vmx.c 219 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "cpuid.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <linux/mod_devicetable.h>
  29. #include <linux/ftrace_event.h>
  30. #include <linux/slab.h>
  31. #include <linux/tboot.h>
  32. #include "kvm_cache_regs.h"
  33. #include "x86.h"
  34. #include <asm/io.h>
  35. #include <asm/desc.h>
  36. #include <asm/vmx.h>
  37. #include <asm/virtext.h>
  38. #include <asm/mce.h>
  39. #include <asm/i387.h>
  40. #include <asm/xcr.h>
  41. #include <asm/perf_event.h>
  42. #include <asm/kexec.h>
  43. #include "trace.h"
  44. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  45. #define __ex_clear(x, reg) \
  46. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. static const struct x86_cpu_id vmx_cpu_id[] = {
  50. X86_FEATURE_MATCH(X86_FEATURE_VMX),
  51. {}
  52. };
  53. MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  54. static bool __read_mostly enable_vpid = 1;
  55. module_param_named(vpid, enable_vpid, bool, 0444);
  56. static bool __read_mostly flexpriority_enabled = 1;
  57. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  58. static bool __read_mostly enable_ept = 1;
  59. module_param_named(ept, enable_ept, bool, S_IRUGO);
  60. static bool __read_mostly enable_unrestricted_guest = 1;
  61. module_param_named(unrestricted_guest,
  62. enable_unrestricted_guest, bool, S_IRUGO);
  63. static bool __read_mostly enable_ept_ad_bits = 1;
  64. module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  65. static bool __read_mostly emulate_invalid_guest_state = true;
  66. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  67. static bool __read_mostly vmm_exclusive = 1;
  68. module_param(vmm_exclusive, bool, S_IRUGO);
  69. static bool __read_mostly fasteoi = 1;
  70. module_param(fasteoi, bool, S_IRUGO);
  71. static bool __read_mostly enable_apicv_reg_vid = 1;
  72. module_param(enable_apicv_reg_vid, bool, S_IRUGO);
  73. /*
  74. * If nested=1, nested virtualization is supported, i.e., guests may use
  75. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  76. * use VMX instructions.
  77. */
  78. static bool __read_mostly nested = 0;
  79. module_param(nested, bool, S_IRUGO);
  80. #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
  81. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
  82. #define KVM_VM_CR0_ALWAYS_ON \
  83. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  84. #define KVM_CR4_GUEST_OWNED_BITS \
  85. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  86. | X86_CR4_OSXMMEXCPT)
  87. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  88. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  89. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  90. /*
  91. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  92. * ple_gap: upper bound on the amount of time between two successive
  93. * executions of PAUSE in a loop. Also indicate if ple enabled.
  94. * According to test, this time is usually smaller than 128 cycles.
  95. * ple_window: upper bound on the amount of time a guest is allowed to execute
  96. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  97. * less than 2^12 cycles
  98. * Time is measured based on a counter that runs at the same rate as the TSC,
  99. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  100. */
  101. #define KVM_VMX_DEFAULT_PLE_GAP 128
  102. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  103. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  104. module_param(ple_gap, int, S_IRUGO);
  105. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  106. module_param(ple_window, int, S_IRUGO);
  107. extern const ulong vmx_return;
  108. #define NR_AUTOLOAD_MSRS 8
  109. #define VMCS02_POOL_SIZE 1
  110. struct vmcs {
  111. u32 revision_id;
  112. u32 abort;
  113. char data[0];
  114. };
  115. /*
  116. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  117. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  118. * loaded on this CPU (so we can clear them if the CPU goes down).
  119. */
  120. struct loaded_vmcs {
  121. struct vmcs *vmcs;
  122. int cpu;
  123. int launched;
  124. struct list_head loaded_vmcss_on_cpu_link;
  125. };
  126. struct shared_msr_entry {
  127. unsigned index;
  128. u64 data;
  129. u64 mask;
  130. };
  131. /*
  132. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  133. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  134. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  135. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  136. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  137. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  138. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  139. * underlying hardware which will be used to run L2.
  140. * This structure is packed to ensure that its layout is identical across
  141. * machines (necessary for live migration).
  142. * If there are changes in this struct, VMCS12_REVISION must be changed.
  143. */
  144. typedef u64 natural_width;
  145. struct __packed vmcs12 {
  146. /* According to the Intel spec, a VMCS region must start with the
  147. * following two fields. Then follow implementation-specific data.
  148. */
  149. u32 revision_id;
  150. u32 abort;
  151. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  152. u32 padding[7]; /* room for future expansion */
  153. u64 io_bitmap_a;
  154. u64 io_bitmap_b;
  155. u64 msr_bitmap;
  156. u64 vm_exit_msr_store_addr;
  157. u64 vm_exit_msr_load_addr;
  158. u64 vm_entry_msr_load_addr;
  159. u64 tsc_offset;
  160. u64 virtual_apic_page_addr;
  161. u64 apic_access_addr;
  162. u64 ept_pointer;
  163. u64 guest_physical_address;
  164. u64 vmcs_link_pointer;
  165. u64 guest_ia32_debugctl;
  166. u64 guest_ia32_pat;
  167. u64 guest_ia32_efer;
  168. u64 guest_ia32_perf_global_ctrl;
  169. u64 guest_pdptr0;
  170. u64 guest_pdptr1;
  171. u64 guest_pdptr2;
  172. u64 guest_pdptr3;
  173. u64 host_ia32_pat;
  174. u64 host_ia32_efer;
  175. u64 host_ia32_perf_global_ctrl;
  176. u64 padding64[8]; /* room for future expansion */
  177. /*
  178. * To allow migration of L1 (complete with its L2 guests) between
  179. * machines of different natural widths (32 or 64 bit), we cannot have
  180. * unsigned long fields with no explict size. We use u64 (aliased
  181. * natural_width) instead. Luckily, x86 is little-endian.
  182. */
  183. natural_width cr0_guest_host_mask;
  184. natural_width cr4_guest_host_mask;
  185. natural_width cr0_read_shadow;
  186. natural_width cr4_read_shadow;
  187. natural_width cr3_target_value0;
  188. natural_width cr3_target_value1;
  189. natural_width cr3_target_value2;
  190. natural_width cr3_target_value3;
  191. natural_width exit_qualification;
  192. natural_width guest_linear_address;
  193. natural_width guest_cr0;
  194. natural_width guest_cr3;
  195. natural_width guest_cr4;
  196. natural_width guest_es_base;
  197. natural_width guest_cs_base;
  198. natural_width guest_ss_base;
  199. natural_width guest_ds_base;
  200. natural_width guest_fs_base;
  201. natural_width guest_gs_base;
  202. natural_width guest_ldtr_base;
  203. natural_width guest_tr_base;
  204. natural_width guest_gdtr_base;
  205. natural_width guest_idtr_base;
  206. natural_width guest_dr7;
  207. natural_width guest_rsp;
  208. natural_width guest_rip;
  209. natural_width guest_rflags;
  210. natural_width guest_pending_dbg_exceptions;
  211. natural_width guest_sysenter_esp;
  212. natural_width guest_sysenter_eip;
  213. natural_width host_cr0;
  214. natural_width host_cr3;
  215. natural_width host_cr4;
  216. natural_width host_fs_base;
  217. natural_width host_gs_base;
  218. natural_width host_tr_base;
  219. natural_width host_gdtr_base;
  220. natural_width host_idtr_base;
  221. natural_width host_ia32_sysenter_esp;
  222. natural_width host_ia32_sysenter_eip;
  223. natural_width host_rsp;
  224. natural_width host_rip;
  225. natural_width paddingl[8]; /* room for future expansion */
  226. u32 pin_based_vm_exec_control;
  227. u32 cpu_based_vm_exec_control;
  228. u32 exception_bitmap;
  229. u32 page_fault_error_code_mask;
  230. u32 page_fault_error_code_match;
  231. u32 cr3_target_count;
  232. u32 vm_exit_controls;
  233. u32 vm_exit_msr_store_count;
  234. u32 vm_exit_msr_load_count;
  235. u32 vm_entry_controls;
  236. u32 vm_entry_msr_load_count;
  237. u32 vm_entry_intr_info_field;
  238. u32 vm_entry_exception_error_code;
  239. u32 vm_entry_instruction_len;
  240. u32 tpr_threshold;
  241. u32 secondary_vm_exec_control;
  242. u32 vm_instruction_error;
  243. u32 vm_exit_reason;
  244. u32 vm_exit_intr_info;
  245. u32 vm_exit_intr_error_code;
  246. u32 idt_vectoring_info_field;
  247. u32 idt_vectoring_error_code;
  248. u32 vm_exit_instruction_len;
  249. u32 vmx_instruction_info;
  250. u32 guest_es_limit;
  251. u32 guest_cs_limit;
  252. u32 guest_ss_limit;
  253. u32 guest_ds_limit;
  254. u32 guest_fs_limit;
  255. u32 guest_gs_limit;
  256. u32 guest_ldtr_limit;
  257. u32 guest_tr_limit;
  258. u32 guest_gdtr_limit;
  259. u32 guest_idtr_limit;
  260. u32 guest_es_ar_bytes;
  261. u32 guest_cs_ar_bytes;
  262. u32 guest_ss_ar_bytes;
  263. u32 guest_ds_ar_bytes;
  264. u32 guest_fs_ar_bytes;
  265. u32 guest_gs_ar_bytes;
  266. u32 guest_ldtr_ar_bytes;
  267. u32 guest_tr_ar_bytes;
  268. u32 guest_interruptibility_info;
  269. u32 guest_activity_state;
  270. u32 guest_sysenter_cs;
  271. u32 host_ia32_sysenter_cs;
  272. u32 padding32[8]; /* room for future expansion */
  273. u16 virtual_processor_id;
  274. u16 guest_es_selector;
  275. u16 guest_cs_selector;
  276. u16 guest_ss_selector;
  277. u16 guest_ds_selector;
  278. u16 guest_fs_selector;
  279. u16 guest_gs_selector;
  280. u16 guest_ldtr_selector;
  281. u16 guest_tr_selector;
  282. u16 host_es_selector;
  283. u16 host_cs_selector;
  284. u16 host_ss_selector;
  285. u16 host_ds_selector;
  286. u16 host_fs_selector;
  287. u16 host_gs_selector;
  288. u16 host_tr_selector;
  289. };
  290. /*
  291. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  292. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  293. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  294. */
  295. #define VMCS12_REVISION 0x11e57ed0
  296. /*
  297. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  298. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  299. * current implementation, 4K are reserved to avoid future complications.
  300. */
  301. #define VMCS12_SIZE 0x1000
  302. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  303. struct vmcs02_list {
  304. struct list_head list;
  305. gpa_t vmptr;
  306. struct loaded_vmcs vmcs02;
  307. };
  308. /*
  309. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  310. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  311. */
  312. struct nested_vmx {
  313. /* Has the level1 guest done vmxon? */
  314. bool vmxon;
  315. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  316. gpa_t current_vmptr;
  317. /* The host-usable pointer to the above */
  318. struct page *current_vmcs12_page;
  319. struct vmcs12 *current_vmcs12;
  320. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  321. struct list_head vmcs02_pool;
  322. int vmcs02_num;
  323. u64 vmcs01_tsc_offset;
  324. /* L2 must run next, and mustn't decide to exit to L1. */
  325. bool nested_run_pending;
  326. /*
  327. * Guest pages referred to in vmcs02 with host-physical pointers, so
  328. * we must keep them pinned while L2 runs.
  329. */
  330. struct page *apic_access_page;
  331. };
  332. struct vcpu_vmx {
  333. struct kvm_vcpu vcpu;
  334. unsigned long host_rsp;
  335. u8 fail;
  336. u8 cpl;
  337. bool nmi_known_unmasked;
  338. u32 exit_intr_info;
  339. u32 idt_vectoring_info;
  340. ulong rflags;
  341. struct shared_msr_entry *guest_msrs;
  342. int nmsrs;
  343. int save_nmsrs;
  344. #ifdef CONFIG_X86_64
  345. u64 msr_host_kernel_gs_base;
  346. u64 msr_guest_kernel_gs_base;
  347. #endif
  348. /*
  349. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  350. * non-nested (L1) guest, it always points to vmcs01. For a nested
  351. * guest (L2), it points to a different VMCS.
  352. */
  353. struct loaded_vmcs vmcs01;
  354. struct loaded_vmcs *loaded_vmcs;
  355. bool __launched; /* temporary, used in vmx_vcpu_run */
  356. struct msr_autoload {
  357. unsigned nr;
  358. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  359. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  360. } msr_autoload;
  361. struct {
  362. int loaded;
  363. u16 fs_sel, gs_sel, ldt_sel;
  364. #ifdef CONFIG_X86_64
  365. u16 ds_sel, es_sel;
  366. #endif
  367. int gs_ldt_reload_needed;
  368. int fs_reload_needed;
  369. } host_state;
  370. struct {
  371. int vm86_active;
  372. ulong save_rflags;
  373. struct kvm_segment segs[8];
  374. } rmode;
  375. struct {
  376. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  377. struct kvm_save_segment {
  378. u16 selector;
  379. unsigned long base;
  380. u32 limit;
  381. u32 ar;
  382. } seg[8];
  383. } segment_cache;
  384. int vpid;
  385. bool emulation_required;
  386. /* Support for vnmi-less CPUs */
  387. int soft_vnmi_blocked;
  388. ktime_t entry_time;
  389. s64 vnmi_blocked_time;
  390. u32 exit_reason;
  391. bool rdtscp_enabled;
  392. /* Support for a guest hypervisor (nested VMX) */
  393. struct nested_vmx nested;
  394. };
  395. enum segment_cache_field {
  396. SEG_FIELD_SEL = 0,
  397. SEG_FIELD_BASE = 1,
  398. SEG_FIELD_LIMIT = 2,
  399. SEG_FIELD_AR = 3,
  400. SEG_FIELD_NR = 4
  401. };
  402. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  403. {
  404. return container_of(vcpu, struct vcpu_vmx, vcpu);
  405. }
  406. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  407. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  408. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  409. [number##_HIGH] = VMCS12_OFFSET(name)+4
  410. static const unsigned short vmcs_field_to_offset_table[] = {
  411. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  412. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  413. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  414. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  415. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  416. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  417. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  418. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  419. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  420. FIELD(HOST_ES_SELECTOR, host_es_selector),
  421. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  422. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  423. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  424. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  425. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  426. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  427. FIELD64(IO_BITMAP_A, io_bitmap_a),
  428. FIELD64(IO_BITMAP_B, io_bitmap_b),
  429. FIELD64(MSR_BITMAP, msr_bitmap),
  430. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  431. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  432. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  433. FIELD64(TSC_OFFSET, tsc_offset),
  434. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  435. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  436. FIELD64(EPT_POINTER, ept_pointer),
  437. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  438. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  439. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  440. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  441. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  442. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  443. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  444. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  445. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  446. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  447. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  448. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  449. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  450. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  451. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  452. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  453. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  454. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  455. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  456. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  457. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  458. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  459. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  460. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  461. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  462. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  463. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  464. FIELD(TPR_THRESHOLD, tpr_threshold),
  465. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  466. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  467. FIELD(VM_EXIT_REASON, vm_exit_reason),
  468. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  469. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  470. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  471. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  472. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  473. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  474. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  475. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  476. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  477. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  478. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  479. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  480. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  481. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  482. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  483. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  484. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  485. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  486. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  487. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  488. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  489. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  490. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  491. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  492. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  493. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  494. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  495. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  496. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  497. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  498. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  499. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  500. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  501. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  502. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  503. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  504. FIELD(EXIT_QUALIFICATION, exit_qualification),
  505. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  506. FIELD(GUEST_CR0, guest_cr0),
  507. FIELD(GUEST_CR3, guest_cr3),
  508. FIELD(GUEST_CR4, guest_cr4),
  509. FIELD(GUEST_ES_BASE, guest_es_base),
  510. FIELD(GUEST_CS_BASE, guest_cs_base),
  511. FIELD(GUEST_SS_BASE, guest_ss_base),
  512. FIELD(GUEST_DS_BASE, guest_ds_base),
  513. FIELD(GUEST_FS_BASE, guest_fs_base),
  514. FIELD(GUEST_GS_BASE, guest_gs_base),
  515. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  516. FIELD(GUEST_TR_BASE, guest_tr_base),
  517. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  518. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  519. FIELD(GUEST_DR7, guest_dr7),
  520. FIELD(GUEST_RSP, guest_rsp),
  521. FIELD(GUEST_RIP, guest_rip),
  522. FIELD(GUEST_RFLAGS, guest_rflags),
  523. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  524. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  525. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  526. FIELD(HOST_CR0, host_cr0),
  527. FIELD(HOST_CR3, host_cr3),
  528. FIELD(HOST_CR4, host_cr4),
  529. FIELD(HOST_FS_BASE, host_fs_base),
  530. FIELD(HOST_GS_BASE, host_gs_base),
  531. FIELD(HOST_TR_BASE, host_tr_base),
  532. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  533. FIELD(HOST_IDTR_BASE, host_idtr_base),
  534. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  535. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  536. FIELD(HOST_RSP, host_rsp),
  537. FIELD(HOST_RIP, host_rip),
  538. };
  539. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  540. static inline short vmcs_field_to_offset(unsigned long field)
  541. {
  542. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  543. return -1;
  544. return vmcs_field_to_offset_table[field];
  545. }
  546. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  547. {
  548. return to_vmx(vcpu)->nested.current_vmcs12;
  549. }
  550. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  551. {
  552. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  553. if (is_error_page(page))
  554. return NULL;
  555. return page;
  556. }
  557. static void nested_release_page(struct page *page)
  558. {
  559. kvm_release_page_dirty(page);
  560. }
  561. static void nested_release_page_clean(struct page *page)
  562. {
  563. kvm_release_page_clean(page);
  564. }
  565. static u64 construct_eptp(unsigned long root_hpa);
  566. static void kvm_cpu_vmxon(u64 addr);
  567. static void kvm_cpu_vmxoff(void);
  568. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  569. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  570. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  571. struct kvm_segment *var, int seg);
  572. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  573. struct kvm_segment *var, int seg);
  574. static bool guest_state_valid(struct kvm_vcpu *vcpu);
  575. static u32 vmx_segment_access_rights(struct kvm_segment *var);
  576. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  577. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  578. /*
  579. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  580. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  581. */
  582. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  583. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  584. static unsigned long *vmx_io_bitmap_a;
  585. static unsigned long *vmx_io_bitmap_b;
  586. static unsigned long *vmx_msr_bitmap_legacy;
  587. static unsigned long *vmx_msr_bitmap_longmode;
  588. static unsigned long *vmx_msr_bitmap_legacy_x2apic;
  589. static unsigned long *vmx_msr_bitmap_longmode_x2apic;
  590. static bool cpu_has_load_ia32_efer;
  591. static bool cpu_has_load_perf_global_ctrl;
  592. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  593. static DEFINE_SPINLOCK(vmx_vpid_lock);
  594. static struct vmcs_config {
  595. int size;
  596. int order;
  597. u32 revision_id;
  598. u32 pin_based_exec_ctrl;
  599. u32 cpu_based_exec_ctrl;
  600. u32 cpu_based_2nd_exec_ctrl;
  601. u32 vmexit_ctrl;
  602. u32 vmentry_ctrl;
  603. } vmcs_config;
  604. static struct vmx_capability {
  605. u32 ept;
  606. u32 vpid;
  607. } vmx_capability;
  608. #define VMX_SEGMENT_FIELD(seg) \
  609. [VCPU_SREG_##seg] = { \
  610. .selector = GUEST_##seg##_SELECTOR, \
  611. .base = GUEST_##seg##_BASE, \
  612. .limit = GUEST_##seg##_LIMIT, \
  613. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  614. }
  615. static const struct kvm_vmx_segment_field {
  616. unsigned selector;
  617. unsigned base;
  618. unsigned limit;
  619. unsigned ar_bytes;
  620. } kvm_vmx_segment_fields[] = {
  621. VMX_SEGMENT_FIELD(CS),
  622. VMX_SEGMENT_FIELD(DS),
  623. VMX_SEGMENT_FIELD(ES),
  624. VMX_SEGMENT_FIELD(FS),
  625. VMX_SEGMENT_FIELD(GS),
  626. VMX_SEGMENT_FIELD(SS),
  627. VMX_SEGMENT_FIELD(TR),
  628. VMX_SEGMENT_FIELD(LDTR),
  629. };
  630. static u64 host_efer;
  631. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  632. /*
  633. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  634. * away by decrementing the array size.
  635. */
  636. static const u32 vmx_msr_index[] = {
  637. #ifdef CONFIG_X86_64
  638. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  639. #endif
  640. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  641. };
  642. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  643. static inline bool is_page_fault(u32 intr_info)
  644. {
  645. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  646. INTR_INFO_VALID_MASK)) ==
  647. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  648. }
  649. static inline bool is_no_device(u32 intr_info)
  650. {
  651. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  652. INTR_INFO_VALID_MASK)) ==
  653. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  654. }
  655. static inline bool is_invalid_opcode(u32 intr_info)
  656. {
  657. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  658. INTR_INFO_VALID_MASK)) ==
  659. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  660. }
  661. static inline bool is_external_interrupt(u32 intr_info)
  662. {
  663. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  664. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  665. }
  666. static inline bool is_machine_check(u32 intr_info)
  667. {
  668. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  669. INTR_INFO_VALID_MASK)) ==
  670. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  671. }
  672. static inline bool cpu_has_vmx_msr_bitmap(void)
  673. {
  674. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  675. }
  676. static inline bool cpu_has_vmx_tpr_shadow(void)
  677. {
  678. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  679. }
  680. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  681. {
  682. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  683. }
  684. static inline bool cpu_has_secondary_exec_ctrls(void)
  685. {
  686. return vmcs_config.cpu_based_exec_ctrl &
  687. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  688. }
  689. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  690. {
  691. return vmcs_config.cpu_based_2nd_exec_ctrl &
  692. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  693. }
  694. static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
  695. {
  696. return vmcs_config.cpu_based_2nd_exec_ctrl &
  697. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  698. }
  699. static inline bool cpu_has_vmx_apic_register_virt(void)
  700. {
  701. return vmcs_config.cpu_based_2nd_exec_ctrl &
  702. SECONDARY_EXEC_APIC_REGISTER_VIRT;
  703. }
  704. static inline bool cpu_has_vmx_virtual_intr_delivery(void)
  705. {
  706. return vmcs_config.cpu_based_2nd_exec_ctrl &
  707. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
  708. }
  709. static inline bool cpu_has_vmx_flexpriority(void)
  710. {
  711. return cpu_has_vmx_tpr_shadow() &&
  712. cpu_has_vmx_virtualize_apic_accesses();
  713. }
  714. static inline bool cpu_has_vmx_ept_execute_only(void)
  715. {
  716. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  717. }
  718. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  719. {
  720. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  721. }
  722. static inline bool cpu_has_vmx_eptp_writeback(void)
  723. {
  724. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  725. }
  726. static inline bool cpu_has_vmx_ept_2m_page(void)
  727. {
  728. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  729. }
  730. static inline bool cpu_has_vmx_ept_1g_page(void)
  731. {
  732. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  733. }
  734. static inline bool cpu_has_vmx_ept_4levels(void)
  735. {
  736. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  737. }
  738. static inline bool cpu_has_vmx_ept_ad_bits(void)
  739. {
  740. return vmx_capability.ept & VMX_EPT_AD_BIT;
  741. }
  742. static inline bool cpu_has_vmx_invept_context(void)
  743. {
  744. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  745. }
  746. static inline bool cpu_has_vmx_invept_global(void)
  747. {
  748. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  749. }
  750. static inline bool cpu_has_vmx_invvpid_single(void)
  751. {
  752. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  753. }
  754. static inline bool cpu_has_vmx_invvpid_global(void)
  755. {
  756. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  757. }
  758. static inline bool cpu_has_vmx_ept(void)
  759. {
  760. return vmcs_config.cpu_based_2nd_exec_ctrl &
  761. SECONDARY_EXEC_ENABLE_EPT;
  762. }
  763. static inline bool cpu_has_vmx_unrestricted_guest(void)
  764. {
  765. return vmcs_config.cpu_based_2nd_exec_ctrl &
  766. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  767. }
  768. static inline bool cpu_has_vmx_ple(void)
  769. {
  770. return vmcs_config.cpu_based_2nd_exec_ctrl &
  771. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  772. }
  773. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  774. {
  775. return flexpriority_enabled && irqchip_in_kernel(kvm);
  776. }
  777. static inline bool cpu_has_vmx_vpid(void)
  778. {
  779. return vmcs_config.cpu_based_2nd_exec_ctrl &
  780. SECONDARY_EXEC_ENABLE_VPID;
  781. }
  782. static inline bool cpu_has_vmx_rdtscp(void)
  783. {
  784. return vmcs_config.cpu_based_2nd_exec_ctrl &
  785. SECONDARY_EXEC_RDTSCP;
  786. }
  787. static inline bool cpu_has_vmx_invpcid(void)
  788. {
  789. return vmcs_config.cpu_based_2nd_exec_ctrl &
  790. SECONDARY_EXEC_ENABLE_INVPCID;
  791. }
  792. static inline bool cpu_has_virtual_nmis(void)
  793. {
  794. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  795. }
  796. static inline bool cpu_has_vmx_wbinvd_exit(void)
  797. {
  798. return vmcs_config.cpu_based_2nd_exec_ctrl &
  799. SECONDARY_EXEC_WBINVD_EXITING;
  800. }
  801. static inline bool report_flexpriority(void)
  802. {
  803. return flexpriority_enabled;
  804. }
  805. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  806. {
  807. return vmcs12->cpu_based_vm_exec_control & bit;
  808. }
  809. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  810. {
  811. return (vmcs12->cpu_based_vm_exec_control &
  812. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  813. (vmcs12->secondary_vm_exec_control & bit);
  814. }
  815. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  816. struct kvm_vcpu *vcpu)
  817. {
  818. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  819. }
  820. static inline bool is_exception(u32 intr_info)
  821. {
  822. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  823. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  824. }
  825. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  826. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  827. struct vmcs12 *vmcs12,
  828. u32 reason, unsigned long qualification);
  829. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  830. {
  831. int i;
  832. for (i = 0; i < vmx->nmsrs; ++i)
  833. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  834. return i;
  835. return -1;
  836. }
  837. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  838. {
  839. struct {
  840. u64 vpid : 16;
  841. u64 rsvd : 48;
  842. u64 gva;
  843. } operand = { vpid, 0, gva };
  844. asm volatile (__ex(ASM_VMX_INVVPID)
  845. /* CF==1 or ZF==1 --> rc = -1 */
  846. "; ja 1f ; ud2 ; 1:"
  847. : : "a"(&operand), "c"(ext) : "cc", "memory");
  848. }
  849. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  850. {
  851. struct {
  852. u64 eptp, gpa;
  853. } operand = {eptp, gpa};
  854. asm volatile (__ex(ASM_VMX_INVEPT)
  855. /* CF==1 or ZF==1 --> rc = -1 */
  856. "; ja 1f ; ud2 ; 1:\n"
  857. : : "a" (&operand), "c" (ext) : "cc", "memory");
  858. }
  859. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  860. {
  861. int i;
  862. i = __find_msr_index(vmx, msr);
  863. if (i >= 0)
  864. return &vmx->guest_msrs[i];
  865. return NULL;
  866. }
  867. static void vmcs_clear(struct vmcs *vmcs)
  868. {
  869. u64 phys_addr = __pa(vmcs);
  870. u8 error;
  871. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  872. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  873. : "cc", "memory");
  874. if (error)
  875. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  876. vmcs, phys_addr);
  877. }
  878. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  879. {
  880. vmcs_clear(loaded_vmcs->vmcs);
  881. loaded_vmcs->cpu = -1;
  882. loaded_vmcs->launched = 0;
  883. }
  884. static void vmcs_load(struct vmcs *vmcs)
  885. {
  886. u64 phys_addr = __pa(vmcs);
  887. u8 error;
  888. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  889. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  890. : "cc", "memory");
  891. if (error)
  892. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  893. vmcs, phys_addr);
  894. }
  895. #ifdef CONFIG_KEXEC
  896. /*
  897. * This bitmap is used to indicate whether the vmclear
  898. * operation is enabled on all cpus. All disabled by
  899. * default.
  900. */
  901. static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
  902. static inline void crash_enable_local_vmclear(int cpu)
  903. {
  904. cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
  905. }
  906. static inline void crash_disable_local_vmclear(int cpu)
  907. {
  908. cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
  909. }
  910. static inline int crash_local_vmclear_enabled(int cpu)
  911. {
  912. return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
  913. }
  914. static void crash_vmclear_local_loaded_vmcss(void)
  915. {
  916. int cpu = raw_smp_processor_id();
  917. struct loaded_vmcs *v;
  918. if (!crash_local_vmclear_enabled(cpu))
  919. return;
  920. list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
  921. loaded_vmcss_on_cpu_link)
  922. vmcs_clear(v->vmcs);
  923. }
  924. #else
  925. static inline void crash_enable_local_vmclear(int cpu) { }
  926. static inline void crash_disable_local_vmclear(int cpu) { }
  927. #endif /* CONFIG_KEXEC */
  928. static void __loaded_vmcs_clear(void *arg)
  929. {
  930. struct loaded_vmcs *loaded_vmcs = arg;
  931. int cpu = raw_smp_processor_id();
  932. if (loaded_vmcs->cpu != cpu)
  933. return; /* vcpu migration can race with cpu offline */
  934. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  935. per_cpu(current_vmcs, cpu) = NULL;
  936. crash_disable_local_vmclear(cpu);
  937. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  938. /*
  939. * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
  940. * is before setting loaded_vmcs->vcpu to -1 which is done in
  941. * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
  942. * then adds the vmcs into percpu list before it is deleted.
  943. */
  944. smp_wmb();
  945. loaded_vmcs_init(loaded_vmcs);
  946. crash_enable_local_vmclear(cpu);
  947. }
  948. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  949. {
  950. int cpu = loaded_vmcs->cpu;
  951. if (cpu != -1)
  952. smp_call_function_single(cpu,
  953. __loaded_vmcs_clear, loaded_vmcs, 1);
  954. }
  955. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  956. {
  957. if (vmx->vpid == 0)
  958. return;
  959. if (cpu_has_vmx_invvpid_single())
  960. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  961. }
  962. static inline void vpid_sync_vcpu_global(void)
  963. {
  964. if (cpu_has_vmx_invvpid_global())
  965. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  966. }
  967. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  968. {
  969. if (cpu_has_vmx_invvpid_single())
  970. vpid_sync_vcpu_single(vmx);
  971. else
  972. vpid_sync_vcpu_global();
  973. }
  974. static inline void ept_sync_global(void)
  975. {
  976. if (cpu_has_vmx_invept_global())
  977. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  978. }
  979. static inline void ept_sync_context(u64 eptp)
  980. {
  981. if (enable_ept) {
  982. if (cpu_has_vmx_invept_context())
  983. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  984. else
  985. ept_sync_global();
  986. }
  987. }
  988. static __always_inline unsigned long vmcs_readl(unsigned long field)
  989. {
  990. unsigned long value;
  991. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  992. : "=a"(value) : "d"(field) : "cc");
  993. return value;
  994. }
  995. static __always_inline u16 vmcs_read16(unsigned long field)
  996. {
  997. return vmcs_readl(field);
  998. }
  999. static __always_inline u32 vmcs_read32(unsigned long field)
  1000. {
  1001. return vmcs_readl(field);
  1002. }
  1003. static __always_inline u64 vmcs_read64(unsigned long field)
  1004. {
  1005. #ifdef CONFIG_X86_64
  1006. return vmcs_readl(field);
  1007. #else
  1008. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  1009. #endif
  1010. }
  1011. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  1012. {
  1013. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  1014. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  1015. dump_stack();
  1016. }
  1017. static void vmcs_writel(unsigned long field, unsigned long value)
  1018. {
  1019. u8 error;
  1020. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  1021. : "=q"(error) : "a"(value), "d"(field) : "cc");
  1022. if (unlikely(error))
  1023. vmwrite_error(field, value);
  1024. }
  1025. static void vmcs_write16(unsigned long field, u16 value)
  1026. {
  1027. vmcs_writel(field, value);
  1028. }
  1029. static void vmcs_write32(unsigned long field, u32 value)
  1030. {
  1031. vmcs_writel(field, value);
  1032. }
  1033. static void vmcs_write64(unsigned long field, u64 value)
  1034. {
  1035. vmcs_writel(field, value);
  1036. #ifndef CONFIG_X86_64
  1037. asm volatile ("");
  1038. vmcs_writel(field+1, value >> 32);
  1039. #endif
  1040. }
  1041. static void vmcs_clear_bits(unsigned long field, u32 mask)
  1042. {
  1043. vmcs_writel(field, vmcs_readl(field) & ~mask);
  1044. }
  1045. static void vmcs_set_bits(unsigned long field, u32 mask)
  1046. {
  1047. vmcs_writel(field, vmcs_readl(field) | mask);
  1048. }
  1049. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  1050. {
  1051. vmx->segment_cache.bitmask = 0;
  1052. }
  1053. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  1054. unsigned field)
  1055. {
  1056. bool ret;
  1057. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  1058. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  1059. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  1060. vmx->segment_cache.bitmask = 0;
  1061. }
  1062. ret = vmx->segment_cache.bitmask & mask;
  1063. vmx->segment_cache.bitmask |= mask;
  1064. return ret;
  1065. }
  1066. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  1067. {
  1068. u16 *p = &vmx->segment_cache.seg[seg].selector;
  1069. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  1070. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1071. return *p;
  1072. }
  1073. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1074. {
  1075. ulong *p = &vmx->segment_cache.seg[seg].base;
  1076. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1077. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1078. return *p;
  1079. }
  1080. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1081. {
  1082. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1083. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1084. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1085. return *p;
  1086. }
  1087. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1088. {
  1089. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1090. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1091. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1092. return *p;
  1093. }
  1094. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1095. {
  1096. u32 eb;
  1097. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1098. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1099. if ((vcpu->guest_debug &
  1100. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1101. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1102. eb |= 1u << BP_VECTOR;
  1103. if (to_vmx(vcpu)->rmode.vm86_active)
  1104. eb = ~0;
  1105. if (enable_ept)
  1106. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1107. if (vcpu->fpu_active)
  1108. eb &= ~(1u << NM_VECTOR);
  1109. /* When we are running a nested L2 guest and L1 specified for it a
  1110. * certain exception bitmap, we must trap the same exceptions and pass
  1111. * them to L1. When running L2, we will only handle the exceptions
  1112. * specified above if L1 did not want them.
  1113. */
  1114. if (is_guest_mode(vcpu))
  1115. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1116. vmcs_write32(EXCEPTION_BITMAP, eb);
  1117. }
  1118. static void clear_atomic_switch_msr_special(unsigned long entry,
  1119. unsigned long exit)
  1120. {
  1121. vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
  1122. vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
  1123. }
  1124. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1125. {
  1126. unsigned i;
  1127. struct msr_autoload *m = &vmx->msr_autoload;
  1128. switch (msr) {
  1129. case MSR_EFER:
  1130. if (cpu_has_load_ia32_efer) {
  1131. clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1132. VM_EXIT_LOAD_IA32_EFER);
  1133. return;
  1134. }
  1135. break;
  1136. case MSR_CORE_PERF_GLOBAL_CTRL:
  1137. if (cpu_has_load_perf_global_ctrl) {
  1138. clear_atomic_switch_msr_special(
  1139. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1140. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  1141. return;
  1142. }
  1143. break;
  1144. }
  1145. for (i = 0; i < m->nr; ++i)
  1146. if (m->guest[i].index == msr)
  1147. break;
  1148. if (i == m->nr)
  1149. return;
  1150. --m->nr;
  1151. m->guest[i] = m->guest[m->nr];
  1152. m->host[i] = m->host[m->nr];
  1153. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1154. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1155. }
  1156. static void add_atomic_switch_msr_special(unsigned long entry,
  1157. unsigned long exit, unsigned long guest_val_vmcs,
  1158. unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
  1159. {
  1160. vmcs_write64(guest_val_vmcs, guest_val);
  1161. vmcs_write64(host_val_vmcs, host_val);
  1162. vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
  1163. vmcs_set_bits(VM_EXIT_CONTROLS, exit);
  1164. }
  1165. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1166. u64 guest_val, u64 host_val)
  1167. {
  1168. unsigned i;
  1169. struct msr_autoload *m = &vmx->msr_autoload;
  1170. switch (msr) {
  1171. case MSR_EFER:
  1172. if (cpu_has_load_ia32_efer) {
  1173. add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1174. VM_EXIT_LOAD_IA32_EFER,
  1175. GUEST_IA32_EFER,
  1176. HOST_IA32_EFER,
  1177. guest_val, host_val);
  1178. return;
  1179. }
  1180. break;
  1181. case MSR_CORE_PERF_GLOBAL_CTRL:
  1182. if (cpu_has_load_perf_global_ctrl) {
  1183. add_atomic_switch_msr_special(
  1184. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1185. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
  1186. GUEST_IA32_PERF_GLOBAL_CTRL,
  1187. HOST_IA32_PERF_GLOBAL_CTRL,
  1188. guest_val, host_val);
  1189. return;
  1190. }
  1191. break;
  1192. }
  1193. for (i = 0; i < m->nr; ++i)
  1194. if (m->guest[i].index == msr)
  1195. break;
  1196. if (i == NR_AUTOLOAD_MSRS) {
  1197. printk_once(KERN_WARNING"Not enough mst switch entries. "
  1198. "Can't add msr %x\n", msr);
  1199. return;
  1200. } else if (i == m->nr) {
  1201. ++m->nr;
  1202. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1203. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1204. }
  1205. m->guest[i].index = msr;
  1206. m->guest[i].value = guest_val;
  1207. m->host[i].index = msr;
  1208. m->host[i].value = host_val;
  1209. }
  1210. static void reload_tss(void)
  1211. {
  1212. /*
  1213. * VT restores TR but not its size. Useless.
  1214. */
  1215. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1216. struct desc_struct *descs;
  1217. descs = (void *)gdt->address;
  1218. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1219. load_TR_desc();
  1220. }
  1221. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1222. {
  1223. u64 guest_efer;
  1224. u64 ignore_bits;
  1225. guest_efer = vmx->vcpu.arch.efer;
  1226. /*
  1227. * NX is emulated; LMA and LME handled by hardware; SCE meaningless
  1228. * outside long mode
  1229. */
  1230. ignore_bits = EFER_NX | EFER_SCE;
  1231. #ifdef CONFIG_X86_64
  1232. ignore_bits |= EFER_LMA | EFER_LME;
  1233. /* SCE is meaningful only in long mode on Intel */
  1234. if (guest_efer & EFER_LMA)
  1235. ignore_bits &= ~(u64)EFER_SCE;
  1236. #endif
  1237. guest_efer &= ~ignore_bits;
  1238. guest_efer |= host_efer & ignore_bits;
  1239. vmx->guest_msrs[efer_offset].data = guest_efer;
  1240. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1241. clear_atomic_switch_msr(vmx, MSR_EFER);
  1242. /* On ept, can't emulate nx, and must switch nx atomically */
  1243. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1244. guest_efer = vmx->vcpu.arch.efer;
  1245. if (!(guest_efer & EFER_LMA))
  1246. guest_efer &= ~EFER_LME;
  1247. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1248. return false;
  1249. }
  1250. return true;
  1251. }
  1252. static unsigned long segment_base(u16 selector)
  1253. {
  1254. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1255. struct desc_struct *d;
  1256. unsigned long table_base;
  1257. unsigned long v;
  1258. if (!(selector & ~3))
  1259. return 0;
  1260. table_base = gdt->address;
  1261. if (selector & 4) { /* from ldt */
  1262. u16 ldt_selector = kvm_read_ldt();
  1263. if (!(ldt_selector & ~3))
  1264. return 0;
  1265. table_base = segment_base(ldt_selector);
  1266. }
  1267. d = (struct desc_struct *)(table_base + (selector & ~7));
  1268. v = get_desc_base(d);
  1269. #ifdef CONFIG_X86_64
  1270. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1271. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1272. #endif
  1273. return v;
  1274. }
  1275. static inline unsigned long kvm_read_tr_base(void)
  1276. {
  1277. u16 tr;
  1278. asm("str %0" : "=g"(tr));
  1279. return segment_base(tr);
  1280. }
  1281. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1282. {
  1283. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1284. int i;
  1285. if (vmx->host_state.loaded)
  1286. return;
  1287. vmx->host_state.loaded = 1;
  1288. /*
  1289. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1290. * allow segment selectors with cpl > 0 or ti == 1.
  1291. */
  1292. vmx->host_state.ldt_sel = kvm_read_ldt();
  1293. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1294. savesegment(fs, vmx->host_state.fs_sel);
  1295. if (!(vmx->host_state.fs_sel & 7)) {
  1296. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1297. vmx->host_state.fs_reload_needed = 0;
  1298. } else {
  1299. vmcs_write16(HOST_FS_SELECTOR, 0);
  1300. vmx->host_state.fs_reload_needed = 1;
  1301. }
  1302. savesegment(gs, vmx->host_state.gs_sel);
  1303. if (!(vmx->host_state.gs_sel & 7))
  1304. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1305. else {
  1306. vmcs_write16(HOST_GS_SELECTOR, 0);
  1307. vmx->host_state.gs_ldt_reload_needed = 1;
  1308. }
  1309. #ifdef CONFIG_X86_64
  1310. savesegment(ds, vmx->host_state.ds_sel);
  1311. savesegment(es, vmx->host_state.es_sel);
  1312. #endif
  1313. #ifdef CONFIG_X86_64
  1314. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1315. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1316. #else
  1317. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1318. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1319. #endif
  1320. #ifdef CONFIG_X86_64
  1321. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1322. if (is_long_mode(&vmx->vcpu))
  1323. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1324. #endif
  1325. for (i = 0; i < vmx->save_nmsrs; ++i)
  1326. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1327. vmx->guest_msrs[i].data,
  1328. vmx->guest_msrs[i].mask);
  1329. }
  1330. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1331. {
  1332. if (!vmx->host_state.loaded)
  1333. return;
  1334. ++vmx->vcpu.stat.host_state_reload;
  1335. vmx->host_state.loaded = 0;
  1336. #ifdef CONFIG_X86_64
  1337. if (is_long_mode(&vmx->vcpu))
  1338. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1339. #endif
  1340. if (vmx->host_state.gs_ldt_reload_needed) {
  1341. kvm_load_ldt(vmx->host_state.ldt_sel);
  1342. #ifdef CONFIG_X86_64
  1343. load_gs_index(vmx->host_state.gs_sel);
  1344. #else
  1345. loadsegment(gs, vmx->host_state.gs_sel);
  1346. #endif
  1347. }
  1348. if (vmx->host_state.fs_reload_needed)
  1349. loadsegment(fs, vmx->host_state.fs_sel);
  1350. #ifdef CONFIG_X86_64
  1351. if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
  1352. loadsegment(ds, vmx->host_state.ds_sel);
  1353. loadsegment(es, vmx->host_state.es_sel);
  1354. }
  1355. #endif
  1356. reload_tss();
  1357. #ifdef CONFIG_X86_64
  1358. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1359. #endif
  1360. /*
  1361. * If the FPU is not active (through the host task or
  1362. * the guest vcpu), then restore the cr0.TS bit.
  1363. */
  1364. if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
  1365. stts();
  1366. load_gdt(&__get_cpu_var(host_gdt));
  1367. }
  1368. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1369. {
  1370. preempt_disable();
  1371. __vmx_load_host_state(vmx);
  1372. preempt_enable();
  1373. }
  1374. /*
  1375. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1376. * vcpu mutex is already taken.
  1377. */
  1378. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1379. {
  1380. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1381. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1382. if (!vmm_exclusive)
  1383. kvm_cpu_vmxon(phys_addr);
  1384. else if (vmx->loaded_vmcs->cpu != cpu)
  1385. loaded_vmcs_clear(vmx->loaded_vmcs);
  1386. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1387. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1388. vmcs_load(vmx->loaded_vmcs->vmcs);
  1389. }
  1390. if (vmx->loaded_vmcs->cpu != cpu) {
  1391. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1392. unsigned long sysenter_esp;
  1393. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1394. local_irq_disable();
  1395. crash_disable_local_vmclear(cpu);
  1396. /*
  1397. * Read loaded_vmcs->cpu should be before fetching
  1398. * loaded_vmcs->loaded_vmcss_on_cpu_link.
  1399. * See the comments in __loaded_vmcs_clear().
  1400. */
  1401. smp_rmb();
  1402. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1403. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1404. crash_enable_local_vmclear(cpu);
  1405. local_irq_enable();
  1406. /*
  1407. * Linux uses per-cpu TSS and GDT, so set these when switching
  1408. * processors.
  1409. */
  1410. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1411. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1412. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1413. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1414. vmx->loaded_vmcs->cpu = cpu;
  1415. }
  1416. }
  1417. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1418. {
  1419. __vmx_load_host_state(to_vmx(vcpu));
  1420. if (!vmm_exclusive) {
  1421. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1422. vcpu->cpu = -1;
  1423. kvm_cpu_vmxoff();
  1424. }
  1425. }
  1426. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1427. {
  1428. ulong cr0;
  1429. if (vcpu->fpu_active)
  1430. return;
  1431. vcpu->fpu_active = 1;
  1432. cr0 = vmcs_readl(GUEST_CR0);
  1433. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1434. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1435. vmcs_writel(GUEST_CR0, cr0);
  1436. update_exception_bitmap(vcpu);
  1437. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1438. if (is_guest_mode(vcpu))
  1439. vcpu->arch.cr0_guest_owned_bits &=
  1440. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1441. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1442. }
  1443. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1444. /*
  1445. * Return the cr0 value that a nested guest would read. This is a combination
  1446. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1447. * its hypervisor (cr0_read_shadow).
  1448. */
  1449. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1450. {
  1451. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1452. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1453. }
  1454. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1455. {
  1456. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1457. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1458. }
  1459. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1460. {
  1461. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1462. * set this *before* calling this function.
  1463. */
  1464. vmx_decache_cr0_guest_bits(vcpu);
  1465. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1466. update_exception_bitmap(vcpu);
  1467. vcpu->arch.cr0_guest_owned_bits = 0;
  1468. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1469. if (is_guest_mode(vcpu)) {
  1470. /*
  1471. * L1's specified read shadow might not contain the TS bit,
  1472. * so now that we turned on shadowing of this bit, we need to
  1473. * set this bit of the shadow. Like in nested_vmx_run we need
  1474. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1475. * up-to-date here because we just decached cr0.TS (and we'll
  1476. * only update vmcs12->guest_cr0 on nested exit).
  1477. */
  1478. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1479. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1480. (vcpu->arch.cr0 & X86_CR0_TS);
  1481. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1482. } else
  1483. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1484. }
  1485. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1486. {
  1487. unsigned long rflags, save_rflags;
  1488. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1489. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1490. rflags = vmcs_readl(GUEST_RFLAGS);
  1491. if (to_vmx(vcpu)->rmode.vm86_active) {
  1492. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1493. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1494. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1495. }
  1496. to_vmx(vcpu)->rflags = rflags;
  1497. }
  1498. return to_vmx(vcpu)->rflags;
  1499. }
  1500. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1501. {
  1502. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1503. to_vmx(vcpu)->rflags = rflags;
  1504. if (to_vmx(vcpu)->rmode.vm86_active) {
  1505. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1506. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1507. }
  1508. vmcs_writel(GUEST_RFLAGS, rflags);
  1509. }
  1510. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1511. {
  1512. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1513. int ret = 0;
  1514. if (interruptibility & GUEST_INTR_STATE_STI)
  1515. ret |= KVM_X86_SHADOW_INT_STI;
  1516. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1517. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1518. return ret & mask;
  1519. }
  1520. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1521. {
  1522. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1523. u32 interruptibility = interruptibility_old;
  1524. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1525. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1526. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1527. else if (mask & KVM_X86_SHADOW_INT_STI)
  1528. interruptibility |= GUEST_INTR_STATE_STI;
  1529. if ((interruptibility != interruptibility_old))
  1530. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1531. }
  1532. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1533. {
  1534. unsigned long rip;
  1535. rip = kvm_rip_read(vcpu);
  1536. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1537. kvm_rip_write(vcpu, rip);
  1538. /* skipping an emulated instruction also counts */
  1539. vmx_set_interrupt_shadow(vcpu, 0);
  1540. }
  1541. /*
  1542. * KVM wants to inject page-faults which it got to the guest. This function
  1543. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1544. * This function assumes it is called with the exit reason in vmcs02 being
  1545. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1546. * is running).
  1547. */
  1548. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1549. {
  1550. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1551. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1552. if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
  1553. return 0;
  1554. nested_vmx_vmexit(vcpu);
  1555. return 1;
  1556. }
  1557. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1558. bool has_error_code, u32 error_code,
  1559. bool reinject)
  1560. {
  1561. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1562. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1563. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1564. nested_pf_handled(vcpu))
  1565. return;
  1566. if (has_error_code) {
  1567. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1568. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1569. }
  1570. if (vmx->rmode.vm86_active) {
  1571. int inc_eip = 0;
  1572. if (kvm_exception_is_soft(nr))
  1573. inc_eip = vcpu->arch.event_exit_inst_len;
  1574. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1575. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1576. return;
  1577. }
  1578. if (kvm_exception_is_soft(nr)) {
  1579. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1580. vmx->vcpu.arch.event_exit_inst_len);
  1581. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1582. } else
  1583. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1584. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1585. }
  1586. static bool vmx_rdtscp_supported(void)
  1587. {
  1588. return cpu_has_vmx_rdtscp();
  1589. }
  1590. static bool vmx_invpcid_supported(void)
  1591. {
  1592. return cpu_has_vmx_invpcid() && enable_ept;
  1593. }
  1594. /*
  1595. * Swap MSR entry in host/guest MSR entry array.
  1596. */
  1597. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1598. {
  1599. struct shared_msr_entry tmp;
  1600. tmp = vmx->guest_msrs[to];
  1601. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1602. vmx->guest_msrs[from] = tmp;
  1603. }
  1604. static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
  1605. {
  1606. unsigned long *msr_bitmap;
  1607. if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
  1608. if (is_long_mode(vcpu))
  1609. msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
  1610. else
  1611. msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
  1612. } else {
  1613. if (is_long_mode(vcpu))
  1614. msr_bitmap = vmx_msr_bitmap_longmode;
  1615. else
  1616. msr_bitmap = vmx_msr_bitmap_legacy;
  1617. }
  1618. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1619. }
  1620. /*
  1621. * Set up the vmcs to automatically save and restore system
  1622. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1623. * mode, as fiddling with msrs is very expensive.
  1624. */
  1625. static void setup_msrs(struct vcpu_vmx *vmx)
  1626. {
  1627. int save_nmsrs, index;
  1628. save_nmsrs = 0;
  1629. #ifdef CONFIG_X86_64
  1630. if (is_long_mode(&vmx->vcpu)) {
  1631. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1632. if (index >= 0)
  1633. move_msr_up(vmx, index, save_nmsrs++);
  1634. index = __find_msr_index(vmx, MSR_LSTAR);
  1635. if (index >= 0)
  1636. move_msr_up(vmx, index, save_nmsrs++);
  1637. index = __find_msr_index(vmx, MSR_CSTAR);
  1638. if (index >= 0)
  1639. move_msr_up(vmx, index, save_nmsrs++);
  1640. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1641. if (index >= 0 && vmx->rdtscp_enabled)
  1642. move_msr_up(vmx, index, save_nmsrs++);
  1643. /*
  1644. * MSR_STAR is only needed on long mode guests, and only
  1645. * if efer.sce is enabled.
  1646. */
  1647. index = __find_msr_index(vmx, MSR_STAR);
  1648. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1649. move_msr_up(vmx, index, save_nmsrs++);
  1650. }
  1651. #endif
  1652. index = __find_msr_index(vmx, MSR_EFER);
  1653. if (index >= 0 && update_transition_efer(vmx, index))
  1654. move_msr_up(vmx, index, save_nmsrs++);
  1655. vmx->save_nmsrs = save_nmsrs;
  1656. if (cpu_has_vmx_msr_bitmap())
  1657. vmx_set_msr_bitmap(&vmx->vcpu);
  1658. }
  1659. /*
  1660. * reads and returns guest's timestamp counter "register"
  1661. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1662. */
  1663. static u64 guest_read_tsc(void)
  1664. {
  1665. u64 host_tsc, tsc_offset;
  1666. rdtscll(host_tsc);
  1667. tsc_offset = vmcs_read64(TSC_OFFSET);
  1668. return host_tsc + tsc_offset;
  1669. }
  1670. /*
  1671. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1672. * counter, even if a nested guest (L2) is currently running.
  1673. */
  1674. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
  1675. {
  1676. u64 tsc_offset;
  1677. tsc_offset = is_guest_mode(vcpu) ?
  1678. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1679. vmcs_read64(TSC_OFFSET);
  1680. return host_tsc + tsc_offset;
  1681. }
  1682. /*
  1683. * Engage any workarounds for mis-matched TSC rates. Currently limited to
  1684. * software catchup for faster rates on slower CPUs.
  1685. */
  1686. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
  1687. {
  1688. if (!scale)
  1689. return;
  1690. if (user_tsc_khz > tsc_khz) {
  1691. vcpu->arch.tsc_catchup = 1;
  1692. vcpu->arch.tsc_always_catchup = 1;
  1693. } else
  1694. WARN(1, "user requested TSC rate below hardware speed\n");
  1695. }
  1696. static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
  1697. {
  1698. return vmcs_read64(TSC_OFFSET);
  1699. }
  1700. /*
  1701. * writes 'offset' into guest's timestamp counter offset register
  1702. */
  1703. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1704. {
  1705. if (is_guest_mode(vcpu)) {
  1706. /*
  1707. * We're here if L1 chose not to trap WRMSR to TSC. According
  1708. * to the spec, this should set L1's TSC; The offset that L1
  1709. * set for L2 remains unchanged, and still needs to be added
  1710. * to the newly set TSC to get L2's TSC.
  1711. */
  1712. struct vmcs12 *vmcs12;
  1713. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1714. /* recalculate vmcs02.TSC_OFFSET: */
  1715. vmcs12 = get_vmcs12(vcpu);
  1716. vmcs_write64(TSC_OFFSET, offset +
  1717. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1718. vmcs12->tsc_offset : 0));
  1719. } else {
  1720. vmcs_write64(TSC_OFFSET, offset);
  1721. }
  1722. }
  1723. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
  1724. {
  1725. u64 offset = vmcs_read64(TSC_OFFSET);
  1726. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1727. if (is_guest_mode(vcpu)) {
  1728. /* Even when running L2, the adjustment needs to apply to L1 */
  1729. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1730. }
  1731. }
  1732. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1733. {
  1734. return target_tsc - native_read_tsc();
  1735. }
  1736. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1737. {
  1738. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1739. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1740. }
  1741. /*
  1742. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1743. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1744. * all guests if the "nested" module option is off, and can also be disabled
  1745. * for a single guest by disabling its VMX cpuid bit.
  1746. */
  1747. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1748. {
  1749. return nested && guest_cpuid_has_vmx(vcpu);
  1750. }
  1751. /*
  1752. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1753. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1754. * The same values should also be used to verify that vmcs12 control fields are
  1755. * valid during nested entry from L1 to L2.
  1756. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1757. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1758. * bit in the high half is on if the corresponding bit in the control field
  1759. * may be on. See also vmx_control_verify().
  1760. * TODO: allow these variables to be modified (downgraded) by module options
  1761. * or other means.
  1762. */
  1763. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1764. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1765. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1766. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1767. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1768. static __init void nested_vmx_setup_ctls_msrs(void)
  1769. {
  1770. /*
  1771. * Note that as a general rule, the high half of the MSRs (bits in
  1772. * the control fields which may be 1) should be initialized by the
  1773. * intersection of the underlying hardware's MSR (i.e., features which
  1774. * can be supported) and the list of features we want to expose -
  1775. * because they are known to be properly supported in our code.
  1776. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1777. * be set to 0, meaning that L1 may turn off any of these bits. The
  1778. * reason is that if one of these bits is necessary, it will appear
  1779. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1780. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1781. * nested_vmx_exit_handled() will not pass related exits to L1.
  1782. * These rules have exceptions below.
  1783. */
  1784. /* pin-based controls */
  1785. /*
  1786. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1787. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1788. */
  1789. nested_vmx_pinbased_ctls_low = 0x16 ;
  1790. nested_vmx_pinbased_ctls_high = 0x16 |
  1791. PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
  1792. PIN_BASED_VIRTUAL_NMIS;
  1793. /* exit controls */
  1794. nested_vmx_exit_ctls_low = 0;
  1795. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1796. #ifdef CONFIG_X86_64
  1797. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1798. #else
  1799. nested_vmx_exit_ctls_high = 0;
  1800. #endif
  1801. /* entry controls */
  1802. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1803. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1804. nested_vmx_entry_ctls_low = 0;
  1805. nested_vmx_entry_ctls_high &=
  1806. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1807. /* cpu-based controls */
  1808. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1809. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1810. nested_vmx_procbased_ctls_low = 0;
  1811. nested_vmx_procbased_ctls_high &=
  1812. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1813. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1814. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1815. CPU_BASED_CR3_STORE_EXITING |
  1816. #ifdef CONFIG_X86_64
  1817. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1818. #endif
  1819. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1820. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1821. CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
  1822. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1823. /*
  1824. * We can allow some features even when not supported by the
  1825. * hardware. For example, L1 can specify an MSR bitmap - and we
  1826. * can use it to avoid exits to L1 - even when L0 runs L2
  1827. * without MSR bitmaps.
  1828. */
  1829. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1830. /* secondary cpu-based controls */
  1831. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1832. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1833. nested_vmx_secondary_ctls_low = 0;
  1834. nested_vmx_secondary_ctls_high &=
  1835. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1836. }
  1837. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1838. {
  1839. /*
  1840. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1841. */
  1842. return ((control & high) | low) == control;
  1843. }
  1844. static inline u64 vmx_control_msr(u32 low, u32 high)
  1845. {
  1846. return low | ((u64)high << 32);
  1847. }
  1848. /*
  1849. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1850. * also let it use VMX-specific MSRs.
  1851. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1852. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1853. * like all other MSRs).
  1854. */
  1855. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1856. {
  1857. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1858. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1859. /*
  1860. * According to the spec, processors which do not support VMX
  1861. * should throw a #GP(0) when VMX capability MSRs are read.
  1862. */
  1863. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1864. return 1;
  1865. }
  1866. switch (msr_index) {
  1867. case MSR_IA32_FEATURE_CONTROL:
  1868. *pdata = 0;
  1869. break;
  1870. case MSR_IA32_VMX_BASIC:
  1871. /*
  1872. * This MSR reports some information about VMX support. We
  1873. * should return information about the VMX we emulate for the
  1874. * guest, and the VMCS structure we give it - not about the
  1875. * VMX support of the underlying hardware.
  1876. */
  1877. *pdata = VMCS12_REVISION |
  1878. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1879. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1880. break;
  1881. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1882. case MSR_IA32_VMX_PINBASED_CTLS:
  1883. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1884. nested_vmx_pinbased_ctls_high);
  1885. break;
  1886. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1887. case MSR_IA32_VMX_PROCBASED_CTLS:
  1888. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1889. nested_vmx_procbased_ctls_high);
  1890. break;
  1891. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1892. case MSR_IA32_VMX_EXIT_CTLS:
  1893. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1894. nested_vmx_exit_ctls_high);
  1895. break;
  1896. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1897. case MSR_IA32_VMX_ENTRY_CTLS:
  1898. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1899. nested_vmx_entry_ctls_high);
  1900. break;
  1901. case MSR_IA32_VMX_MISC:
  1902. *pdata = 0;
  1903. break;
  1904. /*
  1905. * These MSRs specify bits which the guest must keep fixed (on or off)
  1906. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1907. * We picked the standard core2 setting.
  1908. */
  1909. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1910. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1911. case MSR_IA32_VMX_CR0_FIXED0:
  1912. *pdata = VMXON_CR0_ALWAYSON;
  1913. break;
  1914. case MSR_IA32_VMX_CR0_FIXED1:
  1915. *pdata = -1ULL;
  1916. break;
  1917. case MSR_IA32_VMX_CR4_FIXED0:
  1918. *pdata = VMXON_CR4_ALWAYSON;
  1919. break;
  1920. case MSR_IA32_VMX_CR4_FIXED1:
  1921. *pdata = -1ULL;
  1922. break;
  1923. case MSR_IA32_VMX_VMCS_ENUM:
  1924. *pdata = 0x1f;
  1925. break;
  1926. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1927. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1928. nested_vmx_secondary_ctls_high);
  1929. break;
  1930. case MSR_IA32_VMX_EPT_VPID_CAP:
  1931. /* Currently, no nested ept or nested vpid */
  1932. *pdata = 0;
  1933. break;
  1934. default:
  1935. return 0;
  1936. }
  1937. return 1;
  1938. }
  1939. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1940. {
  1941. if (!nested_vmx_allowed(vcpu))
  1942. return 0;
  1943. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1944. /* TODO: the right thing. */
  1945. return 1;
  1946. /*
  1947. * No need to treat VMX capability MSRs specially: If we don't handle
  1948. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1949. */
  1950. return 0;
  1951. }
  1952. /*
  1953. * Reads an msr value (of 'msr_index') into 'pdata'.
  1954. * Returns 0 on success, non-0 otherwise.
  1955. * Assumes vcpu_load() was already called.
  1956. */
  1957. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1958. {
  1959. u64 data;
  1960. struct shared_msr_entry *msr;
  1961. if (!pdata) {
  1962. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1963. return -EINVAL;
  1964. }
  1965. switch (msr_index) {
  1966. #ifdef CONFIG_X86_64
  1967. case MSR_FS_BASE:
  1968. data = vmcs_readl(GUEST_FS_BASE);
  1969. break;
  1970. case MSR_GS_BASE:
  1971. data = vmcs_readl(GUEST_GS_BASE);
  1972. break;
  1973. case MSR_KERNEL_GS_BASE:
  1974. vmx_load_host_state(to_vmx(vcpu));
  1975. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1976. break;
  1977. #endif
  1978. case MSR_EFER:
  1979. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1980. case MSR_IA32_TSC:
  1981. data = guest_read_tsc();
  1982. break;
  1983. case MSR_IA32_SYSENTER_CS:
  1984. data = vmcs_read32(GUEST_SYSENTER_CS);
  1985. break;
  1986. case MSR_IA32_SYSENTER_EIP:
  1987. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1988. break;
  1989. case MSR_IA32_SYSENTER_ESP:
  1990. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1991. break;
  1992. case MSR_TSC_AUX:
  1993. if (!to_vmx(vcpu)->rdtscp_enabled)
  1994. return 1;
  1995. /* Otherwise falls through */
  1996. default:
  1997. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  1998. return 0;
  1999. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  2000. if (msr) {
  2001. data = msr->data;
  2002. break;
  2003. }
  2004. return kvm_get_msr_common(vcpu, msr_index, pdata);
  2005. }
  2006. *pdata = data;
  2007. return 0;
  2008. }
  2009. /*
  2010. * Writes msr value into into the appropriate "register".
  2011. * Returns 0 on success, non-0 otherwise.
  2012. * Assumes vcpu_load() was already called.
  2013. */
  2014. static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
  2015. {
  2016. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2017. struct shared_msr_entry *msr;
  2018. int ret = 0;
  2019. u32 msr_index = msr_info->index;
  2020. u64 data = msr_info->data;
  2021. switch (msr_index) {
  2022. case MSR_EFER:
  2023. ret = kvm_set_msr_common(vcpu, msr_info);
  2024. break;
  2025. #ifdef CONFIG_X86_64
  2026. case MSR_FS_BASE:
  2027. vmx_segment_cache_clear(vmx);
  2028. vmcs_writel(GUEST_FS_BASE, data);
  2029. break;
  2030. case MSR_GS_BASE:
  2031. vmx_segment_cache_clear(vmx);
  2032. vmcs_writel(GUEST_GS_BASE, data);
  2033. break;
  2034. case MSR_KERNEL_GS_BASE:
  2035. vmx_load_host_state(vmx);
  2036. vmx->msr_guest_kernel_gs_base = data;
  2037. break;
  2038. #endif
  2039. case MSR_IA32_SYSENTER_CS:
  2040. vmcs_write32(GUEST_SYSENTER_CS, data);
  2041. break;
  2042. case MSR_IA32_SYSENTER_EIP:
  2043. vmcs_writel(GUEST_SYSENTER_EIP, data);
  2044. break;
  2045. case MSR_IA32_SYSENTER_ESP:
  2046. vmcs_writel(GUEST_SYSENTER_ESP, data);
  2047. break;
  2048. case MSR_IA32_TSC:
  2049. kvm_write_tsc(vcpu, msr_info);
  2050. break;
  2051. case MSR_IA32_CR_PAT:
  2052. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2053. vmcs_write64(GUEST_IA32_PAT, data);
  2054. vcpu->arch.pat = data;
  2055. break;
  2056. }
  2057. ret = kvm_set_msr_common(vcpu, msr_info);
  2058. break;
  2059. case MSR_IA32_TSC_ADJUST:
  2060. ret = kvm_set_msr_common(vcpu, msr_info);
  2061. break;
  2062. case MSR_TSC_AUX:
  2063. if (!vmx->rdtscp_enabled)
  2064. return 1;
  2065. /* Check reserved bit, higher 32 bits should be zero */
  2066. if ((data >> 32) != 0)
  2067. return 1;
  2068. /* Otherwise falls through */
  2069. default:
  2070. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  2071. break;
  2072. msr = find_msr_entry(vmx, msr_index);
  2073. if (msr) {
  2074. msr->data = data;
  2075. if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
  2076. preempt_disable();
  2077. kvm_set_shared_msr(msr->index, msr->data,
  2078. msr->mask);
  2079. preempt_enable();
  2080. }
  2081. break;
  2082. }
  2083. ret = kvm_set_msr_common(vcpu, msr_info);
  2084. }
  2085. return ret;
  2086. }
  2087. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  2088. {
  2089. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  2090. switch (reg) {
  2091. case VCPU_REGS_RSP:
  2092. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  2093. break;
  2094. case VCPU_REGS_RIP:
  2095. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  2096. break;
  2097. case VCPU_EXREG_PDPTR:
  2098. if (enable_ept)
  2099. ept_save_pdptrs(vcpu);
  2100. break;
  2101. default:
  2102. break;
  2103. }
  2104. }
  2105. static __init int cpu_has_kvm_support(void)
  2106. {
  2107. return cpu_has_vmx();
  2108. }
  2109. static __init int vmx_disabled_by_bios(void)
  2110. {
  2111. u64 msr;
  2112. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  2113. if (msr & FEATURE_CONTROL_LOCKED) {
  2114. /* launched w/ TXT and VMX disabled */
  2115. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2116. && tboot_enabled())
  2117. return 1;
  2118. /* launched w/o TXT and VMX only enabled w/ TXT */
  2119. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2120. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2121. && !tboot_enabled()) {
  2122. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  2123. "activate TXT before enabling KVM\n");
  2124. return 1;
  2125. }
  2126. /* launched w/o TXT and VMX disabled */
  2127. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2128. && !tboot_enabled())
  2129. return 1;
  2130. }
  2131. return 0;
  2132. }
  2133. static void kvm_cpu_vmxon(u64 addr)
  2134. {
  2135. asm volatile (ASM_VMX_VMXON_RAX
  2136. : : "a"(&addr), "m"(addr)
  2137. : "memory", "cc");
  2138. }
  2139. static int hardware_enable(void *garbage)
  2140. {
  2141. int cpu = raw_smp_processor_id();
  2142. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  2143. u64 old, test_bits;
  2144. if (read_cr4() & X86_CR4_VMXE)
  2145. return -EBUSY;
  2146. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  2147. /*
  2148. * Now we can enable the vmclear operation in kdump
  2149. * since the loaded_vmcss_on_cpu list on this cpu
  2150. * has been initialized.
  2151. *
  2152. * Though the cpu is not in VMX operation now, there
  2153. * is no problem to enable the vmclear operation
  2154. * for the loaded_vmcss_on_cpu list is empty!
  2155. */
  2156. crash_enable_local_vmclear(cpu);
  2157. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  2158. test_bits = FEATURE_CONTROL_LOCKED;
  2159. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2160. if (tboot_enabled())
  2161. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2162. if ((old & test_bits) != test_bits) {
  2163. /* enable and lock */
  2164. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2165. }
  2166. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2167. if (vmm_exclusive) {
  2168. kvm_cpu_vmxon(phys_addr);
  2169. ept_sync_global();
  2170. }
  2171. store_gdt(&__get_cpu_var(host_gdt));
  2172. return 0;
  2173. }
  2174. static void vmclear_local_loaded_vmcss(void)
  2175. {
  2176. int cpu = raw_smp_processor_id();
  2177. struct loaded_vmcs *v, *n;
  2178. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2179. loaded_vmcss_on_cpu_link)
  2180. __loaded_vmcs_clear(v);
  2181. }
  2182. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2183. * tricks.
  2184. */
  2185. static void kvm_cpu_vmxoff(void)
  2186. {
  2187. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2188. }
  2189. static void hardware_disable(void *garbage)
  2190. {
  2191. if (vmm_exclusive) {
  2192. vmclear_local_loaded_vmcss();
  2193. kvm_cpu_vmxoff();
  2194. }
  2195. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2196. }
  2197. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2198. u32 msr, u32 *result)
  2199. {
  2200. u32 vmx_msr_low, vmx_msr_high;
  2201. u32 ctl = ctl_min | ctl_opt;
  2202. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2203. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2204. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2205. /* Ensure minimum (required) set of control bits are supported. */
  2206. if (ctl_min & ~ctl)
  2207. return -EIO;
  2208. *result = ctl;
  2209. return 0;
  2210. }
  2211. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2212. {
  2213. u32 vmx_msr_low, vmx_msr_high;
  2214. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2215. return vmx_msr_high & ctl;
  2216. }
  2217. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2218. {
  2219. u32 vmx_msr_low, vmx_msr_high;
  2220. u32 min, opt, min2, opt2;
  2221. u32 _pin_based_exec_control = 0;
  2222. u32 _cpu_based_exec_control = 0;
  2223. u32 _cpu_based_2nd_exec_control = 0;
  2224. u32 _vmexit_control = 0;
  2225. u32 _vmentry_control = 0;
  2226. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2227. opt = PIN_BASED_VIRTUAL_NMIS;
  2228. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2229. &_pin_based_exec_control) < 0)
  2230. return -EIO;
  2231. min = CPU_BASED_HLT_EXITING |
  2232. #ifdef CONFIG_X86_64
  2233. CPU_BASED_CR8_LOAD_EXITING |
  2234. CPU_BASED_CR8_STORE_EXITING |
  2235. #endif
  2236. CPU_BASED_CR3_LOAD_EXITING |
  2237. CPU_BASED_CR3_STORE_EXITING |
  2238. CPU_BASED_USE_IO_BITMAPS |
  2239. CPU_BASED_MOV_DR_EXITING |
  2240. CPU_BASED_USE_TSC_OFFSETING |
  2241. CPU_BASED_MWAIT_EXITING |
  2242. CPU_BASED_MONITOR_EXITING |
  2243. CPU_BASED_INVLPG_EXITING |
  2244. CPU_BASED_RDPMC_EXITING;
  2245. opt = CPU_BASED_TPR_SHADOW |
  2246. CPU_BASED_USE_MSR_BITMAPS |
  2247. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2248. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2249. &_cpu_based_exec_control) < 0)
  2250. return -EIO;
  2251. #ifdef CONFIG_X86_64
  2252. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2253. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2254. ~CPU_BASED_CR8_STORE_EXITING;
  2255. #endif
  2256. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2257. min2 = 0;
  2258. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2259. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
  2260. SECONDARY_EXEC_WBINVD_EXITING |
  2261. SECONDARY_EXEC_ENABLE_VPID |
  2262. SECONDARY_EXEC_ENABLE_EPT |
  2263. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2264. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2265. SECONDARY_EXEC_RDTSCP |
  2266. SECONDARY_EXEC_ENABLE_INVPCID |
  2267. SECONDARY_EXEC_APIC_REGISTER_VIRT |
  2268. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
  2269. if (adjust_vmx_controls(min2, opt2,
  2270. MSR_IA32_VMX_PROCBASED_CTLS2,
  2271. &_cpu_based_2nd_exec_control) < 0)
  2272. return -EIO;
  2273. }
  2274. #ifndef CONFIG_X86_64
  2275. if (!(_cpu_based_2nd_exec_control &
  2276. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2277. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2278. #endif
  2279. if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2280. _cpu_based_2nd_exec_control &= ~(
  2281. SECONDARY_EXEC_APIC_REGISTER_VIRT |
  2282. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
  2283. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
  2284. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2285. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2286. enabled */
  2287. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2288. CPU_BASED_CR3_STORE_EXITING |
  2289. CPU_BASED_INVLPG_EXITING);
  2290. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2291. vmx_capability.ept, vmx_capability.vpid);
  2292. }
  2293. min = 0;
  2294. #ifdef CONFIG_X86_64
  2295. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2296. #endif
  2297. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2298. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2299. &_vmexit_control) < 0)
  2300. return -EIO;
  2301. min = 0;
  2302. opt = VM_ENTRY_LOAD_IA32_PAT;
  2303. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2304. &_vmentry_control) < 0)
  2305. return -EIO;
  2306. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2307. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2308. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2309. return -EIO;
  2310. #ifdef CONFIG_X86_64
  2311. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2312. if (vmx_msr_high & (1u<<16))
  2313. return -EIO;
  2314. #endif
  2315. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2316. if (((vmx_msr_high >> 18) & 15) != 6)
  2317. return -EIO;
  2318. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2319. vmcs_conf->order = get_order(vmcs_config.size);
  2320. vmcs_conf->revision_id = vmx_msr_low;
  2321. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2322. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2323. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2324. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2325. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2326. cpu_has_load_ia32_efer =
  2327. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2328. VM_ENTRY_LOAD_IA32_EFER)
  2329. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2330. VM_EXIT_LOAD_IA32_EFER);
  2331. cpu_has_load_perf_global_ctrl =
  2332. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2333. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
  2334. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2335. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  2336. /*
  2337. * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
  2338. * but due to arrata below it can't be used. Workaround is to use
  2339. * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
  2340. *
  2341. * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
  2342. *
  2343. * AAK155 (model 26)
  2344. * AAP115 (model 30)
  2345. * AAT100 (model 37)
  2346. * BC86,AAY89,BD102 (model 44)
  2347. * BA97 (model 46)
  2348. *
  2349. */
  2350. if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
  2351. switch (boot_cpu_data.x86_model) {
  2352. case 26:
  2353. case 30:
  2354. case 37:
  2355. case 44:
  2356. case 46:
  2357. cpu_has_load_perf_global_ctrl = false;
  2358. printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
  2359. "does not work properly. Using workaround\n");
  2360. break;
  2361. default:
  2362. break;
  2363. }
  2364. }
  2365. return 0;
  2366. }
  2367. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2368. {
  2369. int node = cpu_to_node(cpu);
  2370. struct page *pages;
  2371. struct vmcs *vmcs;
  2372. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2373. if (!pages)
  2374. return NULL;
  2375. vmcs = page_address(pages);
  2376. memset(vmcs, 0, vmcs_config.size);
  2377. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2378. return vmcs;
  2379. }
  2380. static struct vmcs *alloc_vmcs(void)
  2381. {
  2382. return alloc_vmcs_cpu(raw_smp_processor_id());
  2383. }
  2384. static void free_vmcs(struct vmcs *vmcs)
  2385. {
  2386. free_pages((unsigned long)vmcs, vmcs_config.order);
  2387. }
  2388. /*
  2389. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2390. */
  2391. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2392. {
  2393. if (!loaded_vmcs->vmcs)
  2394. return;
  2395. loaded_vmcs_clear(loaded_vmcs);
  2396. free_vmcs(loaded_vmcs->vmcs);
  2397. loaded_vmcs->vmcs = NULL;
  2398. }
  2399. static void free_kvm_area(void)
  2400. {
  2401. int cpu;
  2402. for_each_possible_cpu(cpu) {
  2403. free_vmcs(per_cpu(vmxarea, cpu));
  2404. per_cpu(vmxarea, cpu) = NULL;
  2405. }
  2406. }
  2407. static __init int alloc_kvm_area(void)
  2408. {
  2409. int cpu;
  2410. for_each_possible_cpu(cpu) {
  2411. struct vmcs *vmcs;
  2412. vmcs = alloc_vmcs_cpu(cpu);
  2413. if (!vmcs) {
  2414. free_kvm_area();
  2415. return -ENOMEM;
  2416. }
  2417. per_cpu(vmxarea, cpu) = vmcs;
  2418. }
  2419. return 0;
  2420. }
  2421. static __init int hardware_setup(void)
  2422. {
  2423. if (setup_vmcs_config(&vmcs_config) < 0)
  2424. return -EIO;
  2425. if (boot_cpu_has(X86_FEATURE_NX))
  2426. kvm_enable_efer_bits(EFER_NX);
  2427. if (!cpu_has_vmx_vpid())
  2428. enable_vpid = 0;
  2429. if (!cpu_has_vmx_ept() ||
  2430. !cpu_has_vmx_ept_4levels()) {
  2431. enable_ept = 0;
  2432. enable_unrestricted_guest = 0;
  2433. enable_ept_ad_bits = 0;
  2434. }
  2435. if (!cpu_has_vmx_ept_ad_bits())
  2436. enable_ept_ad_bits = 0;
  2437. if (!cpu_has_vmx_unrestricted_guest())
  2438. enable_unrestricted_guest = 0;
  2439. if (!cpu_has_vmx_flexpriority())
  2440. flexpriority_enabled = 0;
  2441. if (!cpu_has_vmx_tpr_shadow())
  2442. kvm_x86_ops->update_cr8_intercept = NULL;
  2443. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2444. kvm_disable_largepages();
  2445. if (!cpu_has_vmx_ple())
  2446. ple_gap = 0;
  2447. if (!cpu_has_vmx_apic_register_virt() ||
  2448. !cpu_has_vmx_virtual_intr_delivery())
  2449. enable_apicv_reg_vid = 0;
  2450. if (enable_apicv_reg_vid)
  2451. kvm_x86_ops->update_cr8_intercept = NULL;
  2452. else
  2453. kvm_x86_ops->hwapic_irr_update = NULL;
  2454. if (nested)
  2455. nested_vmx_setup_ctls_msrs();
  2456. return alloc_kvm_area();
  2457. }
  2458. static __exit void hardware_unsetup(void)
  2459. {
  2460. free_kvm_area();
  2461. }
  2462. static bool emulation_required(struct kvm_vcpu *vcpu)
  2463. {
  2464. return emulate_invalid_guest_state && !guest_state_valid(vcpu);
  2465. }
  2466. static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
  2467. struct kvm_segment *save)
  2468. {
  2469. if (!emulate_invalid_guest_state) {
  2470. /*
  2471. * CS and SS RPL should be equal during guest entry according
  2472. * to VMX spec, but in reality it is not always so. Since vcpu
  2473. * is in the middle of the transition from real mode to
  2474. * protected mode it is safe to assume that RPL 0 is a good
  2475. * default value.
  2476. */
  2477. if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
  2478. save->selector &= ~SELECTOR_RPL_MASK;
  2479. save->dpl = save->selector & SELECTOR_RPL_MASK;
  2480. save->s = 1;
  2481. }
  2482. vmx_set_segment(vcpu, save, seg);
  2483. }
  2484. static void enter_pmode(struct kvm_vcpu *vcpu)
  2485. {
  2486. unsigned long flags;
  2487. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2488. /*
  2489. * Update real mode segment cache. It may be not up-to-date if sement
  2490. * register was written while vcpu was in a guest mode.
  2491. */
  2492. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2493. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2494. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2495. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2496. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2497. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2498. vmx->rmode.vm86_active = 0;
  2499. vmx_segment_cache_clear(vmx);
  2500. vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2501. flags = vmcs_readl(GUEST_RFLAGS);
  2502. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2503. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2504. vmcs_writel(GUEST_RFLAGS, flags);
  2505. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2506. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2507. update_exception_bitmap(vcpu);
  2508. fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
  2509. fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
  2510. fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2511. fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2512. fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2513. fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2514. /* CPL is always 0 when CPU enters protected mode */
  2515. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2516. vmx->cpl = 0;
  2517. }
  2518. static gva_t rmode_tss_base(struct kvm *kvm)
  2519. {
  2520. if (!kvm->arch.tss_addr) {
  2521. struct kvm_memslots *slots;
  2522. struct kvm_memory_slot *slot;
  2523. gfn_t base_gfn;
  2524. slots = kvm_memslots(kvm);
  2525. slot = id_to_memslot(slots, 0);
  2526. base_gfn = slot->base_gfn + slot->npages - 3;
  2527. return base_gfn << PAGE_SHIFT;
  2528. }
  2529. return kvm->arch.tss_addr;
  2530. }
  2531. static void fix_rmode_seg(int seg, struct kvm_segment *save)
  2532. {
  2533. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2534. struct kvm_segment var = *save;
  2535. var.dpl = 0x3;
  2536. if (seg == VCPU_SREG_CS)
  2537. var.type = 0x3;
  2538. if (!emulate_invalid_guest_state) {
  2539. var.selector = var.base >> 4;
  2540. var.base = var.base & 0xffff0;
  2541. var.limit = 0xffff;
  2542. var.g = 0;
  2543. var.db = 0;
  2544. var.present = 1;
  2545. var.s = 1;
  2546. var.l = 0;
  2547. var.unusable = 0;
  2548. var.type = 0x3;
  2549. var.avl = 0;
  2550. if (save->base & 0xf)
  2551. printk_once(KERN_WARNING "kvm: segment base is not "
  2552. "paragraph aligned when entering "
  2553. "protected mode (seg=%d)", seg);
  2554. }
  2555. vmcs_write16(sf->selector, var.selector);
  2556. vmcs_write32(sf->base, var.base);
  2557. vmcs_write32(sf->limit, var.limit);
  2558. vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
  2559. }
  2560. static void enter_rmode(struct kvm_vcpu *vcpu)
  2561. {
  2562. unsigned long flags;
  2563. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2564. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2565. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2566. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2567. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2568. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2569. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2570. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2571. vmx->rmode.vm86_active = 1;
  2572. /*
  2573. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2574. * vcpu. Call it here with phys address pointing 16M below 4G.
  2575. */
  2576. if (!vcpu->kvm->arch.tss_addr) {
  2577. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2578. "called before entering vcpu\n");
  2579. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  2580. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  2581. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2582. }
  2583. vmx_segment_cache_clear(vmx);
  2584. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  2585. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2586. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2587. flags = vmcs_readl(GUEST_RFLAGS);
  2588. vmx->rmode.save_rflags = flags;
  2589. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2590. vmcs_writel(GUEST_RFLAGS, flags);
  2591. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2592. update_exception_bitmap(vcpu);
  2593. fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
  2594. fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
  2595. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2596. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2597. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2598. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2599. kvm_mmu_reset_context(vcpu);
  2600. }
  2601. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2602. {
  2603. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2604. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2605. if (!msr)
  2606. return;
  2607. /*
  2608. * Force kernel_gs_base reloading before EFER changes, as control
  2609. * of this msr depends on is_long_mode().
  2610. */
  2611. vmx_load_host_state(to_vmx(vcpu));
  2612. vcpu->arch.efer = efer;
  2613. if (efer & EFER_LMA) {
  2614. vmcs_write32(VM_ENTRY_CONTROLS,
  2615. vmcs_read32(VM_ENTRY_CONTROLS) |
  2616. VM_ENTRY_IA32E_MODE);
  2617. msr->data = efer;
  2618. } else {
  2619. vmcs_write32(VM_ENTRY_CONTROLS,
  2620. vmcs_read32(VM_ENTRY_CONTROLS) &
  2621. ~VM_ENTRY_IA32E_MODE);
  2622. msr->data = efer & ~EFER_LME;
  2623. }
  2624. setup_msrs(vmx);
  2625. }
  2626. #ifdef CONFIG_X86_64
  2627. static void enter_lmode(struct kvm_vcpu *vcpu)
  2628. {
  2629. u32 guest_tr_ar;
  2630. vmx_segment_cache_clear(to_vmx(vcpu));
  2631. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2632. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2633. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2634. __func__);
  2635. vmcs_write32(GUEST_TR_AR_BYTES,
  2636. (guest_tr_ar & ~AR_TYPE_MASK)
  2637. | AR_TYPE_BUSY_64_TSS);
  2638. }
  2639. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2640. }
  2641. static void exit_lmode(struct kvm_vcpu *vcpu)
  2642. {
  2643. vmcs_write32(VM_ENTRY_CONTROLS,
  2644. vmcs_read32(VM_ENTRY_CONTROLS)
  2645. & ~VM_ENTRY_IA32E_MODE);
  2646. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2647. }
  2648. #endif
  2649. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2650. {
  2651. vpid_sync_context(to_vmx(vcpu));
  2652. if (enable_ept) {
  2653. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2654. return;
  2655. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2656. }
  2657. }
  2658. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2659. {
  2660. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2661. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2662. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2663. }
  2664. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2665. {
  2666. if (enable_ept && is_paging(vcpu))
  2667. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2668. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2669. }
  2670. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2671. {
  2672. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2673. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2674. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2675. }
  2676. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2677. {
  2678. if (!test_bit(VCPU_EXREG_PDPTR,
  2679. (unsigned long *)&vcpu->arch.regs_dirty))
  2680. return;
  2681. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2682. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2683. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2684. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2685. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2686. }
  2687. }
  2688. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2689. {
  2690. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2691. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2692. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2693. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2694. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2695. }
  2696. __set_bit(VCPU_EXREG_PDPTR,
  2697. (unsigned long *)&vcpu->arch.regs_avail);
  2698. __set_bit(VCPU_EXREG_PDPTR,
  2699. (unsigned long *)&vcpu->arch.regs_dirty);
  2700. }
  2701. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2702. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2703. unsigned long cr0,
  2704. struct kvm_vcpu *vcpu)
  2705. {
  2706. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2707. vmx_decache_cr3(vcpu);
  2708. if (!(cr0 & X86_CR0_PG)) {
  2709. /* From paging/starting to nonpaging */
  2710. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2711. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2712. (CPU_BASED_CR3_LOAD_EXITING |
  2713. CPU_BASED_CR3_STORE_EXITING));
  2714. vcpu->arch.cr0 = cr0;
  2715. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2716. } else if (!is_paging(vcpu)) {
  2717. /* From nonpaging to paging */
  2718. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2719. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2720. ~(CPU_BASED_CR3_LOAD_EXITING |
  2721. CPU_BASED_CR3_STORE_EXITING));
  2722. vcpu->arch.cr0 = cr0;
  2723. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2724. }
  2725. if (!(cr0 & X86_CR0_WP))
  2726. *hw_cr0 &= ~X86_CR0_WP;
  2727. }
  2728. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2729. {
  2730. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2731. unsigned long hw_cr0;
  2732. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
  2733. if (enable_unrestricted_guest)
  2734. hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2735. else {
  2736. hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
  2737. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2738. enter_pmode(vcpu);
  2739. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2740. enter_rmode(vcpu);
  2741. }
  2742. #ifdef CONFIG_X86_64
  2743. if (vcpu->arch.efer & EFER_LME) {
  2744. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2745. enter_lmode(vcpu);
  2746. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2747. exit_lmode(vcpu);
  2748. }
  2749. #endif
  2750. if (enable_ept)
  2751. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2752. if (!vcpu->fpu_active)
  2753. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2754. vmcs_writel(CR0_READ_SHADOW, cr0);
  2755. vmcs_writel(GUEST_CR0, hw_cr0);
  2756. vcpu->arch.cr0 = cr0;
  2757. /* depends on vcpu->arch.cr0 to be set to a new value */
  2758. vmx->emulation_required = emulation_required(vcpu);
  2759. }
  2760. static u64 construct_eptp(unsigned long root_hpa)
  2761. {
  2762. u64 eptp;
  2763. /* TODO write the value reading from MSR */
  2764. eptp = VMX_EPT_DEFAULT_MT |
  2765. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2766. if (enable_ept_ad_bits)
  2767. eptp |= VMX_EPT_AD_ENABLE_BIT;
  2768. eptp |= (root_hpa & PAGE_MASK);
  2769. return eptp;
  2770. }
  2771. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2772. {
  2773. unsigned long guest_cr3;
  2774. u64 eptp;
  2775. guest_cr3 = cr3;
  2776. if (enable_ept) {
  2777. eptp = construct_eptp(cr3);
  2778. vmcs_write64(EPT_POINTER, eptp);
  2779. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2780. vcpu->kvm->arch.ept_identity_map_addr;
  2781. ept_load_pdptrs(vcpu);
  2782. }
  2783. vmx_flush_tlb(vcpu);
  2784. vmcs_writel(GUEST_CR3, guest_cr3);
  2785. }
  2786. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2787. {
  2788. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2789. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2790. if (cr4 & X86_CR4_VMXE) {
  2791. /*
  2792. * To use VMXON (and later other VMX instructions), a guest
  2793. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2794. * So basically the check on whether to allow nested VMX
  2795. * is here.
  2796. */
  2797. if (!nested_vmx_allowed(vcpu))
  2798. return 1;
  2799. } else if (to_vmx(vcpu)->nested.vmxon)
  2800. return 1;
  2801. vcpu->arch.cr4 = cr4;
  2802. if (enable_ept) {
  2803. if (!is_paging(vcpu)) {
  2804. hw_cr4 &= ~X86_CR4_PAE;
  2805. hw_cr4 |= X86_CR4_PSE;
  2806. /*
  2807. * SMEP is disabled if CPU is in non-paging mode in
  2808. * hardware. However KVM always uses paging mode to
  2809. * emulate guest non-paging mode with TDP.
  2810. * To emulate this behavior, SMEP needs to be manually
  2811. * disabled when guest switches to non-paging mode.
  2812. */
  2813. hw_cr4 &= ~X86_CR4_SMEP;
  2814. } else if (!(cr4 & X86_CR4_PAE)) {
  2815. hw_cr4 &= ~X86_CR4_PAE;
  2816. }
  2817. }
  2818. vmcs_writel(CR4_READ_SHADOW, cr4);
  2819. vmcs_writel(GUEST_CR4, hw_cr4);
  2820. return 0;
  2821. }
  2822. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2823. struct kvm_segment *var, int seg)
  2824. {
  2825. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2826. u32 ar;
  2827. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  2828. *var = vmx->rmode.segs[seg];
  2829. if (seg == VCPU_SREG_TR
  2830. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2831. return;
  2832. var->base = vmx_read_guest_seg_base(vmx, seg);
  2833. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2834. return;
  2835. }
  2836. var->base = vmx_read_guest_seg_base(vmx, seg);
  2837. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2838. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2839. ar = vmx_read_guest_seg_ar(vmx, seg);
  2840. var->type = ar & 15;
  2841. var->s = (ar >> 4) & 1;
  2842. var->dpl = (ar >> 5) & 3;
  2843. var->present = (ar >> 7) & 1;
  2844. var->avl = (ar >> 12) & 1;
  2845. var->l = (ar >> 13) & 1;
  2846. var->db = (ar >> 14) & 1;
  2847. var->g = (ar >> 15) & 1;
  2848. var->unusable = (ar >> 16) & 1;
  2849. }
  2850. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2851. {
  2852. struct kvm_segment s;
  2853. if (to_vmx(vcpu)->rmode.vm86_active) {
  2854. vmx_get_segment(vcpu, &s, seg);
  2855. return s.base;
  2856. }
  2857. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2858. }
  2859. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2860. {
  2861. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2862. if (!is_protmode(vcpu))
  2863. return 0;
  2864. if (!is_long_mode(vcpu)
  2865. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2866. return 3;
  2867. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2868. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2869. vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
  2870. }
  2871. return vmx->cpl;
  2872. }
  2873. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2874. {
  2875. u32 ar;
  2876. if (var->unusable || !var->present)
  2877. ar = 1 << 16;
  2878. else {
  2879. ar = var->type & 15;
  2880. ar |= (var->s & 1) << 4;
  2881. ar |= (var->dpl & 3) << 5;
  2882. ar |= (var->present & 1) << 7;
  2883. ar |= (var->avl & 1) << 12;
  2884. ar |= (var->l & 1) << 13;
  2885. ar |= (var->db & 1) << 14;
  2886. ar |= (var->g & 1) << 15;
  2887. }
  2888. return ar;
  2889. }
  2890. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2891. struct kvm_segment *var, int seg)
  2892. {
  2893. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2894. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2895. vmx_segment_cache_clear(vmx);
  2896. if (seg == VCPU_SREG_CS)
  2897. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2898. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  2899. vmx->rmode.segs[seg] = *var;
  2900. if (seg == VCPU_SREG_TR)
  2901. vmcs_write16(sf->selector, var->selector);
  2902. else if (var->s)
  2903. fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
  2904. goto out;
  2905. }
  2906. vmcs_writel(sf->base, var->base);
  2907. vmcs_write32(sf->limit, var->limit);
  2908. vmcs_write16(sf->selector, var->selector);
  2909. /*
  2910. * Fix the "Accessed" bit in AR field of segment registers for older
  2911. * qemu binaries.
  2912. * IA32 arch specifies that at the time of processor reset the
  2913. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2914. * is setting it to 0 in the userland code. This causes invalid guest
  2915. * state vmexit when "unrestricted guest" mode is turned on.
  2916. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2917. * tree. Newer qemu binaries with that qemu fix would not need this
  2918. * kvm hack.
  2919. */
  2920. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2921. var->type |= 0x1; /* Accessed */
  2922. vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
  2923. out:
  2924. vmx->emulation_required |= emulation_required(vcpu);
  2925. }
  2926. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2927. {
  2928. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2929. *db = (ar >> 14) & 1;
  2930. *l = (ar >> 13) & 1;
  2931. }
  2932. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2933. {
  2934. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2935. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2936. }
  2937. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2938. {
  2939. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2940. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2941. }
  2942. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2943. {
  2944. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2945. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2946. }
  2947. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2948. {
  2949. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2950. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2951. }
  2952. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2953. {
  2954. struct kvm_segment var;
  2955. u32 ar;
  2956. vmx_get_segment(vcpu, &var, seg);
  2957. var.dpl = 0x3;
  2958. if (seg == VCPU_SREG_CS)
  2959. var.type = 0x3;
  2960. ar = vmx_segment_access_rights(&var);
  2961. if (var.base != (var.selector << 4))
  2962. return false;
  2963. if (var.limit != 0xffff)
  2964. return false;
  2965. if (ar != 0xf3)
  2966. return false;
  2967. return true;
  2968. }
  2969. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2970. {
  2971. struct kvm_segment cs;
  2972. unsigned int cs_rpl;
  2973. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2974. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2975. if (cs.unusable)
  2976. return false;
  2977. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2978. return false;
  2979. if (!cs.s)
  2980. return false;
  2981. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2982. if (cs.dpl > cs_rpl)
  2983. return false;
  2984. } else {
  2985. if (cs.dpl != cs_rpl)
  2986. return false;
  2987. }
  2988. if (!cs.present)
  2989. return false;
  2990. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2991. return true;
  2992. }
  2993. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2994. {
  2995. struct kvm_segment ss;
  2996. unsigned int ss_rpl;
  2997. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2998. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2999. if (ss.unusable)
  3000. return true;
  3001. if (ss.type != 3 && ss.type != 7)
  3002. return false;
  3003. if (!ss.s)
  3004. return false;
  3005. if (ss.dpl != ss_rpl) /* DPL != RPL */
  3006. return false;
  3007. if (!ss.present)
  3008. return false;
  3009. return true;
  3010. }
  3011. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  3012. {
  3013. struct kvm_segment var;
  3014. unsigned int rpl;
  3015. vmx_get_segment(vcpu, &var, seg);
  3016. rpl = var.selector & SELECTOR_RPL_MASK;
  3017. if (var.unusable)
  3018. return true;
  3019. if (!var.s)
  3020. return false;
  3021. if (!var.present)
  3022. return false;
  3023. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  3024. if (var.dpl < rpl) /* DPL < RPL */
  3025. return false;
  3026. }
  3027. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  3028. * rights flags
  3029. */
  3030. return true;
  3031. }
  3032. static bool tr_valid(struct kvm_vcpu *vcpu)
  3033. {
  3034. struct kvm_segment tr;
  3035. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  3036. if (tr.unusable)
  3037. return false;
  3038. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3039. return false;
  3040. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  3041. return false;
  3042. if (!tr.present)
  3043. return false;
  3044. return true;
  3045. }
  3046. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  3047. {
  3048. struct kvm_segment ldtr;
  3049. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  3050. if (ldtr.unusable)
  3051. return true;
  3052. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3053. return false;
  3054. if (ldtr.type != 2)
  3055. return false;
  3056. if (!ldtr.present)
  3057. return false;
  3058. return true;
  3059. }
  3060. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  3061. {
  3062. struct kvm_segment cs, ss;
  3063. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3064. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3065. return ((cs.selector & SELECTOR_RPL_MASK) ==
  3066. (ss.selector & SELECTOR_RPL_MASK));
  3067. }
  3068. /*
  3069. * Check if guest state is valid. Returns true if valid, false if
  3070. * not.
  3071. * We assume that registers are always usable
  3072. */
  3073. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  3074. {
  3075. if (enable_unrestricted_guest)
  3076. return true;
  3077. /* real mode guest state checks */
  3078. if (!is_protmode(vcpu)) {
  3079. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  3080. return false;
  3081. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  3082. return false;
  3083. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  3084. return false;
  3085. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  3086. return false;
  3087. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  3088. return false;
  3089. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  3090. return false;
  3091. } else {
  3092. /* protected mode guest state checks */
  3093. if (!cs_ss_rpl_check(vcpu))
  3094. return false;
  3095. if (!code_segment_valid(vcpu))
  3096. return false;
  3097. if (!stack_segment_valid(vcpu))
  3098. return false;
  3099. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  3100. return false;
  3101. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  3102. return false;
  3103. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  3104. return false;
  3105. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  3106. return false;
  3107. if (!tr_valid(vcpu))
  3108. return false;
  3109. if (!ldtr_valid(vcpu))
  3110. return false;
  3111. }
  3112. /* TODO:
  3113. * - Add checks on RIP
  3114. * - Add checks on RFLAGS
  3115. */
  3116. return true;
  3117. }
  3118. static int init_rmode_tss(struct kvm *kvm)
  3119. {
  3120. gfn_t fn;
  3121. u16 data = 0;
  3122. int r, idx, ret = 0;
  3123. idx = srcu_read_lock(&kvm->srcu);
  3124. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  3125. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3126. if (r < 0)
  3127. goto out;
  3128. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  3129. r = kvm_write_guest_page(kvm, fn++, &data,
  3130. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  3131. if (r < 0)
  3132. goto out;
  3133. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  3134. if (r < 0)
  3135. goto out;
  3136. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3137. if (r < 0)
  3138. goto out;
  3139. data = ~0;
  3140. r = kvm_write_guest_page(kvm, fn, &data,
  3141. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  3142. sizeof(u8));
  3143. if (r < 0)
  3144. goto out;
  3145. ret = 1;
  3146. out:
  3147. srcu_read_unlock(&kvm->srcu, idx);
  3148. return ret;
  3149. }
  3150. static int init_rmode_identity_map(struct kvm *kvm)
  3151. {
  3152. int i, idx, r, ret;
  3153. pfn_t identity_map_pfn;
  3154. u32 tmp;
  3155. if (!enable_ept)
  3156. return 1;
  3157. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  3158. printk(KERN_ERR "EPT: identity-mapping pagetable "
  3159. "haven't been allocated!\n");
  3160. return 0;
  3161. }
  3162. if (likely(kvm->arch.ept_identity_pagetable_done))
  3163. return 1;
  3164. ret = 0;
  3165. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  3166. idx = srcu_read_lock(&kvm->srcu);
  3167. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  3168. if (r < 0)
  3169. goto out;
  3170. /* Set up identity-mapping pagetable for EPT in real mode */
  3171. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  3172. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  3173. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  3174. r = kvm_write_guest_page(kvm, identity_map_pfn,
  3175. &tmp, i * sizeof(tmp), sizeof(tmp));
  3176. if (r < 0)
  3177. goto out;
  3178. }
  3179. kvm->arch.ept_identity_pagetable_done = true;
  3180. ret = 1;
  3181. out:
  3182. srcu_read_unlock(&kvm->srcu, idx);
  3183. return ret;
  3184. }
  3185. static void seg_setup(int seg)
  3186. {
  3187. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3188. unsigned int ar;
  3189. vmcs_write16(sf->selector, 0);
  3190. vmcs_writel(sf->base, 0);
  3191. vmcs_write32(sf->limit, 0xffff);
  3192. ar = 0x93;
  3193. if (seg == VCPU_SREG_CS)
  3194. ar |= 0x08; /* code segment */
  3195. vmcs_write32(sf->ar_bytes, ar);
  3196. }
  3197. static int alloc_apic_access_page(struct kvm *kvm)
  3198. {
  3199. struct page *page;
  3200. struct kvm_userspace_memory_region kvm_userspace_mem;
  3201. int r = 0;
  3202. mutex_lock(&kvm->slots_lock);
  3203. if (kvm->arch.apic_access_page)
  3204. goto out;
  3205. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  3206. kvm_userspace_mem.flags = 0;
  3207. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  3208. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3209. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, false);
  3210. if (r)
  3211. goto out;
  3212. page = gfn_to_page(kvm, 0xfee00);
  3213. if (is_error_page(page)) {
  3214. r = -EFAULT;
  3215. goto out;
  3216. }
  3217. kvm->arch.apic_access_page = page;
  3218. out:
  3219. mutex_unlock(&kvm->slots_lock);
  3220. return r;
  3221. }
  3222. static int alloc_identity_pagetable(struct kvm *kvm)
  3223. {
  3224. struct page *page;
  3225. struct kvm_userspace_memory_region kvm_userspace_mem;
  3226. int r = 0;
  3227. mutex_lock(&kvm->slots_lock);
  3228. if (kvm->arch.ept_identity_pagetable)
  3229. goto out;
  3230. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3231. kvm_userspace_mem.flags = 0;
  3232. kvm_userspace_mem.guest_phys_addr =
  3233. kvm->arch.ept_identity_map_addr;
  3234. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3235. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, false);
  3236. if (r)
  3237. goto out;
  3238. page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3239. if (is_error_page(page)) {
  3240. r = -EFAULT;
  3241. goto out;
  3242. }
  3243. kvm->arch.ept_identity_pagetable = page;
  3244. out:
  3245. mutex_unlock(&kvm->slots_lock);
  3246. return r;
  3247. }
  3248. static void allocate_vpid(struct vcpu_vmx *vmx)
  3249. {
  3250. int vpid;
  3251. vmx->vpid = 0;
  3252. if (!enable_vpid)
  3253. return;
  3254. spin_lock(&vmx_vpid_lock);
  3255. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3256. if (vpid < VMX_NR_VPIDS) {
  3257. vmx->vpid = vpid;
  3258. __set_bit(vpid, vmx_vpid_bitmap);
  3259. }
  3260. spin_unlock(&vmx_vpid_lock);
  3261. }
  3262. static void free_vpid(struct vcpu_vmx *vmx)
  3263. {
  3264. if (!enable_vpid)
  3265. return;
  3266. spin_lock(&vmx_vpid_lock);
  3267. if (vmx->vpid != 0)
  3268. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3269. spin_unlock(&vmx_vpid_lock);
  3270. }
  3271. #define MSR_TYPE_R 1
  3272. #define MSR_TYPE_W 2
  3273. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
  3274. u32 msr, int type)
  3275. {
  3276. int f = sizeof(unsigned long);
  3277. if (!cpu_has_vmx_msr_bitmap())
  3278. return;
  3279. /*
  3280. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3281. * have the write-low and read-high bitmap offsets the wrong way round.
  3282. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3283. */
  3284. if (msr <= 0x1fff) {
  3285. if (type & MSR_TYPE_R)
  3286. /* read-low */
  3287. __clear_bit(msr, msr_bitmap + 0x000 / f);
  3288. if (type & MSR_TYPE_W)
  3289. /* write-low */
  3290. __clear_bit(msr, msr_bitmap + 0x800 / f);
  3291. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3292. msr &= 0x1fff;
  3293. if (type & MSR_TYPE_R)
  3294. /* read-high */
  3295. __clear_bit(msr, msr_bitmap + 0x400 / f);
  3296. if (type & MSR_TYPE_W)
  3297. /* write-high */
  3298. __clear_bit(msr, msr_bitmap + 0xc00 / f);
  3299. }
  3300. }
  3301. static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
  3302. u32 msr, int type)
  3303. {
  3304. int f = sizeof(unsigned long);
  3305. if (!cpu_has_vmx_msr_bitmap())
  3306. return;
  3307. /*
  3308. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3309. * have the write-low and read-high bitmap offsets the wrong way round.
  3310. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3311. */
  3312. if (msr <= 0x1fff) {
  3313. if (type & MSR_TYPE_R)
  3314. /* read-low */
  3315. __set_bit(msr, msr_bitmap + 0x000 / f);
  3316. if (type & MSR_TYPE_W)
  3317. /* write-low */
  3318. __set_bit(msr, msr_bitmap + 0x800 / f);
  3319. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3320. msr &= 0x1fff;
  3321. if (type & MSR_TYPE_R)
  3322. /* read-high */
  3323. __set_bit(msr, msr_bitmap + 0x400 / f);
  3324. if (type & MSR_TYPE_W)
  3325. /* write-high */
  3326. __set_bit(msr, msr_bitmap + 0xc00 / f);
  3327. }
  3328. }
  3329. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3330. {
  3331. if (!longmode_only)
  3332. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
  3333. msr, MSR_TYPE_R | MSR_TYPE_W);
  3334. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
  3335. msr, MSR_TYPE_R | MSR_TYPE_W);
  3336. }
  3337. static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
  3338. {
  3339. __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3340. msr, MSR_TYPE_R);
  3341. __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3342. msr, MSR_TYPE_R);
  3343. }
  3344. static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
  3345. {
  3346. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3347. msr, MSR_TYPE_R);
  3348. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3349. msr, MSR_TYPE_R);
  3350. }
  3351. static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
  3352. {
  3353. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3354. msr, MSR_TYPE_W);
  3355. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3356. msr, MSR_TYPE_W);
  3357. }
  3358. /*
  3359. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3360. * will not change in the lifetime of the guest.
  3361. * Note that host-state that does change is set elsewhere. E.g., host-state
  3362. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3363. */
  3364. static void vmx_set_constant_host_state(void)
  3365. {
  3366. u32 low32, high32;
  3367. unsigned long tmpl;
  3368. struct desc_ptr dt;
  3369. vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
  3370. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3371. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3372. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3373. #ifdef CONFIG_X86_64
  3374. /*
  3375. * Load null selectors, so we can avoid reloading them in
  3376. * __vmx_load_host_state(), in case userspace uses the null selectors
  3377. * too (the expected case).
  3378. */
  3379. vmcs_write16(HOST_DS_SELECTOR, 0);
  3380. vmcs_write16(HOST_ES_SELECTOR, 0);
  3381. #else
  3382. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3383. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3384. #endif
  3385. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3386. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3387. native_store_idt(&dt);
  3388. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3389. vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
  3390. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3391. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3392. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3393. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3394. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3395. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3396. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3397. }
  3398. }
  3399. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3400. {
  3401. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3402. if (enable_ept)
  3403. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3404. if (is_guest_mode(&vmx->vcpu))
  3405. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3406. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3407. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3408. }
  3409. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3410. {
  3411. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3412. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3413. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3414. #ifdef CONFIG_X86_64
  3415. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3416. CPU_BASED_CR8_LOAD_EXITING;
  3417. #endif
  3418. }
  3419. if (!enable_ept)
  3420. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3421. CPU_BASED_CR3_LOAD_EXITING |
  3422. CPU_BASED_INVLPG_EXITING;
  3423. return exec_control;
  3424. }
  3425. static int vmx_vm_has_apicv(struct kvm *kvm)
  3426. {
  3427. return enable_apicv_reg_vid && irqchip_in_kernel(kvm);
  3428. }
  3429. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3430. {
  3431. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3432. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3433. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3434. if (vmx->vpid == 0)
  3435. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3436. if (!enable_ept) {
  3437. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3438. enable_unrestricted_guest = 0;
  3439. /* Enable INVPCID for non-ept guests may cause performance regression. */
  3440. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  3441. }
  3442. if (!enable_unrestricted_guest)
  3443. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3444. if (!ple_gap)
  3445. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3446. if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
  3447. exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
  3448. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
  3449. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  3450. return exec_control;
  3451. }
  3452. static void ept_set_mmio_spte_mask(void)
  3453. {
  3454. /*
  3455. * EPT Misconfigurations can be generated if the value of bits 2:0
  3456. * of an EPT paging-structure entry is 110b (write/execute).
  3457. * Also, magic bits (0xffull << 49) is set to quickly identify mmio
  3458. * spte.
  3459. */
  3460. kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
  3461. }
  3462. /*
  3463. * Sets up the vmcs for emulated real mode.
  3464. */
  3465. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3466. {
  3467. #ifdef CONFIG_X86_64
  3468. unsigned long a;
  3469. #endif
  3470. int i;
  3471. /* I/O */
  3472. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3473. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3474. if (cpu_has_vmx_msr_bitmap())
  3475. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3476. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3477. /* Control */
  3478. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3479. vmcs_config.pin_based_exec_ctrl);
  3480. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3481. if (cpu_has_secondary_exec_ctrls()) {
  3482. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3483. vmx_secondary_exec_control(vmx));
  3484. }
  3485. if (enable_apicv_reg_vid) {
  3486. vmcs_write64(EOI_EXIT_BITMAP0, 0);
  3487. vmcs_write64(EOI_EXIT_BITMAP1, 0);
  3488. vmcs_write64(EOI_EXIT_BITMAP2, 0);
  3489. vmcs_write64(EOI_EXIT_BITMAP3, 0);
  3490. vmcs_write16(GUEST_INTR_STATUS, 0);
  3491. }
  3492. if (ple_gap) {
  3493. vmcs_write32(PLE_GAP, ple_gap);
  3494. vmcs_write32(PLE_WINDOW, ple_window);
  3495. }
  3496. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3497. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3498. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3499. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3500. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3501. vmx_set_constant_host_state();
  3502. #ifdef CONFIG_X86_64
  3503. rdmsrl(MSR_FS_BASE, a);
  3504. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3505. rdmsrl(MSR_GS_BASE, a);
  3506. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3507. #else
  3508. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3509. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3510. #endif
  3511. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3512. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3513. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3514. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3515. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3516. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3517. u32 msr_low, msr_high;
  3518. u64 host_pat;
  3519. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3520. host_pat = msr_low | ((u64) msr_high << 32);
  3521. /* Write the default value follow host pat */
  3522. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3523. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3524. vmx->vcpu.arch.pat = host_pat;
  3525. }
  3526. for (i = 0; i < NR_VMX_MSR; ++i) {
  3527. u32 index = vmx_msr_index[i];
  3528. u32 data_low, data_high;
  3529. int j = vmx->nmsrs;
  3530. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3531. continue;
  3532. if (wrmsr_safe(index, data_low, data_high) < 0)
  3533. continue;
  3534. vmx->guest_msrs[j].index = i;
  3535. vmx->guest_msrs[j].data = 0;
  3536. vmx->guest_msrs[j].mask = -1ull;
  3537. ++vmx->nmsrs;
  3538. }
  3539. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3540. /* 22.2.1, 20.8.1 */
  3541. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3542. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3543. set_cr4_guest_host_mask(vmx);
  3544. return 0;
  3545. }
  3546. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3547. {
  3548. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3549. u64 msr;
  3550. int ret;
  3551. vmx->rmode.vm86_active = 0;
  3552. vmx->soft_vnmi_blocked = 0;
  3553. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3554. kvm_set_cr8(&vmx->vcpu, 0);
  3555. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3556. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3557. msr |= MSR_IA32_APICBASE_BSP;
  3558. kvm_set_apic_base(&vmx->vcpu, msr);
  3559. vmx_segment_cache_clear(vmx);
  3560. seg_setup(VCPU_SREG_CS);
  3561. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3562. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3563. else {
  3564. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  3565. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  3566. }
  3567. seg_setup(VCPU_SREG_DS);
  3568. seg_setup(VCPU_SREG_ES);
  3569. seg_setup(VCPU_SREG_FS);
  3570. seg_setup(VCPU_SREG_GS);
  3571. seg_setup(VCPU_SREG_SS);
  3572. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3573. vmcs_writel(GUEST_TR_BASE, 0);
  3574. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3575. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3576. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3577. vmcs_writel(GUEST_LDTR_BASE, 0);
  3578. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3579. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3580. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3581. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3582. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3583. vmcs_writel(GUEST_RFLAGS, 0x02);
  3584. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3585. kvm_rip_write(vcpu, 0xfff0);
  3586. else
  3587. kvm_rip_write(vcpu, 0);
  3588. vmcs_writel(GUEST_GDTR_BASE, 0);
  3589. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3590. vmcs_writel(GUEST_IDTR_BASE, 0);
  3591. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3592. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3593. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3594. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3595. /* Special registers */
  3596. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3597. setup_msrs(vmx);
  3598. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3599. if (cpu_has_vmx_tpr_shadow()) {
  3600. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3601. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3602. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3603. __pa(vmx->vcpu.arch.apic->regs));
  3604. vmcs_write32(TPR_THRESHOLD, 0);
  3605. }
  3606. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3607. vmcs_write64(APIC_ACCESS_ADDR,
  3608. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3609. if (vmx->vpid != 0)
  3610. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3611. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3612. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3613. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3614. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3615. vmx_set_cr4(&vmx->vcpu, 0);
  3616. vmx_set_efer(&vmx->vcpu, 0);
  3617. vmx_fpu_activate(&vmx->vcpu);
  3618. update_exception_bitmap(&vmx->vcpu);
  3619. vpid_sync_context(vmx);
  3620. ret = 0;
  3621. return ret;
  3622. }
  3623. /*
  3624. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3625. * For most existing hypervisors, this will always return true.
  3626. */
  3627. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3628. {
  3629. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3630. PIN_BASED_EXT_INTR_MASK;
  3631. }
  3632. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3633. {
  3634. u32 cpu_based_vm_exec_control;
  3635. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3636. /*
  3637. * We get here if vmx_interrupt_allowed() said we can't
  3638. * inject to L1 now because L2 must run. Ask L2 to exit
  3639. * right after entry, so we can inject to L1 more promptly.
  3640. */
  3641. kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
  3642. return;
  3643. }
  3644. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3645. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3646. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3647. }
  3648. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3649. {
  3650. u32 cpu_based_vm_exec_control;
  3651. if (!cpu_has_virtual_nmis()) {
  3652. enable_irq_window(vcpu);
  3653. return;
  3654. }
  3655. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3656. enable_irq_window(vcpu);
  3657. return;
  3658. }
  3659. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3660. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3661. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3662. }
  3663. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3664. {
  3665. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3666. uint32_t intr;
  3667. int irq = vcpu->arch.interrupt.nr;
  3668. trace_kvm_inj_virq(irq);
  3669. ++vcpu->stat.irq_injections;
  3670. if (vmx->rmode.vm86_active) {
  3671. int inc_eip = 0;
  3672. if (vcpu->arch.interrupt.soft)
  3673. inc_eip = vcpu->arch.event_exit_inst_len;
  3674. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3675. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3676. return;
  3677. }
  3678. intr = irq | INTR_INFO_VALID_MASK;
  3679. if (vcpu->arch.interrupt.soft) {
  3680. intr |= INTR_TYPE_SOFT_INTR;
  3681. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3682. vmx->vcpu.arch.event_exit_inst_len);
  3683. } else
  3684. intr |= INTR_TYPE_EXT_INTR;
  3685. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3686. }
  3687. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3688. {
  3689. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3690. if (is_guest_mode(vcpu))
  3691. return;
  3692. if (!cpu_has_virtual_nmis()) {
  3693. /*
  3694. * Tracking the NMI-blocked state in software is built upon
  3695. * finding the next open IRQ window. This, in turn, depends on
  3696. * well-behaving guests: They have to keep IRQs disabled at
  3697. * least as long as the NMI handler runs. Otherwise we may
  3698. * cause NMI nesting, maybe breaking the guest. But as this is
  3699. * highly unlikely, we can live with the residual risk.
  3700. */
  3701. vmx->soft_vnmi_blocked = 1;
  3702. vmx->vnmi_blocked_time = 0;
  3703. }
  3704. ++vcpu->stat.nmi_injections;
  3705. vmx->nmi_known_unmasked = false;
  3706. if (vmx->rmode.vm86_active) {
  3707. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3708. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3709. return;
  3710. }
  3711. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3712. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3713. }
  3714. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3715. {
  3716. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3717. return 0;
  3718. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3719. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3720. | GUEST_INTR_STATE_NMI));
  3721. }
  3722. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3723. {
  3724. if (!cpu_has_virtual_nmis())
  3725. return to_vmx(vcpu)->soft_vnmi_blocked;
  3726. if (to_vmx(vcpu)->nmi_known_unmasked)
  3727. return false;
  3728. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3729. }
  3730. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3731. {
  3732. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3733. if (!cpu_has_virtual_nmis()) {
  3734. if (vmx->soft_vnmi_blocked != masked) {
  3735. vmx->soft_vnmi_blocked = masked;
  3736. vmx->vnmi_blocked_time = 0;
  3737. }
  3738. } else {
  3739. vmx->nmi_known_unmasked = !masked;
  3740. if (masked)
  3741. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3742. GUEST_INTR_STATE_NMI);
  3743. else
  3744. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3745. GUEST_INTR_STATE_NMI);
  3746. }
  3747. }
  3748. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3749. {
  3750. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3751. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3752. if (to_vmx(vcpu)->nested.nested_run_pending ||
  3753. (vmcs12->idt_vectoring_info_field &
  3754. VECTORING_INFO_VALID_MASK))
  3755. return 0;
  3756. nested_vmx_vmexit(vcpu);
  3757. vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
  3758. vmcs12->vm_exit_intr_info = 0;
  3759. /* fall through to normal code, but now in L1, not L2 */
  3760. }
  3761. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3762. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3763. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3764. }
  3765. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3766. {
  3767. int ret;
  3768. struct kvm_userspace_memory_region tss_mem = {
  3769. .slot = TSS_PRIVATE_MEMSLOT,
  3770. .guest_phys_addr = addr,
  3771. .memory_size = PAGE_SIZE * 3,
  3772. .flags = 0,
  3773. };
  3774. ret = kvm_set_memory_region(kvm, &tss_mem, false);
  3775. if (ret)
  3776. return ret;
  3777. kvm->arch.tss_addr = addr;
  3778. if (!init_rmode_tss(kvm))
  3779. return -ENOMEM;
  3780. return 0;
  3781. }
  3782. static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
  3783. {
  3784. switch (vec) {
  3785. case BP_VECTOR:
  3786. /*
  3787. * Update instruction length as we may reinject the exception
  3788. * from user space while in guest debugging mode.
  3789. */
  3790. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3791. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3792. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3793. return false;
  3794. /* fall through */
  3795. case DB_VECTOR:
  3796. if (vcpu->guest_debug &
  3797. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3798. return false;
  3799. /* fall through */
  3800. case DE_VECTOR:
  3801. case OF_VECTOR:
  3802. case BR_VECTOR:
  3803. case UD_VECTOR:
  3804. case DF_VECTOR:
  3805. case SS_VECTOR:
  3806. case GP_VECTOR:
  3807. case MF_VECTOR:
  3808. return true;
  3809. break;
  3810. }
  3811. return false;
  3812. }
  3813. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3814. int vec, u32 err_code)
  3815. {
  3816. /*
  3817. * Instruction with address size override prefix opcode 0x67
  3818. * Cause the #SS fault with 0 error code in VM86 mode.
  3819. */
  3820. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
  3821. if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
  3822. if (vcpu->arch.halt_request) {
  3823. vcpu->arch.halt_request = 0;
  3824. return kvm_emulate_halt(vcpu);
  3825. }
  3826. return 1;
  3827. }
  3828. return 0;
  3829. }
  3830. /*
  3831. * Forward all other exceptions that are valid in real mode.
  3832. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3833. * the required debugging infrastructure rework.
  3834. */
  3835. kvm_queue_exception(vcpu, vec);
  3836. return 1;
  3837. }
  3838. /*
  3839. * Trigger machine check on the host. We assume all the MSRs are already set up
  3840. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3841. * We pass a fake environment to the machine check handler because we want
  3842. * the guest to be always treated like user space, no matter what context
  3843. * it used internally.
  3844. */
  3845. static void kvm_machine_check(void)
  3846. {
  3847. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3848. struct pt_regs regs = {
  3849. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3850. .flags = X86_EFLAGS_IF,
  3851. };
  3852. do_machine_check(&regs, 0);
  3853. #endif
  3854. }
  3855. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3856. {
  3857. /* already handled by vcpu_run */
  3858. return 1;
  3859. }
  3860. static int handle_exception(struct kvm_vcpu *vcpu)
  3861. {
  3862. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3863. struct kvm_run *kvm_run = vcpu->run;
  3864. u32 intr_info, ex_no, error_code;
  3865. unsigned long cr2, rip, dr6;
  3866. u32 vect_info;
  3867. enum emulation_result er;
  3868. vect_info = vmx->idt_vectoring_info;
  3869. intr_info = vmx->exit_intr_info;
  3870. if (is_machine_check(intr_info))
  3871. return handle_machine_check(vcpu);
  3872. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3873. return 1; /* already handled by vmx_vcpu_run() */
  3874. if (is_no_device(intr_info)) {
  3875. vmx_fpu_activate(vcpu);
  3876. return 1;
  3877. }
  3878. if (is_invalid_opcode(intr_info)) {
  3879. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3880. if (er != EMULATE_DONE)
  3881. kvm_queue_exception(vcpu, UD_VECTOR);
  3882. return 1;
  3883. }
  3884. error_code = 0;
  3885. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3886. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3887. /*
  3888. * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
  3889. * MMIO, it is better to report an internal error.
  3890. * See the comments in vmx_handle_exit.
  3891. */
  3892. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3893. !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
  3894. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3895. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3896. vcpu->run->internal.ndata = 2;
  3897. vcpu->run->internal.data[0] = vect_info;
  3898. vcpu->run->internal.data[1] = intr_info;
  3899. return 0;
  3900. }
  3901. if (is_page_fault(intr_info)) {
  3902. /* EPT won't cause page fault directly */
  3903. BUG_ON(enable_ept);
  3904. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3905. trace_kvm_page_fault(cr2, error_code);
  3906. if (kvm_event_needs_reinjection(vcpu))
  3907. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3908. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3909. }
  3910. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3911. if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
  3912. return handle_rmode_exception(vcpu, ex_no, error_code);
  3913. switch (ex_no) {
  3914. case DB_VECTOR:
  3915. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3916. if (!(vcpu->guest_debug &
  3917. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3918. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3919. kvm_queue_exception(vcpu, DB_VECTOR);
  3920. return 1;
  3921. }
  3922. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3923. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3924. /* fall through */
  3925. case BP_VECTOR:
  3926. /*
  3927. * Update instruction length as we may reinject #BP from
  3928. * user space while in guest debugging mode. Reading it for
  3929. * #DB as well causes no harm, it is not used in that case.
  3930. */
  3931. vmx->vcpu.arch.event_exit_inst_len =
  3932. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3933. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3934. rip = kvm_rip_read(vcpu);
  3935. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3936. kvm_run->debug.arch.exception = ex_no;
  3937. break;
  3938. default:
  3939. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3940. kvm_run->ex.exception = ex_no;
  3941. kvm_run->ex.error_code = error_code;
  3942. break;
  3943. }
  3944. return 0;
  3945. }
  3946. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3947. {
  3948. ++vcpu->stat.irq_exits;
  3949. return 1;
  3950. }
  3951. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3952. {
  3953. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3954. return 0;
  3955. }
  3956. static int handle_io(struct kvm_vcpu *vcpu)
  3957. {
  3958. unsigned long exit_qualification;
  3959. int size, in, string;
  3960. unsigned port;
  3961. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3962. string = (exit_qualification & 16) != 0;
  3963. in = (exit_qualification & 8) != 0;
  3964. ++vcpu->stat.io_exits;
  3965. if (string || in)
  3966. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3967. port = exit_qualification >> 16;
  3968. size = (exit_qualification & 7) + 1;
  3969. skip_emulated_instruction(vcpu);
  3970. return kvm_fast_pio_out(vcpu, size, port);
  3971. }
  3972. static void
  3973. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3974. {
  3975. /*
  3976. * Patch in the VMCALL instruction:
  3977. */
  3978. hypercall[0] = 0x0f;
  3979. hypercall[1] = 0x01;
  3980. hypercall[2] = 0xc1;
  3981. }
  3982. /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
  3983. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  3984. {
  3985. if (to_vmx(vcpu)->nested.vmxon &&
  3986. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  3987. return 1;
  3988. if (is_guest_mode(vcpu)) {
  3989. /*
  3990. * We get here when L2 changed cr0 in a way that did not change
  3991. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  3992. * but did change L0 shadowed bits. This can currently happen
  3993. * with the TS bit: L0 may want to leave TS on (for lazy fpu
  3994. * loading) while pretending to allow the guest to change it.
  3995. */
  3996. if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
  3997. (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
  3998. return 1;
  3999. vmcs_writel(CR0_READ_SHADOW, val);
  4000. return 0;
  4001. } else
  4002. return kvm_set_cr0(vcpu, val);
  4003. }
  4004. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  4005. {
  4006. if (is_guest_mode(vcpu)) {
  4007. if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
  4008. (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
  4009. return 1;
  4010. vmcs_writel(CR4_READ_SHADOW, val);
  4011. return 0;
  4012. } else
  4013. return kvm_set_cr4(vcpu, val);
  4014. }
  4015. /* called to set cr0 as approriate for clts instruction exit. */
  4016. static void handle_clts(struct kvm_vcpu *vcpu)
  4017. {
  4018. if (is_guest_mode(vcpu)) {
  4019. /*
  4020. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  4021. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  4022. * just pretend it's off (also in arch.cr0 for fpu_activate).
  4023. */
  4024. vmcs_writel(CR0_READ_SHADOW,
  4025. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  4026. vcpu->arch.cr0 &= ~X86_CR0_TS;
  4027. } else
  4028. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  4029. }
  4030. static int handle_cr(struct kvm_vcpu *vcpu)
  4031. {
  4032. unsigned long exit_qualification, val;
  4033. int cr;
  4034. int reg;
  4035. int err;
  4036. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4037. cr = exit_qualification & 15;
  4038. reg = (exit_qualification >> 8) & 15;
  4039. switch ((exit_qualification >> 4) & 3) {
  4040. case 0: /* mov to cr */
  4041. val = kvm_register_read(vcpu, reg);
  4042. trace_kvm_cr_write(cr, val);
  4043. switch (cr) {
  4044. case 0:
  4045. err = handle_set_cr0(vcpu, val);
  4046. kvm_complete_insn_gp(vcpu, err);
  4047. return 1;
  4048. case 3:
  4049. err = kvm_set_cr3(vcpu, val);
  4050. kvm_complete_insn_gp(vcpu, err);
  4051. return 1;
  4052. case 4:
  4053. err = handle_set_cr4(vcpu, val);
  4054. kvm_complete_insn_gp(vcpu, err);
  4055. return 1;
  4056. case 8: {
  4057. u8 cr8_prev = kvm_get_cr8(vcpu);
  4058. u8 cr8 = kvm_register_read(vcpu, reg);
  4059. err = kvm_set_cr8(vcpu, cr8);
  4060. kvm_complete_insn_gp(vcpu, err);
  4061. if (irqchip_in_kernel(vcpu->kvm))
  4062. return 1;
  4063. if (cr8_prev <= cr8)
  4064. return 1;
  4065. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  4066. return 0;
  4067. }
  4068. }
  4069. break;
  4070. case 2: /* clts */
  4071. handle_clts(vcpu);
  4072. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  4073. skip_emulated_instruction(vcpu);
  4074. vmx_fpu_activate(vcpu);
  4075. return 1;
  4076. case 1: /*mov from cr*/
  4077. switch (cr) {
  4078. case 3:
  4079. val = kvm_read_cr3(vcpu);
  4080. kvm_register_write(vcpu, reg, val);
  4081. trace_kvm_cr_read(cr, val);
  4082. skip_emulated_instruction(vcpu);
  4083. return 1;
  4084. case 8:
  4085. val = kvm_get_cr8(vcpu);
  4086. kvm_register_write(vcpu, reg, val);
  4087. trace_kvm_cr_read(cr, val);
  4088. skip_emulated_instruction(vcpu);
  4089. return 1;
  4090. }
  4091. break;
  4092. case 3: /* lmsw */
  4093. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  4094. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  4095. kvm_lmsw(vcpu, val);
  4096. skip_emulated_instruction(vcpu);
  4097. return 1;
  4098. default:
  4099. break;
  4100. }
  4101. vcpu->run->exit_reason = 0;
  4102. vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  4103. (int)(exit_qualification >> 4) & 3, cr);
  4104. return 0;
  4105. }
  4106. static int handle_dr(struct kvm_vcpu *vcpu)
  4107. {
  4108. unsigned long exit_qualification;
  4109. int dr, reg;
  4110. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  4111. if (!kvm_require_cpl(vcpu, 0))
  4112. return 1;
  4113. dr = vmcs_readl(GUEST_DR7);
  4114. if (dr & DR7_GD) {
  4115. /*
  4116. * As the vm-exit takes precedence over the debug trap, we
  4117. * need to emulate the latter, either for the host or the
  4118. * guest debugging itself.
  4119. */
  4120. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4121. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  4122. vcpu->run->debug.arch.dr7 = dr;
  4123. vcpu->run->debug.arch.pc =
  4124. vmcs_readl(GUEST_CS_BASE) +
  4125. vmcs_readl(GUEST_RIP);
  4126. vcpu->run->debug.arch.exception = DB_VECTOR;
  4127. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  4128. return 0;
  4129. } else {
  4130. vcpu->arch.dr7 &= ~DR7_GD;
  4131. vcpu->arch.dr6 |= DR6_BD;
  4132. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  4133. kvm_queue_exception(vcpu, DB_VECTOR);
  4134. return 1;
  4135. }
  4136. }
  4137. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4138. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  4139. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  4140. if (exit_qualification & TYPE_MOV_FROM_DR) {
  4141. unsigned long val;
  4142. if (!kvm_get_dr(vcpu, dr, &val))
  4143. kvm_register_write(vcpu, reg, val);
  4144. } else
  4145. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  4146. skip_emulated_instruction(vcpu);
  4147. return 1;
  4148. }
  4149. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  4150. {
  4151. vmcs_writel(GUEST_DR7, val);
  4152. }
  4153. static int handle_cpuid(struct kvm_vcpu *vcpu)
  4154. {
  4155. kvm_emulate_cpuid(vcpu);
  4156. return 1;
  4157. }
  4158. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  4159. {
  4160. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4161. u64 data;
  4162. if (vmx_get_msr(vcpu, ecx, &data)) {
  4163. trace_kvm_msr_read_ex(ecx);
  4164. kvm_inject_gp(vcpu, 0);
  4165. return 1;
  4166. }
  4167. trace_kvm_msr_read(ecx, data);
  4168. /* FIXME: handling of bits 32:63 of rax, rdx */
  4169. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  4170. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  4171. skip_emulated_instruction(vcpu);
  4172. return 1;
  4173. }
  4174. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  4175. {
  4176. struct msr_data msr;
  4177. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4178. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  4179. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  4180. msr.data = data;
  4181. msr.index = ecx;
  4182. msr.host_initiated = false;
  4183. if (vmx_set_msr(vcpu, &msr) != 0) {
  4184. trace_kvm_msr_write_ex(ecx, data);
  4185. kvm_inject_gp(vcpu, 0);
  4186. return 1;
  4187. }
  4188. trace_kvm_msr_write(ecx, data);
  4189. skip_emulated_instruction(vcpu);
  4190. return 1;
  4191. }
  4192. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  4193. {
  4194. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4195. return 1;
  4196. }
  4197. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  4198. {
  4199. u32 cpu_based_vm_exec_control;
  4200. /* clear pending irq */
  4201. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4202. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  4203. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4204. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4205. ++vcpu->stat.irq_window_exits;
  4206. /*
  4207. * If the user space waits to inject interrupts, exit as soon as
  4208. * possible
  4209. */
  4210. if (!irqchip_in_kernel(vcpu->kvm) &&
  4211. vcpu->run->request_interrupt_window &&
  4212. !kvm_cpu_has_interrupt(vcpu)) {
  4213. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  4214. return 0;
  4215. }
  4216. return 1;
  4217. }
  4218. static int handle_halt(struct kvm_vcpu *vcpu)
  4219. {
  4220. skip_emulated_instruction(vcpu);
  4221. return kvm_emulate_halt(vcpu);
  4222. }
  4223. static int handle_vmcall(struct kvm_vcpu *vcpu)
  4224. {
  4225. skip_emulated_instruction(vcpu);
  4226. kvm_emulate_hypercall(vcpu);
  4227. return 1;
  4228. }
  4229. static int handle_invd(struct kvm_vcpu *vcpu)
  4230. {
  4231. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4232. }
  4233. static int handle_invlpg(struct kvm_vcpu *vcpu)
  4234. {
  4235. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4236. kvm_mmu_invlpg(vcpu, exit_qualification);
  4237. skip_emulated_instruction(vcpu);
  4238. return 1;
  4239. }
  4240. static int handle_rdpmc(struct kvm_vcpu *vcpu)
  4241. {
  4242. int err;
  4243. err = kvm_rdpmc(vcpu);
  4244. kvm_complete_insn_gp(vcpu, err);
  4245. return 1;
  4246. }
  4247. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  4248. {
  4249. skip_emulated_instruction(vcpu);
  4250. kvm_emulate_wbinvd(vcpu);
  4251. return 1;
  4252. }
  4253. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  4254. {
  4255. u64 new_bv = kvm_read_edx_eax(vcpu);
  4256. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4257. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  4258. skip_emulated_instruction(vcpu);
  4259. return 1;
  4260. }
  4261. static int handle_apic_access(struct kvm_vcpu *vcpu)
  4262. {
  4263. if (likely(fasteoi)) {
  4264. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4265. int access_type, offset;
  4266. access_type = exit_qualification & APIC_ACCESS_TYPE;
  4267. offset = exit_qualification & APIC_ACCESS_OFFSET;
  4268. /*
  4269. * Sane guest uses MOV to write EOI, with written value
  4270. * not cared. So make a short-circuit here by avoiding
  4271. * heavy instruction emulation.
  4272. */
  4273. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  4274. (offset == APIC_EOI)) {
  4275. kvm_lapic_set_eoi(vcpu);
  4276. skip_emulated_instruction(vcpu);
  4277. return 1;
  4278. }
  4279. }
  4280. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4281. }
  4282. static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
  4283. {
  4284. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4285. int vector = exit_qualification & 0xff;
  4286. /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
  4287. kvm_apic_set_eoi_accelerated(vcpu, vector);
  4288. return 1;
  4289. }
  4290. static int handle_apic_write(struct kvm_vcpu *vcpu)
  4291. {
  4292. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4293. u32 offset = exit_qualification & 0xfff;
  4294. /* APIC-write VM exit is trap-like and thus no need to adjust IP */
  4295. kvm_apic_write_nodecode(vcpu, offset);
  4296. return 1;
  4297. }
  4298. static int handle_task_switch(struct kvm_vcpu *vcpu)
  4299. {
  4300. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4301. unsigned long exit_qualification;
  4302. bool has_error_code = false;
  4303. u32 error_code = 0;
  4304. u16 tss_selector;
  4305. int reason, type, idt_v, idt_index;
  4306. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  4307. idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
  4308. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  4309. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4310. reason = (u32)exit_qualification >> 30;
  4311. if (reason == TASK_SWITCH_GATE && idt_v) {
  4312. switch (type) {
  4313. case INTR_TYPE_NMI_INTR:
  4314. vcpu->arch.nmi_injected = false;
  4315. vmx_set_nmi_mask(vcpu, true);
  4316. break;
  4317. case INTR_TYPE_EXT_INTR:
  4318. case INTR_TYPE_SOFT_INTR:
  4319. kvm_clear_interrupt_queue(vcpu);
  4320. break;
  4321. case INTR_TYPE_HARD_EXCEPTION:
  4322. if (vmx->idt_vectoring_info &
  4323. VECTORING_INFO_DELIVER_CODE_MASK) {
  4324. has_error_code = true;
  4325. error_code =
  4326. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  4327. }
  4328. /* fall through */
  4329. case INTR_TYPE_SOFT_EXCEPTION:
  4330. kvm_clear_exception_queue(vcpu);
  4331. break;
  4332. default:
  4333. break;
  4334. }
  4335. }
  4336. tss_selector = exit_qualification;
  4337. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4338. type != INTR_TYPE_EXT_INTR &&
  4339. type != INTR_TYPE_NMI_INTR))
  4340. skip_emulated_instruction(vcpu);
  4341. if (kvm_task_switch(vcpu, tss_selector,
  4342. type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
  4343. has_error_code, error_code) == EMULATE_FAIL) {
  4344. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4345. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4346. vcpu->run->internal.ndata = 0;
  4347. return 0;
  4348. }
  4349. /* clear all local breakpoint enable flags */
  4350. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4351. /*
  4352. * TODO: What about debug traps on tss switch?
  4353. * Are we supposed to inject them and update dr6?
  4354. */
  4355. return 1;
  4356. }
  4357. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4358. {
  4359. unsigned long exit_qualification;
  4360. gpa_t gpa;
  4361. u32 error_code;
  4362. int gla_validity;
  4363. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4364. gla_validity = (exit_qualification >> 7) & 0x3;
  4365. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4366. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4367. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4368. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4369. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4370. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4371. (long unsigned int)exit_qualification);
  4372. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4373. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4374. return 0;
  4375. }
  4376. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4377. trace_kvm_page_fault(gpa, exit_qualification);
  4378. /* It is a write fault? */
  4379. error_code = exit_qualification & (1U << 1);
  4380. /* ept page table is present? */
  4381. error_code |= (exit_qualification >> 3) & 0x1;
  4382. return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
  4383. }
  4384. static u64 ept_rsvd_mask(u64 spte, int level)
  4385. {
  4386. int i;
  4387. u64 mask = 0;
  4388. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4389. mask |= (1ULL << i);
  4390. if (level > 2)
  4391. /* bits 7:3 reserved */
  4392. mask |= 0xf8;
  4393. else if (level == 2) {
  4394. if (spte & (1ULL << 7))
  4395. /* 2MB ref, bits 20:12 reserved */
  4396. mask |= 0x1ff000;
  4397. else
  4398. /* bits 6:3 reserved */
  4399. mask |= 0x78;
  4400. }
  4401. return mask;
  4402. }
  4403. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4404. int level)
  4405. {
  4406. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4407. /* 010b (write-only) */
  4408. WARN_ON((spte & 0x7) == 0x2);
  4409. /* 110b (write/execute) */
  4410. WARN_ON((spte & 0x7) == 0x6);
  4411. /* 100b (execute-only) and value not supported by logical processor */
  4412. if (!cpu_has_vmx_ept_execute_only())
  4413. WARN_ON((spte & 0x7) == 0x4);
  4414. /* not 000b */
  4415. if ((spte & 0x7)) {
  4416. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4417. if (rsvd_bits != 0) {
  4418. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4419. __func__, rsvd_bits);
  4420. WARN_ON(1);
  4421. }
  4422. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4423. u64 ept_mem_type = (spte & 0x38) >> 3;
  4424. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4425. ept_mem_type == 7) {
  4426. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4427. __func__, ept_mem_type);
  4428. WARN_ON(1);
  4429. }
  4430. }
  4431. }
  4432. }
  4433. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4434. {
  4435. u64 sptes[4];
  4436. int nr_sptes, i, ret;
  4437. gpa_t gpa;
  4438. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4439. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4440. if (likely(ret == 1))
  4441. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4442. EMULATE_DONE;
  4443. if (unlikely(!ret))
  4444. return 1;
  4445. /* It is the real ept misconfig */
  4446. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4447. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4448. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4449. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4450. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4451. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4452. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4453. return 0;
  4454. }
  4455. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4456. {
  4457. u32 cpu_based_vm_exec_control;
  4458. /* clear pending NMI */
  4459. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4460. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4461. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4462. ++vcpu->stat.nmi_window_exits;
  4463. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4464. return 1;
  4465. }
  4466. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4467. {
  4468. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4469. enum emulation_result err = EMULATE_DONE;
  4470. int ret = 1;
  4471. u32 cpu_exec_ctrl;
  4472. bool intr_window_requested;
  4473. unsigned count = 130;
  4474. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4475. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4476. while (!guest_state_valid(vcpu) && count-- != 0) {
  4477. if (intr_window_requested && vmx_interrupt_allowed(vcpu))
  4478. return handle_interrupt_window(&vmx->vcpu);
  4479. if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
  4480. return 1;
  4481. err = emulate_instruction(vcpu, 0);
  4482. if (err == EMULATE_DO_MMIO) {
  4483. ret = 0;
  4484. goto out;
  4485. }
  4486. if (err != EMULATE_DONE) {
  4487. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4488. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4489. vcpu->run->internal.ndata = 0;
  4490. return 0;
  4491. }
  4492. if (signal_pending(current))
  4493. goto out;
  4494. if (need_resched())
  4495. schedule();
  4496. }
  4497. vmx->emulation_required = emulation_required(vcpu);
  4498. out:
  4499. return ret;
  4500. }
  4501. /*
  4502. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4503. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4504. */
  4505. static int handle_pause(struct kvm_vcpu *vcpu)
  4506. {
  4507. skip_emulated_instruction(vcpu);
  4508. kvm_vcpu_on_spin(vcpu);
  4509. return 1;
  4510. }
  4511. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4512. {
  4513. kvm_queue_exception(vcpu, UD_VECTOR);
  4514. return 1;
  4515. }
  4516. /*
  4517. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4518. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4519. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4520. * allows keeping them loaded on the processor, and in the future will allow
  4521. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4522. * every entry if they never change.
  4523. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4524. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4525. *
  4526. * The following functions allocate and free a vmcs02 in this pool.
  4527. */
  4528. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4529. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4530. {
  4531. struct vmcs02_list *item;
  4532. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4533. if (item->vmptr == vmx->nested.current_vmptr) {
  4534. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4535. return &item->vmcs02;
  4536. }
  4537. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4538. /* Recycle the least recently used VMCS. */
  4539. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4540. struct vmcs02_list, list);
  4541. item->vmptr = vmx->nested.current_vmptr;
  4542. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4543. return &item->vmcs02;
  4544. }
  4545. /* Create a new VMCS */
  4546. item = (struct vmcs02_list *)
  4547. kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4548. if (!item)
  4549. return NULL;
  4550. item->vmcs02.vmcs = alloc_vmcs();
  4551. if (!item->vmcs02.vmcs) {
  4552. kfree(item);
  4553. return NULL;
  4554. }
  4555. loaded_vmcs_init(&item->vmcs02);
  4556. item->vmptr = vmx->nested.current_vmptr;
  4557. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4558. vmx->nested.vmcs02_num++;
  4559. return &item->vmcs02;
  4560. }
  4561. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4562. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4563. {
  4564. struct vmcs02_list *item;
  4565. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4566. if (item->vmptr == vmptr) {
  4567. free_loaded_vmcs(&item->vmcs02);
  4568. list_del(&item->list);
  4569. kfree(item);
  4570. vmx->nested.vmcs02_num--;
  4571. return;
  4572. }
  4573. }
  4574. /*
  4575. * Free all VMCSs saved for this vcpu, except the one pointed by
  4576. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4577. * currently used, if running L2), and vmcs01 when running L2.
  4578. */
  4579. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4580. {
  4581. struct vmcs02_list *item, *n;
  4582. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4583. if (vmx->loaded_vmcs != &item->vmcs02)
  4584. free_loaded_vmcs(&item->vmcs02);
  4585. list_del(&item->list);
  4586. kfree(item);
  4587. }
  4588. vmx->nested.vmcs02_num = 0;
  4589. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4590. free_loaded_vmcs(&vmx->vmcs01);
  4591. }
  4592. /*
  4593. * Emulate the VMXON instruction.
  4594. * Currently, we just remember that VMX is active, and do not save or even
  4595. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4596. * do not currently need to store anything in that guest-allocated memory
  4597. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4598. * argument is different from the VMXON pointer (which the spec says they do).
  4599. */
  4600. static int handle_vmon(struct kvm_vcpu *vcpu)
  4601. {
  4602. struct kvm_segment cs;
  4603. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4604. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4605. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4606. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4607. * Otherwise, we should fail with #UD. We test these now:
  4608. */
  4609. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4610. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4611. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4612. kvm_queue_exception(vcpu, UD_VECTOR);
  4613. return 1;
  4614. }
  4615. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4616. if (is_long_mode(vcpu) && !cs.l) {
  4617. kvm_queue_exception(vcpu, UD_VECTOR);
  4618. return 1;
  4619. }
  4620. if (vmx_get_cpl(vcpu)) {
  4621. kvm_inject_gp(vcpu, 0);
  4622. return 1;
  4623. }
  4624. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4625. vmx->nested.vmcs02_num = 0;
  4626. vmx->nested.vmxon = true;
  4627. skip_emulated_instruction(vcpu);
  4628. return 1;
  4629. }
  4630. /*
  4631. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4632. * for running VMX instructions (except VMXON, whose prerequisites are
  4633. * slightly different). It also specifies what exception to inject otherwise.
  4634. */
  4635. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4636. {
  4637. struct kvm_segment cs;
  4638. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4639. if (!vmx->nested.vmxon) {
  4640. kvm_queue_exception(vcpu, UD_VECTOR);
  4641. return 0;
  4642. }
  4643. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4644. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4645. (is_long_mode(vcpu) && !cs.l)) {
  4646. kvm_queue_exception(vcpu, UD_VECTOR);
  4647. return 0;
  4648. }
  4649. if (vmx_get_cpl(vcpu)) {
  4650. kvm_inject_gp(vcpu, 0);
  4651. return 0;
  4652. }
  4653. return 1;
  4654. }
  4655. /*
  4656. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4657. * just stops using VMX.
  4658. */
  4659. static void free_nested(struct vcpu_vmx *vmx)
  4660. {
  4661. if (!vmx->nested.vmxon)
  4662. return;
  4663. vmx->nested.vmxon = false;
  4664. if (vmx->nested.current_vmptr != -1ull) {
  4665. kunmap(vmx->nested.current_vmcs12_page);
  4666. nested_release_page(vmx->nested.current_vmcs12_page);
  4667. vmx->nested.current_vmptr = -1ull;
  4668. vmx->nested.current_vmcs12 = NULL;
  4669. }
  4670. /* Unpin physical memory we referred to in current vmcs02 */
  4671. if (vmx->nested.apic_access_page) {
  4672. nested_release_page(vmx->nested.apic_access_page);
  4673. vmx->nested.apic_access_page = 0;
  4674. }
  4675. nested_free_all_saved_vmcss(vmx);
  4676. }
  4677. /* Emulate the VMXOFF instruction */
  4678. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4679. {
  4680. if (!nested_vmx_check_permission(vcpu))
  4681. return 1;
  4682. free_nested(to_vmx(vcpu));
  4683. skip_emulated_instruction(vcpu);
  4684. return 1;
  4685. }
  4686. /*
  4687. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4688. * exit caused by such an instruction (run by a guest hypervisor).
  4689. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4690. * #UD or #GP.
  4691. */
  4692. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4693. unsigned long exit_qualification,
  4694. u32 vmx_instruction_info, gva_t *ret)
  4695. {
  4696. /*
  4697. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4698. * Execution", on an exit, vmx_instruction_info holds most of the
  4699. * addressing components of the operand. Only the displacement part
  4700. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4701. * For how an actual address is calculated from all these components,
  4702. * refer to Vol. 1, "Operand Addressing".
  4703. */
  4704. int scaling = vmx_instruction_info & 3;
  4705. int addr_size = (vmx_instruction_info >> 7) & 7;
  4706. bool is_reg = vmx_instruction_info & (1u << 10);
  4707. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4708. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4709. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4710. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4711. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4712. if (is_reg) {
  4713. kvm_queue_exception(vcpu, UD_VECTOR);
  4714. return 1;
  4715. }
  4716. /* Addr = segment_base + offset */
  4717. /* offset = base + [index * scale] + displacement */
  4718. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4719. if (base_is_valid)
  4720. *ret += kvm_register_read(vcpu, base_reg);
  4721. if (index_is_valid)
  4722. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4723. *ret += exit_qualification; /* holds the displacement */
  4724. if (addr_size == 1) /* 32 bit */
  4725. *ret &= 0xffffffff;
  4726. /*
  4727. * TODO: throw #GP (and return 1) in various cases that the VM*
  4728. * instructions require it - e.g., offset beyond segment limit,
  4729. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4730. * address, and so on. Currently these are not checked.
  4731. */
  4732. return 0;
  4733. }
  4734. /*
  4735. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4736. * set the success or error code of an emulated VMX instruction, as specified
  4737. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4738. */
  4739. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4740. {
  4741. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4742. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4743. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4744. }
  4745. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4746. {
  4747. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4748. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4749. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4750. | X86_EFLAGS_CF);
  4751. }
  4752. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4753. u32 vm_instruction_error)
  4754. {
  4755. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4756. /*
  4757. * failValid writes the error number to the current VMCS, which
  4758. * can't be done there isn't a current VMCS.
  4759. */
  4760. nested_vmx_failInvalid(vcpu);
  4761. return;
  4762. }
  4763. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4764. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4765. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4766. | X86_EFLAGS_ZF);
  4767. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4768. }
  4769. /* Emulate the VMCLEAR instruction */
  4770. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4771. {
  4772. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4773. gva_t gva;
  4774. gpa_t vmptr;
  4775. struct vmcs12 *vmcs12;
  4776. struct page *page;
  4777. struct x86_exception e;
  4778. if (!nested_vmx_check_permission(vcpu))
  4779. return 1;
  4780. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4781. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4782. return 1;
  4783. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4784. sizeof(vmptr), &e)) {
  4785. kvm_inject_page_fault(vcpu, &e);
  4786. return 1;
  4787. }
  4788. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4789. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4790. skip_emulated_instruction(vcpu);
  4791. return 1;
  4792. }
  4793. if (vmptr == vmx->nested.current_vmptr) {
  4794. kunmap(vmx->nested.current_vmcs12_page);
  4795. nested_release_page(vmx->nested.current_vmcs12_page);
  4796. vmx->nested.current_vmptr = -1ull;
  4797. vmx->nested.current_vmcs12 = NULL;
  4798. }
  4799. page = nested_get_page(vcpu, vmptr);
  4800. if (page == NULL) {
  4801. /*
  4802. * For accurate processor emulation, VMCLEAR beyond available
  4803. * physical memory should do nothing at all. However, it is
  4804. * possible that a nested vmx bug, not a guest hypervisor bug,
  4805. * resulted in this case, so let's shut down before doing any
  4806. * more damage:
  4807. */
  4808. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4809. return 1;
  4810. }
  4811. vmcs12 = kmap(page);
  4812. vmcs12->launch_state = 0;
  4813. kunmap(page);
  4814. nested_release_page(page);
  4815. nested_free_vmcs02(vmx, vmptr);
  4816. skip_emulated_instruction(vcpu);
  4817. nested_vmx_succeed(vcpu);
  4818. return 1;
  4819. }
  4820. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4821. /* Emulate the VMLAUNCH instruction */
  4822. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4823. {
  4824. return nested_vmx_run(vcpu, true);
  4825. }
  4826. /* Emulate the VMRESUME instruction */
  4827. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4828. {
  4829. return nested_vmx_run(vcpu, false);
  4830. }
  4831. enum vmcs_field_type {
  4832. VMCS_FIELD_TYPE_U16 = 0,
  4833. VMCS_FIELD_TYPE_U64 = 1,
  4834. VMCS_FIELD_TYPE_U32 = 2,
  4835. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4836. };
  4837. static inline int vmcs_field_type(unsigned long field)
  4838. {
  4839. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4840. return VMCS_FIELD_TYPE_U32;
  4841. return (field >> 13) & 0x3 ;
  4842. }
  4843. static inline int vmcs_field_readonly(unsigned long field)
  4844. {
  4845. return (((field >> 10) & 0x3) == 1);
  4846. }
  4847. /*
  4848. * Read a vmcs12 field. Since these can have varying lengths and we return
  4849. * one type, we chose the biggest type (u64) and zero-extend the return value
  4850. * to that size. Note that the caller, handle_vmread, might need to use only
  4851. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4852. * 64-bit fields are to be returned).
  4853. */
  4854. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4855. unsigned long field, u64 *ret)
  4856. {
  4857. short offset = vmcs_field_to_offset(field);
  4858. char *p;
  4859. if (offset < 0)
  4860. return 0;
  4861. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4862. switch (vmcs_field_type(field)) {
  4863. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4864. *ret = *((natural_width *)p);
  4865. return 1;
  4866. case VMCS_FIELD_TYPE_U16:
  4867. *ret = *((u16 *)p);
  4868. return 1;
  4869. case VMCS_FIELD_TYPE_U32:
  4870. *ret = *((u32 *)p);
  4871. return 1;
  4872. case VMCS_FIELD_TYPE_U64:
  4873. *ret = *((u64 *)p);
  4874. return 1;
  4875. default:
  4876. return 0; /* can never happen. */
  4877. }
  4878. }
  4879. /*
  4880. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4881. * used before) all generate the same failure when it is missing.
  4882. */
  4883. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4884. {
  4885. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4886. if (vmx->nested.current_vmptr == -1ull) {
  4887. nested_vmx_failInvalid(vcpu);
  4888. skip_emulated_instruction(vcpu);
  4889. return 0;
  4890. }
  4891. return 1;
  4892. }
  4893. static int handle_vmread(struct kvm_vcpu *vcpu)
  4894. {
  4895. unsigned long field;
  4896. u64 field_value;
  4897. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4898. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4899. gva_t gva = 0;
  4900. if (!nested_vmx_check_permission(vcpu) ||
  4901. !nested_vmx_check_vmcs12(vcpu))
  4902. return 1;
  4903. /* Decode instruction info and find the field to read */
  4904. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4905. /* Read the field, zero-extended to a u64 field_value */
  4906. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4907. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4908. skip_emulated_instruction(vcpu);
  4909. return 1;
  4910. }
  4911. /*
  4912. * Now copy part of this value to register or memory, as requested.
  4913. * Note that the number of bits actually copied is 32 or 64 depending
  4914. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4915. */
  4916. if (vmx_instruction_info & (1u << 10)) {
  4917. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4918. field_value);
  4919. } else {
  4920. if (get_vmx_mem_address(vcpu, exit_qualification,
  4921. vmx_instruction_info, &gva))
  4922. return 1;
  4923. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4924. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4925. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4926. }
  4927. nested_vmx_succeed(vcpu);
  4928. skip_emulated_instruction(vcpu);
  4929. return 1;
  4930. }
  4931. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4932. {
  4933. unsigned long field;
  4934. gva_t gva;
  4935. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4936. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4937. char *p;
  4938. short offset;
  4939. /* The value to write might be 32 or 64 bits, depending on L1's long
  4940. * mode, and eventually we need to write that into a field of several
  4941. * possible lengths. The code below first zero-extends the value to 64
  4942. * bit (field_value), and then copies only the approriate number of
  4943. * bits into the vmcs12 field.
  4944. */
  4945. u64 field_value = 0;
  4946. struct x86_exception e;
  4947. if (!nested_vmx_check_permission(vcpu) ||
  4948. !nested_vmx_check_vmcs12(vcpu))
  4949. return 1;
  4950. if (vmx_instruction_info & (1u << 10))
  4951. field_value = kvm_register_read(vcpu,
  4952. (((vmx_instruction_info) >> 3) & 0xf));
  4953. else {
  4954. if (get_vmx_mem_address(vcpu, exit_qualification,
  4955. vmx_instruction_info, &gva))
  4956. return 1;
  4957. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4958. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4959. kvm_inject_page_fault(vcpu, &e);
  4960. return 1;
  4961. }
  4962. }
  4963. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4964. if (vmcs_field_readonly(field)) {
  4965. nested_vmx_failValid(vcpu,
  4966. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4967. skip_emulated_instruction(vcpu);
  4968. return 1;
  4969. }
  4970. offset = vmcs_field_to_offset(field);
  4971. if (offset < 0) {
  4972. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4973. skip_emulated_instruction(vcpu);
  4974. return 1;
  4975. }
  4976. p = ((char *) get_vmcs12(vcpu)) + offset;
  4977. switch (vmcs_field_type(field)) {
  4978. case VMCS_FIELD_TYPE_U16:
  4979. *(u16 *)p = field_value;
  4980. break;
  4981. case VMCS_FIELD_TYPE_U32:
  4982. *(u32 *)p = field_value;
  4983. break;
  4984. case VMCS_FIELD_TYPE_U64:
  4985. *(u64 *)p = field_value;
  4986. break;
  4987. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4988. *(natural_width *)p = field_value;
  4989. break;
  4990. default:
  4991. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4992. skip_emulated_instruction(vcpu);
  4993. return 1;
  4994. }
  4995. nested_vmx_succeed(vcpu);
  4996. skip_emulated_instruction(vcpu);
  4997. return 1;
  4998. }
  4999. /* Emulate the VMPTRLD instruction */
  5000. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  5001. {
  5002. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5003. gva_t gva;
  5004. gpa_t vmptr;
  5005. struct x86_exception e;
  5006. if (!nested_vmx_check_permission(vcpu))
  5007. return 1;
  5008. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  5009. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  5010. return 1;
  5011. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  5012. sizeof(vmptr), &e)) {
  5013. kvm_inject_page_fault(vcpu, &e);
  5014. return 1;
  5015. }
  5016. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  5017. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  5018. skip_emulated_instruction(vcpu);
  5019. return 1;
  5020. }
  5021. if (vmx->nested.current_vmptr != vmptr) {
  5022. struct vmcs12 *new_vmcs12;
  5023. struct page *page;
  5024. page = nested_get_page(vcpu, vmptr);
  5025. if (page == NULL) {
  5026. nested_vmx_failInvalid(vcpu);
  5027. skip_emulated_instruction(vcpu);
  5028. return 1;
  5029. }
  5030. new_vmcs12 = kmap(page);
  5031. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  5032. kunmap(page);
  5033. nested_release_page_clean(page);
  5034. nested_vmx_failValid(vcpu,
  5035. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  5036. skip_emulated_instruction(vcpu);
  5037. return 1;
  5038. }
  5039. if (vmx->nested.current_vmptr != -1ull) {
  5040. kunmap(vmx->nested.current_vmcs12_page);
  5041. nested_release_page(vmx->nested.current_vmcs12_page);
  5042. }
  5043. vmx->nested.current_vmptr = vmptr;
  5044. vmx->nested.current_vmcs12 = new_vmcs12;
  5045. vmx->nested.current_vmcs12_page = page;
  5046. }
  5047. nested_vmx_succeed(vcpu);
  5048. skip_emulated_instruction(vcpu);
  5049. return 1;
  5050. }
  5051. /* Emulate the VMPTRST instruction */
  5052. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  5053. {
  5054. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5055. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5056. gva_t vmcs_gva;
  5057. struct x86_exception e;
  5058. if (!nested_vmx_check_permission(vcpu))
  5059. return 1;
  5060. if (get_vmx_mem_address(vcpu, exit_qualification,
  5061. vmx_instruction_info, &vmcs_gva))
  5062. return 1;
  5063. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  5064. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  5065. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  5066. sizeof(u64), &e)) {
  5067. kvm_inject_page_fault(vcpu, &e);
  5068. return 1;
  5069. }
  5070. nested_vmx_succeed(vcpu);
  5071. skip_emulated_instruction(vcpu);
  5072. return 1;
  5073. }
  5074. /*
  5075. * The exit handlers return 1 if the exit was handled fully and guest execution
  5076. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  5077. * to be done to userspace and return 0.
  5078. */
  5079. static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  5080. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  5081. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  5082. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  5083. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  5084. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  5085. [EXIT_REASON_CR_ACCESS] = handle_cr,
  5086. [EXIT_REASON_DR_ACCESS] = handle_dr,
  5087. [EXIT_REASON_CPUID] = handle_cpuid,
  5088. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  5089. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  5090. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  5091. [EXIT_REASON_HLT] = handle_halt,
  5092. [EXIT_REASON_INVD] = handle_invd,
  5093. [EXIT_REASON_INVLPG] = handle_invlpg,
  5094. [EXIT_REASON_RDPMC] = handle_rdpmc,
  5095. [EXIT_REASON_VMCALL] = handle_vmcall,
  5096. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  5097. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  5098. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  5099. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  5100. [EXIT_REASON_VMREAD] = handle_vmread,
  5101. [EXIT_REASON_VMRESUME] = handle_vmresume,
  5102. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  5103. [EXIT_REASON_VMOFF] = handle_vmoff,
  5104. [EXIT_REASON_VMON] = handle_vmon,
  5105. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  5106. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  5107. [EXIT_REASON_APIC_WRITE] = handle_apic_write,
  5108. [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
  5109. [EXIT_REASON_WBINVD] = handle_wbinvd,
  5110. [EXIT_REASON_XSETBV] = handle_xsetbv,
  5111. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  5112. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  5113. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  5114. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  5115. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  5116. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  5117. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  5118. };
  5119. static const int kvm_vmx_max_exit_handlers =
  5120. ARRAY_SIZE(kvm_vmx_exit_handlers);
  5121. /*
  5122. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  5123. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  5124. * disinterest in the current event (read or write a specific MSR) by using an
  5125. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  5126. */
  5127. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  5128. struct vmcs12 *vmcs12, u32 exit_reason)
  5129. {
  5130. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  5131. gpa_t bitmap;
  5132. if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
  5133. return 1;
  5134. /*
  5135. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  5136. * for the four combinations of read/write and low/high MSR numbers.
  5137. * First we need to figure out which of the four to use:
  5138. */
  5139. bitmap = vmcs12->msr_bitmap;
  5140. if (exit_reason == EXIT_REASON_MSR_WRITE)
  5141. bitmap += 2048;
  5142. if (msr_index >= 0xc0000000) {
  5143. msr_index -= 0xc0000000;
  5144. bitmap += 1024;
  5145. }
  5146. /* Then read the msr_index'th bit from this bitmap: */
  5147. if (msr_index < 1024*8) {
  5148. unsigned char b;
  5149. kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
  5150. return 1 & (b >> (msr_index & 7));
  5151. } else
  5152. return 1; /* let L1 handle the wrong parameter */
  5153. }
  5154. /*
  5155. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  5156. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  5157. * intercept (via guest_host_mask etc.) the current event.
  5158. */
  5159. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  5160. struct vmcs12 *vmcs12)
  5161. {
  5162. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5163. int cr = exit_qualification & 15;
  5164. int reg = (exit_qualification >> 8) & 15;
  5165. unsigned long val = kvm_register_read(vcpu, reg);
  5166. switch ((exit_qualification >> 4) & 3) {
  5167. case 0: /* mov to cr */
  5168. switch (cr) {
  5169. case 0:
  5170. if (vmcs12->cr0_guest_host_mask &
  5171. (val ^ vmcs12->cr0_read_shadow))
  5172. return 1;
  5173. break;
  5174. case 3:
  5175. if ((vmcs12->cr3_target_count >= 1 &&
  5176. vmcs12->cr3_target_value0 == val) ||
  5177. (vmcs12->cr3_target_count >= 2 &&
  5178. vmcs12->cr3_target_value1 == val) ||
  5179. (vmcs12->cr3_target_count >= 3 &&
  5180. vmcs12->cr3_target_value2 == val) ||
  5181. (vmcs12->cr3_target_count >= 4 &&
  5182. vmcs12->cr3_target_value3 == val))
  5183. return 0;
  5184. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  5185. return 1;
  5186. break;
  5187. case 4:
  5188. if (vmcs12->cr4_guest_host_mask &
  5189. (vmcs12->cr4_read_shadow ^ val))
  5190. return 1;
  5191. break;
  5192. case 8:
  5193. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  5194. return 1;
  5195. break;
  5196. }
  5197. break;
  5198. case 2: /* clts */
  5199. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  5200. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  5201. return 1;
  5202. break;
  5203. case 1: /* mov from cr */
  5204. switch (cr) {
  5205. case 3:
  5206. if (vmcs12->cpu_based_vm_exec_control &
  5207. CPU_BASED_CR3_STORE_EXITING)
  5208. return 1;
  5209. break;
  5210. case 8:
  5211. if (vmcs12->cpu_based_vm_exec_control &
  5212. CPU_BASED_CR8_STORE_EXITING)
  5213. return 1;
  5214. break;
  5215. }
  5216. break;
  5217. case 3: /* lmsw */
  5218. /*
  5219. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  5220. * cr0. Other attempted changes are ignored, with no exit.
  5221. */
  5222. if (vmcs12->cr0_guest_host_mask & 0xe &
  5223. (val ^ vmcs12->cr0_read_shadow))
  5224. return 1;
  5225. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  5226. !(vmcs12->cr0_read_shadow & 0x1) &&
  5227. (val & 0x1))
  5228. return 1;
  5229. break;
  5230. }
  5231. return 0;
  5232. }
  5233. /*
  5234. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  5235. * should handle it ourselves in L0 (and then continue L2). Only call this
  5236. * when in is_guest_mode (L2).
  5237. */
  5238. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  5239. {
  5240. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  5241. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5242. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5243. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5244. if (vmx->nested.nested_run_pending)
  5245. return 0;
  5246. if (unlikely(vmx->fail)) {
  5247. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  5248. vmcs_read32(VM_INSTRUCTION_ERROR));
  5249. return 1;
  5250. }
  5251. switch (exit_reason) {
  5252. case EXIT_REASON_EXCEPTION_NMI:
  5253. if (!is_exception(intr_info))
  5254. return 0;
  5255. else if (is_page_fault(intr_info))
  5256. return enable_ept;
  5257. return vmcs12->exception_bitmap &
  5258. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  5259. case EXIT_REASON_EXTERNAL_INTERRUPT:
  5260. return 0;
  5261. case EXIT_REASON_TRIPLE_FAULT:
  5262. return 1;
  5263. case EXIT_REASON_PENDING_INTERRUPT:
  5264. case EXIT_REASON_NMI_WINDOW:
  5265. /*
  5266. * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
  5267. * (aka Interrupt Window Exiting) only when L1 turned it on,
  5268. * so if we got a PENDING_INTERRUPT exit, this must be for L1.
  5269. * Same for NMI Window Exiting.
  5270. */
  5271. return 1;
  5272. case EXIT_REASON_TASK_SWITCH:
  5273. return 1;
  5274. case EXIT_REASON_CPUID:
  5275. return 1;
  5276. case EXIT_REASON_HLT:
  5277. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  5278. case EXIT_REASON_INVD:
  5279. return 1;
  5280. case EXIT_REASON_INVLPG:
  5281. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  5282. case EXIT_REASON_RDPMC:
  5283. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  5284. case EXIT_REASON_RDTSC:
  5285. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  5286. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  5287. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  5288. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  5289. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  5290. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  5291. /*
  5292. * VMX instructions trap unconditionally. This allows L1 to
  5293. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  5294. */
  5295. return 1;
  5296. case EXIT_REASON_CR_ACCESS:
  5297. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  5298. case EXIT_REASON_DR_ACCESS:
  5299. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  5300. case EXIT_REASON_IO_INSTRUCTION:
  5301. /* TODO: support IO bitmaps */
  5302. return 1;
  5303. case EXIT_REASON_MSR_READ:
  5304. case EXIT_REASON_MSR_WRITE:
  5305. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  5306. case EXIT_REASON_INVALID_STATE:
  5307. return 1;
  5308. case EXIT_REASON_MWAIT_INSTRUCTION:
  5309. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  5310. case EXIT_REASON_MONITOR_INSTRUCTION:
  5311. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  5312. case EXIT_REASON_PAUSE_INSTRUCTION:
  5313. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  5314. nested_cpu_has2(vmcs12,
  5315. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  5316. case EXIT_REASON_MCE_DURING_VMENTRY:
  5317. return 0;
  5318. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  5319. return 1;
  5320. case EXIT_REASON_APIC_ACCESS:
  5321. return nested_cpu_has2(vmcs12,
  5322. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  5323. case EXIT_REASON_EPT_VIOLATION:
  5324. case EXIT_REASON_EPT_MISCONFIG:
  5325. return 0;
  5326. case EXIT_REASON_WBINVD:
  5327. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  5328. case EXIT_REASON_XSETBV:
  5329. return 1;
  5330. default:
  5331. return 1;
  5332. }
  5333. }
  5334. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  5335. {
  5336. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  5337. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  5338. }
  5339. /*
  5340. * The guest has exited. See if we can fix it or if we need userspace
  5341. * assistance.
  5342. */
  5343. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  5344. {
  5345. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5346. u32 exit_reason = vmx->exit_reason;
  5347. u32 vectoring_info = vmx->idt_vectoring_info;
  5348. /* If guest state is invalid, start emulating */
  5349. if (vmx->emulation_required)
  5350. return handle_invalid_guest_state(vcpu);
  5351. /*
  5352. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  5353. * we did not inject a still-pending event to L1 now because of
  5354. * nested_run_pending, we need to re-enable this bit.
  5355. */
  5356. if (vmx->nested.nested_run_pending)
  5357. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5358. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  5359. exit_reason == EXIT_REASON_VMRESUME))
  5360. vmx->nested.nested_run_pending = 1;
  5361. else
  5362. vmx->nested.nested_run_pending = 0;
  5363. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5364. nested_vmx_vmexit(vcpu);
  5365. return 1;
  5366. }
  5367. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5368. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5369. vcpu->run->fail_entry.hardware_entry_failure_reason
  5370. = exit_reason;
  5371. return 0;
  5372. }
  5373. if (unlikely(vmx->fail)) {
  5374. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5375. vcpu->run->fail_entry.hardware_entry_failure_reason
  5376. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5377. return 0;
  5378. }
  5379. /*
  5380. * Note:
  5381. * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
  5382. * delivery event since it indicates guest is accessing MMIO.
  5383. * The vm-exit can be triggered again after return to guest that
  5384. * will cause infinite loop.
  5385. */
  5386. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5387. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5388. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5389. exit_reason != EXIT_REASON_TASK_SWITCH)) {
  5390. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  5391. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
  5392. vcpu->run->internal.ndata = 2;
  5393. vcpu->run->internal.data[0] = vectoring_info;
  5394. vcpu->run->internal.data[1] = exit_reason;
  5395. return 0;
  5396. }
  5397. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5398. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5399. get_vmcs12(vcpu), vcpu)))) {
  5400. if (vmx_interrupt_allowed(vcpu)) {
  5401. vmx->soft_vnmi_blocked = 0;
  5402. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5403. vcpu->arch.nmi_pending) {
  5404. /*
  5405. * This CPU don't support us in finding the end of an
  5406. * NMI-blocked window if the guest runs with IRQs
  5407. * disabled. So we pull the trigger after 1 s of
  5408. * futile waiting, but inform the user about this.
  5409. */
  5410. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5411. "state on VCPU %d after 1 s timeout\n",
  5412. __func__, vcpu->vcpu_id);
  5413. vmx->soft_vnmi_blocked = 0;
  5414. }
  5415. }
  5416. if (exit_reason < kvm_vmx_max_exit_handlers
  5417. && kvm_vmx_exit_handlers[exit_reason])
  5418. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5419. else {
  5420. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5421. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5422. }
  5423. return 0;
  5424. }
  5425. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5426. {
  5427. if (irr == -1 || tpr < irr) {
  5428. vmcs_write32(TPR_THRESHOLD, 0);
  5429. return;
  5430. }
  5431. vmcs_write32(TPR_THRESHOLD, irr);
  5432. }
  5433. static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
  5434. {
  5435. u32 sec_exec_control;
  5436. /*
  5437. * There is not point to enable virtualize x2apic without enable
  5438. * apicv
  5439. */
  5440. if (!cpu_has_vmx_virtualize_x2apic_mode() ||
  5441. !vmx_vm_has_apicv(vcpu->kvm))
  5442. return;
  5443. if (!vm_need_tpr_shadow(vcpu->kvm))
  5444. return;
  5445. sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5446. if (set) {
  5447. sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5448. sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  5449. } else {
  5450. sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  5451. sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5452. }
  5453. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
  5454. vmx_set_msr_bitmap(vcpu);
  5455. }
  5456. static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
  5457. {
  5458. u16 status;
  5459. u8 old;
  5460. if (!vmx_vm_has_apicv(kvm))
  5461. return;
  5462. if (isr == -1)
  5463. isr = 0;
  5464. status = vmcs_read16(GUEST_INTR_STATUS);
  5465. old = status >> 8;
  5466. if (isr != old) {
  5467. status &= 0xff;
  5468. status |= isr << 8;
  5469. vmcs_write16(GUEST_INTR_STATUS, status);
  5470. }
  5471. }
  5472. static void vmx_set_rvi(int vector)
  5473. {
  5474. u16 status;
  5475. u8 old;
  5476. status = vmcs_read16(GUEST_INTR_STATUS);
  5477. old = (u8)status & 0xff;
  5478. if ((u8)vector != old) {
  5479. status &= ~0xff;
  5480. status |= (u8)vector;
  5481. vmcs_write16(GUEST_INTR_STATUS, status);
  5482. }
  5483. }
  5484. static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
  5485. {
  5486. if (max_irr == -1)
  5487. return;
  5488. vmx_set_rvi(max_irr);
  5489. }
  5490. static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
  5491. {
  5492. vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
  5493. vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
  5494. vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
  5495. vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
  5496. }
  5497. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5498. {
  5499. u32 exit_intr_info;
  5500. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5501. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5502. return;
  5503. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5504. exit_intr_info = vmx->exit_intr_info;
  5505. /* Handle machine checks before interrupts are enabled */
  5506. if (is_machine_check(exit_intr_info))
  5507. kvm_machine_check();
  5508. /* We need to handle NMIs before interrupts are enabled */
  5509. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5510. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5511. kvm_before_handle_nmi(&vmx->vcpu);
  5512. asm("int $2");
  5513. kvm_after_handle_nmi(&vmx->vcpu);
  5514. }
  5515. }
  5516. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5517. {
  5518. u32 exit_intr_info;
  5519. bool unblock_nmi;
  5520. u8 vector;
  5521. bool idtv_info_valid;
  5522. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5523. if (cpu_has_virtual_nmis()) {
  5524. if (vmx->nmi_known_unmasked)
  5525. return;
  5526. /*
  5527. * Can't use vmx->exit_intr_info since we're not sure what
  5528. * the exit reason is.
  5529. */
  5530. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5531. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5532. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5533. /*
  5534. * SDM 3: 27.7.1.2 (September 2008)
  5535. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5536. * a guest IRET fault.
  5537. * SDM 3: 23.2.2 (September 2008)
  5538. * Bit 12 is undefined in any of the following cases:
  5539. * If the VM exit sets the valid bit in the IDT-vectoring
  5540. * information field.
  5541. * If the VM exit is due to a double fault.
  5542. */
  5543. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5544. vector != DF_VECTOR && !idtv_info_valid)
  5545. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5546. GUEST_INTR_STATE_NMI);
  5547. else
  5548. vmx->nmi_known_unmasked =
  5549. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5550. & GUEST_INTR_STATE_NMI);
  5551. } else if (unlikely(vmx->soft_vnmi_blocked))
  5552. vmx->vnmi_blocked_time +=
  5553. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5554. }
  5555. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  5556. u32 idt_vectoring_info,
  5557. int instr_len_field,
  5558. int error_code_field)
  5559. {
  5560. u8 vector;
  5561. int type;
  5562. bool idtv_info_valid;
  5563. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5564. vmx->vcpu.arch.nmi_injected = false;
  5565. kvm_clear_exception_queue(&vmx->vcpu);
  5566. kvm_clear_interrupt_queue(&vmx->vcpu);
  5567. if (!idtv_info_valid)
  5568. return;
  5569. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  5570. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5571. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5572. switch (type) {
  5573. case INTR_TYPE_NMI_INTR:
  5574. vmx->vcpu.arch.nmi_injected = true;
  5575. /*
  5576. * SDM 3: 27.7.1.2 (September 2008)
  5577. * Clear bit "block by NMI" before VM entry if a NMI
  5578. * delivery faulted.
  5579. */
  5580. vmx_set_nmi_mask(&vmx->vcpu, false);
  5581. break;
  5582. case INTR_TYPE_SOFT_EXCEPTION:
  5583. vmx->vcpu.arch.event_exit_inst_len =
  5584. vmcs_read32(instr_len_field);
  5585. /* fall through */
  5586. case INTR_TYPE_HARD_EXCEPTION:
  5587. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  5588. u32 err = vmcs_read32(error_code_field);
  5589. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  5590. } else
  5591. kvm_queue_exception(&vmx->vcpu, vector);
  5592. break;
  5593. case INTR_TYPE_SOFT_INTR:
  5594. vmx->vcpu.arch.event_exit_inst_len =
  5595. vmcs_read32(instr_len_field);
  5596. /* fall through */
  5597. case INTR_TYPE_EXT_INTR:
  5598. kvm_queue_interrupt(&vmx->vcpu, vector,
  5599. type == INTR_TYPE_SOFT_INTR);
  5600. break;
  5601. default:
  5602. break;
  5603. }
  5604. }
  5605. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  5606. {
  5607. if (is_guest_mode(&vmx->vcpu))
  5608. return;
  5609. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  5610. VM_EXIT_INSTRUCTION_LEN,
  5611. IDT_VECTORING_ERROR_CODE);
  5612. }
  5613. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  5614. {
  5615. if (is_guest_mode(vcpu))
  5616. return;
  5617. __vmx_complete_interrupts(to_vmx(vcpu),
  5618. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  5619. VM_ENTRY_INSTRUCTION_LEN,
  5620. VM_ENTRY_EXCEPTION_ERROR_CODE);
  5621. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  5622. }
  5623. static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
  5624. {
  5625. int i, nr_msrs;
  5626. struct perf_guest_switch_msr *msrs;
  5627. msrs = perf_guest_get_msrs(&nr_msrs);
  5628. if (!msrs)
  5629. return;
  5630. for (i = 0; i < nr_msrs; i++)
  5631. if (msrs[i].host == msrs[i].guest)
  5632. clear_atomic_switch_msr(vmx, msrs[i].msr);
  5633. else
  5634. add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
  5635. msrs[i].host);
  5636. }
  5637. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  5638. {
  5639. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5640. unsigned long debugctlmsr;
  5641. if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
  5642. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5643. if (vmcs12->idt_vectoring_info_field &
  5644. VECTORING_INFO_VALID_MASK) {
  5645. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5646. vmcs12->idt_vectoring_info_field);
  5647. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5648. vmcs12->vm_exit_instruction_len);
  5649. if (vmcs12->idt_vectoring_info_field &
  5650. VECTORING_INFO_DELIVER_CODE_MASK)
  5651. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5652. vmcs12->idt_vectoring_error_code);
  5653. }
  5654. }
  5655. /* Record the guest's net vcpu time for enforced NMI injections. */
  5656. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  5657. vmx->entry_time = ktime_get();
  5658. /* Don't enter VMX if guest state is invalid, let the exit handler
  5659. start emulation until we arrive back to a valid state */
  5660. if (vmx->emulation_required)
  5661. return;
  5662. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  5663. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  5664. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  5665. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  5666. /* When single-stepping over STI and MOV SS, we must clear the
  5667. * corresponding interruptibility bits in the guest state. Otherwise
  5668. * vmentry fails as it then expects bit 14 (BS) in pending debug
  5669. * exceptions being set, but that's not correct for the guest debugging
  5670. * case. */
  5671. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5672. vmx_set_interrupt_shadow(vcpu, 0);
  5673. atomic_switch_perf_msrs(vmx);
  5674. debugctlmsr = get_debugctlmsr();
  5675. vmx->__launched = vmx->loaded_vmcs->launched;
  5676. asm(
  5677. /* Store host registers */
  5678. "push %%" _ASM_DX "; push %%" _ASM_BP ";"
  5679. "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
  5680. "push %%" _ASM_CX " \n\t"
  5681. "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  5682. "je 1f \n\t"
  5683. "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  5684. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  5685. "1: \n\t"
  5686. /* Reload cr2 if changed */
  5687. "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
  5688. "mov %%cr2, %%" _ASM_DX " \n\t"
  5689. "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
  5690. "je 2f \n\t"
  5691. "mov %%" _ASM_AX", %%cr2 \n\t"
  5692. "2: \n\t"
  5693. /* Check if vmlaunch of vmresume is needed */
  5694. "cmpl $0, %c[launched](%0) \n\t"
  5695. /* Load guest registers. Don't clobber flags. */
  5696. "mov %c[rax](%0), %%" _ASM_AX " \n\t"
  5697. "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
  5698. "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
  5699. "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
  5700. "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
  5701. "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
  5702. #ifdef CONFIG_X86_64
  5703. "mov %c[r8](%0), %%r8 \n\t"
  5704. "mov %c[r9](%0), %%r9 \n\t"
  5705. "mov %c[r10](%0), %%r10 \n\t"
  5706. "mov %c[r11](%0), %%r11 \n\t"
  5707. "mov %c[r12](%0), %%r12 \n\t"
  5708. "mov %c[r13](%0), %%r13 \n\t"
  5709. "mov %c[r14](%0), %%r14 \n\t"
  5710. "mov %c[r15](%0), %%r15 \n\t"
  5711. #endif
  5712. "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
  5713. /* Enter guest mode */
  5714. "jne 1f \n\t"
  5715. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  5716. "jmp 2f \n\t"
  5717. "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
  5718. "2: "
  5719. /* Save guest registers, load host registers, keep flags */
  5720. "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
  5721. "pop %0 \n\t"
  5722. "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
  5723. "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
  5724. __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
  5725. "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
  5726. "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
  5727. "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
  5728. "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
  5729. #ifdef CONFIG_X86_64
  5730. "mov %%r8, %c[r8](%0) \n\t"
  5731. "mov %%r9, %c[r9](%0) \n\t"
  5732. "mov %%r10, %c[r10](%0) \n\t"
  5733. "mov %%r11, %c[r11](%0) \n\t"
  5734. "mov %%r12, %c[r12](%0) \n\t"
  5735. "mov %%r13, %c[r13](%0) \n\t"
  5736. "mov %%r14, %c[r14](%0) \n\t"
  5737. "mov %%r15, %c[r15](%0) \n\t"
  5738. #endif
  5739. "mov %%cr2, %%" _ASM_AX " \n\t"
  5740. "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
  5741. "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
  5742. "setbe %c[fail](%0) \n\t"
  5743. ".pushsection .rodata \n\t"
  5744. ".global vmx_return \n\t"
  5745. "vmx_return: " _ASM_PTR " 2b \n\t"
  5746. ".popsection"
  5747. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  5748. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  5749. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  5750. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  5751. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  5752. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  5753. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  5754. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  5755. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  5756. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  5757. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  5758. #ifdef CONFIG_X86_64
  5759. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  5760. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  5761. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  5762. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  5763. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  5764. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  5765. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  5766. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  5767. #endif
  5768. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  5769. [wordsize]"i"(sizeof(ulong))
  5770. : "cc", "memory"
  5771. #ifdef CONFIG_X86_64
  5772. , "rax", "rbx", "rdi", "rsi"
  5773. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  5774. #else
  5775. , "eax", "ebx", "edi", "esi"
  5776. #endif
  5777. );
  5778. /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
  5779. if (debugctlmsr)
  5780. update_debugctlmsr(debugctlmsr);
  5781. #ifndef CONFIG_X86_64
  5782. /*
  5783. * The sysexit path does not restore ds/es, so we must set them to
  5784. * a reasonable value ourselves.
  5785. *
  5786. * We can't defer this to vmx_load_host_state() since that function
  5787. * may be executed in interrupt context, which saves and restore segments
  5788. * around it, nullifying its effect.
  5789. */
  5790. loadsegment(ds, __USER_DS);
  5791. loadsegment(es, __USER_DS);
  5792. #endif
  5793. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  5794. | (1 << VCPU_EXREG_RFLAGS)
  5795. | (1 << VCPU_EXREG_CPL)
  5796. | (1 << VCPU_EXREG_PDPTR)
  5797. | (1 << VCPU_EXREG_SEGMENTS)
  5798. | (1 << VCPU_EXREG_CR3));
  5799. vcpu->arch.regs_dirty = 0;
  5800. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5801. if (is_guest_mode(vcpu)) {
  5802. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5803. vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
  5804. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  5805. vmcs12->idt_vectoring_error_code =
  5806. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5807. vmcs12->vm_exit_instruction_len =
  5808. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5809. }
  5810. }
  5811. vmx->loaded_vmcs->launched = 1;
  5812. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  5813. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  5814. vmx_complete_atomic_exit(vmx);
  5815. vmx_recover_nmi_blocking(vmx);
  5816. vmx_complete_interrupts(vmx);
  5817. }
  5818. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  5819. {
  5820. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5821. free_vpid(vmx);
  5822. free_nested(vmx);
  5823. free_loaded_vmcs(vmx->loaded_vmcs);
  5824. kfree(vmx->guest_msrs);
  5825. kvm_vcpu_uninit(vcpu);
  5826. kmem_cache_free(kvm_vcpu_cache, vmx);
  5827. }
  5828. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  5829. {
  5830. int err;
  5831. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  5832. int cpu;
  5833. if (!vmx)
  5834. return ERR_PTR(-ENOMEM);
  5835. allocate_vpid(vmx);
  5836. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  5837. if (err)
  5838. goto free_vcpu;
  5839. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  5840. err = -ENOMEM;
  5841. if (!vmx->guest_msrs) {
  5842. goto uninit_vcpu;
  5843. }
  5844. vmx->loaded_vmcs = &vmx->vmcs01;
  5845. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  5846. if (!vmx->loaded_vmcs->vmcs)
  5847. goto free_msrs;
  5848. if (!vmm_exclusive)
  5849. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  5850. loaded_vmcs_init(vmx->loaded_vmcs);
  5851. if (!vmm_exclusive)
  5852. kvm_cpu_vmxoff();
  5853. cpu = get_cpu();
  5854. vmx_vcpu_load(&vmx->vcpu, cpu);
  5855. vmx->vcpu.cpu = cpu;
  5856. err = vmx_vcpu_setup(vmx);
  5857. vmx_vcpu_put(&vmx->vcpu);
  5858. put_cpu();
  5859. if (err)
  5860. goto free_vmcs;
  5861. if (vm_need_virtualize_apic_accesses(kvm))
  5862. err = alloc_apic_access_page(kvm);
  5863. if (err)
  5864. goto free_vmcs;
  5865. if (enable_ept) {
  5866. if (!kvm->arch.ept_identity_map_addr)
  5867. kvm->arch.ept_identity_map_addr =
  5868. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  5869. err = -ENOMEM;
  5870. if (alloc_identity_pagetable(kvm) != 0)
  5871. goto free_vmcs;
  5872. if (!init_rmode_identity_map(kvm))
  5873. goto free_vmcs;
  5874. }
  5875. vmx->nested.current_vmptr = -1ull;
  5876. vmx->nested.current_vmcs12 = NULL;
  5877. return &vmx->vcpu;
  5878. free_vmcs:
  5879. free_loaded_vmcs(vmx->loaded_vmcs);
  5880. free_msrs:
  5881. kfree(vmx->guest_msrs);
  5882. uninit_vcpu:
  5883. kvm_vcpu_uninit(&vmx->vcpu);
  5884. free_vcpu:
  5885. free_vpid(vmx);
  5886. kmem_cache_free(kvm_vcpu_cache, vmx);
  5887. return ERR_PTR(err);
  5888. }
  5889. static void __init vmx_check_processor_compat(void *rtn)
  5890. {
  5891. struct vmcs_config vmcs_conf;
  5892. *(int *)rtn = 0;
  5893. if (setup_vmcs_config(&vmcs_conf) < 0)
  5894. *(int *)rtn = -EIO;
  5895. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  5896. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  5897. smp_processor_id());
  5898. *(int *)rtn = -EIO;
  5899. }
  5900. }
  5901. static int get_ept_level(void)
  5902. {
  5903. return VMX_EPT_DEFAULT_GAW + 1;
  5904. }
  5905. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  5906. {
  5907. u64 ret;
  5908. /* For VT-d and EPT combination
  5909. * 1. MMIO: always map as UC
  5910. * 2. EPT with VT-d:
  5911. * a. VT-d without snooping control feature: can't guarantee the
  5912. * result, try to trust guest.
  5913. * b. VT-d with snooping control feature: snooping control feature of
  5914. * VT-d engine can guarantee the cache correctness. Just set it
  5915. * to WB to keep consistent with host. So the same as item 3.
  5916. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  5917. * consistent with host MTRR
  5918. */
  5919. if (is_mmio)
  5920. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  5921. else if (vcpu->kvm->arch.iommu_domain &&
  5922. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5923. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5924. VMX_EPT_MT_EPTE_SHIFT;
  5925. else
  5926. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5927. | VMX_EPT_IPAT_BIT;
  5928. return ret;
  5929. }
  5930. static int vmx_get_lpage_level(void)
  5931. {
  5932. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5933. return PT_DIRECTORY_LEVEL;
  5934. else
  5935. /* For shadow and EPT supported 1GB page */
  5936. return PT_PDPE_LEVEL;
  5937. }
  5938. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5939. {
  5940. struct kvm_cpuid_entry2 *best;
  5941. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5942. u32 exec_control;
  5943. vmx->rdtscp_enabled = false;
  5944. if (vmx_rdtscp_supported()) {
  5945. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5946. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5947. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5948. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5949. vmx->rdtscp_enabled = true;
  5950. else {
  5951. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5952. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5953. exec_control);
  5954. }
  5955. }
  5956. }
  5957. /* Exposing INVPCID only when PCID is exposed */
  5958. best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
  5959. if (vmx_invpcid_supported() &&
  5960. best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
  5961. guest_cpuid_has_pcid(vcpu)) {
  5962. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5963. exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
  5964. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5965. exec_control);
  5966. } else {
  5967. if (cpu_has_secondary_exec_ctrls()) {
  5968. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5969. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  5970. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5971. exec_control);
  5972. }
  5973. if (best)
  5974. best->ebx &= ~bit(X86_FEATURE_INVPCID);
  5975. }
  5976. }
  5977. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  5978. {
  5979. if (func == 1 && nested)
  5980. entry->ecx |= bit(X86_FEATURE_VMX);
  5981. }
  5982. /*
  5983. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  5984. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  5985. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  5986. * guest in a way that will both be appropriate to L1's requests, and our
  5987. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  5988. * function also has additional necessary side-effects, like setting various
  5989. * vcpu->arch fields.
  5990. */
  5991. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5992. {
  5993. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5994. u32 exec_control;
  5995. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  5996. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  5997. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  5998. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  5999. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  6000. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  6001. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  6002. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  6003. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  6004. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  6005. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  6006. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  6007. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  6008. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  6009. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  6010. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  6011. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  6012. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  6013. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  6014. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  6015. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  6016. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  6017. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  6018. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  6019. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  6020. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  6021. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  6022. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  6023. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  6024. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  6025. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  6026. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  6027. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  6028. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  6029. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  6030. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  6031. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  6032. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  6033. vmcs12->vm_entry_intr_info_field);
  6034. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  6035. vmcs12->vm_entry_exception_error_code);
  6036. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  6037. vmcs12->vm_entry_instruction_len);
  6038. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  6039. vmcs12->guest_interruptibility_info);
  6040. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  6041. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  6042. vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
  6043. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  6044. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  6045. vmcs12->guest_pending_dbg_exceptions);
  6046. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  6047. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  6048. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  6049. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  6050. (vmcs_config.pin_based_exec_ctrl |
  6051. vmcs12->pin_based_vm_exec_control));
  6052. /*
  6053. * Whether page-faults are trapped is determined by a combination of
  6054. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  6055. * If enable_ept, L0 doesn't care about page faults and we should
  6056. * set all of these to L1's desires. However, if !enable_ept, L0 does
  6057. * care about (at least some) page faults, and because it is not easy
  6058. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  6059. * to exit on each and every L2 page fault. This is done by setting
  6060. * MASK=MATCH=0 and (see below) EB.PF=1.
  6061. * Note that below we don't need special code to set EB.PF beyond the
  6062. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  6063. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  6064. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  6065. *
  6066. * A problem with this approach (when !enable_ept) is that L1 may be
  6067. * injected with more page faults than it asked for. This could have
  6068. * caused problems, but in practice existing hypervisors don't care.
  6069. * To fix this, we will need to emulate the PFEC checking (on the L1
  6070. * page tables), using walk_addr(), when injecting PFs to L1.
  6071. */
  6072. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  6073. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  6074. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  6075. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  6076. if (cpu_has_secondary_exec_ctrls()) {
  6077. u32 exec_control = vmx_secondary_exec_control(vmx);
  6078. if (!vmx->rdtscp_enabled)
  6079. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  6080. /* Take the following fields only from vmcs12 */
  6081. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  6082. if (nested_cpu_has(vmcs12,
  6083. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  6084. exec_control |= vmcs12->secondary_vm_exec_control;
  6085. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  6086. /*
  6087. * Translate L1 physical address to host physical
  6088. * address for vmcs02. Keep the page pinned, so this
  6089. * physical address remains valid. We keep a reference
  6090. * to it so we can release it later.
  6091. */
  6092. if (vmx->nested.apic_access_page) /* shouldn't happen */
  6093. nested_release_page(vmx->nested.apic_access_page);
  6094. vmx->nested.apic_access_page =
  6095. nested_get_page(vcpu, vmcs12->apic_access_addr);
  6096. /*
  6097. * If translation failed, no matter: This feature asks
  6098. * to exit when accessing the given address, and if it
  6099. * can never be accessed, this feature won't do
  6100. * anything anyway.
  6101. */
  6102. if (!vmx->nested.apic_access_page)
  6103. exec_control &=
  6104. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  6105. else
  6106. vmcs_write64(APIC_ACCESS_ADDR,
  6107. page_to_phys(vmx->nested.apic_access_page));
  6108. }
  6109. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  6110. }
  6111. /*
  6112. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  6113. * Some constant fields are set here by vmx_set_constant_host_state().
  6114. * Other fields are different per CPU, and will be set later when
  6115. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  6116. */
  6117. vmx_set_constant_host_state();
  6118. /*
  6119. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  6120. * entry, but only if the current (host) sp changed from the value
  6121. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  6122. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  6123. * here we just force the write to happen on entry.
  6124. */
  6125. vmx->host_rsp = 0;
  6126. exec_control = vmx_exec_control(vmx); /* L0's desires */
  6127. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  6128. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  6129. exec_control &= ~CPU_BASED_TPR_SHADOW;
  6130. exec_control |= vmcs12->cpu_based_vm_exec_control;
  6131. /*
  6132. * Merging of IO and MSR bitmaps not currently supported.
  6133. * Rather, exit every time.
  6134. */
  6135. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  6136. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  6137. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  6138. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  6139. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  6140. * bitwise-or of what L1 wants to trap for L2, and what we want to
  6141. * trap. Note that CR0.TS also needs updating - we do this later.
  6142. */
  6143. update_exception_bitmap(vcpu);
  6144. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  6145. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6146. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  6147. vmcs_write32(VM_EXIT_CONTROLS,
  6148. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  6149. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  6150. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  6151. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  6152. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  6153. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  6154. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  6155. set_cr4_guest_host_mask(vmx);
  6156. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  6157. vmcs_write64(TSC_OFFSET,
  6158. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  6159. else
  6160. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6161. if (enable_vpid) {
  6162. /*
  6163. * Trivially support vpid by letting L2s share their parent
  6164. * L1's vpid. TODO: move to a more elaborate solution, giving
  6165. * each L2 its own vpid and exposing the vpid feature to L1.
  6166. */
  6167. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  6168. vmx_flush_tlb(vcpu);
  6169. }
  6170. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  6171. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  6172. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  6173. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6174. else
  6175. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6176. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  6177. vmx_set_efer(vcpu, vcpu->arch.efer);
  6178. /*
  6179. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  6180. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  6181. * The CR0_READ_SHADOW is what L2 should have expected to read given
  6182. * the specifications by L1; It's not enough to take
  6183. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  6184. * have more bits than L1 expected.
  6185. */
  6186. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  6187. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  6188. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  6189. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  6190. /* shadow page tables on either EPT or shadow page tables */
  6191. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  6192. kvm_mmu_reset_context(vcpu);
  6193. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  6194. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  6195. }
  6196. /*
  6197. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  6198. * for running an L2 nested guest.
  6199. */
  6200. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  6201. {
  6202. struct vmcs12 *vmcs12;
  6203. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6204. int cpu;
  6205. struct loaded_vmcs *vmcs02;
  6206. if (!nested_vmx_check_permission(vcpu) ||
  6207. !nested_vmx_check_vmcs12(vcpu))
  6208. return 1;
  6209. skip_emulated_instruction(vcpu);
  6210. vmcs12 = get_vmcs12(vcpu);
  6211. /*
  6212. * The nested entry process starts with enforcing various prerequisites
  6213. * on vmcs12 as required by the Intel SDM, and act appropriately when
  6214. * they fail: As the SDM explains, some conditions should cause the
  6215. * instruction to fail, while others will cause the instruction to seem
  6216. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  6217. * To speed up the normal (success) code path, we should avoid checking
  6218. * for misconfigurations which will anyway be caught by the processor
  6219. * when using the merged vmcs02.
  6220. */
  6221. if (vmcs12->launch_state == launch) {
  6222. nested_vmx_failValid(vcpu,
  6223. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  6224. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  6225. return 1;
  6226. }
  6227. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  6228. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  6229. /*TODO: Also verify bits beyond physical address width are 0*/
  6230. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6231. return 1;
  6232. }
  6233. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  6234. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  6235. /*TODO: Also verify bits beyond physical address width are 0*/
  6236. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6237. return 1;
  6238. }
  6239. if (vmcs12->vm_entry_msr_load_count > 0 ||
  6240. vmcs12->vm_exit_msr_load_count > 0 ||
  6241. vmcs12->vm_exit_msr_store_count > 0) {
  6242. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  6243. __func__);
  6244. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6245. return 1;
  6246. }
  6247. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  6248. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  6249. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  6250. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  6251. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  6252. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  6253. !vmx_control_verify(vmcs12->vm_exit_controls,
  6254. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  6255. !vmx_control_verify(vmcs12->vm_entry_controls,
  6256. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  6257. {
  6258. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6259. return 1;
  6260. }
  6261. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6262. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6263. nested_vmx_failValid(vcpu,
  6264. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  6265. return 1;
  6266. }
  6267. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6268. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6269. nested_vmx_entry_failure(vcpu, vmcs12,
  6270. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6271. return 1;
  6272. }
  6273. if (vmcs12->vmcs_link_pointer != -1ull) {
  6274. nested_vmx_entry_failure(vcpu, vmcs12,
  6275. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  6276. return 1;
  6277. }
  6278. /*
  6279. * We're finally done with prerequisite checking, and can start with
  6280. * the nested entry.
  6281. */
  6282. vmcs02 = nested_get_current_vmcs02(vmx);
  6283. if (!vmcs02)
  6284. return -ENOMEM;
  6285. enter_guest_mode(vcpu);
  6286. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  6287. cpu = get_cpu();
  6288. vmx->loaded_vmcs = vmcs02;
  6289. vmx_vcpu_put(vcpu);
  6290. vmx_vcpu_load(vcpu, cpu);
  6291. vcpu->cpu = cpu;
  6292. put_cpu();
  6293. vmcs12->launch_state = 1;
  6294. prepare_vmcs02(vcpu, vmcs12);
  6295. /*
  6296. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  6297. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  6298. * returned as far as L1 is concerned. It will only return (and set
  6299. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  6300. */
  6301. return 1;
  6302. }
  6303. /*
  6304. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  6305. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  6306. * This function returns the new value we should put in vmcs12.guest_cr0.
  6307. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  6308. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  6309. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  6310. * didn't trap the bit, because if L1 did, so would L0).
  6311. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  6312. * been modified by L2, and L1 knows it. So just leave the old value of
  6313. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  6314. * isn't relevant, because if L0 traps this bit it can set it to anything.
  6315. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  6316. * changed these bits, and therefore they need to be updated, but L0
  6317. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  6318. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  6319. */
  6320. static inline unsigned long
  6321. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6322. {
  6323. return
  6324. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  6325. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  6326. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  6327. vcpu->arch.cr0_guest_owned_bits));
  6328. }
  6329. static inline unsigned long
  6330. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6331. {
  6332. return
  6333. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  6334. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  6335. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  6336. vcpu->arch.cr4_guest_owned_bits));
  6337. }
  6338. /*
  6339. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  6340. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  6341. * and this function updates it to reflect the changes to the guest state while
  6342. * L2 was running (and perhaps made some exits which were handled directly by L0
  6343. * without going back to L1), and to reflect the exit reason.
  6344. * Note that we do not have to copy here all VMCS fields, just those that
  6345. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  6346. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  6347. * which already writes to vmcs12 directly.
  6348. */
  6349. void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6350. {
  6351. /* update guest state fields: */
  6352. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  6353. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  6354. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  6355. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  6356. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  6357. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  6358. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  6359. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  6360. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  6361. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  6362. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  6363. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  6364. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  6365. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  6366. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  6367. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  6368. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  6369. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  6370. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  6371. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  6372. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  6373. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  6374. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  6375. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  6376. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  6377. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  6378. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  6379. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  6380. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  6381. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  6382. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  6383. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  6384. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  6385. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  6386. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  6387. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  6388. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  6389. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  6390. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  6391. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  6392. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  6393. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  6394. vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
  6395. vmcs12->guest_interruptibility_info =
  6396. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  6397. vmcs12->guest_pending_dbg_exceptions =
  6398. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  6399. /* TODO: These cannot have changed unless we have MSR bitmaps and
  6400. * the relevant bit asks not to trap the change */
  6401. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  6402. if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
  6403. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  6404. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  6405. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  6406. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  6407. /* update exit information fields: */
  6408. vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
  6409. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  6410. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6411. vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  6412. vmcs12->idt_vectoring_info_field =
  6413. vmcs_read32(IDT_VECTORING_INFO_FIELD);
  6414. vmcs12->idt_vectoring_error_code =
  6415. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  6416. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  6417. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  6418. /* clear vm-entry fields which are to be cleared on exit */
  6419. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
  6420. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  6421. }
  6422. /*
  6423. * A part of what we need to when the nested L2 guest exits and we want to
  6424. * run its L1 parent, is to reset L1's guest state to the host state specified
  6425. * in vmcs12.
  6426. * This function is to be called not only on normal nested exit, but also on
  6427. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  6428. * Failures During or After Loading Guest State").
  6429. * This function should be called when the active VMCS is L1's (vmcs01).
  6430. */
  6431. void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6432. {
  6433. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  6434. vcpu->arch.efer = vmcs12->host_ia32_efer;
  6435. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  6436. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6437. else
  6438. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6439. vmx_set_efer(vcpu, vcpu->arch.efer);
  6440. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  6441. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  6442. /*
  6443. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  6444. * actually changed, because it depends on the current state of
  6445. * fpu_active (which may have changed).
  6446. * Note that vmx_set_cr0 refers to efer set above.
  6447. */
  6448. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  6449. /*
  6450. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  6451. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  6452. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  6453. */
  6454. update_exception_bitmap(vcpu);
  6455. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  6456. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6457. /*
  6458. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  6459. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  6460. */
  6461. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  6462. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  6463. /* shadow page tables on either EPT or shadow page tables */
  6464. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  6465. kvm_mmu_reset_context(vcpu);
  6466. if (enable_vpid) {
  6467. /*
  6468. * Trivially support vpid by letting L2s share their parent
  6469. * L1's vpid. TODO: move to a more elaborate solution, giving
  6470. * each L2 its own vpid and exposing the vpid feature to L1.
  6471. */
  6472. vmx_flush_tlb(vcpu);
  6473. }
  6474. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  6475. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  6476. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  6477. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  6478. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  6479. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  6480. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  6481. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  6482. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  6483. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  6484. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  6485. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  6486. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  6487. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  6488. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6489. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6490. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6491. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6492. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6493. vmcs12->host_ia32_perf_global_ctrl);
  6494. }
  6495. /*
  6496. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6497. * and modify vmcs12 to make it see what it would expect to see there if
  6498. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6499. */
  6500. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6501. {
  6502. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6503. int cpu;
  6504. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6505. leave_guest_mode(vcpu);
  6506. prepare_vmcs12(vcpu, vmcs12);
  6507. cpu = get_cpu();
  6508. vmx->loaded_vmcs = &vmx->vmcs01;
  6509. vmx_vcpu_put(vcpu);
  6510. vmx_vcpu_load(vcpu, cpu);
  6511. vcpu->cpu = cpu;
  6512. put_cpu();
  6513. /* if no vmcs02 cache requested, remove the one we used */
  6514. if (VMCS02_POOL_SIZE == 0)
  6515. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  6516. load_vmcs12_host_state(vcpu, vmcs12);
  6517. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  6518. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6519. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  6520. vmx->host_rsp = 0;
  6521. /* Unpin physical memory we referred to in vmcs02 */
  6522. if (vmx->nested.apic_access_page) {
  6523. nested_release_page(vmx->nested.apic_access_page);
  6524. vmx->nested.apic_access_page = 0;
  6525. }
  6526. /*
  6527. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  6528. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  6529. * success or failure flag accordingly.
  6530. */
  6531. if (unlikely(vmx->fail)) {
  6532. vmx->fail = 0;
  6533. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  6534. } else
  6535. nested_vmx_succeed(vcpu);
  6536. }
  6537. /*
  6538. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  6539. * 23.7 "VM-entry failures during or after loading guest state" (this also
  6540. * lists the acceptable exit-reason and exit-qualification parameters).
  6541. * It should only be called before L2 actually succeeded to run, and when
  6542. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  6543. */
  6544. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  6545. struct vmcs12 *vmcs12,
  6546. u32 reason, unsigned long qualification)
  6547. {
  6548. load_vmcs12_host_state(vcpu, vmcs12);
  6549. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  6550. vmcs12->exit_qualification = qualification;
  6551. nested_vmx_succeed(vcpu);
  6552. }
  6553. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  6554. struct x86_instruction_info *info,
  6555. enum x86_intercept_stage stage)
  6556. {
  6557. return X86EMUL_CONTINUE;
  6558. }
  6559. static struct kvm_x86_ops vmx_x86_ops = {
  6560. .cpu_has_kvm_support = cpu_has_kvm_support,
  6561. .disabled_by_bios = vmx_disabled_by_bios,
  6562. .hardware_setup = hardware_setup,
  6563. .hardware_unsetup = hardware_unsetup,
  6564. .check_processor_compatibility = vmx_check_processor_compat,
  6565. .hardware_enable = hardware_enable,
  6566. .hardware_disable = hardware_disable,
  6567. .cpu_has_accelerated_tpr = report_flexpriority,
  6568. .vcpu_create = vmx_create_vcpu,
  6569. .vcpu_free = vmx_free_vcpu,
  6570. .vcpu_reset = vmx_vcpu_reset,
  6571. .prepare_guest_switch = vmx_save_host_state,
  6572. .vcpu_load = vmx_vcpu_load,
  6573. .vcpu_put = vmx_vcpu_put,
  6574. .update_db_bp_intercept = update_exception_bitmap,
  6575. .get_msr = vmx_get_msr,
  6576. .set_msr = vmx_set_msr,
  6577. .get_segment_base = vmx_get_segment_base,
  6578. .get_segment = vmx_get_segment,
  6579. .set_segment = vmx_set_segment,
  6580. .get_cpl = vmx_get_cpl,
  6581. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  6582. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  6583. .decache_cr3 = vmx_decache_cr3,
  6584. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  6585. .set_cr0 = vmx_set_cr0,
  6586. .set_cr3 = vmx_set_cr3,
  6587. .set_cr4 = vmx_set_cr4,
  6588. .set_efer = vmx_set_efer,
  6589. .get_idt = vmx_get_idt,
  6590. .set_idt = vmx_set_idt,
  6591. .get_gdt = vmx_get_gdt,
  6592. .set_gdt = vmx_set_gdt,
  6593. .set_dr7 = vmx_set_dr7,
  6594. .cache_reg = vmx_cache_reg,
  6595. .get_rflags = vmx_get_rflags,
  6596. .set_rflags = vmx_set_rflags,
  6597. .fpu_activate = vmx_fpu_activate,
  6598. .fpu_deactivate = vmx_fpu_deactivate,
  6599. .tlb_flush = vmx_flush_tlb,
  6600. .run = vmx_vcpu_run,
  6601. .handle_exit = vmx_handle_exit,
  6602. .skip_emulated_instruction = skip_emulated_instruction,
  6603. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  6604. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  6605. .patch_hypercall = vmx_patch_hypercall,
  6606. .set_irq = vmx_inject_irq,
  6607. .set_nmi = vmx_inject_nmi,
  6608. .queue_exception = vmx_queue_exception,
  6609. .cancel_injection = vmx_cancel_injection,
  6610. .interrupt_allowed = vmx_interrupt_allowed,
  6611. .nmi_allowed = vmx_nmi_allowed,
  6612. .get_nmi_mask = vmx_get_nmi_mask,
  6613. .set_nmi_mask = vmx_set_nmi_mask,
  6614. .enable_nmi_window = enable_nmi_window,
  6615. .enable_irq_window = enable_irq_window,
  6616. .update_cr8_intercept = update_cr8_intercept,
  6617. .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
  6618. .vm_has_apicv = vmx_vm_has_apicv,
  6619. .load_eoi_exitmap = vmx_load_eoi_exitmap,
  6620. .hwapic_irr_update = vmx_hwapic_irr_update,
  6621. .hwapic_isr_update = vmx_hwapic_isr_update,
  6622. .set_tss_addr = vmx_set_tss_addr,
  6623. .get_tdp_level = get_ept_level,
  6624. .get_mt_mask = vmx_get_mt_mask,
  6625. .get_exit_info = vmx_get_exit_info,
  6626. .get_lpage_level = vmx_get_lpage_level,
  6627. .cpuid_update = vmx_cpuid_update,
  6628. .rdtscp_supported = vmx_rdtscp_supported,
  6629. .invpcid_supported = vmx_invpcid_supported,
  6630. .set_supported_cpuid = vmx_set_supported_cpuid,
  6631. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  6632. .set_tsc_khz = vmx_set_tsc_khz,
  6633. .read_tsc_offset = vmx_read_tsc_offset,
  6634. .write_tsc_offset = vmx_write_tsc_offset,
  6635. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  6636. .compute_tsc_offset = vmx_compute_tsc_offset,
  6637. .read_l1_tsc = vmx_read_l1_tsc,
  6638. .set_tdp_cr3 = vmx_set_cr3,
  6639. .check_intercept = vmx_check_intercept,
  6640. };
  6641. static int __init vmx_init(void)
  6642. {
  6643. int r, i, msr;
  6644. rdmsrl_safe(MSR_EFER, &host_efer);
  6645. for (i = 0; i < NR_VMX_MSR; ++i)
  6646. kvm_define_shared_msr(i, vmx_msr_index[i]);
  6647. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  6648. if (!vmx_io_bitmap_a)
  6649. return -ENOMEM;
  6650. r = -ENOMEM;
  6651. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  6652. if (!vmx_io_bitmap_b)
  6653. goto out;
  6654. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  6655. if (!vmx_msr_bitmap_legacy)
  6656. goto out1;
  6657. vmx_msr_bitmap_legacy_x2apic =
  6658. (unsigned long *)__get_free_page(GFP_KERNEL);
  6659. if (!vmx_msr_bitmap_legacy_x2apic)
  6660. goto out2;
  6661. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  6662. if (!vmx_msr_bitmap_longmode)
  6663. goto out3;
  6664. vmx_msr_bitmap_longmode_x2apic =
  6665. (unsigned long *)__get_free_page(GFP_KERNEL);
  6666. if (!vmx_msr_bitmap_longmode_x2apic)
  6667. goto out4;
  6668. /*
  6669. * Allow direct access to the PC debug port (it is often used for I/O
  6670. * delays, but the vmexits simply slow things down).
  6671. */
  6672. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  6673. clear_bit(0x80, vmx_io_bitmap_a);
  6674. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  6675. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  6676. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  6677. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  6678. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  6679. __alignof__(struct vcpu_vmx), THIS_MODULE);
  6680. if (r)
  6681. goto out3;
  6682. #ifdef CONFIG_KEXEC
  6683. rcu_assign_pointer(crash_vmclear_loaded_vmcss,
  6684. crash_vmclear_local_loaded_vmcss);
  6685. #endif
  6686. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  6687. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  6688. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  6689. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  6690. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  6691. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  6692. memcpy(vmx_msr_bitmap_legacy_x2apic,
  6693. vmx_msr_bitmap_legacy, PAGE_SIZE);
  6694. memcpy(vmx_msr_bitmap_longmode_x2apic,
  6695. vmx_msr_bitmap_longmode, PAGE_SIZE);
  6696. if (enable_apicv_reg_vid) {
  6697. for (msr = 0x800; msr <= 0x8ff; msr++)
  6698. vmx_disable_intercept_msr_read_x2apic(msr);
  6699. /* According SDM, in x2apic mode, the whole id reg is used.
  6700. * But in KVM, it only use the highest eight bits. Need to
  6701. * intercept it */
  6702. vmx_enable_intercept_msr_read_x2apic(0x802);
  6703. /* TMCCT */
  6704. vmx_enable_intercept_msr_read_x2apic(0x839);
  6705. /* TPR */
  6706. vmx_disable_intercept_msr_write_x2apic(0x808);
  6707. /* EOI */
  6708. vmx_disable_intercept_msr_write_x2apic(0x80b);
  6709. /* SELF-IPI */
  6710. vmx_disable_intercept_msr_write_x2apic(0x83f);
  6711. }
  6712. if (enable_ept) {
  6713. kvm_mmu_set_mask_ptes(0ull,
  6714. (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
  6715. (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
  6716. 0ull, VMX_EPT_EXECUTABLE_MASK);
  6717. ept_set_mmio_spte_mask();
  6718. kvm_enable_tdp();
  6719. } else
  6720. kvm_disable_tdp();
  6721. return 0;
  6722. out4:
  6723. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6724. out3:
  6725. free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
  6726. out2:
  6727. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6728. out1:
  6729. free_page((unsigned long)vmx_io_bitmap_b);
  6730. out:
  6731. free_page((unsigned long)vmx_io_bitmap_a);
  6732. return r;
  6733. }
  6734. static void __exit vmx_exit(void)
  6735. {
  6736. free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
  6737. free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
  6738. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6739. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6740. free_page((unsigned long)vmx_io_bitmap_b);
  6741. free_page((unsigned long)vmx_io_bitmap_a);
  6742. #ifdef CONFIG_KEXEC
  6743. rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
  6744. synchronize_rcu();
  6745. #endif
  6746. kvm_exit();
  6747. }
  6748. module_init(vmx_init)
  6749. module_exit(vmx_exit)