  316. struct ath_node *an = NULL;
  317. struct sk_buff *skb;
  318. struct ieee80211_sta *sta;
  319. struct ieee80211_hw *hw = sc->hw;
  320. struct ieee80211_hdr *hdr;
  321. struct ieee80211_tx_info *tx_info;
  322. struct ath_atx_tid *tid = NULL;
  323. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  324. struct list_head bf_head;
  325. struct sk_buff_head bf_pending;
  326. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  327. u32 ba[WME_BA_BMP_SIZE >> 5];
  328. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  329. bool rc_update = true, isba;
  330. struct ieee80211_tx_rate rates[4];
  331. struct ath_frame_info *fi;
  332. int nframes;
  333. u8 tidno;
  334. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  335. int i, retries;
  336. int bar_index = -1;
  337. skb = bf->bf_mpdu;
  338. hdr = (struct ieee80211_hdr *)skb->data;
  339. tx_info = IEEE80211_SKB_CB(skb);
  340. memcpy(rates, bf->rates, sizeof(rates));
  341. retries = ts->ts_longretry + 1;
  342. for (i = 0; i < ts->ts_rateindex; i++)
  343. retries += rates[i].count;
  344. rcu_read_lock();
  345. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  346. if (!sta) {
  347. rcu_read_unlock();
  348. INIT_LIST_HEAD(&bf_head);
  349. while (bf) {
  350. bf_next = bf->bf_next;
  351. if (!bf->bf_stale || bf_next != NULL)
  352. list_move_tail(&bf->list, &bf_head);
  353. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  354. bf = bf_next;
  355. }
  356. return;
  357. }
  358. an = (struct ath_node *)sta->drv_priv;
  359. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  360. tid = ATH_AN_2_TID(an, tidno);
  361. seq_first = tid->seq_start;
  362. isba = ts->ts_flags & ATH9K_TX_BA;
  363. /*
  364. * The hardware occasionally sends a tx status for the wrong TID.
  365. * In this case, the BA status cannot be considered valid and all
  366. * subframes need to be retransmitted
  367. *
  368. * Only BlockAcks have a TID and therefore normal Acks cannot be
  369. * checked
  370. */
  371. if (isba && tidno != ts->tid)
  372. txok = false;
  373. isaggr = bf_isaggr(bf);
  374. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  375. if (isaggr && txok) {
  376. if (ts->ts_flags & ATH9K_TX_BA) {
  377. seq_st = ts->ts_seqnum;
  378. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  379. } else {
  380. /*
  381. * AR5416 can become deaf/mute when BA
  382. * issue happens. Chip needs to be reset.
  383. * But AP code may have sychronization issues
  384. * when perform internal reset in this routine.
  385. * Only enable reset in STA mode for now.
  386. */
  387. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  388. needreset = 1;
  389. }
  390. }
  391. __skb_queue_head_init(&bf_pending);
  392. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  393. while (bf) {
  394. u16 seqno = bf->bf_state.seqno;
  395. txfail = txpending = sendbar = 0;
  396. bf_next = bf->bf_next;
  397. skb = bf->bf_mpdu;
  398. tx_info = IEEE80211_SKB_CB(skb);
  399. fi = get_frame_info(skb);
  400. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  401. /*
  402. * Outside of the current BlockAck window,
  403. * maybe part of a previous session
  404. */
  405. txfail = 1;
  406. } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  407. /* transmit completion, subframe is
  408. * acked by block ack */
  409. acked_cnt++;
  410. } else if (!isaggr && txok) {
  411. /* transmit completion */
  412. acked_cnt++;
  413. } else if (flush) {
  414. txpending = 1;
  415. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  416. if (txok || !an->sleeping)
  417. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  418. retries);
  419. txpending = 1;
  420. } else {
  421. txfail = 1;
  422. txfail_cnt++;
  423. bar_index = max_t(int, bar_index,
  424. ATH_BA_INDEX(seq_first, seqno));
  425. }
  426. /*
  427. * Make sure the last desc is reclaimed if it
  428. * not a holding desc.
  429. */
  430. INIT_LIST_HEAD(&bf_head);
  431. if (bf_next != NULL || !bf_last->bf_stale)
  432. list_move_tail(&bf->list, &bf_head);
  433. if (!txpending) {
  434. /*
  435. * complete the acked-ones/xretried ones; update
  436. * block-ack window
  437. */
  438. ath_tx_update_baw(sc, tid, seqno);
  439. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  440. memcpy(tx_info->control.rates, rates, sizeof(rates));
  441. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  442. rc_update = false;
  443. }
  444. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  445. !txfail);
  446. } else {
  447. if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
  448. tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
  449. ieee80211_sta_eosp(sta);
  450. }
  451. /* retry the un-acked ones */
  452. if (bf->bf_next == NULL && bf_last->bf_stale) {
  453. struct ath_buf *tbf;
  454. tbf = ath_clone_txbuf(sc, bf_last);
  455. /*
  456. * Update tx baw and complete the
  457. * frame with failed status if we
  458. * run out of tx buf.
  459. */
  460. if (!tbf) {
  461. ath_tx_update_baw(sc, tid, seqno);
  462. ath_tx_complete_buf(sc, bf, txq,
  463. &bf_head, ts, 0);
  464. bar_index = max_t(int, bar_index,
  465. ATH_BA_INDEX(seq_first, seqno));
  466. break;
  467. }
  468. fi->bf = tbf;
  469. }
  470. /*
  471. * Put this buffer to the temporary pending
  472. * queue to retain ordering
  473. */
  474. __skb_queue_tail(&bf_pending, skb);
  475. }
  476. bf = bf_next;
  477. }
  478. /* prepend un-acked frames to the beginning of the pending frame queue */
  479. if (!skb_queue_empty(&bf_pending)) {
  480. if (an->sleeping)
  481. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  482. skb_queue_splice(&bf_pending, &tid->buf_q);
  483. if (!an->sleeping) {
  484. ath_tx_queue_tid(txq, tid);
  485. if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
  486. tid->ac->clear_ps_filter = true;
  487. }
  488. }
  489. if (bar_index >= 0) {
  490. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  491. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  492. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  493. ath_txq_unlock(sc, txq);
  494. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  495. ath_txq_lock(sc, txq);
  496. }
  497. rcu_read_unlock();
  498. if (needreset)
  499. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  500. }
  501. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  502. {
  503. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  504. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  505. }
  506. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  507. struct ath_tx_status *ts, struct ath_buf *bf,
  508. struct list_head *bf_head)
  509. {
  510. struct ieee80211_tx_info *info;
  511. bool txok, flush;
  512. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  513. flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  514. txq->axq_tx_inprogress = false;
  515. txq->axq_depth--;
  516. if (bf_is_ampdu_not_probing(bf))
  517. txq->axq_ampdu_depth--;
  518. if (!bf_isampdu(bf)) {
  519. if (!flush) {
  520. info = IEEE80211_SKB_CB(bf->bf_mpdu);
  521. memcpy(info->control.rates, bf->rates,
  522. sizeof(info->control.rates));
  523. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  524. }
  525. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  526. } else
  527. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
  528. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !flush)
  529. ath_txq_schedule(sc, txq);
  530. }
  531. static bool ath_lookup_legacy(struct ath_buf *bf)
  532. {
  533. struct sk_buff *skb;
  534. struct ieee80211_tx_info *tx_info;
  535. struct ieee80211_tx_rate *rates;
  536. int i;
  537. skb = bf->bf_mpdu;
  538. tx_info = IEEE80211_SKB_CB(skb);
  539. rates = tx_info->control.rates;
  540. for (i = 0; i < 4; i++) {
  541. if (!rates[i].count || rates[i].idx < 0)
  542. break;
  543. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  544. return true;
  545. }
  546. return false;
  547. }
  548. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  549. struct ath_atx_tid *tid)
  550. {
  551. struct sk_buff *skb;
  552. struct ieee80211_tx_info *tx_info;
  553. struct ieee80211_tx_rate *rates;
  554. u32 max_4ms_framelen, frmlen;
  555. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  556. int q = tid->ac->txq->mac80211_qnum;
  557. int i;
  558. skb = bf->bf_mpdu;
  559. tx_info = IEEE80211_SKB_CB(skb);
  560. rates = bf->rates;
  561. /*
  562. * Find the lowest frame length among the rate series that will have a
  563. * 4ms (or TXOP limited) transmit duration.
  564. */
  565. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  566. for (i = 0; i < 4; i++) {
  567. int modeidx;
  568. if (!rates[i].count)
  569. continue;
  570. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  571. legacy = 1;
  572. break;
  573. }
  574. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  575. modeidx = MCS_HT40;
  576. else
  577. modeidx = MCS_HT20;
  578. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  579. modeidx++;
  580. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  581. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  582. }
  583. /*
  584. * limit aggregate size by the minimum rate if rate selected is
  585. * not a probe rate, if rate selected is a probe rate then
  586. * avoid aggregation of this packet.
  587. */
  588. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  589. return 0;
  590. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  591. /*
  592. * Override the default aggregation limit for BTCOEX.
  593. */
  594. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  595. if (bt_aggr_limit)
  596. aggr_limit = bt_aggr_limit;
  597. /*
  598. * h/w can accept aggregates up to 16 bit lengths (65535).
  599. * The IE, however can hold up to 65536, which shows up here
  600. * as zero. Ignore 65536 since we are constrained by hw.
  601. */
  602. if (tid->an->maxampdu)
  603. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  604. return aggr_limit;
  605. }
  606. /*
  607. * Returns the number of delimiters to be added to
  608. * meet the minimum required mpdudensity.
  609. */
  610. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  611. struct ath_buf *bf, u16 frmlen,
  612. bool first_subfrm)
  613. {
  614. #define FIRST_DESC_NDELIMS 60
  615. u32 nsymbits, nsymbols;
  616. u16 minlen;
  617. u8 flags, rix;
  618. int width, streams, half_gi, ndelim, mindelim;
  619. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  620. /* Select standard number of delimiters based on frame length alone */
  621. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  622. /*
  623. * If encryption enabled, hardware requires some more padding between
  624. * subframes.
  625. * TODO - this could be improved to be dependent on the rate.
  626. * The hardware can keep up at lower rates, but not higher rates
  627. */
  628. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  629. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  630. ndelim += ATH_AGGR_ENCRYPTDELIM;
  631. /*
  632. * Add delimiter when using RTS/CTS with aggregation
  633. * and non enterprise AR9003 card
  634. */
  635. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  636. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  637. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  638. /*
  639. * Convert desired mpdu density from microeconds to bytes based
  640. * on highest rate in rate series (i.e. first rate) to determine
  641. * required minimum length for subframe. Take into account
  642. * whether high rate is 20 or 40Mhz and half or full GI.
  643. *
  644. * If there is no mpdu density restriction, no further calculation
  645. * is needed.
  646. */
  647. if (tid->an->mpdudensity == 0)
  648. return ndelim;
  649. rix = bf->rates[0].idx;
  650. flags = bf->rates[0].flags;
  651. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  652. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  653. if (half_gi)
  654. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  655. else
  656. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  657. if (nsymbols == 0)
  658. nsymbols = 1;
  659. streams = HT_RC_2_STREAMS(rix);
  660. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  661. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  662. if (frmlen < minlen) {
  663. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  664. ndelim = max(mindelim, ndelim);
  665. }
  666. return ndelim;
  667. }
  668. static struct ath_buf *
  669. ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
  670. struct ath_atx_tid *tid)
  671. {
  672. struct ath_frame_info *fi;
  673. struct sk_buff *skb;
  674. struct ath_buf *bf;
  675. u16 seqno;
  676. while (1) {
  677. skb = skb_peek(&tid->buf_q);
  678. if (!skb)
  679. break;
  680. fi = get_frame_info(skb);
  681. bf = fi->bf;
  682. if (!fi->bf)
  683. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  684. if (!bf) {
  685. __skb_unlink(skb, &tid->buf_q);
  686. ath_txq_skb_done(sc, txq, skb);
  687. ieee80211_free_txskb(sc->hw, skb);
  688. continue;
  689. }
  690. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  691. seqno = bf->bf_state.seqno;
  692. /* do not step over block-ack window */
  693. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
  694. break;
  695. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  696. struct ath_tx_status ts = {};
  697. struct list_head bf_head;
  698. INIT_LIST_HEAD(&bf_head);
  699. list_add(&bf->list, &bf_head);
  700. __skb_unlink(skb, &tid->buf_q);
  701. ath_tx_update_baw(sc, tid, seqno);
  702. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  703. continue;
  704. }
  705. bf->bf_next = NULL;
  706. bf->bf_lastbf = bf;
  707. return bf;
  708. }
  709. return NULL;
  710. }
  711. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  712. struct ath_txq *txq,
  713. struct ath_atx_tid *tid,
  714. struct list_head *bf_q,
  715. int *aggr_len)
  716. {
  717. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  718. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  719. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  720. u16 aggr_limit = 0, al = 0, bpad = 0,
  721. al_delta, h_baw = tid->baw_size / 2;
  722. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  723. struct ieee80211_tx_info *tx_info;
  724. struct ath_frame_info *fi;
  725. struct sk_buff *skb;
  726. do {
  727. bf = ath_tx_get_tid_subframe(sc, txq, tid);
  728. if (!bf) {
  729. status = ATH_AGGR_BAW_CLOSED;
  730. break;
  731. }
  732. skb = bf->bf_mpdu;
  733. fi = get_frame_info(skb);
  734. if (!bf_first)
  735. bf_first = bf;
  736. if (!rl) {
  737. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  738. aggr_limit = ath_lookup_rate(sc, bf, tid);
  739. rl = 1;
  740. }
  741. /* do not exceed aggregation limit */
  742. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  743. if (nframes &&
  744. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  745. ath_lookup_legacy(bf))) {
  746. status = ATH_AGGR_LIMITED;
  747. break;
  748. }
  749. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  750. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  751. break;
  752. /* do not exceed subframe limit */
  753. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  754. status = ATH_AGGR_LIMITED;
  755. break;
  756. }
  757. /* add padding for previous frame to aggregation length */
  758. al += bpad + al_delta;
  759. /*
  760. * Get the delimiters needed to meet the MPDU
  761. * density for this node.
  762. */
  763. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  764. !nframes);
  765. bpad = PADBYTES(al_delta) + (ndelim << 2);
  766. nframes++;
  767. bf->bf_next = NULL;
  768. /* link buffers of this frame to the aggregate */
  769. if (!fi->retries)
  770. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  771. bf->bf_state.ndelim = ndelim;
  772. __skb_unlink(skb, &tid->buf_q);
  773. list_add_tail(&bf->list, bf_q);
  774. if (bf_prev)
  775. bf_prev->bf_next = bf;
  776. bf_prev = bf;
  777. } while (!skb_queue_empty(&tid->buf_q));
  778. *aggr_len = al;
  779. return status;
  780. #undef PADBYTES
  781. }
  782. /*
  783. * rix - rate index
  784. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  785. * width - 0 for 20 MHz, 1 for 40 MHz
  786. * half_gi - to use 4us v/s 3.6 us for symbol time
  787. */
  788. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  789. int width, int half_gi, bool shortPreamble)
  790. {
  791. u32 nbits, nsymbits, duration, nsymbols;
  792. int streams;
  793. /* find number of symbols: PLCP + data */
  794. streams = HT_RC_2_STREAMS(rix);
  795. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  796. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  797. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  798. if (!half_gi)
  799. duration = SYMBOL_TIME(nsymbols);
  800. else
  801. duration = SYMBOL_TIME_HALFGI(nsymbols);
  802. /* addup duration for legacy/ht training and signal fields */
  803. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  804. return duration;
  805. }
  806. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  807. {
  808. int streams = HT_RC_2_STREAMS(mcs);
  809. int symbols, bits;
  810. int bytes = 0;
  811. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  812. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  813. bits -= OFDM_PLCP_BITS;
  814. bytes = bits / 8;
  815. bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  816. if (bytes > 65532)
  817. bytes = 65532;
  818. return bytes;
  819. }
  820. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  821. {
  822. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  823. int mcs;
  824. /* 4ms is the default (and maximum) duration */
  825. if (!txop || txop > 4096)
  826. txop = 4096;
  827. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  828. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  829. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  830. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  831. for (mcs = 0; mcs < 32; mcs++) {
  832. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  833. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  834. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  835. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  836. }
  837. }
  838. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  839. struct ath_tx_info *info, int len)
  840. {
  841. struct ath_hw *ah = sc->sc_ah;
  842. struct sk_buff *skb;
  843. struct ieee80211_tx_info *tx_info;
  844. struct ieee80211_tx_rate *rates;
  845. const struct ieee80211_rate *rate;
  846. struct ieee80211_hdr *hdr;
  847. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  848. int i;
  849. u8 rix = 0;
  850. skb = bf->bf_mpdu;
  851. tx_info = IEEE80211_SKB_CB(skb);
  852. rates = bf->rates;
  853. hdr = (struct ieee80211_hdr *)skb->data;
  854. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  855. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  856. info->rtscts_rate = fi->rtscts_rate;
  857. for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
  858. bool is_40, is_sgi, is_sp;
  859. int phy;
  860. if (!rates[i].count || (rates[i].idx < 0))
  861. continue;
  862. rix = rates[i].idx;
  863. info->rates[i].Tries = rates[i].count;
  864. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  865. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  866. info->flags |= ATH9K_TXDESC_RTSENA;
  867. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  868. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  869. info->flags |= ATH9K_TXDESC_CTSENA;
  870. }
  871. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  872. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  873. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  874. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  875. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  876. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  877. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  878. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  879. /* MCS rates */
  880. info->rates[i].Rate = rix | 0x80;
  881. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  882. ah->txchainmask, info->rates[i].Rate);
  883. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  884. is_40, is_sgi, is_sp);
  885. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  886. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  887. continue;
  888. }
  889. /* legacy rates */
  890. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  891. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  892. !(rate->flags & IEEE80211_RATE_ERP_G))
  893. phy = WLAN_RC_PHY_CCK;
  894. else
  895. phy = WLAN_RC_PHY_OFDM;
  896. info->rates[i].Rate = rate->hw_value;
  897. if (rate->hw_value_short) {
  898. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  899. info->rates[i].Rate |= rate->hw_value_short;
  900. } else {
  901. is_sp = false;
  902. }
  903. if (bf->bf_state.bfs_paprd)
  904. info->rates[i].ChSel = ah->txchainmask;
  905. else
  906. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  907. ah->txchainmask, info->rates[i].Rate);
  908. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  909. phy, rate->bitrate * 100, len, rix, is_sp);
  910. }
  911. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  912. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  913. info->flags &= ~ATH9K_TXDESC_RTSENA;
  914. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  915. if (info->flags & ATH9K_TXDESC_RTSENA)
  916. info->flags &= ~ATH9K_TXDESC_CTSENA;
  917. }
  918. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  919. {
  920. struct ieee80211_hdr *hdr;
  921. enum ath9k_pkt_type htype;
  922. __le16 fc;
  923. hdr = (struct ieee80211_hdr *)skb->data;
  924. fc = hdr->frame_control;
  925. if (ieee80211_is_beacon(fc))
  926. htype = ATH9K_PKT_TYPE_BEACON;
  927. else if (ieee80211_is_probe_resp(fc))
  928. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  929. else if (ieee80211_is_atim(fc))
  930. htype = ATH9K_PKT_TYPE_ATIM;
  931. else if (ieee80211_is_pspoll(fc))
  932. htype = ATH9K_PKT_TYPE_PSPOLL;
  933. else
  934. htype = ATH9K_PKT_TYPE_NORMAL;
  935. return htype;
  936. }
  937. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  938. struct ath_txq *txq, int len)
  939. {
  940. struct ath_hw *ah = sc->sc_ah;
  941. struct ath_buf *bf_first = NULL;
  942. struct ath_tx_info info;
  943. memset(&info, 0, sizeof(info));
  944. info.is_first = true;
  945. info.is_last = true;
  946. info.txpower = MAX_RATE_POWER;
  947. info.qcu = txq->axq_qnum;
  948. while (bf) {
  949. struct sk_buff *skb = bf->bf_mpdu;
  950. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  951. struct ath_frame_info *fi = get_frame_info(skb);
  952. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  953. info.type = get_hw_packet_type(skb);
  954. if (bf->bf_next)
  955. info.link = bf->bf_next->bf_daddr;
  956. else
  957. info.link = 0;
  958. if (!bf_first) {
  959. bf_first = bf;
  960. info.flags = ATH9K_TXDESC_INTREQ;
  961. if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
  962. txq == sc->tx.uapsdq)
  963. info.flags |= ATH9K_TXDESC_CLRDMASK;
  964. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  965. info.flags |= ATH9K_TXDESC_NOACK;
  966. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  967. info.flags |= ATH9K_TXDESC_LDPC;
  968. if (bf->bf_state.bfs_paprd)
  969. info.flags |= (u32) bf->bf_state.bfs_paprd <<
  970. ATH9K_TXDESC_PAPRD_S;
  971. ath_buf_set_rate(sc, bf, &info, len);
  972. }
  973. info.buf_addr[0] = bf->bf_buf_addr;
  974. info.buf_len[0] = skb->len;
  975. info.pkt_len = fi->framelen;
  976. info.keyix = fi->keyix;
  977. info.keytype = fi->keytype;
  978. if (aggr) {
  979. if (bf == bf_first)
  980. info.aggr = AGGR_BUF_FIRST;
  981. else if (bf == bf_first->bf_lastbf)
  982. info.aggr = AGGR_BUF_LAST;
  983. else
  984. info.aggr = AGGR_BUF_MIDDLE;
  985. info.ndelim = bf->bf_state.ndelim;
  986. info.aggr_len = len;
  987. }
  988. if (bf == bf_first->bf_lastbf)
  989. bf_first = NULL;
  990. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  991. bf = bf->bf_next;
  992. }
  993. }
  994. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  995. struct ath_atx_tid *tid)
  996. {
  997. struct ath_buf *bf;
  998. enum ATH_AGGR_STATUS status;
  999. struct ieee80211_tx_info *tx_info;
  1000. struct list_head bf_q;
  1001. int aggr_len;
  1002. do {
  1003. if (skb_queue_empty(&tid->buf_q))
  1004. return;
  1005. INIT_LIST_HEAD(&bf_q);
  1006. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  1007. /*
  1008. * no frames picked up to be aggregated;
  1009. * block-ack window is not open.
  1010. */
  1011. if (list_empty(&bf_q))
  1012. break;
  1013. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1014. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  1015. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1016. if (tid->ac->clear_ps_filter) {
  1017. tid->ac->clear_ps_filter = false;
  1018. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1019. } else {
  1020. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1021. }
  1022. /* if only one frame, send as non-aggregate */
  1023. if (bf == bf->bf_lastbf) {
  1024. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  1025. bf->bf_state.bf_type = BUF_AMPDU;
  1026. } else {
  1027. TX_STAT_INC(txq->axq_qnum, a_aggr);
  1028. }
  1029. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  1030. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1031. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  1032. status != ATH_AGGR_BAW_CLOSED);
  1033. }
  1034. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  1035. u16 tid, u16 *ssn)
  1036. {
  1037. struct ath_atx_tid *txtid;
  1038. struct ath_node *an;
  1039. u8 density;
  1040. an = (struct ath_node *)sta->drv_priv;
  1041. txtid = ATH_AN_2_TID(an, tid);
  1042. /* update ampdu factor/density, they may have changed. This may happen
  1043. * in HT IBSS when a beacon with HT-info is received after the station
  1044. * has already been added.
  1045. */
  1046. if (sta->ht_cap.ht_supported) {
  1047. an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  1048. sta->ht_cap.ampdu_factor);
  1049. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  1050. an->mpdudensity = density;
  1051. }
  1052. txtid->active = true;
  1053. txtid->paused = true;
  1054. *ssn = txtid->seq_start = txtid->seq_next;
  1055. txtid->bar_index = -1;
  1056. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  1057. txtid->baw_head = txtid->baw_tail = 0;
  1058. return 0;
  1059. }
  1060. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1061. {
  1062. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1063. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  1064. struct ath_txq *txq = txtid->ac->txq;
  1065. ath_txq_lock(sc, txq);
  1066. txtid->active = false;
  1067. txtid->paused = true;
  1068. ath_tx_flush_tid(sc, txtid);
  1069. ath_txq_unlock_complete(sc, txq);
  1070. }
  1071. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1072. struct ath_node *an)
  1073. {
  1074. struct ath_atx_tid *tid;
  1075. struct ath_atx_ac *ac;
  1076. struct ath_txq *txq;
  1077. bool buffered;
  1078. int tidno;
  1079. for (tidno = 0, tid = &an->tid[tidno];
  1080. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1081. if (!tid->sched)
  1082. continue;
  1083. ac = tid->ac;
  1084. txq = ac->txq;
  1085. ath_txq_lock(sc, txq);
  1086. buffered = !skb_queue_empty(&tid->buf_q);
  1087. tid->sched = false;
  1088. list_del(&tid->list);
  1089. if (ac->sched) {
  1090. ac->sched = false;
  1091. list_del(&ac->list);
  1092. }
  1093. ath_txq_unlock(sc, txq);
  1094. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1095. }
  1096. }
  1097. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1098. {
  1099. struct ath_atx_tid *tid;
  1100. struct ath_atx_ac *ac;
  1101. struct ath_txq *txq;
  1102. int tidno;
  1103. for (tidno = 0, tid = &an->tid[tidno];
  1104. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1105. ac = tid->ac;
  1106. txq = ac->txq;
  1107. ath_txq_lock(sc, txq);
  1108. ac->clear_ps_filter = true;
  1109. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  1110. ath_tx_queue_tid(txq, tid);
  1111. ath_txq_schedule(sc, txq);
  1112. }
  1113. ath_txq_unlock_complete(sc, txq);
  1114. }
  1115. }
  1116. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
  1117. u16 tidno)
  1118. {
  1119. struct ath_atx_tid *tid;
  1120. struct ath_node *an;
  1121. struct ath_txq *txq;
  1122. an = (struct ath_node *)sta->drv_priv;
  1123. tid = ATH_AN_2_TID(an, tidno);
  1124. txq = tid->ac->txq;
  1125. ath_txq_lock(sc, txq);
  1126. tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1127. tid->paused = false;
  1128. if (!skb_queue_empty(&tid->buf_q)) {
  1129. ath_tx_queue_tid(txq, tid);
  1130. ath_txq_schedule(sc, txq);
  1131. }
  1132. ath_txq_unlock_complete(sc, txq);
  1133. }
  1134. void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
  1135. struct ieee80211_sta *sta,
  1136. u16 tids, int nframes,
  1137. enum ieee80211_frame_release_type reason,
  1138. bool more_data)
  1139. {
  1140. struct ath_softc *sc = hw->priv;
  1141. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1142. struct ath_txq *txq = sc->tx.uapsdq;
  1143. struct ieee80211_tx_info *info;
  1144. struct list_head bf_q;
  1145. struct ath_buf *bf_tail = NULL, *bf;
  1146. int sent = 0;
  1147. int i;
  1148. INIT_LIST_HEAD(&bf_q);
  1149. for (i = 0; tids && nframes; i++, tids >>= 1) {
  1150. struct ath_atx_tid *tid;
  1151. if (!(tids & 1))
  1152. continue;
  1153. tid = ATH_AN_2_TID(an, i);
  1154. if (tid->paused)
  1155. continue;
  1156. ath_txq_lock(sc, tid->ac->txq);
  1157. while (!skb_queue_empty(&tid->buf_q) && nframes > 0) {
  1158. bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid);
  1159. if (!bf)
  1160. break;
  1161. __skb_unlink(bf->bf_mpdu, &tid->buf_q);
  1162. list_add_tail(&bf->list, &bf_q);
  1163. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1164. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1165. bf->bf_state.bf_type &= ~BUF_AGGR;
  1166. if (bf_tail)
  1167. bf_tail->bf_next = bf;
  1168. bf_tail = bf;
  1169. nframes--;
  1170. sent++;
  1171. TX_STAT_INC(txq->axq_qnum, a_queued_hw);
  1172. if (skb_queue_empty(&tid->buf_q))
  1173. ieee80211_sta_set_buffered(an->sta, i, false);
  1174. }
  1175. ath_txq_unlock_complete(sc, tid->ac->txq);
  1176. }
  1177. if (list_empty(&bf_q))
  1178. return;
  1179. info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
  1180. info->flags |= IEEE80211_TX_STATUS_EOSP;
  1181. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1182. ath_txq_lock(sc, txq);
  1183. ath_tx_fill_desc(sc, bf, txq, 0);
  1184. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1185. ath_txq_unlock(sc, txq);
  1186. }
  1187. /********************/
  1188. /* Queue Management */
  1189. /********************/
  1190. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1191. {
  1192. struct ath_hw *ah = sc->sc_ah;
  1193. struct ath9k_tx_queue_info qi;
  1194. static const int subtype_txq_to_hwq[] = {
  1195. [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
  1196. [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
  1197. [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
  1198. [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
  1199. };
  1200. int axq_qnum, i;
  1201. memset(&qi, 0, sizeof(qi));
  1202. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1203. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1204. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1205. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1206. qi.tqi_physCompBuf = 0;
  1207. /*
  1208. * Enable interrupts only for EOL and DESC conditions.
  1209. * We mark tx descriptors to receive a DESC interrupt
  1210. * when a tx queue gets deep; otherwise waiting for the
  1211. * EOL to reap descriptors. Note that this is done to
  1212. * reduce interrupt load and this only defers reaping
  1213. * descriptors, never transmitting frames. Aside from
  1214. * reducing interrupts this also permits more concurrency.
  1215. * The only potential downside is if the tx queue backs
  1216. * up in which case the top half of the kernel may backup
  1217. * due to a lack of tx descriptors.
  1218. *
  1219. * The UAPSD queue is an exception, since we take a desc-
  1220. * based intr on the EOSP frames.
  1221. */
  1222. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1223. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1224. } else {
  1225. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1226. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1227. else
  1228. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1229. TXQ_FLAG_TXDESCINT_ENABLE;
  1230. }
  1231. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1232. if (axq_qnum == -1) {
  1233. /*
  1234. * NB: don't print a message, this happens
  1235. * normally on parts with too few tx queues
  1236. */
  1237. return NULL;
  1238. }
  1239. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1240. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1241. txq->axq_qnum = axq_qnum;
  1242. txq->mac80211_qnum = -1;
  1243. txq->axq_link = NULL;
  1244. __skb_queue_head_init(&txq->complete_q);
  1245. INIT_LIST_HEAD(&txq->axq_q);
  1246. INIT_LIST_HEAD(&txq->axq_acq);
  1247. spin_lock_init(&txq->axq_lock);
  1248. txq->axq_depth = 0;
  1249. txq->axq_ampdu_depth = 0;
  1250. txq->axq_tx_inprogress = false;
  1251. sc->tx.txqsetup |= 1<<axq_qnum;
  1252. txq->txq_headidx = txq->txq_tailidx = 0;
  1253. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1254. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1255. }
  1256. return &sc->tx.txq[axq_qnum];
  1257. }
  1258. int ath_txq_update(struct ath_softc *sc, int qnum,
  1259. struct ath9k_tx_queue_info *qinfo)
  1260. {
  1261. struct ath_hw *ah = sc->sc_ah;
  1262. int error = 0;
  1263. struct ath9k_tx_queue_info qi;
  1264. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1265. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1266. qi.tqi_aifs = qinfo->tqi_aifs;
  1267. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1268. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1269. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1270. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1271. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1272. ath_err(ath9k_hw_common(sc->sc_ah),
  1273. "Unable to update hardware queue %u!\n", qnum);
  1274. error = -EIO;
  1275. } else {
  1276. ath9k_hw_resettxqueue(ah, qnum);
  1277. }
  1278. return error;
  1279. }
  1280. int ath_cabq_update(struct ath_softc *sc)
  1281. {
  1282. struct ath9k_tx_queue_info qi;
  1283. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1284. int qnum = sc->beacon.cabq->axq_qnum;
  1285. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1286. /*
  1287. * Ensure the readytime % is within the bounds.
  1288. */
  1289. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1290. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1291. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1292. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1293. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1294. sc->config.cabqReadytime) / 100;
  1295. ath_txq_update(sc, qnum, &qi);
  1296. return 0;
  1297. }
  1298. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1299. struct list_head *list)
  1300. {
  1301. struct ath_buf *bf, *lastbf;
  1302. struct list_head bf_head;
  1303. struct ath_tx_status ts;
  1304. memset(&ts, 0, sizeof(ts));
  1305. ts.ts_status = ATH9K_TX_FLUSH;
  1306. INIT_LIST_HEAD(&bf_head);
  1307. while (!list_empty(list)) {
  1308. bf = list_first_entry(list, struct ath_buf, list);
  1309. if (bf->bf_stale) {
  1310. list_del(&bf->list);
  1311. ath_tx_return_buffer(sc, bf);
  1312. continue;
  1313. }
  1314. lastbf = bf->bf_lastbf;
  1315. list_cut_position(&bf_head, list, &lastbf->list);
  1316. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1317. }
  1318. }
  1319. /*
  1320. * Drain a given TX queue (could be Beacon or Data)
  1321. *
  1322. * This assumes output has been stopped and
  1323. * we do not need to block ath_tx_tasklet.
  1324. */
  1325. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
  1326. {
  1327. ath_txq_lock(sc, txq);
  1328. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1329. int idx = txq->txq_tailidx;
  1330. while (!list_empty(&txq->txq_fifo[idx])) {
  1331. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
  1332. INCR(idx, ATH_TXFIFO_DEPTH);
  1333. }
  1334. txq->txq_tailidx = idx;
  1335. }
  1336. txq->axq_link = NULL;
  1337. txq->axq_tx_inprogress = false;
  1338. ath_drain_txq_list(sc, txq, &txq->axq_q);
  1339. ath_txq_unlock_complete(sc, txq);
  1340. }
  1341. bool ath_drain_all_txq(struct ath_softc *sc)
  1342. {
  1343. struct ath_hw *ah = sc->sc_ah;
  1344. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1345. struct ath_txq *txq;
  1346. int i;
  1347. u32 npend = 0;
  1348. if (test_bit(SC_OP_INVALID, &sc->sc_flags))
  1349. return true;
  1350. ath9k_hw_abort_tx_dma(ah);
  1351. /* Check if any queue remains active */
  1352. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1353. if (!ATH_TXQ_SETUP(sc, i))
  1354. continue;
  1355. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1356. npend |= BIT(i);
  1357. }
  1358. if (npend)
  1359. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1360. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1361. if (!ATH_TXQ_SETUP(sc, i))
  1362. continue;
  1363. /*
  1364. * The caller will resume queues with ieee80211_wake_queues.
  1365. * Mark the queue as not stopped to prevent ath_tx_complete
  1366. * from waking the queue too early.
  1367. */
  1368. txq = &sc->tx.txq[i];
  1369. txq->stopped = false;
  1370. ath_draintxq(sc, txq);
  1371. }
  1372. return !npend;
  1373. }
  1374. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1375. {
  1376. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1377. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1378. }
  1379. /* For each axq_acq entry, for each tid, try to schedule packets
  1380. * for transmit until ampdu_depth has reached min Q depth.
  1381. */
  1382. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1383. {
  1384. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1385. struct ath_atx_tid *tid, *last_tid;
  1386. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
  1387. list_empty(&txq->axq_acq) ||
  1388. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1389. return;
  1390. rcu_read_lock();
  1391. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1392. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1393. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1394. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1395. list_del(&ac->list);
  1396. ac->sched = false;
  1397. while (!list_empty(&ac->tid_q)) {
  1398. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1399. list);
  1400. list_del(&tid->list);
  1401. tid->sched = false;
  1402. if (tid->paused)
  1403. continue;
  1404. ath_tx_sched_aggr(sc, txq, tid);
  1405. /*
  1406. * add tid to round-robin queue if more frames
  1407. * are pending for the tid
  1408. */
  1409. if (!skb_queue_empty(&tid->buf_q))
  1410. ath_tx_queue_tid(txq, tid);
  1411. if (tid == last_tid ||
  1412. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1413. break;
  1414. }
  1415. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1416. ac->sched = true;
  1417. list_add_tail(&ac->list, &txq->axq_acq);
  1418. }
  1419. if (ac == last_ac ||
  1420. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1421. break;
  1422. }
  1423. rcu_read_unlock();
  1424. }
  1425. /***********/
  1426. /* TX, DMA */
  1427. /***********/
  1428. /*
  1429. * Insert a chain of ath_buf (descriptors) on a txq and
  1430. * assume the descriptors are already chained together by caller.
  1431. */
  1432. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1433. struct list_head *head, bool internal)
  1434. {
  1435. struct ath_hw *ah = sc->sc_ah;
  1436. struct ath_common *common = ath9k_hw_common(ah);
  1437. struct ath_buf *bf, *bf_last;
  1438. bool puttxbuf = false;
  1439. bool edma;
  1440. /*
  1441. * Insert the frame on the outbound list and
  1442. * pass it on to the hardware.
  1443. */
  1444. if (list_empty(head))
  1445. return;
  1446. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1447. bf = list_first_entry(head, struct ath_buf, list);
  1448. bf_last = list_entry(head->prev, struct ath_buf, list);
  1449. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1450. txq->axq_qnum, txq->axq_depth);
  1451. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1452. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1453. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1454. puttxbuf = true;
  1455. } else {
  1456. list_splice_tail_init(head, &txq->axq_q);
  1457. if (txq->axq_link) {
  1458. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1459. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1460. txq->axq_qnum, txq->axq_link,
  1461. ito64(bf->bf_daddr), bf->bf_desc);
  1462. } else if (!edma)
  1463. puttxbuf = true;
  1464. txq->axq_link = bf_last->bf_desc;
  1465. }
  1466. if (puttxbuf) {
  1467. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1468. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1469. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1470. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1471. }
  1472. if (!edma) {
  1473. TX_STAT_INC(txq->axq_qnum, txstart);
  1474. ath9k_hw_txstart(ah, txq->axq_qnum);
  1475. }
  1476. if (!internal) {
  1477. while (bf) {
  1478. txq->axq_depth++;
  1479. if (bf_is_ampdu_not_probing(bf))
  1480. txq->axq_ampdu_depth++;
  1481. bf = bf->bf_lastbf->bf_next;
  1482. }
  1483. }
  1484. }
  1485. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_txq *txq,
  1486. struct ath_atx_tid *tid, struct sk_buff *skb,
  1487. struct ath_tx_control *txctl)
  1488. {
  1489. struct ath_frame_info *fi = get_frame_info(skb);
  1490. struct list_head bf_head;
  1491. struct ath_buf *bf;
  1492. /*
  1493. * Do not queue to h/w when any of the following conditions is true:
  1494. * - there are pending frames in software queue
  1495. * - the TID is currently paused for ADDBA/BAR request
  1496. * - seqno is not within block-ack window
  1497. * - h/w queue depth exceeds low water mark
  1498. */
  1499. if ((!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1500. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1501. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) &&
  1502. txq != sc->tx.uapsdq) {
  1503. /*
  1504. * Add this frame to software queue for scheduling later
  1505. * for aggregation.
  1506. */
  1507. TX_STAT_INC(txq->axq_qnum, a_queued_sw);
  1508. __skb_queue_tail(&tid->buf_q, skb);
  1509. if (!txctl->an || !txctl->an->sleeping)
  1510. ath_tx_queue_tid(txq, tid);
  1511. return;
  1512. }
  1513. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1514. if (!bf) {
  1515. ath_txq_skb_done(sc, txq, skb);
  1516. ieee80211_free_txskb(sc->hw, skb);
  1517. return;
  1518. }
  1519. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1520. bf->bf_state.bf_type = BUF_AMPDU;
  1521. INIT_LIST_HEAD(&bf_head);
  1522. list_add(&bf->list, &bf_head);
  1523. /* Add sub-frame to BAW */
  1524. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1525. /* Queue to h/w without aggregation */
  1526. TX_STAT_INC(txq->axq_qnum, a_queued_hw);
  1527. bf->bf_lastbf = bf;
  1528. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1529. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1530. }
  1531. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1532. struct ath_atx_tid *tid, struct sk_buff *skb)
  1533. {
  1534. struct ath_frame_info *fi = get_frame_info(skb);
  1535. struct list_head bf_head;
  1536. struct ath_buf *bf;
  1537. bf = fi->bf;
  1538. INIT_LIST_HEAD(&bf_head);
  1539. list_add_tail(&bf->list, &bf_head);
  1540. bf->bf_state.bf_type = 0;
  1541. bf->bf_next = NULL;
  1542. bf->bf_lastbf = bf;
  1543. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1544. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1545. TX_STAT_INC(txq->axq_qnum, queued);
  1546. }
  1547. static void setup_frame_info(struct ieee80211_hw *hw,
  1548. struct ieee80211_sta *sta,
  1549. struct sk_buff *skb,
  1550. int framelen)
  1551. {
  1552. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1553. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1554. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1555. const struct ieee80211_rate *rate;
  1556. struct ath_frame_info *fi = get_frame_info(skb);
  1557. struct ath_node *an = NULL;
  1558. enum ath9k_key_type keytype;
  1559. bool short_preamble = false;
  1560. /*
  1561. * We check if Short Preamble is needed for the CTS rate by
  1562. * checking the BSS's global flag.
  1563. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1564. */
  1565. if (tx_info->control.vif &&
  1566. tx_info->control.vif->bss_conf.use_short_preamble)
  1567. short_preamble = true;
  1568. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1569. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1570. if (sta)
  1571. an = (struct ath_node *) sta->drv_priv;
  1572. memset(fi, 0, sizeof(*fi));
  1573. if (hw_key)
  1574. fi->keyix = hw_key->hw_key_idx;
  1575. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1576. fi->keyix = an->ps_key;
  1577. else
  1578. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1579. fi->keytype = keytype;
  1580. fi->framelen = framelen;
  1581. fi->rtscts_rate = rate->hw_value;
  1582. if (short_preamble)
  1583. fi->rtscts_rate |= rate->hw_value_short;
  1584. }
  1585. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1586. {
  1587. struct ath_hw *ah = sc->sc_ah;
  1588. struct ath9k_channel *curchan = ah->curchan;
  1589. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1590. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1591. (chainmask == 0x7) && (rate < 0x90))
  1592. return 0x3;
  1593. else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
  1594. IS_CCK_RATE(rate))
  1595. return 0x2;
  1596. else
  1597. return chainmask;
  1598. }
  1599. /*
  1600. * Assign a descriptor (and sequence number if necessary,
  1601. * and map buffer for DMA. Frees skb on error
  1602. */
  1603. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1604. struct ath_txq *txq,
  1605. struct ath_atx_tid *tid,
  1606. struct sk_buff *skb)
  1607. {
  1608. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1609. struct ath_frame_info *fi = get_frame_info(skb);
  1610. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1611. struct ath_buf *bf;
  1612. int fragno;
  1613. u16 seqno;
  1614. bf = ath_tx_get_buffer(sc);
  1615. if (!bf) {
  1616. ath_dbg(common, XMIT, "TX buffers are full\n");
  1617. return NULL;
  1618. }
  1619. ATH_TXBUF_RESET(bf);
  1620. if (tid) {
  1621. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1622. seqno = tid->seq_next;
  1623. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1624. if (fragno)
  1625. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1626. if (!ieee80211_has_morefrags(hdr->frame_control))
  1627. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1628. bf->bf_state.seqno = seqno;
  1629. }
  1630. bf->bf_mpdu = skb;
  1631. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1632. skb->len, DMA_TO_DEVICE);
  1633. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1634. bf->bf_mpdu = NULL;
  1635. bf->bf_buf_addr = 0;
  1636. ath_err(ath9k_hw_common(sc->sc_ah),
  1637. "dma_mapping_error() on TX\n");
  1638. ath_tx_return_buffer(sc, bf);
  1639. return NULL;
  1640. }
  1641. fi->bf = bf;
  1642. return bf;
  1643. }
  1644. static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
  1645. struct ath_tx_control *txctl)
  1646. {
  1647. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1648. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1649. struct ieee80211_sta *sta = txctl->sta;
  1650. struct ieee80211_vif *vif = info->control.vif;
  1651. struct ath_softc *sc = hw->priv;
  1652. int frmlen = skb->len + FCS_LEN;
  1653. int padpos, padsize;
  1654. /* NOTE: sta can be NULL according to net/mac80211.h */
  1655. if (sta)
  1656. txctl->an = (struct ath_node *)sta->drv_priv;
  1657. if (info->control.hw_key)
  1658. frmlen += info->control.hw_key->icv_len;
  1659. /*
  1660. * As a temporary workaround, assign seq# here; this will likely need
  1661. * to be cleaned up to work better with Beacon transmission and virtual
  1662. * BSSes.
  1663. */
  1664. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1665. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1666. sc->tx.seq_no += 0x10;
  1667. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1668. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1669. }
  1670. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1671. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1672. !ieee80211_is_data(hdr->frame_control))
  1673. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1674. /* Add the padding after the header if this is not already done */
  1675. padpos = ieee80211_hdrlen(hdr->frame_control);
  1676. padsize = padpos & 3;
  1677. if (padsize && skb->len > padpos) {
  1678. if (skb_headroom(skb) < padsize)
  1679. return -ENOMEM;
  1680. skb_push(skb, padsize);
  1681. memmove(skb->data, skb->data + padsize, padpos);
  1682. }
  1683. setup_frame_info(hw, sta, skb, frmlen);
  1684. return 0;
  1685. }
  1686. /* Upon failure caller should free skb */
  1687. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1688. struct ath_tx_control *txctl)
  1689. {
  1690. struct ieee80211_hdr *hdr;
  1691. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1692. struct ieee80211_sta *sta = txctl->sta;
  1693. struct ieee80211_vif *vif = info->control.vif;
  1694. struct ath_softc *sc = hw->priv;
  1695. struct ath_txq *txq = txctl->txq;
  1696. struct ath_atx_tid *tid = NULL;
  1697. struct ath_buf *bf;
  1698. u8 tidno;
  1699. int q;
  1700. int ret;
  1701. ret = ath_tx_prepare(hw, skb, txctl);
  1702. if (ret)
  1703. return ret;
  1704. hdr = (struct ieee80211_hdr *) skb->data;
  1705. /*
  1706. * At this point, the vif, hw_key and sta pointers in the tx control
  1707. * info are no longer valid (overwritten by the ath_frame_info data.
  1708. */
  1709. q = skb_get_queue_mapping(skb);
  1710. ath_txq_lock(sc, txq);
  1711. if (txq == sc->tx.txq_map[q] &&
  1712. ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1713. !txq->stopped) {
  1714. ieee80211_stop_queue(sc->hw, q);
  1715. txq->stopped = true;
  1716. }
  1717. if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
  1718. ath_txq_unlock(sc, txq);
  1719. txq = sc->tx.uapsdq;
  1720. ath_txq_lock(sc, txq);
  1721. }
  1722. if (txctl->an && ieee80211_is_data_qos(hdr->frame_control)) {
  1723. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1724. IEEE80211_QOS_CTL_TID_MASK;
  1725. tid = ATH_AN_2_TID(txctl->an, tidno);
  1726. WARN_ON(tid->ac->txq != txctl->txq);
  1727. }
  1728. if ((info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1729. /*
  1730. * Try aggregation if it's a unicast data frame
  1731. * and the destination is HT capable.
  1732. */
  1733. ath_tx_send_ampdu(sc, txq, tid, skb, txctl);
  1734. goto out;
  1735. }
  1736. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1737. if (!bf) {
  1738. ath_txq_skb_done(sc, txq, skb);
  1739. if (txctl->paprd)
  1740. dev_kfree_skb_any(skb);
  1741. else
  1742. ieee80211_free_txskb(sc->hw, skb);
  1743. goto out;
  1744. }
  1745. bf->bf_state.bfs_paprd = txctl->paprd;
  1746. if (txctl->paprd)
  1747. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1748. ath_set_rates(vif, sta, bf);
  1749. ath_tx_send_normal(sc, txq, tid, skb);
  1750. out:
  1751. ath_txq_unlock(sc, txq);
  1752. return 0;
  1753. }
  1754. void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
  1755. struct sk_buff *skb)
  1756. {
  1757. struct ath_softc *sc = hw->priv;
  1758. struct ath_tx_control txctl = {
  1759. .txq = sc->beacon.cabq
  1760. };
  1761. struct ath_tx_info info = {};
  1762. struct ieee80211_hdr *hdr;
  1763. struct ath_buf *bf_tail = NULL;
  1764. struct ath_buf *bf;
  1765. LIST_HEAD(bf_q);
  1766. int duration = 0;
  1767. int max_duration;
  1768. max_duration =
  1769. sc->cur_beacon_conf.beacon_interval * 1000 *
  1770. sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
  1771. do {
  1772. struct ath_frame_info *fi = get_frame_info(skb);
  1773. if (ath_tx_prepare(hw, skb, &txctl))
  1774. break;
  1775. bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
  1776. if (!bf)
  1777. break;
  1778. bf->bf_lastbf = bf;
  1779. ath_set_rates(vif, NULL, bf);
  1780. ath_buf_set_rate(sc, bf, &info, fi->framelen);
  1781. duration += info.rates[0].PktDuration;
  1782. if (bf_tail)
  1783. bf_tail->bf_next = bf;
  1784. list_add_tail(&bf->list, &bf_q);
  1785. bf_tail = bf;
  1786. skb = NULL;
  1787. if (duration > max_duration)
  1788. break;
  1789. skb = ieee80211_get_buffered_bc(hw, vif);
  1790. } while(skb);
  1791. if (skb)
  1792. ieee80211_free_txskb(hw, skb);
  1793. if (list_empty(&bf_q))
  1794. return;
  1795. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1796. hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
  1797. if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
  1798. hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
  1799. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  1800. sizeof(*hdr), DMA_TO_DEVICE);
  1801. }
  1802. ath_txq_lock(sc, txctl.txq);
  1803. ath_tx_fill_desc(sc, bf, txctl.txq, 0);
  1804. ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
  1805. TX_STAT_INC(txctl.txq->axq_qnum, queued);
  1806. ath_txq_unlock(sc, txctl.txq);
  1807. }
  1808. /*****************/
  1809. /* TX Completion */
  1810. /*****************/
  1811. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1812. int tx_flags, struct ath_txq *txq)
  1813. {
  1814. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1815. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1816. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1817. int padpos, padsize;
  1818. unsigned long flags;
  1819. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1820. if (sc->sc_ah->caldata)
  1821. sc->sc_ah->caldata->paprd_packet_sent = true;
  1822. if (!(tx_flags & ATH_TX_ERROR))
  1823. /* Frame was ACKed */
  1824. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1825. padpos = ieee80211_hdrlen(hdr->frame_control);
  1826. padsize = padpos & 3;
  1827. if (padsize && skb->len>padpos+padsize) {
  1828. /*
  1829. * Remove MAC header padding before giving the frame back to
  1830. * mac80211.
  1831. */
  1832. memmove(skb->data + padsize, skb->data, padpos);
  1833. skb_pull(skb, padsize);
  1834. }
  1835. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1836. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1837. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1838. ath_dbg(common, PS,
  1839. "Going back to sleep after having received TX status (0x%lx)\n",
  1840. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1841. PS_WAIT_FOR_CAB |
  1842. PS_WAIT_FOR_PSPOLL_DATA |
  1843. PS_WAIT_FOR_TX_ACK));
  1844. }
  1845. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1846. __skb_queue_tail(&txq->complete_q, skb);
  1847. ath_txq_skb_done(sc, txq, skb);
  1848. }
  1849. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1850. struct ath_txq *txq, struct list_head *bf_q,
  1851. struct ath_tx_status *ts, int txok)
  1852. {
  1853. struct sk_buff *skb = bf->bf_mpdu;
  1854. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1855. unsigned long flags;
  1856. int tx_flags = 0;
  1857. if (!txok)
  1858. tx_flags |= ATH_TX_ERROR;
  1859. if (ts->ts_status & ATH9K_TXERR_FILT)
  1860. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1861. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1862. bf->bf_buf_addr = 0;
  1863. if (bf->bf_state.bfs_paprd) {
  1864. if (time_after(jiffies,
  1865. bf->bf_state.bfs_paprd_timestamp +
  1866. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1867. dev_kfree_skb_any(skb);
  1868. else
  1869. complete(&sc->paprd_complete);
  1870. } else {
  1871. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1872. ath_tx_complete(sc, skb, tx_flags, txq);
  1873. }
  1874. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1875. * accidentally reference it later.
  1876. */
  1877. bf->bf_mpdu = NULL;
  1878. /*
  1879. * Return the list of ath_buf of this mpdu to free queue
  1880. */
  1881. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1882. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1883. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1884. }
  1885. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1886. struct ath_tx_status *ts, int nframes, int nbad,
  1887. int txok)
  1888. {
  1889. struct sk_buff *skb = bf->bf_mpdu;
  1890. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1891. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1892. struct ieee80211_hw *hw = sc->hw;
  1893. struct ath_hw *ah = sc->sc_ah;
  1894. u8 i, tx_rateindex;
  1895. if (txok)
  1896. tx_info->status.ack_signal = ts->ts_rssi;
  1897. tx_rateindex = ts->ts_rateindex;
  1898. WARN_ON(tx_rateindex >= hw->max_rates);
  1899. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1900. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1901. BUG_ON(nbad > nframes);
  1902. }
  1903. tx_info->status.ampdu_len = nframes;
  1904. tx_info->status.ampdu_ack_len = nframes - nbad;
  1905. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1906. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1907. /*
  1908. * If an underrun error is seen assume it as an excessive
  1909. * retry only if max frame trigger level has been reached
  1910. * (2 KB for single stream, and 4 KB for dual stream).
  1911. * Adjust the long retry as if the frame was tried
  1912. * hw->max_rate_tries times to affect how rate control updates
  1913. * PER for the failed rate.
  1914. * In case of congestion on the bus penalizing this type of
  1915. * underruns should help hardware actually transmit new frames
  1916. * successfully by eventually preferring slower rates.
  1917. * This itself should also alleviate congestion on the bus.
  1918. */
  1919. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1920. ATH9K_TX_DELIM_UNDERRUN)) &&
  1921. ieee80211_is_data(hdr->frame_control) &&
  1922. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1923. tx_info->status.rates[tx_rateindex].count =
  1924. hw->max_rate_tries;
  1925. }
  1926. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1927. tx_info->status.rates[i].count = 0;
  1928. tx_info->status.rates[i].idx = -1;
  1929. }
  1930. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1931. }
  1932. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1933. {
  1934. struct ath_hw *ah = sc->sc_ah;
  1935. struct ath_common *common = ath9k_hw_common(ah);
  1936. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1937. struct list_head bf_head;
  1938. struct ath_desc *ds;
  1939. struct ath_tx_status ts;
  1940. int status;
  1941. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  1942. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1943. txq->axq_link);
  1944. ath_txq_lock(sc, txq);
  1945. for (;;) {
  1946. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1947. break;
  1948. if (list_empty(&txq->axq_q)) {
  1949. txq->axq_link = NULL;
  1950. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1951. ath_txq_schedule(sc, txq);
  1952. break;
  1953. }
  1954. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1955. /*
  1956. * There is a race condition that a BH gets scheduled
  1957. * after sw writes TxE and before hw re-load the last
  1958. * descriptor to get the newly chained one.
  1959. * Software must keep the last DONE descriptor as a
  1960. * holding descriptor - software does so by marking
  1961. * it with the STALE flag.
  1962. */
  1963. bf_held = NULL;
  1964. if (bf->bf_stale) {
  1965. bf_held = bf;
  1966. if (list_is_last(&bf_held->list, &txq->axq_q))
  1967. break;
  1968. bf = list_entry(bf_held->list.next, struct ath_buf,
  1969. list);
  1970. }
  1971. lastbf = bf->bf_lastbf;
  1972. ds = lastbf->bf_desc;
  1973. memset(&ts, 0, sizeof(ts));
  1974. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1975. if (status == -EINPROGRESS)
  1976. break;
  1977. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1978. /*
  1979. * Remove ath_buf's of the same transmit unit from txq,
  1980. * however leave the last descriptor back as the holding
  1981. * descriptor for hw.
  1982. */
  1983. lastbf->bf_stale = true;
  1984. INIT_LIST_HEAD(&bf_head);
  1985. if (!list_is_singular(&lastbf->list))
  1986. list_cut_position(&bf_head,
  1987. &txq->axq_q, lastbf->list.prev);
  1988. if (bf_held) {
  1989. list_del(&bf_held->list);
  1990. ath_tx_return_buffer(sc, bf_held);
  1991. }
  1992. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1993. }
  1994. ath_txq_unlock_complete(sc, txq);
  1995. }
  1996. void ath_tx_tasklet(struct ath_softc *sc)
  1997. {
  1998. struct ath_hw *ah = sc->sc_ah;
  1999. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  2000. int i;
  2001. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  2002. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  2003. ath_tx_processq(sc, &sc->tx.txq[i]);
  2004. }
  2005. }
  2006. void ath_tx_edma_tasklet(struct ath_softc *sc)
  2007. {
  2008. struct ath_tx_status ts;
  2009. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2010. struct ath_hw *ah = sc->sc_ah;
  2011. struct ath_txq *txq;
  2012. struct ath_buf *bf, *lastbf;
  2013. struct list_head bf_head;
  2014. struct list_head *fifo_list;
  2015. int status;
  2016. for (;;) {
  2017. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  2018. break;
  2019. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  2020. if (status == -EINPROGRESS)
  2021. break;
  2022. if (status == -EIO) {
  2023. ath_dbg(common, XMIT, "Error processing tx status\n");
  2024. break;
  2025. }
  2026. /* Process beacon completions separately */
  2027. if (ts.qid == sc->beacon.beaconq) {
  2028. sc->beacon.tx_processed = true;
  2029. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  2030. continue;
  2031. }
  2032. txq = &sc->tx.txq[ts.qid];
  2033. ath_txq_lock(sc, txq);
  2034. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  2035. fifo_list = &txq->txq_fifo[txq->txq_tailidx];
  2036. if (list_empty(fifo_list)) {
  2037. ath_txq_unlock(sc, txq);
  2038. return;
  2039. }
  2040. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2041. if (bf->bf_stale) {
  2042. list_del(&bf->list);
  2043. ath_tx_return_buffer(sc, bf);
  2044. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2045. }
  2046. lastbf = bf->bf_lastbf;
  2047. INIT_LIST_HEAD(&bf_head);
  2048. if (list_is_last(&lastbf->list, fifo_list)) {
  2049. list_splice_tail_init(fifo_list, &bf_head);
  2050. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  2051. if (!list_empty(&txq->axq_q)) {
  2052. struct list_head bf_q;
  2053. INIT_LIST_HEAD(&bf_q);
  2054. txq->axq_link = NULL;
  2055. list_splice_tail_init(&txq->axq_q, &bf_q);
  2056. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  2057. }
  2058. } else {
  2059. lastbf->bf_stale = true;
  2060. if (bf != lastbf)
  2061. list_cut_position(&bf_head, fifo_list,
  2062. lastbf->list.prev);
  2063. }
  2064. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2065. ath_txq_unlock_complete(sc, txq);
  2066. }
  2067. }
  2068. /*****************/
  2069. /* Init, Cleanup */
  2070. /*****************/
  2071. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  2072. {
  2073. struct ath_descdma *dd = &sc->txsdma;
  2074. u8 txs_len = sc->sc_ah->caps.txs_len;
  2075. dd->dd_desc_len = size * txs_len;
  2076. dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
  2077. &dd->dd_desc_paddr, GFP_KERNEL);
  2078. if (!dd->dd_desc)
  2079. return -ENOMEM;
  2080. return 0;
  2081. }
  2082. static int ath_tx_edma_init(struct ath_softc *sc)
  2083. {
  2084. int err;
  2085. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  2086. if (!err)
  2087. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  2088. sc->txsdma.dd_desc_paddr,
  2089. ATH_TXSTATUS_RING_SIZE);
  2090. return err;
  2091. }
  2092. int ath_tx_init(struct ath_softc *sc, int nbufs)
  2093. {
  2094. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2095. int error = 0;
  2096. spin_lock_init(&sc->tx.txbuflock);
  2097. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  2098. "tx", nbufs, 1, 1);
  2099. if (error != 0) {
  2100. ath_err(common,
  2101. "Failed to allocate tx descriptors: %d\n", error);
  2102. return error;
  2103. }
  2104. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  2105. "beacon", ATH_BCBUF, 1, 1);
  2106. if (error != 0) {
  2107. ath_err(common,
  2108. "Failed to allocate beacon descriptors: %d\n", error);
  2109. return error;
  2110. }
  2111. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  2112. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  2113. error = ath_tx_edma_init(sc);
  2114. return error;
  2115. }
  2116. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  2117. {
  2118. struct ath_atx_tid *tid;
  2119. struct ath_atx_ac *ac;
  2120. int tidno, acno;
  2121. for (tidno = 0, tid = &an->tid[tidno];
  2122. tidno < IEEE80211_NUM_TIDS;
  2123. tidno++, tid++) {
  2124. tid->an = an;
  2125. tid->tidno = tidno;
  2126. tid->seq_start = tid->seq_next = 0;
  2127. tid->baw_size = WME_MAX_BA;
  2128. tid->baw_head = tid->baw_tail = 0;
  2129. tid->sched = false;
  2130. tid->paused = false;
  2131. tid->active = false;
  2132. __skb_queue_head_init(&tid->buf_q);
  2133. acno = TID_TO_WME_AC(tidno);
  2134. tid->ac = &an->ac[acno];
  2135. }
  2136. for (acno = 0, ac = &an->ac[acno];
  2137. acno < IEEE80211_NUM_ACS; acno++, ac++) {
  2138. ac->sched = false;
  2139. ac->txq = sc->tx.txq_map[acno];
  2140. INIT_LIST_HEAD(&ac->tid_q);
  2141. }
  2142. }
  2143. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2144. {
  2145. struct ath_atx_ac *ac;
  2146. struct ath_atx_tid *tid;
  2147. struct ath_txq *txq;
  2148. int tidno;
  2149. for (tidno = 0, tid = &an->tid[tidno];
  2150. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  2151. ac = tid->ac;
  2152. txq = ac->txq;
  2153. ath_txq_lock(sc, txq);
  2154. if (tid->sched) {
  2155. list_del(&tid->list);
  2156. tid->sched = false;
  2157. }
  2158. if (ac->sched) {
  2159. list_del(&ac->list);
  2160. tid->ac->sched = false;
  2161. }
  2162. ath_tid_drain(sc, txq, tid);
  2163. tid->active = false;
  2164. ath_txq_unlock(sc, txq);
  2165. }
  2166. }