book3s_64_mmu_hv.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * This program is distributed in the hope that it will be useful,
  7. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  8. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  9. * GNU General Public License for more details.
  10. *
  11. * You should have received a copy of the GNU General Public License
  12. * along with this program; if not, write to the Free Software
  13. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  14. *
  15. * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  16. */
  17. #include <linux/types.h>
  18. #include <linux/string.h>
  19. #include <linux/kvm.h>
  20. #include <linux/kvm_host.h>
  21. #include <linux/highmem.h>
  22. #include <linux/gfp.h>
  23. #include <linux/slab.h>
  24. #include <linux/hugetlb.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/srcu.h>
  27. #include <linux/anon_inodes.h>
  28. #include <linux/file.h>
  29. #include <asm/tlbflush.h>
  30. #include <asm/kvm_ppc.h>
  31. #include <asm/kvm_book3s.h>
  32. #include <asm/mmu-hash64.h>
  33. #include <asm/hvcall.h>
  34. #include <asm/synch.h>
  35. #include <asm/ppc-opcode.h>
  36. #include <asm/cputable.h>
  37. /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
  38. #define MAX_LPID_970 63
  39. /* Power architecture requires HPT is at least 256kB */
  40. #define PPC_MIN_HPT_ORDER 18
  41. static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
  42. long pte_index, unsigned long pteh,
  43. unsigned long ptel, unsigned long *pte_idx_ret);
  44. static void kvmppc_rmap_reset(struct kvm *kvm);
  45. long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
  46. {
  47. unsigned long hpt;
  48. struct revmap_entry *rev;
  49. struct kvmppc_linear_info *li;
  50. long order = kvm_hpt_order;
  51. if (htab_orderp) {
  52. order = *htab_orderp;
  53. if (order < PPC_MIN_HPT_ORDER)
  54. order = PPC_MIN_HPT_ORDER;
  55. }
  56. /*
  57. * If the user wants a different size from default,
  58. * try first to allocate it from the kernel page allocator.
  59. */
  60. hpt = 0;
  61. if (order != kvm_hpt_order) {
  62. hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
  63. __GFP_NOWARN, order - PAGE_SHIFT);
  64. if (!hpt)
  65. --order;
  66. }
  67. /* Next try to allocate from the preallocated pool */
  68. if (!hpt) {
  69. li = kvm_alloc_hpt();
  70. if (li) {
  71. hpt = (ulong)li->base_virt;
  72. kvm->arch.hpt_li = li;
  73. order = kvm_hpt_order;
  74. }
  75. }
  76. /* Lastly try successively smaller sizes from the page allocator */
  77. while (!hpt && order > PPC_MIN_HPT_ORDER) {
  78. hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
  79. __GFP_NOWARN, order - PAGE_SHIFT);
  80. if (!hpt)
  81. --order;
  82. }
  83. if (!hpt)
  84. return -ENOMEM;
  85. kvm->arch.hpt_virt = hpt;
  86. kvm->arch.hpt_order = order;
  87. /* HPTEs are 2**4 bytes long */
  88. kvm->arch.hpt_npte = 1ul << (order - 4);
  89. /* 128 (2**7) bytes in each HPTEG */
  90. kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
  91. /* Allocate reverse map array */
  92. rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
  93. if (!rev) {
  94. pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
  95. goto out_freehpt;
  96. }
  97. kvm->arch.revmap = rev;
  98. kvm->arch.sdr1 = __pa(hpt) | (order - 18);
  99. pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
  100. hpt, order, kvm->arch.lpid);
  101. if (htab_orderp)
  102. *htab_orderp = order;
  103. return 0;
  104. out_freehpt:
  105. if (kvm->arch.hpt_li)
  106. kvm_release_hpt(kvm->arch.hpt_li);
  107. else
  108. free_pages(hpt, order - PAGE_SHIFT);
  109. return -ENOMEM;
  110. }
  111. long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
  112. {
  113. long err = -EBUSY;
  114. long order;
  115. mutex_lock(&kvm->lock);
  116. if (kvm->arch.rma_setup_done) {
  117. kvm->arch.rma_setup_done = 0;
  118. /* order rma_setup_done vs. vcpus_running */
  119. smp_mb();
  120. if (atomic_read(&kvm->arch.vcpus_running)) {
  121. kvm->arch.rma_setup_done = 1;
  122. goto out;
  123. }
  124. }
  125. if (kvm->arch.hpt_virt) {
  126. order = kvm->arch.hpt_order;
  127. /* Set the entire HPT to 0, i.e. invalid HPTEs */
  128. memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
  129. /*
  130. * Reset all the reverse-mapping chains for all memslots
  131. */
  132. kvmppc_rmap_reset(kvm);
  133. /* Ensure that each vcpu will flush its TLB on next entry. */
  134. cpumask_setall(&kvm->arch.need_tlb_flush);
  135. *htab_orderp = order;
  136. err = 0;
  137. } else {
  138. err = kvmppc_alloc_hpt(kvm, htab_orderp);
  139. order = *htab_orderp;
  140. }
  141. out:
  142. mutex_unlock(&kvm->lock);
  143. return err;
  144. }
  145. void kvmppc_free_hpt(struct kvm *kvm)
  146. {
  147. kvmppc_free_lpid(kvm->arch.lpid);
  148. vfree(kvm->arch.revmap);
  149. if (kvm->arch.hpt_li)
  150. kvm_release_hpt(kvm->arch.hpt_li);
  151. else
  152. free_pages(kvm->arch.hpt_virt,
  153. kvm->arch.hpt_order - PAGE_SHIFT);
  154. }
  155. /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
  156. static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
  157. {
  158. return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
  159. }
  160. /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
  161. static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
  162. {
  163. return (pgsize == 0x10000) ? 0x1000 : 0;
  164. }
  165. void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
  166. unsigned long porder)
  167. {
  168. unsigned long i;
  169. unsigned long npages;
  170. unsigned long hp_v, hp_r;
  171. unsigned long addr, hash;
  172. unsigned long psize;
  173. unsigned long hp0, hp1;
  174. unsigned long idx_ret;
  175. long ret;
  176. struct kvm *kvm = vcpu->kvm;
  177. psize = 1ul << porder;
  178. npages = memslot->npages >> (porder - PAGE_SHIFT);
  179. /* VRMA can't be > 1TB */
  180. if (npages > 1ul << (40 - porder))
  181. npages = 1ul << (40 - porder);
  182. /* Can't use more than 1 HPTE per HPTEG */
  183. if (npages > kvm->arch.hpt_mask + 1)
  184. npages = kvm->arch.hpt_mask + 1;
  185. hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
  186. HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
  187. hp1 = hpte1_pgsize_encoding(psize) |
  188. HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
  189. for (i = 0; i < npages; ++i) {
  190. addr = i << porder;
  191. /* can't use hpt_hash since va > 64 bits */
  192. hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
  193. /*
  194. * We assume that the hash table is empty and no
  195. * vcpus are using it at this stage. Since we create
  196. * at most one HPTE per HPTEG, we just assume entry 7
  197. * is available and use it.
  198. */
  199. hash = (hash << 3) + 7;
  200. hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
  201. hp_r = hp1 | addr;
  202. ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
  203. &idx_ret);
  204. if (ret != H_SUCCESS) {
  205. pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
  206. addr, ret);
  207. break;
  208. }
  209. }
  210. }
  211. int kvmppc_mmu_hv_init(void)
  212. {
  213. unsigned long host_lpid, rsvd_lpid;
  214. if (!cpu_has_feature(CPU_FTR_HVMODE))
  215. return -EINVAL;
  216. /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
  217. if (cpu_has_feature(CPU_FTR_ARCH_206)) {
  218. host_lpid = mfspr(SPRN_LPID); /* POWER7 */
  219. rsvd_lpid = LPID_RSVD;
  220. } else {
  221. host_lpid = 0; /* PPC970 */
  222. rsvd_lpid = MAX_LPID_970;
  223. }
  224. kvmppc_init_lpid(rsvd_lpid + 1);
  225. kvmppc_claim_lpid(host_lpid);
  226. /* rsvd_lpid is reserved for use in partition switching */
  227. kvmppc_claim_lpid(rsvd_lpid);
  228. return 0;
  229. }
  230. void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
  231. {
  232. }
  233. static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
  234. {
  235. kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
  236. }
  237. /*
  238. * This is called to get a reference to a guest page if there isn't
  239. * one already in the memslot->arch.slot_phys[] array.
  240. */
  241. static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
  242. struct kvm_memory_slot *memslot,
  243. unsigned long psize)
  244. {
  245. unsigned long start;
  246. long np, err;
  247. struct page *page, *hpage, *pages[1];
  248. unsigned long s, pgsize;
  249. unsigned long *physp;
  250. unsigned int is_io, got, pgorder;
  251. struct vm_area_struct *vma;
  252. unsigned long pfn, i, npages;
  253. physp = memslot->arch.slot_phys;
  254. if (!physp)
  255. return -EINVAL;
  256. if (physp[gfn - memslot->base_gfn])
  257. return 0;
  258. is_io = 0;
  259. got = 0;
  260. page = NULL;
  261. pgsize = psize;
  262. err = -EINVAL;
  263. start = gfn_to_hva_memslot(memslot, gfn);
  264. /* Instantiate and get the page we want access to */
  265. np = get_user_pages_fast(start, 1, 1, pages);
  266. if (np != 1) {
  267. /* Look up the vma for the page */
  268. down_read(&current->mm->mmap_sem);
  269. vma = find_vma(current->mm, start);
  270. if (!vma || vma->vm_start > start ||
  271. start + psize > vma->vm_end ||
  272. !(vma->vm_flags & VM_PFNMAP))
  273. goto up_err;
  274. is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
  275. pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  276. /* check alignment of pfn vs. requested page size */
  277. if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
  278. goto up_err;
  279. up_read(&current->mm->mmap_sem);
  280. } else {
  281. page = pages[0];
  282. got = KVMPPC_GOT_PAGE;
  283. /* See if this is a large page */
  284. s = PAGE_SIZE;
  285. if (PageHuge(page)) {
  286. hpage = compound_head(page);
  287. s <<= compound_order(hpage);
  288. /* Get the whole large page if slot alignment is ok */
  289. if (s > psize && slot_is_aligned(memslot, s) &&
  290. !(memslot->userspace_addr & (s - 1))) {
  291. start &= ~(s - 1);
  292. pgsize = s;
  293. get_page(hpage);
  294. put_page(page);
  295. page = hpage;
  296. }
  297. }
  298. if (s < psize)
  299. goto out;
  300. pfn = page_to_pfn(page);
  301. }
  302. npages = pgsize >> PAGE_SHIFT;
  303. pgorder = __ilog2(npages);
  304. physp += (gfn - memslot->base_gfn) & ~(npages - 1);
  305. spin_lock(&kvm->arch.slot_phys_lock);
  306. for (i = 0; i < npages; ++i) {
  307. if (!physp[i]) {
  308. physp[i] = ((pfn + i) << PAGE_SHIFT) +
  309. got + is_io + pgorder;
  310. got = 0;
  311. }
  312. }
  313. spin_unlock(&kvm->arch.slot_phys_lock);
  314. err = 0;
  315. out:
  316. if (got)
  317. put_page(page);
  318. return err;
  319. up_err:
  320. up_read(&current->mm->mmap_sem);
  321. return err;
  322. }
  323. long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
  324. long pte_index, unsigned long pteh,
  325. unsigned long ptel, unsigned long *pte_idx_ret)
  326. {
  327. unsigned long psize, gpa, gfn;
  328. struct kvm_memory_slot *memslot;
  329. long ret;
  330. if (kvm->arch.using_mmu_notifiers)
  331. goto do_insert;
  332. psize = hpte_page_size(pteh, ptel);
  333. if (!psize)
  334. return H_PARAMETER;
  335. pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
  336. /* Find the memslot (if any) for this address */
  337. gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
  338. gfn = gpa >> PAGE_SHIFT;
  339. memslot = gfn_to_memslot(kvm, gfn);
  340. if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
  341. if (!slot_is_aligned(memslot, psize))
  342. return H_PARAMETER;
  343. if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
  344. return H_PARAMETER;
  345. }
  346. do_insert:
  347. /* Protect linux PTE lookup from page table destruction */
  348. rcu_read_lock_sched(); /* this disables preemption too */
  349. ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
  350. current->mm->pgd, false, pte_idx_ret);
  351. rcu_read_unlock_sched();
  352. if (ret == H_TOO_HARD) {
  353. /* this can't happen */
  354. pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
  355. ret = H_RESOURCE; /* or something */
  356. }
  357. return ret;
  358. }
  359. /*
  360. * We come here on a H_ENTER call from the guest when we are not
  361. * using mmu notifiers and we don't have the requested page pinned
  362. * already.
  363. */
  364. long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
  365. long pte_index, unsigned long pteh,
  366. unsigned long ptel)
  367. {
  368. return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
  369. pteh, ptel, &vcpu->arch.gpr[4]);
  370. }
  371. static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
  372. gva_t eaddr)
  373. {
  374. u64 mask;
  375. int i;
  376. for (i = 0; i < vcpu->arch.slb_nr; i++) {
  377. if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
  378. continue;
  379. if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
  380. mask = ESID_MASK_1T;
  381. else
  382. mask = ESID_MASK;
  383. if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
  384. return &vcpu->arch.slb[i];
  385. }
  386. return NULL;
  387. }
  388. static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
  389. unsigned long ea)
  390. {
  391. unsigned long ra_mask;
  392. ra_mask = hpte_page_size(v, r) - 1;
  393. return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
  394. }
  395. static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
  396. struct kvmppc_pte *gpte, bool data)
  397. {
  398. struct kvm *kvm = vcpu->kvm;
  399. struct kvmppc_slb *slbe;
  400. unsigned long slb_v;
  401. unsigned long pp, key;
  402. unsigned long v, gr;
  403. unsigned long *hptep;
  404. int index;
  405. int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
  406. /* Get SLB entry */
  407. if (virtmode) {
  408. slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
  409. if (!slbe)
  410. return -EINVAL;
  411. slb_v = slbe->origv;
  412. } else {
  413. /* real mode access */
  414. slb_v = vcpu->kvm->arch.vrma_slb_v;
  415. }
  416. /* Find the HPTE in the hash table */
  417. index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
  418. HPTE_V_VALID | HPTE_V_ABSENT);
  419. if (index < 0)
  420. return -ENOENT;
  421. hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  422. v = hptep[0] & ~HPTE_V_HVLOCK;
  423. gr = kvm->arch.revmap[index].guest_rpte;
  424. /* Unlock the HPTE */
  425. asm volatile("lwsync" : : : "memory");
  426. hptep[0] = v;
  427. gpte->eaddr = eaddr;
  428. gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
  429. /* Get PP bits and key for permission check */
  430. pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
  431. key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
  432. key &= slb_v;
  433. /* Calculate permissions */
  434. gpte->may_read = hpte_read_permission(pp, key);
  435. gpte->may_write = hpte_write_permission(pp, key);
  436. gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
  437. /* Storage key permission check for POWER7 */
  438. if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
  439. int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
  440. if (amrfield & 1)
  441. gpte->may_read = 0;
  442. if (amrfield & 2)
  443. gpte->may_write = 0;
  444. }
  445. /* Get the guest physical address */
  446. gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
  447. return 0;
  448. }
  449. /*
  450. * Quick test for whether an instruction is a load or a store.
  451. * If the instruction is a load or a store, then this will indicate
  452. * which it is, at least on server processors. (Embedded processors
  453. * have some external PID instructions that don't follow the rule
  454. * embodied here.) If the instruction isn't a load or store, then
  455. * this doesn't return anything useful.
  456. */
  457. static int instruction_is_store(unsigned int instr)
  458. {
  459. unsigned int mask;
  460. mask = 0x10000000;
  461. if ((instr & 0xfc000000) == 0x7c000000)
  462. mask = 0x100; /* major opcode 31 */
  463. return (instr & mask) != 0;
  464. }
  465. static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
  466. unsigned long gpa, gva_t ea, int is_store)
  467. {
  468. int ret;
  469. u32 last_inst;
  470. unsigned long srr0 = kvmppc_get_pc(vcpu);
  471. /* We try to load the last instruction. We don't let
  472. * emulate_instruction do it as it doesn't check what
  473. * kvmppc_ld returns.
  474. * If we fail, we just return to the guest and try executing it again.
  475. */
  476. if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
  477. ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
  478. if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
  479. return RESUME_GUEST;
  480. vcpu->arch.last_inst = last_inst;
  481. }
  482. /*
  483. * WARNING: We do not know for sure whether the instruction we just
  484. * read from memory is the same that caused the fault in the first
  485. * place. If the instruction we read is neither an load or a store,
  486. * then it can't access memory, so we don't need to worry about
  487. * enforcing access permissions. So, assuming it is a load or
  488. * store, we just check that its direction (load or store) is
  489. * consistent with the original fault, since that's what we
  490. * checked the access permissions against. If there is a mismatch
  491. * we just return and retry the instruction.
  492. */
  493. if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
  494. return RESUME_GUEST;
  495. /*
  496. * Emulated accesses are emulated by looking at the hash for
  497. * translation once, then performing the access later. The
  498. * translation could be invalidated in the meantime in which
  499. * point performing the subsequent memory access on the old
  500. * physical address could possibly be a security hole for the
  501. * guest (but not the host).
  502. *
  503. * This is less of an issue for MMIO stores since they aren't
  504. * globally visible. It could be an issue for MMIO loads to
  505. * a certain extent but we'll ignore it for now.
  506. */
  507. vcpu->arch.paddr_accessed = gpa;
  508. vcpu->arch.vaddr_accessed = ea;
  509. return kvmppc_emulate_mmio(run, vcpu);
  510. }
  511. int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
  512. unsigned long ea, unsigned long dsisr)
  513. {
  514. struct kvm *kvm = vcpu->kvm;
  515. unsigned long *hptep, hpte[3], r;
  516. unsigned long mmu_seq, psize, pte_size;
  517. unsigned long gpa, gfn, hva, pfn;
  518. struct kvm_memory_slot *memslot;
  519. unsigned long *rmap;
  520. struct revmap_entry *rev;
  521. struct page *page, *pages[1];
  522. long index, ret, npages;
  523. unsigned long is_io;
  524. unsigned int writing, write_ok;
  525. struct vm_area_struct *vma;
  526. unsigned long rcbits;
  527. /*
  528. * Real-mode code has already searched the HPT and found the
  529. * entry we're interested in. Lock the entry and check that
  530. * it hasn't changed. If it has, just return and re-execute the
  531. * instruction.
  532. */
  533. if (ea != vcpu->arch.pgfault_addr)
  534. return RESUME_GUEST;
  535. index = vcpu->arch.pgfault_index;
  536. hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  537. rev = &kvm->arch.revmap[index];
  538. preempt_disable();
  539. while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
  540. cpu_relax();
  541. hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
  542. hpte[1] = hptep[1];
  543. hpte[2] = r = rev->guest_rpte;
  544. asm volatile("lwsync" : : : "memory");
  545. hptep[0] = hpte[0];
  546. preempt_enable();
  547. if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
  548. hpte[1] != vcpu->arch.pgfault_hpte[1])
  549. return RESUME_GUEST;
  550. /* Translate the logical address and get the page */
  551. psize = hpte_page_size(hpte[0], r);
  552. gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
  553. gfn = gpa >> PAGE_SHIFT;
  554. memslot = gfn_to_memslot(kvm, gfn);
  555. /* No memslot means it's an emulated MMIO region */
  556. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  557. return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
  558. dsisr & DSISR_ISSTORE);
  559. if (!kvm->arch.using_mmu_notifiers)
  560. return -EFAULT; /* should never get here */
  561. /* used to check for invalidations in progress */
  562. mmu_seq = kvm->mmu_notifier_seq;
  563. smp_rmb();
  564. is_io = 0;
  565. pfn = 0;
  566. page = NULL;
  567. pte_size = PAGE_SIZE;
  568. writing = (dsisr & DSISR_ISSTORE) != 0;
  569. /* If writing != 0, then the HPTE must allow writing, if we get here */
  570. write_ok = writing;
  571. hva = gfn_to_hva_memslot(memslot, gfn);
  572. npages = get_user_pages_fast(hva, 1, writing, pages);
  573. if (npages < 1) {
  574. /* Check if it's an I/O mapping */
  575. down_read(&current->mm->mmap_sem);
  576. vma = find_vma(current->mm, hva);
  577. if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
  578. (vma->vm_flags & VM_PFNMAP)) {
  579. pfn = vma->vm_pgoff +
  580. ((hva - vma->vm_start) >> PAGE_SHIFT);
  581. pte_size = psize;
  582. is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
  583. write_ok = vma->vm_flags & VM_WRITE;
  584. }
  585. up_read(&current->mm->mmap_sem);
  586. if (!pfn)
  587. return -EFAULT;
  588. } else {
  589. page = pages[0];
  590. if (PageHuge(page)) {
  591. page = compound_head(page);
  592. pte_size <<= compound_order(page);
  593. }
  594. /* if the guest wants write access, see if that is OK */
  595. if (!writing && hpte_is_writable(r)) {
  596. unsigned int hugepage_shift;
  597. pte_t *ptep, pte;
  598. /*
  599. * We need to protect against page table destruction
  600. * while looking up and updating the pte.
  601. */
  602. rcu_read_lock_sched();
  603. ptep = find_linux_pte_or_hugepte(current->mm->pgd,
  604. hva, &hugepage_shift);
  605. if (ptep) {
  606. pte = kvmppc_read_update_linux_pte(ptep, 1,
  607. hugepage_shift);
  608. if (pte_write(pte))
  609. write_ok = 1;
  610. }
  611. rcu_read_unlock_sched();
  612. }
  613. pfn = page_to_pfn(page);
  614. }
  615. ret = -EFAULT;
  616. if (psize > pte_size)
  617. goto out_put;
  618. /* Check WIMG vs. the actual page we're accessing */
  619. if (!hpte_cache_flags_ok(r, is_io)) {
  620. if (is_io)
  621. return -EFAULT;
  622. /*
  623. * Allow guest to map emulated device memory as
  624. * uncacheable, but actually make it cacheable.
  625. */
  626. r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
  627. }
  628. /* Set the HPTE to point to pfn */
  629. r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
  630. if (hpte_is_writable(r) && !write_ok)
  631. r = hpte_make_readonly(r);
  632. ret = RESUME_GUEST;
  633. preempt_disable();
  634. while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
  635. cpu_relax();
  636. if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
  637. rev->guest_rpte != hpte[2])
  638. /* HPTE has been changed under us; let the guest retry */
  639. goto out_unlock;
  640. hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
  641. rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
  642. lock_rmap(rmap);
  643. /* Check if we might have been invalidated; let the guest retry if so */
  644. ret = RESUME_GUEST;
  645. if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
  646. unlock_rmap(rmap);
  647. goto out_unlock;
  648. }
  649. /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
  650. rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
  651. r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
  652. if (hptep[0] & HPTE_V_VALID) {
  653. /* HPTE was previously valid, so we need to invalidate it */
  654. unlock_rmap(rmap);
  655. hptep[0] |= HPTE_V_ABSENT;
  656. kvmppc_invalidate_hpte(kvm, hptep, index);
  657. /* don't lose previous R and C bits */
  658. r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
  659. } else {
  660. kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
  661. }
  662. hptep[1] = r;
  663. eieio();
  664. hptep[0] = hpte[0];
  665. asm volatile("ptesync" : : : "memory");
  666. preempt_enable();
  667. if (page && hpte_is_writable(r))
  668. SetPageDirty(page);
  669. out_put:
  670. if (page) {
  671. /*
  672. * We drop pages[0] here, not page because page might
  673. * have been set to the head page of a compound, but
  674. * we have to drop the reference on the correct tail
  675. * page to match the get inside gup()
  676. */
  677. put_page(pages[0]);
  678. }
  679. return ret;
  680. out_unlock:
  681. hptep[0] &= ~HPTE_V_HVLOCK;
  682. preempt_enable();
  683. goto out_put;
  684. }
  685. static void kvmppc_rmap_reset(struct kvm *kvm)
  686. {
  687. struct kvm_memslots *slots;
  688. struct kvm_memory_slot *memslot;
  689. int srcu_idx;
  690. srcu_idx = srcu_read_lock(&kvm->srcu);
  691. slots = kvm->memslots;
  692. kvm_for_each_memslot(memslot, slots) {
  693. /*
  694. * This assumes it is acceptable to lose reference and
  695. * change bits across a reset.
  696. */
  697. memset(memslot->arch.rmap, 0,
  698. memslot->npages * sizeof(*memslot->arch.rmap));
  699. }
  700. srcu_read_unlock(&kvm->srcu, srcu_idx);
  701. }
  702. static int kvm_handle_hva_range(struct kvm *kvm,
  703. unsigned long start,
  704. unsigned long end,
  705. int (*handler)(struct kvm *kvm,
  706. unsigned long *rmapp,
  707. unsigned long gfn))
  708. {
  709. int ret;
  710. int retval = 0;
  711. struct kvm_memslots *slots;
  712. struct kvm_memory_slot *memslot;
  713. slots = kvm_memslots(kvm);
  714. kvm_for_each_memslot(memslot, slots) {
  715. unsigned long hva_start, hva_end;
  716. gfn_t gfn, gfn_end;
  717. hva_start = max(start, memslot->userspace_addr);
  718. hva_end = min(end, memslot->userspace_addr +
  719. (memslot->npages << PAGE_SHIFT));
  720. if (hva_start >= hva_end)
  721. continue;
  722. /*
  723. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  724. * {gfn, gfn+1, ..., gfn_end-1}.
  725. */
  726. gfn = hva_to_gfn_memslot(hva_start, memslot);
  727. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  728. for (; gfn < gfn_end; ++gfn) {
  729. gfn_t gfn_offset = gfn - memslot->base_gfn;
  730. ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
  731. retval |= ret;
  732. }
  733. }
  734. return retval;
  735. }
  736. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  737. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  738. unsigned long gfn))
  739. {
  740. return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
  741. }
  742. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  743. unsigned long gfn)
  744. {
  745. struct revmap_entry *rev = kvm->arch.revmap;
  746. unsigned long h, i, j;
  747. unsigned long *hptep;
  748. unsigned long ptel, psize, rcbits;
  749. for (;;) {
  750. lock_rmap(rmapp);
  751. if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
  752. unlock_rmap(rmapp);
  753. break;
  754. }
  755. /*
  756. * To avoid an ABBA deadlock with the HPTE lock bit,
  757. * we can't spin on the HPTE lock while holding the
  758. * rmap chain lock.
  759. */
  760. i = *rmapp & KVMPPC_RMAP_INDEX;
  761. hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
  762. if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
  763. /* unlock rmap before spinning on the HPTE lock */
  764. unlock_rmap(rmapp);
  765. while (hptep[0] & HPTE_V_HVLOCK)
  766. cpu_relax();
  767. continue;
  768. }
  769. j = rev[i].forw;
  770. if (j == i) {
  771. /* chain is now empty */
  772. *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
  773. } else {
  774. /* remove i from chain */
  775. h = rev[i].back;
  776. rev[h].forw = j;
  777. rev[j].back = h;
  778. rev[i].forw = rev[i].back = i;
  779. *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
  780. }
  781. /* Now check and modify the HPTE */
  782. ptel = rev[i].guest_rpte;
  783. psize = hpte_page_size(hptep[0], ptel);
  784. if ((hptep[0] & HPTE_V_VALID) &&
  785. hpte_rpn(ptel, psize) == gfn) {
  786. if (kvm->arch.using_mmu_notifiers)
  787. hptep[0] |= HPTE_V_ABSENT;
  788. kvmppc_invalidate_hpte(kvm, hptep, i);
  789. /* Harvest R and C */
  790. rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
  791. *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
  792. if (rcbits & ~rev[i].guest_rpte) {
  793. rev[i].guest_rpte = ptel | rcbits;
  794. note_hpte_modification(kvm, &rev[i]);
  795. }
  796. }
  797. unlock_rmap(rmapp);
  798. hptep[0] &= ~HPTE_V_HVLOCK;
  799. }
  800. return 0;
  801. }
  802. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  803. {
  804. if (kvm->arch.using_mmu_notifiers)
  805. kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  806. return 0;
  807. }
  808. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  809. {
  810. if (kvm->arch.using_mmu_notifiers)
  811. kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
  812. return 0;
  813. }
  814. void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
  815. {
  816. unsigned long *rmapp;
  817. unsigned long gfn;
  818. unsigned long n;
  819. rmapp = memslot->arch.rmap;
  820. gfn = memslot->base_gfn;
  821. for (n = memslot->npages; n; --n) {
  822. /*
  823. * Testing the present bit without locking is OK because
  824. * the memslot has been marked invalid already, and hence
  825. * no new HPTEs referencing this page can be created,
  826. * thus the present bit can't go from 0 to 1.
  827. */
  828. if (*rmapp & KVMPPC_RMAP_PRESENT)
  829. kvm_unmap_rmapp(kvm, rmapp, gfn);
  830. ++rmapp;
  831. ++gfn;
  832. }
  833. }
  834. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  835. unsigned long gfn)
  836. {
  837. struct revmap_entry *rev = kvm->arch.revmap;
  838. unsigned long head, i, j;
  839. unsigned long *hptep;
  840. int ret = 0;
  841. retry:
  842. lock_rmap(rmapp);
  843. if (*rmapp & KVMPPC_RMAP_REFERENCED) {
  844. *rmapp &= ~KVMPPC_RMAP_REFERENCED;
  845. ret = 1;
  846. }
  847. if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
  848. unlock_rmap(rmapp);
  849. return ret;
  850. }
  851. i = head = *rmapp & KVMPPC_RMAP_INDEX;
  852. do {
  853. hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
  854. j = rev[i].forw;
  855. /* If this HPTE isn't referenced, ignore it */
  856. if (!(hptep[1] & HPTE_R_R))
  857. continue;
  858. if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
  859. /* unlock rmap before spinning on the HPTE lock */
  860. unlock_rmap(rmapp);
  861. while (hptep[0] & HPTE_V_HVLOCK)
  862. cpu_relax();
  863. goto retry;
  864. }
  865. /* Now check and modify the HPTE */
  866. if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
  867. kvmppc_clear_ref_hpte(kvm, hptep, i);
  868. if (!(rev[i].guest_rpte & HPTE_R_R)) {
  869. rev[i].guest_rpte |= HPTE_R_R;
  870. note_hpte_modification(kvm, &rev[i]);
  871. }
  872. ret = 1;
  873. }
  874. hptep[0] &= ~HPTE_V_HVLOCK;
  875. } while ((i = j) != head);
  876. unlock_rmap(rmapp);
  877. return ret;
  878. }
  879. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  880. {
  881. if (!kvm->arch.using_mmu_notifiers)
  882. return 0;
  883. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  884. }
  885. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  886. unsigned long gfn)
  887. {
  888. struct revmap_entry *rev = kvm->arch.revmap;
  889. unsigned long head, i, j;
  890. unsigned long *hp;
  891. int ret = 1;
  892. if (*rmapp & KVMPPC_RMAP_REFERENCED)
  893. return 1;
  894. lock_rmap(rmapp);
  895. if (*rmapp & KVMPPC_RMAP_REFERENCED)
  896. goto out;
  897. if (*rmapp & KVMPPC_RMAP_PRESENT) {
  898. i = head = *rmapp & KVMPPC_RMAP_INDEX;
  899. do {
  900. hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
  901. j = rev[i].forw;
  902. if (hp[1] & HPTE_R_R)
  903. goto out;
  904. } while ((i = j) != head);
  905. }
  906. ret = 0;
  907. out:
  908. unlock_rmap(rmapp);
  909. return ret;
  910. }
  911. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  912. {
  913. if (!kvm->arch.using_mmu_notifiers)
  914. return 0;
  915. return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
  916. }
  917. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  918. {
  919. if (!kvm->arch.using_mmu_notifiers)
  920. return;
  921. kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  922. }
  923. static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
  924. {
  925. struct revmap_entry *rev = kvm->arch.revmap;
  926. unsigned long head, i, j;
  927. unsigned long *hptep;
  928. int ret = 0;
  929. retry:
  930. lock_rmap(rmapp);
  931. if (*rmapp & KVMPPC_RMAP_CHANGED) {
  932. *rmapp &= ~KVMPPC_RMAP_CHANGED;
  933. ret = 1;
  934. }
  935. if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
  936. unlock_rmap(rmapp);
  937. return ret;
  938. }
  939. i = head = *rmapp & KVMPPC_RMAP_INDEX;
  940. do {
  941. hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
  942. j = rev[i].forw;
  943. if (!(hptep[1] & HPTE_R_C))
  944. continue;
  945. if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
  946. /* unlock rmap before spinning on the HPTE lock */
  947. unlock_rmap(rmapp);
  948. while (hptep[0] & HPTE_V_HVLOCK)
  949. cpu_relax();
  950. goto retry;
  951. }
  952. /* Now check and modify the HPTE */
  953. if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
  954. /* need to make it temporarily absent to clear C */
  955. hptep[0] |= HPTE_V_ABSENT;
  956. kvmppc_invalidate_hpte(kvm, hptep, i);
  957. hptep[1] &= ~HPTE_R_C;
  958. eieio();
  959. hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
  960. if (!(rev[i].guest_rpte & HPTE_R_C)) {
  961. rev[i].guest_rpte |= HPTE_R_C;
  962. note_hpte_modification(kvm, &rev[i]);
  963. }
  964. ret = 1;
  965. }
  966. hptep[0] &= ~HPTE_V_HVLOCK;
  967. } while ((i = j) != head);
  968. unlock_rmap(rmapp);
  969. return ret;
  970. }
  971. static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
  972. struct kvm_memory_slot *memslot,
  973. unsigned long *map)
  974. {
  975. unsigned long gfn;
  976. if (!vpa->dirty || !vpa->pinned_addr)
  977. return;
  978. gfn = vpa->gpa >> PAGE_SHIFT;
  979. if (gfn < memslot->base_gfn ||
  980. gfn >= memslot->base_gfn + memslot->npages)
  981. return;
  982. vpa->dirty = false;
  983. if (map)
  984. __set_bit_le(gfn - memslot->base_gfn, map);
  985. }
  986. long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
  987. unsigned long *map)
  988. {
  989. unsigned long i;
  990. unsigned long *rmapp;
  991. struct kvm_vcpu *vcpu;
  992. preempt_disable();
  993. rmapp = memslot->arch.rmap;
  994. for (i = 0; i < memslot->npages; ++i) {
  995. if (kvm_test_clear_dirty(kvm, rmapp) && map)
  996. __set_bit_le(i, map);
  997. ++rmapp;
  998. }
  999. /* Harvest dirty bits from VPA and DTL updates */
  1000. /* Note: we never modify the SLB shadow buffer areas */
  1001. kvm_for_each_vcpu(i, vcpu, kvm) {
  1002. spin_lock(&vcpu->arch.vpa_update_lock);
  1003. harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
  1004. harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
  1005. spin_unlock(&vcpu->arch.vpa_update_lock);
  1006. }
  1007. preempt_enable();
  1008. return 0;
  1009. }
  1010. void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
  1011. unsigned long *nb_ret)
  1012. {
  1013. struct kvm_memory_slot *memslot;
  1014. unsigned long gfn = gpa >> PAGE_SHIFT;
  1015. struct page *page, *pages[1];
  1016. int npages;
  1017. unsigned long hva, offset;
  1018. unsigned long pa;
  1019. unsigned long *physp;
  1020. int srcu_idx;
  1021. srcu_idx = srcu_read_lock(&kvm->srcu);
  1022. memslot = gfn_to_memslot(kvm, gfn);
  1023. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  1024. goto err;
  1025. if (!kvm->arch.using_mmu_notifiers) {
  1026. physp = memslot->arch.slot_phys;
  1027. if (!physp)
  1028. goto err;
  1029. physp += gfn - memslot->base_gfn;
  1030. pa = *physp;
  1031. if (!pa) {
  1032. if (kvmppc_get_guest_page(kvm, gfn, memslot,
  1033. PAGE_SIZE) < 0)
  1034. goto err;
  1035. pa = *physp;
  1036. }
  1037. page = pfn_to_page(pa >> PAGE_SHIFT);
  1038. get_page(page);
  1039. } else {
  1040. hva = gfn_to_hva_memslot(memslot, gfn);
  1041. npages = get_user_pages_fast(hva, 1, 1, pages);
  1042. if (npages < 1)
  1043. goto err;
  1044. page = pages[0];
  1045. }
  1046. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1047. offset = gpa & (PAGE_SIZE - 1);
  1048. if (nb_ret)
  1049. *nb_ret = PAGE_SIZE - offset;
  1050. return page_address(page) + offset;
  1051. err:
  1052. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1053. return NULL;
  1054. }
  1055. void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
  1056. bool dirty)
  1057. {
  1058. struct page *page = virt_to_page(va);
  1059. struct kvm_memory_slot *memslot;
  1060. unsigned long gfn;
  1061. unsigned long *rmap;
  1062. int srcu_idx;
  1063. put_page(page);
  1064. if (!dirty || !kvm->arch.using_mmu_notifiers)
  1065. return;
  1066. /* We need to mark this page dirty in the rmap chain */
  1067. gfn = gpa >> PAGE_SHIFT;
  1068. srcu_idx = srcu_read_lock(&kvm->srcu);
  1069. memslot = gfn_to_memslot(kvm, gfn);
  1070. if (memslot) {
  1071. rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
  1072. lock_rmap(rmap);
  1073. *rmap |= KVMPPC_RMAP_CHANGED;
  1074. unlock_rmap(rmap);
  1075. }
  1076. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1077. }
  1078. /*
  1079. * Functions for reading and writing the hash table via reads and
  1080. * writes on a file descriptor.
  1081. *
  1082. * Reads return the guest view of the hash table, which has to be
  1083. * pieced together from the real hash table and the guest_rpte
  1084. * values in the revmap array.
  1085. *
  1086. * On writes, each HPTE written is considered in turn, and if it
  1087. * is valid, it is written to the HPT as if an H_ENTER with the
  1088. * exact flag set was done. When the invalid count is non-zero
  1089. * in the header written to the stream, the kernel will make
  1090. * sure that that many HPTEs are invalid, and invalidate them
  1091. * if not.
  1092. */
  1093. struct kvm_htab_ctx {
  1094. unsigned long index;
  1095. unsigned long flags;
  1096. struct kvm *kvm;
  1097. int first_pass;
  1098. };
  1099. #define HPTE_SIZE (2 * sizeof(unsigned long))
  1100. /*
  1101. * Returns 1 if this HPT entry has been modified or has pending
  1102. * R/C bit changes.
  1103. */
  1104. static int hpte_dirty(struct revmap_entry *revp, unsigned long *hptp)
  1105. {
  1106. unsigned long rcbits_unset;
  1107. if (revp->guest_rpte & HPTE_GR_MODIFIED)
  1108. return 1;
  1109. /* Also need to consider changes in reference and changed bits */
  1110. rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
  1111. if ((hptp[0] & HPTE_V_VALID) && (hptp[1] & rcbits_unset))
  1112. return 1;
  1113. return 0;
  1114. }
  1115. static long record_hpte(unsigned long flags, unsigned long *hptp,
  1116. unsigned long *hpte, struct revmap_entry *revp,
  1117. int want_valid, int first_pass)
  1118. {
  1119. unsigned long v, r;
  1120. unsigned long rcbits_unset;
  1121. int ok = 1;
  1122. int valid, dirty;
  1123. /* Unmodified entries are uninteresting except on the first pass */
  1124. dirty = hpte_dirty(revp, hptp);
  1125. if (!first_pass && !dirty)
  1126. return 0;
  1127. valid = 0;
  1128. if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT)) {
  1129. valid = 1;
  1130. if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
  1131. !(hptp[0] & HPTE_V_BOLTED))
  1132. valid = 0;
  1133. }
  1134. if (valid != want_valid)
  1135. return 0;
  1136. v = r = 0;
  1137. if (valid || dirty) {
  1138. /* lock the HPTE so it's stable and read it */
  1139. preempt_disable();
  1140. while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
  1141. cpu_relax();
  1142. v = hptp[0];
  1143. /* re-evaluate valid and dirty from synchronized HPTE value */
  1144. valid = !!(v & HPTE_V_VALID);
  1145. dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
  1146. /* Harvest R and C into guest view if necessary */
  1147. rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
  1148. if (valid && (rcbits_unset & hptp[1])) {
  1149. revp->guest_rpte |= (hptp[1] & (HPTE_R_R | HPTE_R_C)) |
  1150. HPTE_GR_MODIFIED;
  1151. dirty = 1;
  1152. }
  1153. if (v & HPTE_V_ABSENT) {
  1154. v &= ~HPTE_V_ABSENT;
  1155. v |= HPTE_V_VALID;
  1156. valid = 1;
  1157. }
  1158. if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
  1159. valid = 0;
  1160. r = revp->guest_rpte;
  1161. /* only clear modified if this is the right sort of entry */
  1162. if (valid == want_valid && dirty) {
  1163. r &= ~HPTE_GR_MODIFIED;
  1164. revp->guest_rpte = r;
  1165. }
  1166. asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
  1167. hptp[0] &= ~HPTE_V_HVLOCK;
  1168. preempt_enable();
  1169. if (!(valid == want_valid && (first_pass || dirty)))
  1170. ok = 0;
  1171. }
  1172. hpte[0] = v;
  1173. hpte[1] = r;
  1174. return ok;
  1175. }
  1176. static ssize_t kvm_htab_read(struct file *file, char __user *buf,
  1177. size_t count, loff_t *ppos)
  1178. {
  1179. struct kvm_htab_ctx *ctx = file->private_data;
  1180. struct kvm *kvm = ctx->kvm;
  1181. struct kvm_get_htab_header hdr;
  1182. unsigned long *hptp;
  1183. struct revmap_entry *revp;
  1184. unsigned long i, nb, nw;
  1185. unsigned long __user *lbuf;
  1186. struct kvm_get_htab_header __user *hptr;
  1187. unsigned long flags;
  1188. int first_pass;
  1189. unsigned long hpte[2];
  1190. if (!access_ok(VERIFY_WRITE, buf, count))
  1191. return -EFAULT;
  1192. first_pass = ctx->first_pass;
  1193. flags = ctx->flags;
  1194. i = ctx->index;
  1195. hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
  1196. revp = kvm->arch.revmap + i;
  1197. lbuf = (unsigned long __user *)buf;
  1198. nb = 0;
  1199. while (nb + sizeof(hdr) + HPTE_SIZE < count) {
  1200. /* Initialize header */
  1201. hptr = (struct kvm_get_htab_header __user *)buf;
  1202. hdr.n_valid = 0;
  1203. hdr.n_invalid = 0;
  1204. nw = nb;
  1205. nb += sizeof(hdr);
  1206. lbuf = (unsigned long __user *)(buf + sizeof(hdr));
  1207. /* Skip uninteresting entries, i.e. clean on not-first pass */
  1208. if (!first_pass) {
  1209. while (i < kvm->arch.hpt_npte &&
  1210. !hpte_dirty(revp, hptp)) {
  1211. ++i;
  1212. hptp += 2;
  1213. ++revp;
  1214. }
  1215. }
  1216. hdr.index = i;
  1217. /* Grab a series of valid entries */
  1218. while (i < kvm->arch.hpt_npte &&
  1219. hdr.n_valid < 0xffff &&
  1220. nb + HPTE_SIZE < count &&
  1221. record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
  1222. /* valid entry, write it out */
  1223. ++hdr.n_valid;
  1224. if (__put_user(hpte[0], lbuf) ||
  1225. __put_user(hpte[1], lbuf + 1))
  1226. return -EFAULT;
  1227. nb += HPTE_SIZE;
  1228. lbuf += 2;
  1229. ++i;
  1230. hptp += 2;
  1231. ++revp;
  1232. }
  1233. /* Now skip invalid entries while we can */
  1234. while (i < kvm->arch.hpt_npte &&
  1235. hdr.n_invalid < 0xffff &&
  1236. record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
  1237. /* found an invalid entry */
  1238. ++hdr.n_invalid;
  1239. ++i;
  1240. hptp += 2;
  1241. ++revp;
  1242. }
  1243. if (hdr.n_valid || hdr.n_invalid) {
  1244. /* write back the header */
  1245. if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
  1246. return -EFAULT;
  1247. nw = nb;
  1248. buf = (char __user *)lbuf;
  1249. } else {
  1250. nb = nw;
  1251. }
  1252. /* Check if we've wrapped around the hash table */
  1253. if (i >= kvm->arch.hpt_npte) {
  1254. i = 0;
  1255. ctx->first_pass = 0;
  1256. break;
  1257. }
  1258. }
  1259. ctx->index = i;
  1260. return nb;
  1261. }
  1262. static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
  1263. size_t count, loff_t *ppos)
  1264. {
  1265. struct kvm_htab_ctx *ctx = file->private_data;
  1266. struct kvm *kvm = ctx->kvm;
  1267. struct kvm_get_htab_header hdr;
  1268. unsigned long i, j;
  1269. unsigned long v, r;
  1270. unsigned long __user *lbuf;
  1271. unsigned long *hptp;
  1272. unsigned long tmp[2];
  1273. ssize_t nb;
  1274. long int err, ret;
  1275. int rma_setup;
  1276. if (!access_ok(VERIFY_READ, buf, count))
  1277. return -EFAULT;
  1278. /* lock out vcpus from running while we're doing this */
  1279. mutex_lock(&kvm->lock);
  1280. rma_setup = kvm->arch.rma_setup_done;
  1281. if (rma_setup) {
  1282. kvm->arch.rma_setup_done = 0; /* temporarily */
  1283. /* order rma_setup_done vs. vcpus_running */
  1284. smp_mb();
  1285. if (atomic_read(&kvm->arch.vcpus_running)) {
  1286. kvm->arch.rma_setup_done = 1;
  1287. mutex_unlock(&kvm->lock);
  1288. return -EBUSY;
  1289. }
  1290. }
  1291. err = 0;
  1292. for (nb = 0; nb + sizeof(hdr) <= count; ) {
  1293. err = -EFAULT;
  1294. if (__copy_from_user(&hdr, buf, sizeof(hdr)))
  1295. break;
  1296. err = 0;
  1297. if (nb + hdr.n_valid * HPTE_SIZE > count)
  1298. break;
  1299. nb += sizeof(hdr);
  1300. buf += sizeof(hdr);
  1301. err = -EINVAL;
  1302. i = hdr.index;
  1303. if (i >= kvm->arch.hpt_npte ||
  1304. i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
  1305. break;
  1306. hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
  1307. lbuf = (unsigned long __user *)buf;
  1308. for (j = 0; j < hdr.n_valid; ++j) {
  1309. err = -EFAULT;
  1310. if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
  1311. goto out;
  1312. err = -EINVAL;
  1313. if (!(v & HPTE_V_VALID))
  1314. goto out;
  1315. lbuf += 2;
  1316. nb += HPTE_SIZE;
  1317. if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
  1318. kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
  1319. err = -EIO;
  1320. ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
  1321. tmp);
  1322. if (ret != H_SUCCESS) {
  1323. pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
  1324. "r=%lx\n", ret, i, v, r);
  1325. goto out;
  1326. }
  1327. if (!rma_setup && is_vrma_hpte(v)) {
  1328. unsigned long psize = hpte_page_size(v, r);
  1329. unsigned long senc = slb_pgsize_encoding(psize);
  1330. unsigned long lpcr;
  1331. kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
  1332. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  1333. lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
  1334. lpcr |= senc << (LPCR_VRMASD_SH - 4);
  1335. kvm->arch.lpcr = lpcr;
  1336. rma_setup = 1;
  1337. }
  1338. ++i;
  1339. hptp += 2;
  1340. }
  1341. for (j = 0; j < hdr.n_invalid; ++j) {
  1342. if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
  1343. kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
  1344. ++i;
  1345. hptp += 2;
  1346. }
  1347. err = 0;
  1348. }
  1349. out:
  1350. /* Order HPTE updates vs. rma_setup_done */
  1351. smp_wmb();
  1352. kvm->arch.rma_setup_done = rma_setup;
  1353. mutex_unlock(&kvm->lock);
  1354. if (err)
  1355. return err;
  1356. return nb;
  1357. }
  1358. static int kvm_htab_release(struct inode *inode, struct file *filp)
  1359. {
  1360. struct kvm_htab_ctx *ctx = filp->private_data;
  1361. filp->private_data = NULL;
  1362. if (!(ctx->flags & KVM_GET_HTAB_WRITE))
  1363. atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
  1364. kvm_put_kvm(ctx->kvm);
  1365. kfree(ctx);
  1366. return 0;
  1367. }
  1368. static const struct file_operations kvm_htab_fops = {
  1369. .read = kvm_htab_read,
  1370. .write = kvm_htab_write,
  1371. .llseek = default_llseek,
  1372. .release = kvm_htab_release,
  1373. };
  1374. int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
  1375. {
  1376. int ret;
  1377. struct kvm_htab_ctx *ctx;
  1378. int rwflag;
  1379. /* reject flags we don't recognize */
  1380. if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
  1381. return -EINVAL;
  1382. ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
  1383. if (!ctx)
  1384. return -ENOMEM;
  1385. kvm_get_kvm(kvm);
  1386. ctx->kvm = kvm;
  1387. ctx->index = ghf->start_index;
  1388. ctx->flags = ghf->flags;
  1389. ctx->first_pass = 1;
  1390. rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
  1391. ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag);
  1392. if (ret < 0) {
  1393. kvm_put_kvm(kvm);
  1394. return ret;
  1395. }
  1396. if (rwflag == O_RDONLY) {
  1397. mutex_lock(&kvm->slots_lock);
  1398. atomic_inc(&kvm->arch.hpte_mod_interest);
  1399. /* make sure kvmppc_do_h_enter etc. see the increment */
  1400. synchronize_srcu_expedited(&kvm->srcu);
  1401. mutex_unlock(&kvm->slots_lock);
  1402. }
  1403. return ret;
  1404. }
  1405. void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
  1406. {
  1407. struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
  1408. if (cpu_has_feature(CPU_FTR_ARCH_206))
  1409. vcpu->arch.slb_nr = 32; /* POWER7 */
  1410. else
  1411. vcpu->arch.slb_nr = 64;
  1412. mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
  1413. mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
  1414. vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
  1415. }