hw-me.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586
  1. /*
  2. *
  3. * Intel Management Engine Interface (Intel MEI) Linux driver
  4. * Copyright (c) 2003-2012, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. */
  16. #include <linux/pci.h>
  17. #include <linux/kthread.h>
  18. #include <linux/interrupt.h>
  19. #include "mei_dev.h"
  20. #include "hw-me.h"
  21. #include "hbm.h"
  22. /**
  23. * mei_me_reg_read - Reads 32bit data from the mei device
  24. *
  25. * @dev: the device structure
  26. * @offset: offset from which to read the data
  27. *
  28. * returns register value (u32)
  29. */
  30. static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
  31. unsigned long offset)
  32. {
  33. return ioread32(hw->mem_addr + offset);
  34. }
  35. /**
  36. * mei_me_reg_write - Writes 32bit data to the mei device
  37. *
  38. * @dev: the device structure
  39. * @offset: offset from which to write the data
  40. * @value: register value to write (u32)
  41. */
  42. static inline void mei_me_reg_write(const struct mei_me_hw *hw,
  43. unsigned long offset, u32 value)
  44. {
  45. iowrite32(value, hw->mem_addr + offset);
  46. }
  47. /**
  48. * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
  49. * read window register
  50. *
  51. * @dev: the device structure
  52. *
  53. * returns ME_CB_RW register value (u32)
  54. */
  55. static u32 mei_me_mecbrw_read(const struct mei_device *dev)
  56. {
  57. return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
  58. }
  59. /**
  60. * mei_me_mecsr_read - Reads 32bit data from the ME CSR
  61. *
  62. * @dev: the device structure
  63. *
  64. * returns ME_CSR_HA register value (u32)
  65. */
  66. static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
  67. {
  68. return mei_me_reg_read(hw, ME_CSR_HA);
  69. }
  70. /**
  71. * mei_hcsr_read - Reads 32bit data from the host CSR
  72. *
  73. * @dev: the device structure
  74. *
  75. * returns H_CSR register value (u32)
  76. */
  77. static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
  78. {
  79. return mei_me_reg_read(hw, H_CSR);
  80. }
  81. /**
  82. * mei_hcsr_set - writes H_CSR register to the mei device,
  83. * and ignores the H_IS bit for it is write-one-to-zero.
  84. *
  85. * @dev: the device structure
  86. */
  87. static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
  88. {
  89. hcsr &= ~H_IS;
  90. mei_me_reg_write(hw, H_CSR, hcsr);
  91. }
  92. /**
  93. * mei_me_hw_config - configure hw dependent settings
  94. *
  95. * @dev: mei device
  96. */
  97. static void mei_me_hw_config(struct mei_device *dev)
  98. {
  99. u32 hcsr = mei_hcsr_read(to_me_hw(dev));
  100. /* Doesn't change in runtime */
  101. dev->hbuf_depth = (hcsr & H_CBD) >> 24;
  102. }
  103. /**
  104. * mei_clear_interrupts - clear and stop interrupts
  105. *
  106. * @dev: the device structure
  107. */
  108. static void mei_me_intr_clear(struct mei_device *dev)
  109. {
  110. struct mei_me_hw *hw = to_me_hw(dev);
  111. u32 hcsr = mei_hcsr_read(hw);
  112. if ((hcsr & H_IS) == H_IS)
  113. mei_me_reg_write(hw, H_CSR, hcsr);
  114. }
  115. /**
  116. * mei_me_intr_enable - enables mei device interrupts
  117. *
  118. * @dev: the device structure
  119. */
  120. static void mei_me_intr_enable(struct mei_device *dev)
  121. {
  122. struct mei_me_hw *hw = to_me_hw(dev);
  123. u32 hcsr = mei_hcsr_read(hw);
  124. hcsr |= H_IE;
  125. mei_hcsr_set(hw, hcsr);
  126. }
  127. /**
  128. * mei_disable_interrupts - disables mei device interrupts
  129. *
  130. * @dev: the device structure
  131. */
  132. static void mei_me_intr_disable(struct mei_device *dev)
  133. {
  134. struct mei_me_hw *hw = to_me_hw(dev);
  135. u32 hcsr = mei_hcsr_read(hw);
  136. hcsr &= ~H_IE;
  137. mei_hcsr_set(hw, hcsr);
  138. }
  139. /**
  140. * mei_me_hw_reset_release - release device from the reset
  141. *
  142. * @dev: the device structure
  143. */
  144. static void mei_me_hw_reset_release(struct mei_device *dev)
  145. {
  146. struct mei_me_hw *hw = to_me_hw(dev);
  147. u32 hcsr = mei_hcsr_read(hw);
  148. hcsr |= H_IG;
  149. hcsr &= ~H_RST;
  150. mei_hcsr_set(hw, hcsr);
  151. }
  152. /**
  153. * mei_me_hw_reset - resets fw via mei csr register.
  154. *
  155. * @dev: the device structure
  156. * @intr_enable: if interrupt should be enabled after reset.
  157. */
  158. static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
  159. {
  160. struct mei_me_hw *hw = to_me_hw(dev);
  161. u32 hcsr = mei_hcsr_read(hw);
  162. dev_dbg(&dev->pdev->dev, "before reset HCSR = 0x%08x.\n", hcsr);
  163. hcsr |= (H_RST | H_IG);
  164. if (intr_enable)
  165. hcsr |= H_IE;
  166. else
  167. hcsr |= ~H_IE;
  168. mei_hcsr_set(hw, hcsr);
  169. if (dev->dev_state == MEI_DEV_POWER_DOWN)
  170. mei_me_hw_reset_release(dev);
  171. dev_dbg(&dev->pdev->dev, "current HCSR = 0x%08x.\n", mei_hcsr_read(hw));
  172. return 0;
  173. }
  174. /**
  175. * mei_me_host_set_ready - enable device
  176. *
  177. * @dev - mei device
  178. * returns bool
  179. */
  180. static void mei_me_host_set_ready(struct mei_device *dev)
  181. {
  182. struct mei_me_hw *hw = to_me_hw(dev);
  183. hw->host_hw_state |= H_IE | H_IG | H_RDY;
  184. mei_hcsr_set(hw, hw->host_hw_state);
  185. }
  186. /**
  187. * mei_me_host_is_ready - check whether the host has turned ready
  188. *
  189. * @dev - mei device
  190. * returns bool
  191. */
  192. static bool mei_me_host_is_ready(struct mei_device *dev)
  193. {
  194. struct mei_me_hw *hw = to_me_hw(dev);
  195. hw->host_hw_state = mei_hcsr_read(hw);
  196. return (hw->host_hw_state & H_RDY) == H_RDY;
  197. }
  198. /**
  199. * mei_me_hw_is_ready - check whether the me(hw) has turned ready
  200. *
  201. * @dev - mei device
  202. * returns bool
  203. */
  204. static bool mei_me_hw_is_ready(struct mei_device *dev)
  205. {
  206. struct mei_me_hw *hw = to_me_hw(dev);
  207. hw->me_hw_state = mei_me_mecsr_read(hw);
  208. return (hw->me_hw_state & ME_RDY_HRA) == ME_RDY_HRA;
  209. }
  210. static int mei_me_hw_ready_wait(struct mei_device *dev)
  211. {
  212. int err;
  213. if (mei_me_hw_is_ready(dev))
  214. return 0;
  215. dev->recvd_hw_ready = false;
  216. mutex_unlock(&dev->device_lock);
  217. err = wait_event_interruptible_timeout(dev->wait_hw_ready,
  218. dev->recvd_hw_ready,
  219. mei_secs_to_jiffies(MEI_INTEROP_TIMEOUT));
  220. mutex_lock(&dev->device_lock);
  221. if (!err && !dev->recvd_hw_ready) {
  222. if (!err)
  223. err = -ETIMEDOUT;
  224. dev_err(&dev->pdev->dev,
  225. "wait hw ready failed. status = %d\n", err);
  226. return err;
  227. }
  228. dev->recvd_hw_ready = false;
  229. return 0;
  230. }
  231. static int mei_me_hw_start(struct mei_device *dev)
  232. {
  233. int ret = mei_me_hw_ready_wait(dev);
  234. if (ret)
  235. return ret;
  236. dev_dbg(&dev->pdev->dev, "hw is ready\n");
  237. mei_me_host_set_ready(dev);
  238. return ret;
  239. }
  240. /**
  241. * mei_hbuf_filled_slots - gets number of device filled buffer slots
  242. *
  243. * @dev: the device structure
  244. *
  245. * returns number of filled slots
  246. */
  247. static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
  248. {
  249. struct mei_me_hw *hw = to_me_hw(dev);
  250. char read_ptr, write_ptr;
  251. hw->host_hw_state = mei_hcsr_read(hw);
  252. read_ptr = (char) ((hw->host_hw_state & H_CBRP) >> 8);
  253. write_ptr = (char) ((hw->host_hw_state & H_CBWP) >> 16);
  254. return (unsigned char) (write_ptr - read_ptr);
  255. }
  256. /**
  257. * mei_me_hbuf_is_empty - checks if host buffer is empty.
  258. *
  259. * @dev: the device structure
  260. *
  261. * returns true if empty, false - otherwise.
  262. */
  263. static bool mei_me_hbuf_is_empty(struct mei_device *dev)
  264. {
  265. return mei_hbuf_filled_slots(dev) == 0;
  266. }
  267. /**
  268. * mei_me_hbuf_empty_slots - counts write empty slots.
  269. *
  270. * @dev: the device structure
  271. *
  272. * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise empty slots count
  273. */
  274. static int mei_me_hbuf_empty_slots(struct mei_device *dev)
  275. {
  276. unsigned char filled_slots, empty_slots;
  277. filled_slots = mei_hbuf_filled_slots(dev);
  278. empty_slots = dev->hbuf_depth - filled_slots;
  279. /* check for overflow */
  280. if (filled_slots > dev->hbuf_depth)
  281. return -EOVERFLOW;
  282. return empty_slots;
  283. }
  284. static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
  285. {
  286. return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
  287. }
  288. /**
  289. * mei_write_message - writes a message to mei device.
  290. *
  291. * @dev: the device structure
  292. * @header: mei HECI header of message
  293. * @buf: message payload will be written
  294. *
  295. * This function returns -EIO if write has failed
  296. */
  297. static int mei_me_write_message(struct mei_device *dev,
  298. struct mei_msg_hdr *header,
  299. unsigned char *buf)
  300. {
  301. struct mei_me_hw *hw = to_me_hw(dev);
  302. unsigned long rem;
  303. unsigned long length = header->length;
  304. u32 *reg_buf = (u32 *)buf;
  305. u32 hcsr;
  306. u32 dw_cnt;
  307. int i;
  308. int empty_slots;
  309. dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
  310. empty_slots = mei_hbuf_empty_slots(dev);
  311. dev_dbg(&dev->pdev->dev, "empty slots = %hu.\n", empty_slots);
  312. dw_cnt = mei_data2slots(length);
  313. if (empty_slots < 0 || dw_cnt > empty_slots)
  314. return -EIO;
  315. mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));
  316. for (i = 0; i < length / 4; i++)
  317. mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);
  318. rem = length & 0x3;
  319. if (rem > 0) {
  320. u32 reg = 0;
  321. memcpy(&reg, &buf[length - rem], rem);
  322. mei_me_reg_write(hw, H_CB_WW, reg);
  323. }
  324. hcsr = mei_hcsr_read(hw) | H_IG;
  325. mei_hcsr_set(hw, hcsr);
  326. if (!mei_me_hw_is_ready(dev))
  327. return -EIO;
  328. return 0;
  329. }
  330. /**
  331. * mei_me_count_full_read_slots - counts read full slots.
  332. *
  333. * @dev: the device structure
  334. *
  335. * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise filled slots count
  336. */
  337. static int mei_me_count_full_read_slots(struct mei_device *dev)
  338. {
  339. struct mei_me_hw *hw = to_me_hw(dev);
  340. char read_ptr, write_ptr;
  341. unsigned char buffer_depth, filled_slots;
  342. hw->me_hw_state = mei_me_mecsr_read(hw);
  343. buffer_depth = (unsigned char)((hw->me_hw_state & ME_CBD_HRA) >> 24);
  344. read_ptr = (char) ((hw->me_hw_state & ME_CBRP_HRA) >> 8);
  345. write_ptr = (char) ((hw->me_hw_state & ME_CBWP_HRA) >> 16);
  346. filled_slots = (unsigned char) (write_ptr - read_ptr);
  347. /* check for overflow */
  348. if (filled_slots > buffer_depth)
  349. return -EOVERFLOW;
  350. dev_dbg(&dev->pdev->dev, "filled_slots =%08x\n", filled_slots);
  351. return (int)filled_slots;
  352. }
  353. /**
  354. * mei_me_read_slots - reads a message from mei device.
  355. *
  356. * @dev: the device structure
  357. * @buffer: message buffer will be written
  358. * @buffer_length: message size will be read
  359. */
  360. static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
  361. unsigned long buffer_length)
  362. {
  363. struct mei_me_hw *hw = to_me_hw(dev);
  364. u32 *reg_buf = (u32 *)buffer;
  365. u32 hcsr;
  366. for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
  367. *reg_buf++ = mei_me_mecbrw_read(dev);
  368. if (buffer_length > 0) {
  369. u32 reg = mei_me_mecbrw_read(dev);
  370. memcpy(reg_buf, &reg, buffer_length);
  371. }
  372. hcsr = mei_hcsr_read(hw) | H_IG;
  373. mei_hcsr_set(hw, hcsr);
  374. return 0;
  375. }
  376. /**
  377. * mei_me_irq_quick_handler - The ISR of the MEI device
  378. *
  379. * @irq: The irq number
  380. * @dev_id: pointer to the device structure
  381. *
  382. * returns irqreturn_t
  383. */
  384. irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
  385. {
  386. struct mei_device *dev = (struct mei_device *) dev_id;
  387. struct mei_me_hw *hw = to_me_hw(dev);
  388. u32 csr_reg = mei_hcsr_read(hw);
  389. if ((csr_reg & H_IS) != H_IS)
  390. return IRQ_NONE;
  391. /* clear H_IS bit in H_CSR */
  392. mei_me_reg_write(hw, H_CSR, csr_reg);
  393. return IRQ_WAKE_THREAD;
  394. }
  395. /**
  396. * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
  397. * processing.
  398. *
  399. * @irq: The irq number
  400. * @dev_id: pointer to the device structure
  401. *
  402. * returns irqreturn_t
  403. *
  404. */
  405. irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
  406. {
  407. struct mei_device *dev = (struct mei_device *) dev_id;
  408. struct mei_cl_cb complete_list;
  409. s32 slots;
  410. int rets;
  411. dev_dbg(&dev->pdev->dev, "function called after ISR to handle the interrupt processing.\n");
  412. /* initialize our complete list */
  413. mutex_lock(&dev->device_lock);
  414. mei_io_list_init(&complete_list);
  415. /* Ack the interrupt here
  416. * In case of MSI we don't go through the quick handler */
  417. if (pci_dev_msi_enabled(dev->pdev))
  418. mei_clear_interrupts(dev);
  419. /* check if ME wants a reset */
  420. if (!mei_hw_is_ready(dev) &&
  421. dev->dev_state != MEI_DEV_RESETTING &&
  422. dev->dev_state != MEI_DEV_INITIALIZING &&
  423. dev->dev_state != MEI_DEV_POWER_DOWN &&
  424. dev->dev_state != MEI_DEV_POWER_UP) {
  425. dev_dbg(&dev->pdev->dev, "FW not ready.\n");
  426. mei_reset(dev, 1);
  427. mutex_unlock(&dev->device_lock);
  428. return IRQ_HANDLED;
  429. }
  430. /* check if we need to start the dev */
  431. if (!mei_host_is_ready(dev)) {
  432. if (mei_hw_is_ready(dev)) {
  433. dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
  434. dev->recvd_hw_ready = true;
  435. wake_up_interruptible(&dev->wait_hw_ready);
  436. mutex_unlock(&dev->device_lock);
  437. return IRQ_HANDLED;
  438. } else {
  439. dev_dbg(&dev->pdev->dev, "Reset Completed.\n");
  440. mei_me_hw_reset_release(dev);
  441. mutex_unlock(&dev->device_lock);
  442. return IRQ_HANDLED;
  443. }
  444. }
  445. /* check slots available for reading */
  446. slots = mei_count_full_read_slots(dev);
  447. while (slots > 0) {
  448. /* we have urgent data to send so break the read */
  449. if (dev->wr_ext_msg.hdr.length)
  450. break;
  451. dev_dbg(&dev->pdev->dev, "slots =%08x\n", slots);
  452. dev_dbg(&dev->pdev->dev, "call mei_irq_read_handler.\n");
  453. rets = mei_irq_read_handler(dev, &complete_list, &slots);
  454. if (rets)
  455. goto end;
  456. }
  457. rets = mei_irq_write_handler(dev, &complete_list);
  458. end:
  459. dev_dbg(&dev->pdev->dev, "end of bottom half function.\n");
  460. dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
  461. mutex_unlock(&dev->device_lock);
  462. mei_irq_compl_handler(dev, &complete_list);
  463. return IRQ_HANDLED;
  464. }
  465. static const struct mei_hw_ops mei_me_hw_ops = {
  466. .host_is_ready = mei_me_host_is_ready,
  467. .hw_is_ready = mei_me_hw_is_ready,
  468. .hw_reset = mei_me_hw_reset,
  469. .hw_config = mei_me_hw_config,
  470. .hw_start = mei_me_hw_start,
  471. .intr_clear = mei_me_intr_clear,
  472. .intr_enable = mei_me_intr_enable,
  473. .intr_disable = mei_me_intr_disable,
  474. .hbuf_free_slots = mei_me_hbuf_empty_slots,
  475. .hbuf_is_ready = mei_me_hbuf_is_empty,
  476. .hbuf_max_len = mei_me_hbuf_max_len,
  477. .write = mei_me_write_message,
  478. .rdbuf_full_slots = mei_me_count_full_read_slots,
  479. .read_hdr = mei_me_mecbrw_read,
  480. .read = mei_me_read_slots
  481. };
  482. /**
  483. * mei_me_dev_init - allocates and initializes the mei device structure
  484. *
  485. * @pdev: The pci device structure
  486. *
  487. * returns The mei_device_device pointer on success, NULL on failure.
  488. */
  489. struct mei_device *mei_me_dev_init(struct pci_dev *pdev)
  490. {
  491. struct mei_device *dev;
  492. dev = kzalloc(sizeof(struct mei_device) +
  493. sizeof(struct mei_me_hw), GFP_KERNEL);
  494. if (!dev)
  495. return NULL;
  496. mei_device_init(dev);
  497. dev->ops = &mei_me_hw_ops;
  498. dev->pdev = pdev;
  499. return dev;
  500. }