skge.c 102 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/in.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/ethtool.h>
  32. #include <linux/pci.h>
  33. #include <linux/if_vlan.h>
  34. #include <linux/ip.h>
  35. #include <linux/delay.h>
  36. #include <linux/crc32.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/mii.h>
  39. #include <asm/irq.h>
  40. #include "skge.h"
  41. #define DRV_NAME "skge"
  42. #define DRV_VERSION "1.11"
  43. #define PFX DRV_NAME " "
  44. #define DEFAULT_TX_RING_SIZE 128
  45. #define DEFAULT_RX_RING_SIZE 512
  46. #define MAX_TX_RING_SIZE 1024
  47. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  48. #define MAX_RX_RING_SIZE 4096
  49. #define RX_COPY_THRESHOLD 128
  50. #define RX_BUF_SIZE 1536
  51. #define PHY_RETRIES 1000
  52. #define ETH_JUMBO_MTU 9000
  53. #define TX_WATCHDOG (5 * HZ)
  54. #define NAPI_WEIGHT 64
  55. #define BLINK_MS 250
  56. #define LINK_HZ HZ
  57. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  58. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  59. MODULE_LICENSE("GPL");
  60. MODULE_VERSION(DRV_VERSION);
  61. static const u32 default_msg
  62. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  63. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  64. static int debug = -1; /* defaults above */
  65. module_param(debug, int, 0);
  66. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  67. static const struct pci_device_id skge_id_table[] = {
  68. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  69. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  70. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  71. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
  73. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  74. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  76. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  77. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  78. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
  79. { 0 }
  80. };
  81. MODULE_DEVICE_TABLE(pci, skge_id_table);
  82. static int skge_up(struct net_device *dev);
  83. static int skge_down(struct net_device *dev);
  84. static void skge_phy_reset(struct skge_port *skge);
  85. static void skge_tx_clean(struct net_device *dev);
  86. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  87. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  88. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  89. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  90. static void yukon_init(struct skge_hw *hw, int port);
  91. static void genesis_mac_init(struct skge_hw *hw, int port);
  92. static void genesis_link_up(struct skge_port *skge);
  93. /* Avoid conditionals by using array */
  94. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  95. static const int rxqaddr[] = { Q_R1, Q_R2 };
  96. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  97. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  98. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  99. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  100. static int skge_get_regs_len(struct net_device *dev)
  101. {
  102. return 0x4000;
  103. }
  104. /*
  105. * Returns copy of whole control register region
  106. * Note: skip RAM address register because accessing it will
  107. * cause bus hangs!
  108. */
  109. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  110. void *p)
  111. {
  112. const struct skge_port *skge = netdev_priv(dev);
  113. const void __iomem *io = skge->hw->regs;
  114. regs->version = 1;
  115. memset(p, 0, regs->len);
  116. memcpy_fromio(p, io, B3_RAM_ADDR);
  117. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  118. regs->len - B3_RI_WTO_R1);
  119. }
  120. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  121. static u32 wol_supported(const struct skge_hw *hw)
  122. {
  123. if (hw->chip_id == CHIP_ID_GENESIS)
  124. return 0;
  125. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  126. return 0;
  127. return WAKE_MAGIC | WAKE_PHY;
  128. }
  129. static u32 pci_wake_enabled(struct pci_dev *dev)
  130. {
  131. int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
  132. u16 value;
  133. /* If device doesn't support PM Capabilities, but request is to disable
  134. * wake events, it's a nop; otherwise fail */
  135. if (!pm)
  136. return 0;
  137. pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
  138. value &= PCI_PM_CAP_PME_MASK;
  139. value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
  140. return value != 0;
  141. }
  142. static void skge_wol_init(struct skge_port *skge)
  143. {
  144. struct skge_hw *hw = skge->hw;
  145. int port = skge->port;
  146. u16 ctrl;
  147. skge_write16(hw, B0_CTST, CS_RST_CLR);
  148. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  149. /* Turn on Vaux */
  150. skge_write8(hw, B0_POWER_CTRL,
  151. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  152. /* WA code for COMA mode -- clear PHY reset */
  153. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  154. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  155. u32 reg = skge_read32(hw, B2_GP_IO);
  156. reg |= GP_DIR_9;
  157. reg &= ~GP_IO_9;
  158. skge_write32(hw, B2_GP_IO, reg);
  159. }
  160. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  161. GPC_DIS_SLEEP |
  162. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  163. GPC_ANEG_1 | GPC_RST_SET);
  164. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  165. GPC_DIS_SLEEP |
  166. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  167. GPC_ANEG_1 | GPC_RST_CLR);
  168. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  169. /* Force to 10/100 skge_reset will re-enable on resume */
  170. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  171. PHY_AN_100FULL | PHY_AN_100HALF |
  172. PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA);
  173. /* no 1000 HD/FD */
  174. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
  175. gm_phy_write(hw, port, PHY_MARV_CTRL,
  176. PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
  177. PHY_CT_RE_CFG | PHY_CT_DUP_MD);
  178. /* Set GMAC to no flow control and auto update for speed/duplex */
  179. gma_write16(hw, port, GM_GP_CTRL,
  180. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  181. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  182. /* Set WOL address */
  183. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  184. skge->netdev->dev_addr, ETH_ALEN);
  185. /* Turn on appropriate WOL control bits */
  186. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  187. ctrl = 0;
  188. if (skge->wol & WAKE_PHY)
  189. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  190. else
  191. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  192. if (skge->wol & WAKE_MAGIC)
  193. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  194. else
  195. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
  196. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  197. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  198. /* block receiver */
  199. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  200. }
  201. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  202. {
  203. struct skge_port *skge = netdev_priv(dev);
  204. wol->supported = wol_supported(skge->hw);
  205. wol->wolopts = skge->wol;
  206. }
  207. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  208. {
  209. struct skge_port *skge = netdev_priv(dev);
  210. struct skge_hw *hw = skge->hw;
  211. if (wol->wolopts & ~wol_supported(hw))
  212. return -EOPNOTSUPP;
  213. skge->wol = wol->wolopts;
  214. return 0;
  215. }
  216. /* Determine supported/advertised modes based on hardware.
  217. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  218. */
  219. static u32 skge_supported_modes(const struct skge_hw *hw)
  220. {
  221. u32 supported;
  222. if (hw->copper) {
  223. supported = SUPPORTED_10baseT_Half
  224. | SUPPORTED_10baseT_Full
  225. | SUPPORTED_100baseT_Half
  226. | SUPPORTED_100baseT_Full
  227. | SUPPORTED_1000baseT_Half
  228. | SUPPORTED_1000baseT_Full
  229. | SUPPORTED_Autoneg| SUPPORTED_TP;
  230. if (hw->chip_id == CHIP_ID_GENESIS)
  231. supported &= ~(SUPPORTED_10baseT_Half
  232. | SUPPORTED_10baseT_Full
  233. | SUPPORTED_100baseT_Half
  234. | SUPPORTED_100baseT_Full);
  235. else if (hw->chip_id == CHIP_ID_YUKON)
  236. supported &= ~SUPPORTED_1000baseT_Half;
  237. } else
  238. supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
  239. | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
  240. return supported;
  241. }
  242. static int skge_get_settings(struct net_device *dev,
  243. struct ethtool_cmd *ecmd)
  244. {
  245. struct skge_port *skge = netdev_priv(dev);
  246. struct skge_hw *hw = skge->hw;
  247. ecmd->transceiver = XCVR_INTERNAL;
  248. ecmd->supported = skge_supported_modes(hw);
  249. if (hw->copper) {
  250. ecmd->port = PORT_TP;
  251. ecmd->phy_address = hw->phy_addr;
  252. } else
  253. ecmd->port = PORT_FIBRE;
  254. ecmd->advertising = skge->advertising;
  255. ecmd->autoneg = skge->autoneg;
  256. ecmd->speed = skge->speed;
  257. ecmd->duplex = skge->duplex;
  258. return 0;
  259. }
  260. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  261. {
  262. struct skge_port *skge = netdev_priv(dev);
  263. const struct skge_hw *hw = skge->hw;
  264. u32 supported = skge_supported_modes(hw);
  265. if (ecmd->autoneg == AUTONEG_ENABLE) {
  266. ecmd->advertising = supported;
  267. skge->duplex = -1;
  268. skge->speed = -1;
  269. } else {
  270. u32 setting;
  271. switch (ecmd->speed) {
  272. case SPEED_1000:
  273. if (ecmd->duplex == DUPLEX_FULL)
  274. setting = SUPPORTED_1000baseT_Full;
  275. else if (ecmd->duplex == DUPLEX_HALF)
  276. setting = SUPPORTED_1000baseT_Half;
  277. else
  278. return -EINVAL;
  279. break;
  280. case SPEED_100:
  281. if (ecmd->duplex == DUPLEX_FULL)
  282. setting = SUPPORTED_100baseT_Full;
  283. else if (ecmd->duplex == DUPLEX_HALF)
  284. setting = SUPPORTED_100baseT_Half;
  285. else
  286. return -EINVAL;
  287. break;
  288. case SPEED_10:
  289. if (ecmd->duplex == DUPLEX_FULL)
  290. setting = SUPPORTED_10baseT_Full;
  291. else if (ecmd->duplex == DUPLEX_HALF)
  292. setting = SUPPORTED_10baseT_Half;
  293. else
  294. return -EINVAL;
  295. break;
  296. default:
  297. return -EINVAL;
  298. }
  299. if ((setting & supported) == 0)
  300. return -EINVAL;
  301. skge->speed = ecmd->speed;
  302. skge->duplex = ecmd->duplex;
  303. }
  304. skge->autoneg = ecmd->autoneg;
  305. skge->advertising = ecmd->advertising;
  306. if (netif_running(dev))
  307. skge_phy_reset(skge);
  308. return (0);
  309. }
  310. static void skge_get_drvinfo(struct net_device *dev,
  311. struct ethtool_drvinfo *info)
  312. {
  313. struct skge_port *skge = netdev_priv(dev);
  314. strcpy(info->driver, DRV_NAME);
  315. strcpy(info->version, DRV_VERSION);
  316. strcpy(info->fw_version, "N/A");
  317. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  318. }
  319. static const struct skge_stat {
  320. char name[ETH_GSTRING_LEN];
  321. u16 xmac_offset;
  322. u16 gma_offset;
  323. } skge_stats[] = {
  324. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  325. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  326. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  327. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  328. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  329. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  330. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  331. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  332. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  333. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  334. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  335. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  336. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  337. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  338. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  339. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  340. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  341. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  342. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  343. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  344. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  345. };
  346. static int skge_get_sset_count(struct net_device *dev, int sset)
  347. {
  348. switch (sset) {
  349. case ETH_SS_STATS:
  350. return ARRAY_SIZE(skge_stats);
  351. default:
  352. return -EOPNOTSUPP;
  353. }
  354. }
  355. static void skge_get_ethtool_stats(struct net_device *dev,
  356. struct ethtool_stats *stats, u64 *data)
  357. {
  358. struct skge_port *skge = netdev_priv(dev);
  359. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  360. genesis_get_stats(skge, data);
  361. else
  362. yukon_get_stats(skge, data);
  363. }
  364. /* Use hardware MIB variables for critical path statistics and
  365. * transmit feedback not reported at interrupt.
  366. * Other errors are accounted for in interrupt handler.
  367. */
  368. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  369. {
  370. struct skge_port *skge = netdev_priv(dev);
  371. u64 data[ARRAY_SIZE(skge_stats)];
  372. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  373. genesis_get_stats(skge, data);
  374. else
  375. yukon_get_stats(skge, data);
  376. skge->net_stats.tx_bytes = data[0];
  377. skge->net_stats.rx_bytes = data[1];
  378. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  379. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  380. skge->net_stats.multicast = data[3] + data[5];
  381. skge->net_stats.collisions = data[10];
  382. skge->net_stats.tx_aborted_errors = data[12];
  383. return &skge->net_stats;
  384. }
  385. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  386. {
  387. int i;
  388. switch (stringset) {
  389. case ETH_SS_STATS:
  390. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  391. memcpy(data + i * ETH_GSTRING_LEN,
  392. skge_stats[i].name, ETH_GSTRING_LEN);
  393. break;
  394. }
  395. }
  396. static void skge_get_ring_param(struct net_device *dev,
  397. struct ethtool_ringparam *p)
  398. {
  399. struct skge_port *skge = netdev_priv(dev);
  400. p->rx_max_pending = MAX_RX_RING_SIZE;
  401. p->tx_max_pending = MAX_TX_RING_SIZE;
  402. p->rx_mini_max_pending = 0;
  403. p->rx_jumbo_max_pending = 0;
  404. p->rx_pending = skge->rx_ring.count;
  405. p->tx_pending = skge->tx_ring.count;
  406. p->rx_mini_pending = 0;
  407. p->rx_jumbo_pending = 0;
  408. }
  409. static int skge_set_ring_param(struct net_device *dev,
  410. struct ethtool_ringparam *p)
  411. {
  412. struct skge_port *skge = netdev_priv(dev);
  413. int err;
  414. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  415. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  416. return -EINVAL;
  417. skge->rx_ring.count = p->rx_pending;
  418. skge->tx_ring.count = p->tx_pending;
  419. if (netif_running(dev)) {
  420. skge_down(dev);
  421. err = skge_up(dev);
  422. if (err)
  423. dev_close(dev);
  424. }
  425. return 0;
  426. }
  427. static u32 skge_get_msglevel(struct net_device *netdev)
  428. {
  429. struct skge_port *skge = netdev_priv(netdev);
  430. return skge->msg_enable;
  431. }
  432. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  433. {
  434. struct skge_port *skge = netdev_priv(netdev);
  435. skge->msg_enable = value;
  436. }
  437. static int skge_nway_reset(struct net_device *dev)
  438. {
  439. struct skge_port *skge = netdev_priv(dev);
  440. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  441. return -EINVAL;
  442. skge_phy_reset(skge);
  443. return 0;
  444. }
  445. static int skge_set_sg(struct net_device *dev, u32 data)
  446. {
  447. struct skge_port *skge = netdev_priv(dev);
  448. struct skge_hw *hw = skge->hw;
  449. if (hw->chip_id == CHIP_ID_GENESIS && data)
  450. return -EOPNOTSUPP;
  451. return ethtool_op_set_sg(dev, data);
  452. }
  453. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  454. {
  455. struct skge_port *skge = netdev_priv(dev);
  456. struct skge_hw *hw = skge->hw;
  457. if (hw->chip_id == CHIP_ID_GENESIS && data)
  458. return -EOPNOTSUPP;
  459. return ethtool_op_set_tx_csum(dev, data);
  460. }
  461. static u32 skge_get_rx_csum(struct net_device *dev)
  462. {
  463. struct skge_port *skge = netdev_priv(dev);
  464. return skge->rx_csum;
  465. }
  466. /* Only Yukon supports checksum offload. */
  467. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  468. {
  469. struct skge_port *skge = netdev_priv(dev);
  470. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  471. return -EOPNOTSUPP;
  472. skge->rx_csum = data;
  473. return 0;
  474. }
  475. static void skge_get_pauseparam(struct net_device *dev,
  476. struct ethtool_pauseparam *ecmd)
  477. {
  478. struct skge_port *skge = netdev_priv(dev);
  479. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
  480. || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
  481. ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
  482. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  483. }
  484. static int skge_set_pauseparam(struct net_device *dev,
  485. struct ethtool_pauseparam *ecmd)
  486. {
  487. struct skge_port *skge = netdev_priv(dev);
  488. struct ethtool_pauseparam old;
  489. skge_get_pauseparam(dev, &old);
  490. if (ecmd->autoneg != old.autoneg)
  491. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  492. else {
  493. if (ecmd->rx_pause && ecmd->tx_pause)
  494. skge->flow_control = FLOW_MODE_SYMMETRIC;
  495. else if (ecmd->rx_pause && !ecmd->tx_pause)
  496. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  497. else if (!ecmd->rx_pause && ecmd->tx_pause)
  498. skge->flow_control = FLOW_MODE_LOC_SEND;
  499. else
  500. skge->flow_control = FLOW_MODE_NONE;
  501. }
  502. if (netif_running(dev))
  503. skge_phy_reset(skge);
  504. return 0;
  505. }
  506. /* Chip internal frequency for clock calculations */
  507. static inline u32 hwkhz(const struct skge_hw *hw)
  508. {
  509. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  510. }
  511. /* Chip HZ to microseconds */
  512. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  513. {
  514. return (ticks * 1000) / hwkhz(hw);
  515. }
  516. /* Microseconds to chip HZ */
  517. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  518. {
  519. return hwkhz(hw) * usec / 1000;
  520. }
  521. static int skge_get_coalesce(struct net_device *dev,
  522. struct ethtool_coalesce *ecmd)
  523. {
  524. struct skge_port *skge = netdev_priv(dev);
  525. struct skge_hw *hw = skge->hw;
  526. int port = skge->port;
  527. ecmd->rx_coalesce_usecs = 0;
  528. ecmd->tx_coalesce_usecs = 0;
  529. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  530. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  531. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  532. if (msk & rxirqmask[port])
  533. ecmd->rx_coalesce_usecs = delay;
  534. if (msk & txirqmask[port])
  535. ecmd->tx_coalesce_usecs = delay;
  536. }
  537. return 0;
  538. }
  539. /* Note: interrupt timer is per board, but can turn on/off per port */
  540. static int skge_set_coalesce(struct net_device *dev,
  541. struct ethtool_coalesce *ecmd)
  542. {
  543. struct skge_port *skge = netdev_priv(dev);
  544. struct skge_hw *hw = skge->hw;
  545. int port = skge->port;
  546. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  547. u32 delay = 25;
  548. if (ecmd->rx_coalesce_usecs == 0)
  549. msk &= ~rxirqmask[port];
  550. else if (ecmd->rx_coalesce_usecs < 25 ||
  551. ecmd->rx_coalesce_usecs > 33333)
  552. return -EINVAL;
  553. else {
  554. msk |= rxirqmask[port];
  555. delay = ecmd->rx_coalesce_usecs;
  556. }
  557. if (ecmd->tx_coalesce_usecs == 0)
  558. msk &= ~txirqmask[port];
  559. else if (ecmd->tx_coalesce_usecs < 25 ||
  560. ecmd->tx_coalesce_usecs > 33333)
  561. return -EINVAL;
  562. else {
  563. msk |= txirqmask[port];
  564. delay = min(delay, ecmd->rx_coalesce_usecs);
  565. }
  566. skge_write32(hw, B2_IRQM_MSK, msk);
  567. if (msk == 0)
  568. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  569. else {
  570. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  571. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  572. }
  573. return 0;
  574. }
  575. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  576. static void skge_led(struct skge_port *skge, enum led_mode mode)
  577. {
  578. struct skge_hw *hw = skge->hw;
  579. int port = skge->port;
  580. spin_lock_bh(&hw->phy_lock);
  581. if (hw->chip_id == CHIP_ID_GENESIS) {
  582. switch (mode) {
  583. case LED_MODE_OFF:
  584. if (hw->phy_type == SK_PHY_BCOM)
  585. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  586. else {
  587. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  588. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  589. }
  590. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  591. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  592. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  593. break;
  594. case LED_MODE_ON:
  595. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  596. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  597. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  598. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  599. break;
  600. case LED_MODE_TST:
  601. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  602. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  603. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  604. if (hw->phy_type == SK_PHY_BCOM)
  605. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  606. else {
  607. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  608. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  609. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  610. }
  611. }
  612. } else {
  613. switch (mode) {
  614. case LED_MODE_OFF:
  615. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  616. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  617. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  618. PHY_M_LED_MO_10(MO_LED_OFF) |
  619. PHY_M_LED_MO_100(MO_LED_OFF) |
  620. PHY_M_LED_MO_1000(MO_LED_OFF) |
  621. PHY_M_LED_MO_RX(MO_LED_OFF));
  622. break;
  623. case LED_MODE_ON:
  624. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  625. PHY_M_LED_PULS_DUR(PULS_170MS) |
  626. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  627. PHY_M_LEDC_TX_CTRL |
  628. PHY_M_LEDC_DP_CTRL);
  629. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  630. PHY_M_LED_MO_RX(MO_LED_OFF) |
  631. (skge->speed == SPEED_100 ?
  632. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  633. break;
  634. case LED_MODE_TST:
  635. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  636. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  637. PHY_M_LED_MO_DUP(MO_LED_ON) |
  638. PHY_M_LED_MO_10(MO_LED_ON) |
  639. PHY_M_LED_MO_100(MO_LED_ON) |
  640. PHY_M_LED_MO_1000(MO_LED_ON) |
  641. PHY_M_LED_MO_RX(MO_LED_ON));
  642. }
  643. }
  644. spin_unlock_bh(&hw->phy_lock);
  645. }
  646. /* blink LED's for finding board */
  647. static int skge_phys_id(struct net_device *dev, u32 data)
  648. {
  649. struct skge_port *skge = netdev_priv(dev);
  650. unsigned long ms;
  651. enum led_mode mode = LED_MODE_TST;
  652. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  653. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  654. else
  655. ms = data * 1000;
  656. while (ms > 0) {
  657. skge_led(skge, mode);
  658. mode ^= LED_MODE_TST;
  659. if (msleep_interruptible(BLINK_MS))
  660. break;
  661. ms -= BLINK_MS;
  662. }
  663. /* back to regular LED state */
  664. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  665. return 0;
  666. }
  667. static const struct ethtool_ops skge_ethtool_ops = {
  668. .get_settings = skge_get_settings,
  669. .set_settings = skge_set_settings,
  670. .get_drvinfo = skge_get_drvinfo,
  671. .get_regs_len = skge_get_regs_len,
  672. .get_regs = skge_get_regs,
  673. .get_wol = skge_get_wol,
  674. .set_wol = skge_set_wol,
  675. .get_msglevel = skge_get_msglevel,
  676. .set_msglevel = skge_set_msglevel,
  677. .nway_reset = skge_nway_reset,
  678. .get_link = ethtool_op_get_link,
  679. .get_ringparam = skge_get_ring_param,
  680. .set_ringparam = skge_set_ring_param,
  681. .get_pauseparam = skge_get_pauseparam,
  682. .set_pauseparam = skge_set_pauseparam,
  683. .get_coalesce = skge_get_coalesce,
  684. .set_coalesce = skge_set_coalesce,
  685. .set_sg = skge_set_sg,
  686. .set_tx_csum = skge_set_tx_csum,
  687. .get_rx_csum = skge_get_rx_csum,
  688. .set_rx_csum = skge_set_rx_csum,
  689. .get_strings = skge_get_strings,
  690. .phys_id = skge_phys_id,
  691. .get_sset_count = skge_get_sset_count,
  692. .get_ethtool_stats = skge_get_ethtool_stats,
  693. };
  694. /*
  695. * Allocate ring elements and chain them together
  696. * One-to-one association of board descriptors with ring elements
  697. */
  698. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  699. {
  700. struct skge_tx_desc *d;
  701. struct skge_element *e;
  702. int i;
  703. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  704. if (!ring->start)
  705. return -ENOMEM;
  706. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  707. e->desc = d;
  708. if (i == ring->count - 1) {
  709. e->next = ring->start;
  710. d->next_offset = base;
  711. } else {
  712. e->next = e + 1;
  713. d->next_offset = base + (i+1) * sizeof(*d);
  714. }
  715. }
  716. ring->to_use = ring->to_clean = ring->start;
  717. return 0;
  718. }
  719. /* Allocate and setup a new buffer for receiving */
  720. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  721. struct sk_buff *skb, unsigned int bufsize)
  722. {
  723. struct skge_rx_desc *rd = e->desc;
  724. u64 map;
  725. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  726. PCI_DMA_FROMDEVICE);
  727. rd->dma_lo = map;
  728. rd->dma_hi = map >> 32;
  729. e->skb = skb;
  730. rd->csum1_start = ETH_HLEN;
  731. rd->csum2_start = ETH_HLEN;
  732. rd->csum1 = 0;
  733. rd->csum2 = 0;
  734. wmb();
  735. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  736. pci_unmap_addr_set(e, mapaddr, map);
  737. pci_unmap_len_set(e, maplen, bufsize);
  738. }
  739. /* Resume receiving using existing skb,
  740. * Note: DMA address is not changed by chip.
  741. * MTU not changed while receiver active.
  742. */
  743. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  744. {
  745. struct skge_rx_desc *rd = e->desc;
  746. rd->csum2 = 0;
  747. rd->csum2_start = ETH_HLEN;
  748. wmb();
  749. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  750. }
  751. /* Free all buffers in receive ring, assumes receiver stopped */
  752. static void skge_rx_clean(struct skge_port *skge)
  753. {
  754. struct skge_hw *hw = skge->hw;
  755. struct skge_ring *ring = &skge->rx_ring;
  756. struct skge_element *e;
  757. e = ring->start;
  758. do {
  759. struct skge_rx_desc *rd = e->desc;
  760. rd->control = 0;
  761. if (e->skb) {
  762. pci_unmap_single(hw->pdev,
  763. pci_unmap_addr(e, mapaddr),
  764. pci_unmap_len(e, maplen),
  765. PCI_DMA_FROMDEVICE);
  766. dev_kfree_skb(e->skb);
  767. e->skb = NULL;
  768. }
  769. } while ((e = e->next) != ring->start);
  770. }
  771. /* Allocate buffers for receive ring
  772. * For receive: to_clean is next received frame.
  773. */
  774. static int skge_rx_fill(struct net_device *dev)
  775. {
  776. struct skge_port *skge = netdev_priv(dev);
  777. struct skge_ring *ring = &skge->rx_ring;
  778. struct skge_element *e;
  779. e = ring->start;
  780. do {
  781. struct sk_buff *skb;
  782. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  783. GFP_KERNEL);
  784. if (!skb)
  785. return -ENOMEM;
  786. skb_reserve(skb, NET_IP_ALIGN);
  787. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  788. } while ( (e = e->next) != ring->start);
  789. ring->to_clean = ring->start;
  790. return 0;
  791. }
  792. static const char *skge_pause(enum pause_status status)
  793. {
  794. switch(status) {
  795. case FLOW_STAT_NONE:
  796. return "none";
  797. case FLOW_STAT_REM_SEND:
  798. return "rx only";
  799. case FLOW_STAT_LOC_SEND:
  800. return "tx_only";
  801. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  802. return "both";
  803. default:
  804. return "indeterminated";
  805. }
  806. }
  807. static void skge_link_up(struct skge_port *skge)
  808. {
  809. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  810. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  811. netif_carrier_on(skge->netdev);
  812. netif_wake_queue(skge->netdev);
  813. if (netif_msg_link(skge)) {
  814. printk(KERN_INFO PFX
  815. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  816. skge->netdev->name, skge->speed,
  817. skge->duplex == DUPLEX_FULL ? "full" : "half",
  818. skge_pause(skge->flow_status));
  819. }
  820. }
  821. static void skge_link_down(struct skge_port *skge)
  822. {
  823. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  824. netif_carrier_off(skge->netdev);
  825. netif_stop_queue(skge->netdev);
  826. if (netif_msg_link(skge))
  827. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  828. }
  829. static void xm_link_down(struct skge_hw *hw, int port)
  830. {
  831. struct net_device *dev = hw->dev[port];
  832. struct skge_port *skge = netdev_priv(dev);
  833. u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
  834. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  835. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  836. xm_write16(hw, port, XM_MMU_CMD, cmd);
  837. /* dummy read to ensure writing */
  838. xm_read16(hw, port, XM_MMU_CMD);
  839. if (netif_carrier_ok(dev))
  840. skge_link_down(skge);
  841. }
  842. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  843. {
  844. int i;
  845. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  846. *val = xm_read16(hw, port, XM_PHY_DATA);
  847. if (hw->phy_type == SK_PHY_XMAC)
  848. goto ready;
  849. for (i = 0; i < PHY_RETRIES; i++) {
  850. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  851. goto ready;
  852. udelay(1);
  853. }
  854. return -ETIMEDOUT;
  855. ready:
  856. *val = xm_read16(hw, port, XM_PHY_DATA);
  857. return 0;
  858. }
  859. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  860. {
  861. u16 v = 0;
  862. if (__xm_phy_read(hw, port, reg, &v))
  863. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  864. hw->dev[port]->name);
  865. return v;
  866. }
  867. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  868. {
  869. int i;
  870. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  871. for (i = 0; i < PHY_RETRIES; i++) {
  872. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  873. goto ready;
  874. udelay(1);
  875. }
  876. return -EIO;
  877. ready:
  878. xm_write16(hw, port, XM_PHY_DATA, val);
  879. for (i = 0; i < PHY_RETRIES; i++) {
  880. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  881. return 0;
  882. udelay(1);
  883. }
  884. return -ETIMEDOUT;
  885. }
  886. static void genesis_init(struct skge_hw *hw)
  887. {
  888. /* set blink source counter */
  889. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  890. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  891. /* configure mac arbiter */
  892. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  893. /* configure mac arbiter timeout values */
  894. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  895. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  896. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  897. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  898. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  899. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  900. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  901. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  902. /* configure packet arbiter timeout */
  903. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  904. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  905. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  906. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  907. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  908. }
  909. static void genesis_reset(struct skge_hw *hw, int port)
  910. {
  911. const u8 zero[8] = { 0 };
  912. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  913. /* reset the statistics module */
  914. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  915. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  916. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  917. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  918. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  919. /* disable Broadcom PHY IRQ */
  920. if (hw->phy_type == SK_PHY_BCOM)
  921. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  922. xm_outhash(hw, port, XM_HSM, zero);
  923. }
  924. /* Convert mode to MII values */
  925. static const u16 phy_pause_map[] = {
  926. [FLOW_MODE_NONE] = 0,
  927. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  928. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  929. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  930. };
  931. /* special defines for FIBER (88E1011S only) */
  932. static const u16 fiber_pause_map[] = {
  933. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  934. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  935. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  936. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  937. };
  938. /* Check status of Broadcom phy link */
  939. static void bcom_check_link(struct skge_hw *hw, int port)
  940. {
  941. struct net_device *dev = hw->dev[port];
  942. struct skge_port *skge = netdev_priv(dev);
  943. u16 status;
  944. /* read twice because of latch */
  945. xm_phy_read(hw, port, PHY_BCOM_STAT);
  946. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  947. if ((status & PHY_ST_LSYNC) == 0) {
  948. xm_link_down(hw, port);
  949. return;
  950. }
  951. if (skge->autoneg == AUTONEG_ENABLE) {
  952. u16 lpa, aux;
  953. if (!(status & PHY_ST_AN_OVER))
  954. return;
  955. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  956. if (lpa & PHY_B_AN_RF) {
  957. printk(KERN_NOTICE PFX "%s: remote fault\n",
  958. dev->name);
  959. return;
  960. }
  961. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  962. /* Check Duplex mismatch */
  963. switch (aux & PHY_B_AS_AN_RES_MSK) {
  964. case PHY_B_RES_1000FD:
  965. skge->duplex = DUPLEX_FULL;
  966. break;
  967. case PHY_B_RES_1000HD:
  968. skge->duplex = DUPLEX_HALF;
  969. break;
  970. default:
  971. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  972. dev->name);
  973. return;
  974. }
  975. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  976. switch (aux & PHY_B_AS_PAUSE_MSK) {
  977. case PHY_B_AS_PAUSE_MSK:
  978. skge->flow_status = FLOW_STAT_SYMMETRIC;
  979. break;
  980. case PHY_B_AS_PRR:
  981. skge->flow_status = FLOW_STAT_REM_SEND;
  982. break;
  983. case PHY_B_AS_PRT:
  984. skge->flow_status = FLOW_STAT_LOC_SEND;
  985. break;
  986. default:
  987. skge->flow_status = FLOW_STAT_NONE;
  988. }
  989. skge->speed = SPEED_1000;
  990. }
  991. if (!netif_carrier_ok(dev))
  992. genesis_link_up(skge);
  993. }
  994. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  995. * Phy on for 100 or 10Mbit operation
  996. */
  997. static void bcom_phy_init(struct skge_port *skge)
  998. {
  999. struct skge_hw *hw = skge->hw;
  1000. int port = skge->port;
  1001. int i;
  1002. u16 id1, r, ext, ctl;
  1003. /* magic workaround patterns for Broadcom */
  1004. static const struct {
  1005. u16 reg;
  1006. u16 val;
  1007. } A1hack[] = {
  1008. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  1009. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  1010. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  1011. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  1012. }, C0hack[] = {
  1013. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1014. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1015. };
  1016. /* read Id from external PHY (all have the same address) */
  1017. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1018. /* Optimize MDIO transfer by suppressing preamble. */
  1019. r = xm_read16(hw, port, XM_MMU_CMD);
  1020. r |= XM_MMU_NO_PRE;
  1021. xm_write16(hw, port, XM_MMU_CMD,r);
  1022. switch (id1) {
  1023. case PHY_BCOM_ID1_C0:
  1024. /*
  1025. * Workaround BCOM Errata for the C0 type.
  1026. * Write magic patterns to reserved registers.
  1027. */
  1028. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1029. xm_phy_write(hw, port,
  1030. C0hack[i].reg, C0hack[i].val);
  1031. break;
  1032. case PHY_BCOM_ID1_A1:
  1033. /*
  1034. * Workaround BCOM Errata for the A1 type.
  1035. * Write magic patterns to reserved registers.
  1036. */
  1037. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1038. xm_phy_write(hw, port,
  1039. A1hack[i].reg, A1hack[i].val);
  1040. break;
  1041. }
  1042. /*
  1043. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1044. * Disable Power Management after reset.
  1045. */
  1046. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1047. r |= PHY_B_AC_DIS_PM;
  1048. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1049. /* Dummy read */
  1050. xm_read16(hw, port, XM_ISRC);
  1051. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1052. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1053. if (skge->autoneg == AUTONEG_ENABLE) {
  1054. /*
  1055. * Workaround BCOM Errata #1 for the C5 type.
  1056. * 1000Base-T Link Acquisition Failure in Slave Mode
  1057. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1058. */
  1059. u16 adv = PHY_B_1000C_RD;
  1060. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1061. adv |= PHY_B_1000C_AHD;
  1062. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1063. adv |= PHY_B_1000C_AFD;
  1064. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1065. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1066. } else {
  1067. if (skge->duplex == DUPLEX_FULL)
  1068. ctl |= PHY_CT_DUP_MD;
  1069. /* Force to slave */
  1070. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1071. }
  1072. /* Set autonegotiation pause parameters */
  1073. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1074. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1075. /* Handle Jumbo frames */
  1076. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1077. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1078. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1079. ext |= PHY_B_PEC_HIGH_LA;
  1080. }
  1081. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1082. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1083. /* Use link status change interrupt */
  1084. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1085. }
  1086. static void xm_phy_init(struct skge_port *skge)
  1087. {
  1088. struct skge_hw *hw = skge->hw;
  1089. int port = skge->port;
  1090. u16 ctrl = 0;
  1091. if (skge->autoneg == AUTONEG_ENABLE) {
  1092. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1093. ctrl |= PHY_X_AN_HD;
  1094. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1095. ctrl |= PHY_X_AN_FD;
  1096. ctrl |= fiber_pause_map[skge->flow_control];
  1097. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1098. /* Restart Auto-negotiation */
  1099. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1100. } else {
  1101. /* Set DuplexMode in Config register */
  1102. if (skge->duplex == DUPLEX_FULL)
  1103. ctrl |= PHY_CT_DUP_MD;
  1104. /*
  1105. * Do NOT enable Auto-negotiation here. This would hold
  1106. * the link down because no IDLEs are transmitted
  1107. */
  1108. }
  1109. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1110. /* Poll PHY for status changes */
  1111. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1112. }
  1113. static int xm_check_link(struct net_device *dev)
  1114. {
  1115. struct skge_port *skge = netdev_priv(dev);
  1116. struct skge_hw *hw = skge->hw;
  1117. int port = skge->port;
  1118. u16 status;
  1119. /* read twice because of latch */
  1120. xm_phy_read(hw, port, PHY_XMAC_STAT);
  1121. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1122. if ((status & PHY_ST_LSYNC) == 0) {
  1123. xm_link_down(hw, port);
  1124. return 0;
  1125. }
  1126. if (skge->autoneg == AUTONEG_ENABLE) {
  1127. u16 lpa, res;
  1128. if (!(status & PHY_ST_AN_OVER))
  1129. return 0;
  1130. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1131. if (lpa & PHY_B_AN_RF) {
  1132. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1133. dev->name);
  1134. return 0;
  1135. }
  1136. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1137. /* Check Duplex mismatch */
  1138. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1139. case PHY_X_RS_FD:
  1140. skge->duplex = DUPLEX_FULL;
  1141. break;
  1142. case PHY_X_RS_HD:
  1143. skge->duplex = DUPLEX_HALF;
  1144. break;
  1145. default:
  1146. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1147. dev->name);
  1148. return 0;
  1149. }
  1150. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1151. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1152. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1153. (lpa & PHY_X_P_SYM_MD))
  1154. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1155. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1156. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1157. /* Enable PAUSE receive, disable PAUSE transmit */
  1158. skge->flow_status = FLOW_STAT_REM_SEND;
  1159. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1160. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1161. /* Disable PAUSE receive, enable PAUSE transmit */
  1162. skge->flow_status = FLOW_STAT_LOC_SEND;
  1163. else
  1164. skge->flow_status = FLOW_STAT_NONE;
  1165. skge->speed = SPEED_1000;
  1166. }
  1167. if (!netif_carrier_ok(dev))
  1168. genesis_link_up(skge);
  1169. return 1;
  1170. }
  1171. /* Poll to check for link coming up.
  1172. *
  1173. * Since internal PHY is wired to a level triggered pin, can't
  1174. * get an interrupt when carrier is detected, need to poll for
  1175. * link coming up.
  1176. */
  1177. static void xm_link_timer(unsigned long arg)
  1178. {
  1179. struct skge_port *skge = (struct skge_port *) arg;
  1180. struct net_device *dev = skge->netdev;
  1181. struct skge_hw *hw = skge->hw;
  1182. int port = skge->port;
  1183. int i;
  1184. unsigned long flags;
  1185. if (!netif_running(dev))
  1186. return;
  1187. spin_lock_irqsave(&hw->phy_lock, flags);
  1188. /*
  1189. * Verify that the link by checking GPIO register three times.
  1190. * This pin has the signal from the link_sync pin connected to it.
  1191. */
  1192. for (i = 0; i < 3; i++) {
  1193. if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1194. goto link_down;
  1195. }
  1196. /* Re-enable interrupt to detect link down */
  1197. if (xm_check_link(dev)) {
  1198. u16 msk = xm_read16(hw, port, XM_IMSK);
  1199. msk &= ~XM_IS_INP_ASS;
  1200. xm_write16(hw, port, XM_IMSK, msk);
  1201. xm_read16(hw, port, XM_ISRC);
  1202. } else {
  1203. link_down:
  1204. mod_timer(&skge->link_timer,
  1205. round_jiffies(jiffies + LINK_HZ));
  1206. }
  1207. spin_unlock_irqrestore(&hw->phy_lock, flags);
  1208. }
  1209. static void genesis_mac_init(struct skge_hw *hw, int port)
  1210. {
  1211. struct net_device *dev = hw->dev[port];
  1212. struct skge_port *skge = netdev_priv(dev);
  1213. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1214. int i;
  1215. u32 r;
  1216. const u8 zero[6] = { 0 };
  1217. for (i = 0; i < 10; i++) {
  1218. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1219. MFF_SET_MAC_RST);
  1220. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1221. goto reset_ok;
  1222. udelay(1);
  1223. }
  1224. printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
  1225. reset_ok:
  1226. /* Unreset the XMAC. */
  1227. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1228. /*
  1229. * Perform additional initialization for external PHYs,
  1230. * namely for the 1000baseTX cards that use the XMAC's
  1231. * GMII mode.
  1232. */
  1233. if (hw->phy_type != SK_PHY_XMAC) {
  1234. /* Take external Phy out of reset */
  1235. r = skge_read32(hw, B2_GP_IO);
  1236. if (port == 0)
  1237. r |= GP_DIR_0|GP_IO_0;
  1238. else
  1239. r |= GP_DIR_2|GP_IO_2;
  1240. skge_write32(hw, B2_GP_IO, r);
  1241. /* Enable GMII interface */
  1242. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1243. }
  1244. switch(hw->phy_type) {
  1245. case SK_PHY_XMAC:
  1246. xm_phy_init(skge);
  1247. break;
  1248. case SK_PHY_BCOM:
  1249. bcom_phy_init(skge);
  1250. bcom_check_link(hw, port);
  1251. }
  1252. /* Set Station Address */
  1253. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1254. /* We don't use match addresses so clear */
  1255. for (i = 1; i < 16; i++)
  1256. xm_outaddr(hw, port, XM_EXM(i), zero);
  1257. /* Clear MIB counters */
  1258. xm_write16(hw, port, XM_STAT_CMD,
  1259. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1260. /* Clear two times according to Errata #3 */
  1261. xm_write16(hw, port, XM_STAT_CMD,
  1262. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1263. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1264. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1265. /* We don't need the FCS appended to the packet. */
  1266. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1267. if (jumbo)
  1268. r |= XM_RX_BIG_PK_OK;
  1269. if (skge->duplex == DUPLEX_HALF) {
  1270. /*
  1271. * If in manual half duplex mode the other side might be in
  1272. * full duplex mode, so ignore if a carrier extension is not seen
  1273. * on frames received
  1274. */
  1275. r |= XM_RX_DIS_CEXT;
  1276. }
  1277. xm_write16(hw, port, XM_RX_CMD, r);
  1278. /* We want short frames padded to 60 bytes. */
  1279. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1280. /*
  1281. * Bump up the transmit threshold. This helps hold off transmit
  1282. * underruns when we're blasting traffic from both ports at once.
  1283. */
  1284. xm_write16(hw, port, XM_TX_THR, 512);
  1285. /*
  1286. * Enable the reception of all error frames. This is is
  1287. * a necessary evil due to the design of the XMAC. The
  1288. * XMAC's receive FIFO is only 8K in size, however jumbo
  1289. * frames can be up to 9000 bytes in length. When bad
  1290. * frame filtering is enabled, the XMAC's RX FIFO operates
  1291. * in 'store and forward' mode. For this to work, the
  1292. * entire frame has to fit into the FIFO, but that means
  1293. * that jumbo frames larger than 8192 bytes will be
  1294. * truncated. Disabling all bad frame filtering causes
  1295. * the RX FIFO to operate in streaming mode, in which
  1296. * case the XMAC will start transferring frames out of the
  1297. * RX FIFO as soon as the FIFO threshold is reached.
  1298. */
  1299. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1300. /*
  1301. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1302. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1303. * and 'Octets Rx OK Hi Cnt Ov'.
  1304. */
  1305. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1306. /*
  1307. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1308. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1309. * and 'Octets Tx OK Hi Cnt Ov'.
  1310. */
  1311. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1312. /* Configure MAC arbiter */
  1313. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1314. /* configure timeout values */
  1315. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1316. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1317. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1318. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1319. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1320. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1321. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1322. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1323. /* Configure Rx MAC FIFO */
  1324. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1325. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1326. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1327. /* Configure Tx MAC FIFO */
  1328. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1329. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1330. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1331. if (jumbo) {
  1332. /* Enable frame flushing if jumbo frames used */
  1333. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1334. } else {
  1335. /* enable timeout timers if normal frames */
  1336. skge_write16(hw, B3_PA_CTRL,
  1337. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1338. }
  1339. }
  1340. static void genesis_stop(struct skge_port *skge)
  1341. {
  1342. struct skge_hw *hw = skge->hw;
  1343. int port = skge->port;
  1344. u32 reg;
  1345. genesis_reset(hw, port);
  1346. /* Clear Tx packet arbiter timeout IRQ */
  1347. skge_write16(hw, B3_PA_CTRL,
  1348. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1349. /*
  1350. * If the transfer sticks at the MAC the STOP command will not
  1351. * terminate if we don't flush the XMAC's transmit FIFO !
  1352. */
  1353. xm_write32(hw, port, XM_MODE,
  1354. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1355. /* Reset the MAC */
  1356. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1357. /* For external PHYs there must be special handling */
  1358. if (hw->phy_type != SK_PHY_XMAC) {
  1359. reg = skge_read32(hw, B2_GP_IO);
  1360. if (port == 0) {
  1361. reg |= GP_DIR_0;
  1362. reg &= ~GP_IO_0;
  1363. } else {
  1364. reg |= GP_DIR_2;
  1365. reg &= ~GP_IO_2;
  1366. }
  1367. skge_write32(hw, B2_GP_IO, reg);
  1368. skge_read32(hw, B2_GP_IO);
  1369. }
  1370. xm_write16(hw, port, XM_MMU_CMD,
  1371. xm_read16(hw, port, XM_MMU_CMD)
  1372. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1373. xm_read16(hw, port, XM_MMU_CMD);
  1374. }
  1375. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1376. {
  1377. struct skge_hw *hw = skge->hw;
  1378. int port = skge->port;
  1379. int i;
  1380. unsigned long timeout = jiffies + HZ;
  1381. xm_write16(hw, port,
  1382. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1383. /* wait for update to complete */
  1384. while (xm_read16(hw, port, XM_STAT_CMD)
  1385. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1386. if (time_after(jiffies, timeout))
  1387. break;
  1388. udelay(10);
  1389. }
  1390. /* special case for 64 bit octet counter */
  1391. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1392. | xm_read32(hw, port, XM_TXO_OK_LO);
  1393. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1394. | xm_read32(hw, port, XM_RXO_OK_LO);
  1395. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1396. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1397. }
  1398. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1399. {
  1400. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1401. u16 status = xm_read16(hw, port, XM_ISRC);
  1402. if (netif_msg_intr(skge))
  1403. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1404. skge->netdev->name, status);
  1405. if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
  1406. xm_link_down(hw, port);
  1407. mod_timer(&skge->link_timer, jiffies + 1);
  1408. }
  1409. if (status & XM_IS_TXF_UR) {
  1410. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1411. ++skge->net_stats.tx_fifo_errors;
  1412. }
  1413. if (status & XM_IS_RXF_OV) {
  1414. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1415. ++skge->net_stats.rx_fifo_errors;
  1416. }
  1417. }
  1418. static void genesis_link_up(struct skge_port *skge)
  1419. {
  1420. struct skge_hw *hw = skge->hw;
  1421. int port = skge->port;
  1422. u16 cmd, msk;
  1423. u32 mode;
  1424. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1425. /*
  1426. * enabling pause frame reception is required for 1000BT
  1427. * because the XMAC is not reset if the link is going down
  1428. */
  1429. if (skge->flow_status == FLOW_STAT_NONE ||
  1430. skge->flow_status == FLOW_STAT_LOC_SEND)
  1431. /* Disable Pause Frame Reception */
  1432. cmd |= XM_MMU_IGN_PF;
  1433. else
  1434. /* Enable Pause Frame Reception */
  1435. cmd &= ~XM_MMU_IGN_PF;
  1436. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1437. mode = xm_read32(hw, port, XM_MODE);
  1438. if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
  1439. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1440. /*
  1441. * Configure Pause Frame Generation
  1442. * Use internal and external Pause Frame Generation.
  1443. * Sending pause frames is edge triggered.
  1444. * Send a Pause frame with the maximum pause time if
  1445. * internal oder external FIFO full condition occurs.
  1446. * Send a zero pause time frame to re-start transmission.
  1447. */
  1448. /* XM_PAUSE_DA = '010000C28001' (default) */
  1449. /* XM_MAC_PTIME = 0xffff (maximum) */
  1450. /* remember this value is defined in big endian (!) */
  1451. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1452. mode |= XM_PAUSE_MODE;
  1453. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1454. } else {
  1455. /*
  1456. * disable pause frame generation is required for 1000BT
  1457. * because the XMAC is not reset if the link is going down
  1458. */
  1459. /* Disable Pause Mode in Mode Register */
  1460. mode &= ~XM_PAUSE_MODE;
  1461. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1462. }
  1463. xm_write32(hw, port, XM_MODE, mode);
  1464. /* Turn on detection of Tx underrun, Rx overrun */
  1465. msk = xm_read16(hw, port, XM_IMSK);
  1466. msk &= ~(XM_IS_RXF_OV | XM_IS_TXF_UR);
  1467. xm_write16(hw, port, XM_IMSK, msk);
  1468. xm_read16(hw, port, XM_ISRC);
  1469. /* get MMU Command Reg. */
  1470. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1471. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1472. cmd |= XM_MMU_GMII_FD;
  1473. /*
  1474. * Workaround BCOM Errata (#10523) for all BCom Phys
  1475. * Enable Power Management after link up
  1476. */
  1477. if (hw->phy_type == SK_PHY_BCOM) {
  1478. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1479. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1480. & ~PHY_B_AC_DIS_PM);
  1481. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1482. }
  1483. /* enable Rx/Tx */
  1484. xm_write16(hw, port, XM_MMU_CMD,
  1485. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1486. skge_link_up(skge);
  1487. }
  1488. static inline void bcom_phy_intr(struct skge_port *skge)
  1489. {
  1490. struct skge_hw *hw = skge->hw;
  1491. int port = skge->port;
  1492. u16 isrc;
  1493. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1494. if (netif_msg_intr(skge))
  1495. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1496. skge->netdev->name, isrc);
  1497. if (isrc & PHY_B_IS_PSE)
  1498. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1499. hw->dev[port]->name);
  1500. /* Workaround BCom Errata:
  1501. * enable and disable loopback mode if "NO HCD" occurs.
  1502. */
  1503. if (isrc & PHY_B_IS_NO_HDCL) {
  1504. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1505. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1506. ctrl | PHY_CT_LOOP);
  1507. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1508. ctrl & ~PHY_CT_LOOP);
  1509. }
  1510. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1511. bcom_check_link(hw, port);
  1512. }
  1513. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1514. {
  1515. int i;
  1516. gma_write16(hw, port, GM_SMI_DATA, val);
  1517. gma_write16(hw, port, GM_SMI_CTRL,
  1518. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1519. for (i = 0; i < PHY_RETRIES; i++) {
  1520. udelay(1);
  1521. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1522. return 0;
  1523. }
  1524. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1525. hw->dev[port]->name);
  1526. return -EIO;
  1527. }
  1528. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1529. {
  1530. int i;
  1531. gma_write16(hw, port, GM_SMI_CTRL,
  1532. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1533. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1534. for (i = 0; i < PHY_RETRIES; i++) {
  1535. udelay(1);
  1536. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1537. goto ready;
  1538. }
  1539. return -ETIMEDOUT;
  1540. ready:
  1541. *val = gma_read16(hw, port, GM_SMI_DATA);
  1542. return 0;
  1543. }
  1544. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1545. {
  1546. u16 v = 0;
  1547. if (__gm_phy_read(hw, port, reg, &v))
  1548. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1549. hw->dev[port]->name);
  1550. return v;
  1551. }
  1552. /* Marvell Phy Initialization */
  1553. static void yukon_init(struct skge_hw *hw, int port)
  1554. {
  1555. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1556. u16 ctrl, ct1000, adv;
  1557. if (skge->autoneg == AUTONEG_ENABLE) {
  1558. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1559. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1560. PHY_M_EC_MAC_S_MSK);
  1561. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1562. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1563. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1564. }
  1565. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1566. if (skge->autoneg == AUTONEG_DISABLE)
  1567. ctrl &= ~PHY_CT_ANE;
  1568. ctrl |= PHY_CT_RESET;
  1569. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1570. ctrl = 0;
  1571. ct1000 = 0;
  1572. adv = PHY_AN_CSMA;
  1573. if (skge->autoneg == AUTONEG_ENABLE) {
  1574. if (hw->copper) {
  1575. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1576. ct1000 |= PHY_M_1000C_AFD;
  1577. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1578. ct1000 |= PHY_M_1000C_AHD;
  1579. if (skge->advertising & ADVERTISED_100baseT_Full)
  1580. adv |= PHY_M_AN_100_FD;
  1581. if (skge->advertising & ADVERTISED_100baseT_Half)
  1582. adv |= PHY_M_AN_100_HD;
  1583. if (skge->advertising & ADVERTISED_10baseT_Full)
  1584. adv |= PHY_M_AN_10_FD;
  1585. if (skge->advertising & ADVERTISED_10baseT_Half)
  1586. adv |= PHY_M_AN_10_HD;
  1587. /* Set Flow-control capabilities */
  1588. adv |= phy_pause_map[skge->flow_control];
  1589. } else {
  1590. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1591. adv |= PHY_M_AN_1000X_AFD;
  1592. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1593. adv |= PHY_M_AN_1000X_AHD;
  1594. adv |= fiber_pause_map[skge->flow_control];
  1595. }
  1596. /* Restart Auto-negotiation */
  1597. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1598. } else {
  1599. /* forced speed/duplex settings */
  1600. ct1000 = PHY_M_1000C_MSE;
  1601. if (skge->duplex == DUPLEX_FULL)
  1602. ctrl |= PHY_CT_DUP_MD;
  1603. switch (skge->speed) {
  1604. case SPEED_1000:
  1605. ctrl |= PHY_CT_SP1000;
  1606. break;
  1607. case SPEED_100:
  1608. ctrl |= PHY_CT_SP100;
  1609. break;
  1610. }
  1611. ctrl |= PHY_CT_RESET;
  1612. }
  1613. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1614. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1615. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1616. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1617. if (skge->autoneg == AUTONEG_ENABLE)
  1618. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1619. else
  1620. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1621. }
  1622. static void yukon_reset(struct skge_hw *hw, int port)
  1623. {
  1624. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1625. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1626. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1627. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1628. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1629. gma_write16(hw, port, GM_RX_CTRL,
  1630. gma_read16(hw, port, GM_RX_CTRL)
  1631. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1632. }
  1633. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1634. static int is_yukon_lite_a0(struct skge_hw *hw)
  1635. {
  1636. u32 reg;
  1637. int ret;
  1638. if (hw->chip_id != CHIP_ID_YUKON)
  1639. return 0;
  1640. reg = skge_read32(hw, B2_FAR);
  1641. skge_write8(hw, B2_FAR + 3, 0xff);
  1642. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1643. skge_write32(hw, B2_FAR, reg);
  1644. return ret;
  1645. }
  1646. static void yukon_mac_init(struct skge_hw *hw, int port)
  1647. {
  1648. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1649. int i;
  1650. u32 reg;
  1651. const u8 *addr = hw->dev[port]->dev_addr;
  1652. /* WA code for COMA mode -- set PHY reset */
  1653. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1654. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1655. reg = skge_read32(hw, B2_GP_IO);
  1656. reg |= GP_DIR_9 | GP_IO_9;
  1657. skge_write32(hw, B2_GP_IO, reg);
  1658. }
  1659. /* hard reset */
  1660. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1661. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1662. /* WA code for COMA mode -- clear PHY reset */
  1663. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1664. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1665. reg = skge_read32(hw, B2_GP_IO);
  1666. reg |= GP_DIR_9;
  1667. reg &= ~GP_IO_9;
  1668. skge_write32(hw, B2_GP_IO, reg);
  1669. }
  1670. /* Set hardware config mode */
  1671. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1672. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1673. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1674. /* Clear GMC reset */
  1675. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1676. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1677. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1678. if (skge->autoneg == AUTONEG_DISABLE) {
  1679. reg = GM_GPCR_AU_ALL_DIS;
  1680. gma_write16(hw, port, GM_GP_CTRL,
  1681. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1682. switch (skge->speed) {
  1683. case SPEED_1000:
  1684. reg &= ~GM_GPCR_SPEED_100;
  1685. reg |= GM_GPCR_SPEED_1000;
  1686. break;
  1687. case SPEED_100:
  1688. reg &= ~GM_GPCR_SPEED_1000;
  1689. reg |= GM_GPCR_SPEED_100;
  1690. break;
  1691. case SPEED_10:
  1692. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1693. break;
  1694. }
  1695. if (skge->duplex == DUPLEX_FULL)
  1696. reg |= GM_GPCR_DUP_FULL;
  1697. } else
  1698. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1699. switch (skge->flow_control) {
  1700. case FLOW_MODE_NONE:
  1701. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1702. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1703. break;
  1704. case FLOW_MODE_LOC_SEND:
  1705. /* disable Rx flow-control */
  1706. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1707. break;
  1708. case FLOW_MODE_SYMMETRIC:
  1709. case FLOW_MODE_SYM_OR_REM:
  1710. /* enable Tx & Rx flow-control */
  1711. break;
  1712. }
  1713. gma_write16(hw, port, GM_GP_CTRL, reg);
  1714. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1715. yukon_init(hw, port);
  1716. /* MIB clear */
  1717. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1718. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1719. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1720. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1721. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1722. /* transmit control */
  1723. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1724. /* receive control reg: unicast + multicast + no FCS */
  1725. gma_write16(hw, port, GM_RX_CTRL,
  1726. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1727. /* transmit flow control */
  1728. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1729. /* transmit parameter */
  1730. gma_write16(hw, port, GM_TX_PARAM,
  1731. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1732. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1733. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1734. /* serial mode register */
  1735. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1736. if (hw->dev[port]->mtu > 1500)
  1737. reg |= GM_SMOD_JUMBO_ENA;
  1738. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1739. /* physical address: used for pause frames */
  1740. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1741. /* virtual address for data */
  1742. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1743. /* enable interrupt mask for counter overflows */
  1744. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1745. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1746. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1747. /* Initialize Mac Fifo */
  1748. /* Configure Rx MAC FIFO */
  1749. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1750. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1751. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1752. if (is_yukon_lite_a0(hw))
  1753. reg &= ~GMF_RX_F_FL_ON;
  1754. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1755. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1756. /*
  1757. * because Pause Packet Truncation in GMAC is not working
  1758. * we have to increase the Flush Threshold to 64 bytes
  1759. * in order to flush pause packets in Rx FIFO on Yukon-1
  1760. */
  1761. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1762. /* Configure Tx MAC FIFO */
  1763. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1764. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1765. }
  1766. /* Go into power down mode */
  1767. static void yukon_suspend(struct skge_hw *hw, int port)
  1768. {
  1769. u16 ctrl;
  1770. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1771. ctrl |= PHY_M_PC_POL_R_DIS;
  1772. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1773. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1774. ctrl |= PHY_CT_RESET;
  1775. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1776. /* switch IEEE compatible power down mode on */
  1777. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1778. ctrl |= PHY_CT_PDOWN;
  1779. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1780. }
  1781. static void yukon_stop(struct skge_port *skge)
  1782. {
  1783. struct skge_hw *hw = skge->hw;
  1784. int port = skge->port;
  1785. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1786. yukon_reset(hw, port);
  1787. gma_write16(hw, port, GM_GP_CTRL,
  1788. gma_read16(hw, port, GM_GP_CTRL)
  1789. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1790. gma_read16(hw, port, GM_GP_CTRL);
  1791. yukon_suspend(hw, port);
  1792. /* set GPHY Control reset */
  1793. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1794. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1795. }
  1796. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1797. {
  1798. struct skge_hw *hw = skge->hw;
  1799. int port = skge->port;
  1800. int i;
  1801. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1802. | gma_read32(hw, port, GM_TXO_OK_LO);
  1803. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1804. | gma_read32(hw, port, GM_RXO_OK_LO);
  1805. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1806. data[i] = gma_read32(hw, port,
  1807. skge_stats[i].gma_offset);
  1808. }
  1809. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1810. {
  1811. struct net_device *dev = hw->dev[port];
  1812. struct skge_port *skge = netdev_priv(dev);
  1813. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1814. if (netif_msg_intr(skge))
  1815. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1816. dev->name, status);
  1817. if (status & GM_IS_RX_FF_OR) {
  1818. ++skge->net_stats.rx_fifo_errors;
  1819. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1820. }
  1821. if (status & GM_IS_TX_FF_UR) {
  1822. ++skge->net_stats.tx_fifo_errors;
  1823. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1824. }
  1825. }
  1826. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1827. {
  1828. switch (aux & PHY_M_PS_SPEED_MSK) {
  1829. case PHY_M_PS_SPEED_1000:
  1830. return SPEED_1000;
  1831. case PHY_M_PS_SPEED_100:
  1832. return SPEED_100;
  1833. default:
  1834. return SPEED_10;
  1835. }
  1836. }
  1837. static void yukon_link_up(struct skge_port *skge)
  1838. {
  1839. struct skge_hw *hw = skge->hw;
  1840. int port = skge->port;
  1841. u16 reg;
  1842. /* Enable Transmit FIFO Underrun */
  1843. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1844. reg = gma_read16(hw, port, GM_GP_CTRL);
  1845. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1846. reg |= GM_GPCR_DUP_FULL;
  1847. /* enable Rx/Tx */
  1848. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1849. gma_write16(hw, port, GM_GP_CTRL, reg);
  1850. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1851. skge_link_up(skge);
  1852. }
  1853. static void yukon_link_down(struct skge_port *skge)
  1854. {
  1855. struct skge_hw *hw = skge->hw;
  1856. int port = skge->port;
  1857. u16 ctrl;
  1858. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1859. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1860. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1861. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1862. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1863. ctrl |= PHY_M_AN_ASP;
  1864. /* restore Asymmetric Pause bit */
  1865. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1866. }
  1867. skge_link_down(skge);
  1868. yukon_init(hw, port);
  1869. }
  1870. static void yukon_phy_intr(struct skge_port *skge)
  1871. {
  1872. struct skge_hw *hw = skge->hw;
  1873. int port = skge->port;
  1874. const char *reason = NULL;
  1875. u16 istatus, phystat;
  1876. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1877. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1878. if (netif_msg_intr(skge))
  1879. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1880. skge->netdev->name, istatus, phystat);
  1881. if (istatus & PHY_M_IS_AN_COMPL) {
  1882. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1883. & PHY_M_AN_RF) {
  1884. reason = "remote fault";
  1885. goto failed;
  1886. }
  1887. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1888. reason = "master/slave fault";
  1889. goto failed;
  1890. }
  1891. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1892. reason = "speed/duplex";
  1893. goto failed;
  1894. }
  1895. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1896. ? DUPLEX_FULL : DUPLEX_HALF;
  1897. skge->speed = yukon_speed(hw, phystat);
  1898. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1899. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1900. case PHY_M_PS_PAUSE_MSK:
  1901. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1902. break;
  1903. case PHY_M_PS_RX_P_EN:
  1904. skge->flow_status = FLOW_STAT_REM_SEND;
  1905. break;
  1906. case PHY_M_PS_TX_P_EN:
  1907. skge->flow_status = FLOW_STAT_LOC_SEND;
  1908. break;
  1909. default:
  1910. skge->flow_status = FLOW_STAT_NONE;
  1911. }
  1912. if (skge->flow_status == FLOW_STAT_NONE ||
  1913. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1914. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1915. else
  1916. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1917. yukon_link_up(skge);
  1918. return;
  1919. }
  1920. if (istatus & PHY_M_IS_LSP_CHANGE)
  1921. skge->speed = yukon_speed(hw, phystat);
  1922. if (istatus & PHY_M_IS_DUP_CHANGE)
  1923. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1924. if (istatus & PHY_M_IS_LST_CHANGE) {
  1925. if (phystat & PHY_M_PS_LINK_UP)
  1926. yukon_link_up(skge);
  1927. else
  1928. yukon_link_down(skge);
  1929. }
  1930. return;
  1931. failed:
  1932. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1933. skge->netdev->name, reason);
  1934. /* XXX restart autonegotiation? */
  1935. }
  1936. static void skge_phy_reset(struct skge_port *skge)
  1937. {
  1938. struct skge_hw *hw = skge->hw;
  1939. int port = skge->port;
  1940. struct net_device *dev = hw->dev[port];
  1941. netif_stop_queue(skge->netdev);
  1942. netif_carrier_off(skge->netdev);
  1943. spin_lock_bh(&hw->phy_lock);
  1944. if (hw->chip_id == CHIP_ID_GENESIS) {
  1945. genesis_reset(hw, port);
  1946. genesis_mac_init(hw, port);
  1947. } else {
  1948. yukon_reset(hw, port);
  1949. yukon_init(hw, port);
  1950. }
  1951. spin_unlock_bh(&hw->phy_lock);
  1952. dev->set_multicast_list(dev);
  1953. }
  1954. /* Basic MII support */
  1955. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  1956. {
  1957. struct mii_ioctl_data *data = if_mii(ifr);
  1958. struct skge_port *skge = netdev_priv(dev);
  1959. struct skge_hw *hw = skge->hw;
  1960. int err = -EOPNOTSUPP;
  1961. if (!netif_running(dev))
  1962. return -ENODEV; /* Phy still in reset */
  1963. switch(cmd) {
  1964. case SIOCGMIIPHY:
  1965. data->phy_id = hw->phy_addr;
  1966. /* fallthru */
  1967. case SIOCGMIIREG: {
  1968. u16 val = 0;
  1969. spin_lock_bh(&hw->phy_lock);
  1970. if (hw->chip_id == CHIP_ID_GENESIS)
  1971. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1972. else
  1973. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1974. spin_unlock_bh(&hw->phy_lock);
  1975. data->val_out = val;
  1976. break;
  1977. }
  1978. case SIOCSMIIREG:
  1979. if (!capable(CAP_NET_ADMIN))
  1980. return -EPERM;
  1981. spin_lock_bh(&hw->phy_lock);
  1982. if (hw->chip_id == CHIP_ID_GENESIS)
  1983. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1984. data->val_in);
  1985. else
  1986. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1987. data->val_in);
  1988. spin_unlock_bh(&hw->phy_lock);
  1989. break;
  1990. }
  1991. return err;
  1992. }
  1993. /* Assign Ram Buffer allocation to queue */
  1994. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, u32 space)
  1995. {
  1996. u32 end;
  1997. /* convert from K bytes to qwords used for hw register */
  1998. start *= 1024/8;
  1999. space *= 1024/8;
  2000. end = start + space - 1;
  2001. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  2002. skge_write32(hw, RB_ADDR(q, RB_START), start);
  2003. skge_write32(hw, RB_ADDR(q, RB_END), end);
  2004. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  2005. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  2006. if (q == Q_R1 || q == Q_R2) {
  2007. u32 tp = space - space/4;
  2008. /* Set thresholds on receive queue's */
  2009. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
  2010. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
  2011. } else if (hw->chip_id != CHIP_ID_GENESIS)
  2012. /* Genesis Tx Fifo is too small for normal store/forward */
  2013. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  2014. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  2015. }
  2016. /* Setup Bus Memory Interface */
  2017. static void skge_qset(struct skge_port *skge, u16 q,
  2018. const struct skge_element *e)
  2019. {
  2020. struct skge_hw *hw = skge->hw;
  2021. u32 watermark = 0x600;
  2022. u64 base = skge->dma + (e->desc - skge->mem);
  2023. /* optimization to reduce window on 32bit/33mhz */
  2024. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2025. watermark /= 2;
  2026. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2027. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2028. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2029. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2030. }
  2031. static int skge_up(struct net_device *dev)
  2032. {
  2033. struct skge_port *skge = netdev_priv(dev);
  2034. struct skge_hw *hw = skge->hw;
  2035. int port = skge->port;
  2036. u32 ramaddr, ramsize, rxspace;
  2037. size_t rx_size, tx_size;
  2038. int err;
  2039. if (!is_valid_ether_addr(dev->dev_addr))
  2040. return -EINVAL;
  2041. if (netif_msg_ifup(skge))
  2042. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  2043. if (dev->mtu > RX_BUF_SIZE)
  2044. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2045. else
  2046. skge->rx_buf_size = RX_BUF_SIZE;
  2047. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2048. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2049. skge->mem_size = tx_size + rx_size;
  2050. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2051. if (!skge->mem)
  2052. return -ENOMEM;
  2053. BUG_ON(skge->dma & 7);
  2054. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2055. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2056. err = -EINVAL;
  2057. goto free_pci_mem;
  2058. }
  2059. memset(skge->mem, 0, skge->mem_size);
  2060. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2061. if (err)
  2062. goto free_pci_mem;
  2063. err = skge_rx_fill(dev);
  2064. if (err)
  2065. goto free_rx_ring;
  2066. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2067. skge->dma + rx_size);
  2068. if (err)
  2069. goto free_rx_ring;
  2070. /* Initialize MAC */
  2071. spin_lock_bh(&hw->phy_lock);
  2072. if (hw->chip_id == CHIP_ID_GENESIS)
  2073. genesis_mac_init(hw, port);
  2074. else
  2075. yukon_mac_init(hw, port);
  2076. spin_unlock_bh(&hw->phy_lock);
  2077. /* Configure RAMbuffers */
  2078. ramsize = (hw->ram_size - hw->ram_offset) / hw->ports;
  2079. ramaddr = hw->ram_offset + port * ramsize;
  2080. rxspace = 8 + (2*(ramsize - 16))/3;
  2081. skge_ramset(hw, rxqaddr[port], ramaddr, rxspace);
  2082. skge_ramset(hw, txqaddr[port], ramaddr + rxspace, ramsize - rxspace);
  2083. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2084. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2085. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2086. /* Start receiver BMU */
  2087. wmb();
  2088. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2089. skge_led(skge, LED_MODE_ON);
  2090. spin_lock_irq(&hw->hw_lock);
  2091. hw->intr_mask |= portmask[port];
  2092. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2093. spin_unlock_irq(&hw->hw_lock);
  2094. napi_enable(&skge->napi);
  2095. return 0;
  2096. free_rx_ring:
  2097. skge_rx_clean(skge);
  2098. kfree(skge->rx_ring.start);
  2099. free_pci_mem:
  2100. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2101. skge->mem = NULL;
  2102. return err;
  2103. }
  2104. /* stop receiver */
  2105. static void skge_rx_stop(struct skge_hw *hw, int port)
  2106. {
  2107. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2108. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2109. RB_RST_SET|RB_DIS_OP_MD);
  2110. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2111. }
  2112. static int skge_down(struct net_device *dev)
  2113. {
  2114. struct skge_port *skge = netdev_priv(dev);
  2115. struct skge_hw *hw = skge->hw;
  2116. int port = skge->port;
  2117. if (skge->mem == NULL)
  2118. return 0;
  2119. if (netif_msg_ifdown(skge))
  2120. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  2121. netif_stop_queue(dev);
  2122. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2123. del_timer_sync(&skge->link_timer);
  2124. napi_disable(&skge->napi);
  2125. netif_carrier_off(dev);
  2126. spin_lock_irq(&hw->hw_lock);
  2127. hw->intr_mask &= ~portmask[port];
  2128. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2129. spin_unlock_irq(&hw->hw_lock);
  2130. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2131. if (hw->chip_id == CHIP_ID_GENESIS)
  2132. genesis_stop(skge);
  2133. else
  2134. yukon_stop(skge);
  2135. /* Stop transmitter */
  2136. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2137. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2138. RB_RST_SET|RB_DIS_OP_MD);
  2139. /* Disable Force Sync bit and Enable Alloc bit */
  2140. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2141. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2142. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2143. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2144. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2145. /* Reset PCI FIFO */
  2146. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2147. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2148. /* Reset the RAM Buffer async Tx queue */
  2149. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2150. skge_rx_stop(hw, port);
  2151. if (hw->chip_id == CHIP_ID_GENESIS) {
  2152. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2153. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2154. } else {
  2155. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2156. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2157. }
  2158. skge_led(skge, LED_MODE_OFF);
  2159. netif_tx_lock_bh(dev);
  2160. skge_tx_clean(dev);
  2161. netif_tx_unlock_bh(dev);
  2162. skge_rx_clean(skge);
  2163. kfree(skge->rx_ring.start);
  2164. kfree(skge->tx_ring.start);
  2165. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2166. skge->mem = NULL;
  2167. return 0;
  2168. }
  2169. static inline int skge_avail(const struct skge_ring *ring)
  2170. {
  2171. smp_mb();
  2172. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2173. + (ring->to_clean - ring->to_use) - 1;
  2174. }
  2175. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  2176. {
  2177. struct skge_port *skge = netdev_priv(dev);
  2178. struct skge_hw *hw = skge->hw;
  2179. struct skge_element *e;
  2180. struct skge_tx_desc *td;
  2181. int i;
  2182. u32 control, len;
  2183. u64 map;
  2184. if (skb_padto(skb, ETH_ZLEN))
  2185. return NETDEV_TX_OK;
  2186. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2187. return NETDEV_TX_BUSY;
  2188. e = skge->tx_ring.to_use;
  2189. td = e->desc;
  2190. BUG_ON(td->control & BMU_OWN);
  2191. e->skb = skb;
  2192. len = skb_headlen(skb);
  2193. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2194. pci_unmap_addr_set(e, mapaddr, map);
  2195. pci_unmap_len_set(e, maplen, len);
  2196. td->dma_lo = map;
  2197. td->dma_hi = map >> 32;
  2198. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2199. const int offset = skb_transport_offset(skb);
  2200. /* This seems backwards, but it is what the sk98lin
  2201. * does. Looks like hardware is wrong?
  2202. */
  2203. if (ipip_hdr(skb)->protocol == IPPROTO_UDP
  2204. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2205. control = BMU_TCP_CHECK;
  2206. else
  2207. control = BMU_UDP_CHECK;
  2208. td->csum_offs = 0;
  2209. td->csum_start = offset;
  2210. td->csum_write = offset + skb->csum_offset;
  2211. } else
  2212. control = BMU_CHECK;
  2213. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2214. control |= BMU_EOF| BMU_IRQ_EOF;
  2215. else {
  2216. struct skge_tx_desc *tf = td;
  2217. control |= BMU_STFWD;
  2218. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2219. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2220. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2221. frag->size, PCI_DMA_TODEVICE);
  2222. e = e->next;
  2223. e->skb = skb;
  2224. tf = e->desc;
  2225. BUG_ON(tf->control & BMU_OWN);
  2226. tf->dma_lo = map;
  2227. tf->dma_hi = (u64) map >> 32;
  2228. pci_unmap_addr_set(e, mapaddr, map);
  2229. pci_unmap_len_set(e, maplen, frag->size);
  2230. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2231. }
  2232. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2233. }
  2234. /* Make sure all the descriptors written */
  2235. wmb();
  2236. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2237. wmb();
  2238. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2239. if (unlikely(netif_msg_tx_queued(skge)))
  2240. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  2241. dev->name, e - skge->tx_ring.start, skb->len);
  2242. skge->tx_ring.to_use = e->next;
  2243. smp_wmb();
  2244. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2245. pr_debug("%s: transmit queue full\n", dev->name);
  2246. netif_stop_queue(dev);
  2247. }
  2248. dev->trans_start = jiffies;
  2249. return NETDEV_TX_OK;
  2250. }
  2251. /* Free resources associated with this reing element */
  2252. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2253. u32 control)
  2254. {
  2255. struct pci_dev *pdev = skge->hw->pdev;
  2256. /* skb header vs. fragment */
  2257. if (control & BMU_STF)
  2258. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  2259. pci_unmap_len(e, maplen),
  2260. PCI_DMA_TODEVICE);
  2261. else
  2262. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  2263. pci_unmap_len(e, maplen),
  2264. PCI_DMA_TODEVICE);
  2265. if (control & BMU_EOF) {
  2266. if (unlikely(netif_msg_tx_done(skge)))
  2267. printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
  2268. skge->netdev->name, e - skge->tx_ring.start);
  2269. dev_kfree_skb(e->skb);
  2270. }
  2271. }
  2272. /* Free all buffers in transmit ring */
  2273. static void skge_tx_clean(struct net_device *dev)
  2274. {
  2275. struct skge_port *skge = netdev_priv(dev);
  2276. struct skge_element *e;
  2277. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2278. struct skge_tx_desc *td = e->desc;
  2279. skge_tx_free(skge, e, td->control);
  2280. td->control = 0;
  2281. }
  2282. skge->tx_ring.to_clean = e;
  2283. netif_wake_queue(dev);
  2284. }
  2285. static void skge_tx_timeout(struct net_device *dev)
  2286. {
  2287. struct skge_port *skge = netdev_priv(dev);
  2288. if (netif_msg_timer(skge))
  2289. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2290. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2291. skge_tx_clean(dev);
  2292. }
  2293. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2294. {
  2295. struct skge_port *skge = netdev_priv(dev);
  2296. struct skge_hw *hw = skge->hw;
  2297. int port = skge->port;
  2298. int err;
  2299. u16 ctl, reg;
  2300. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2301. return -EINVAL;
  2302. if (!netif_running(dev)) {
  2303. dev->mtu = new_mtu;
  2304. return 0;
  2305. }
  2306. skge_write32(hw, B0_IMSK, 0);
  2307. dev->trans_start = jiffies; /* prevent tx timeout */
  2308. netif_stop_queue(dev);
  2309. napi_disable(&skge->napi);
  2310. ctl = gma_read16(hw, port, GM_GP_CTRL);
  2311. gma_write16(hw, port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
  2312. skge_rx_clean(skge);
  2313. skge_rx_stop(hw, port);
  2314. dev->mtu = new_mtu;
  2315. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  2316. if (new_mtu > 1500)
  2317. reg |= GM_SMOD_JUMBO_ENA;
  2318. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  2319. skge_write8(hw, RB_ADDR(rxqaddr[port], RB_CTRL), RB_ENA_OP_MD);
  2320. err = skge_rx_fill(dev);
  2321. wmb();
  2322. if (!err)
  2323. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2324. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2325. if (err)
  2326. dev_close(dev);
  2327. else {
  2328. gma_write16(hw, port, GM_GP_CTRL, ctl);
  2329. napi_enable(&skge->napi);
  2330. netif_wake_queue(dev);
  2331. }
  2332. return err;
  2333. }
  2334. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2335. static void genesis_add_filter(u8 filter[8], const u8 *addr)
  2336. {
  2337. u32 crc, bit;
  2338. crc = ether_crc_le(ETH_ALEN, addr);
  2339. bit = ~crc & 0x3f;
  2340. filter[bit/8] |= 1 << (bit%8);
  2341. }
  2342. static void genesis_set_multicast(struct net_device *dev)
  2343. {
  2344. struct skge_port *skge = netdev_priv(dev);
  2345. struct skge_hw *hw = skge->hw;
  2346. int port = skge->port;
  2347. int i, count = dev->mc_count;
  2348. struct dev_mc_list *list = dev->mc_list;
  2349. u32 mode;
  2350. u8 filter[8];
  2351. mode = xm_read32(hw, port, XM_MODE);
  2352. mode |= XM_MD_ENA_HASH;
  2353. if (dev->flags & IFF_PROMISC)
  2354. mode |= XM_MD_ENA_PROM;
  2355. else
  2356. mode &= ~XM_MD_ENA_PROM;
  2357. if (dev->flags & IFF_ALLMULTI)
  2358. memset(filter, 0xff, sizeof(filter));
  2359. else {
  2360. memset(filter, 0, sizeof(filter));
  2361. if (skge->flow_status == FLOW_STAT_REM_SEND
  2362. || skge->flow_status == FLOW_STAT_SYMMETRIC)
  2363. genesis_add_filter(filter, pause_mc_addr);
  2364. for (i = 0; list && i < count; i++, list = list->next)
  2365. genesis_add_filter(filter, list->dmi_addr);
  2366. }
  2367. xm_write32(hw, port, XM_MODE, mode);
  2368. xm_outhash(hw, port, XM_HSM, filter);
  2369. }
  2370. static void yukon_add_filter(u8 filter[8], const u8 *addr)
  2371. {
  2372. u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
  2373. filter[bit/8] |= 1 << (bit%8);
  2374. }
  2375. static void yukon_set_multicast(struct net_device *dev)
  2376. {
  2377. struct skge_port *skge = netdev_priv(dev);
  2378. struct skge_hw *hw = skge->hw;
  2379. int port = skge->port;
  2380. struct dev_mc_list *list = dev->mc_list;
  2381. int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
  2382. || skge->flow_status == FLOW_STAT_SYMMETRIC);
  2383. u16 reg;
  2384. u8 filter[8];
  2385. memset(filter, 0, sizeof(filter));
  2386. reg = gma_read16(hw, port, GM_RX_CTRL);
  2387. reg |= GM_RXCR_UCF_ENA;
  2388. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2389. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2390. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2391. memset(filter, 0xff, sizeof(filter));
  2392. else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
  2393. reg &= ~GM_RXCR_MCF_ENA;
  2394. else {
  2395. int i;
  2396. reg |= GM_RXCR_MCF_ENA;
  2397. if (rx_pause)
  2398. yukon_add_filter(filter, pause_mc_addr);
  2399. for (i = 0; list && i < dev->mc_count; i++, list = list->next)
  2400. yukon_add_filter(filter, list->dmi_addr);
  2401. }
  2402. gma_write16(hw, port, GM_MC_ADDR_H1,
  2403. (u16)filter[0] | ((u16)filter[1] << 8));
  2404. gma_write16(hw, port, GM_MC_ADDR_H2,
  2405. (u16)filter[2] | ((u16)filter[3] << 8));
  2406. gma_write16(hw, port, GM_MC_ADDR_H3,
  2407. (u16)filter[4] | ((u16)filter[5] << 8));
  2408. gma_write16(hw, port, GM_MC_ADDR_H4,
  2409. (u16)filter[6] | ((u16)filter[7] << 8));
  2410. gma_write16(hw, port, GM_RX_CTRL, reg);
  2411. }
  2412. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2413. {
  2414. if (hw->chip_id == CHIP_ID_GENESIS)
  2415. return status >> XMR_FS_LEN_SHIFT;
  2416. else
  2417. return status >> GMR_FS_LEN_SHIFT;
  2418. }
  2419. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2420. {
  2421. if (hw->chip_id == CHIP_ID_GENESIS)
  2422. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2423. else
  2424. return (status & GMR_FS_ANY_ERR) ||
  2425. (status & GMR_FS_RX_OK) == 0;
  2426. }
  2427. /* Get receive buffer from descriptor.
  2428. * Handles copy of small buffers and reallocation failures
  2429. */
  2430. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2431. struct skge_element *e,
  2432. u32 control, u32 status, u16 csum)
  2433. {
  2434. struct skge_port *skge = netdev_priv(dev);
  2435. struct sk_buff *skb;
  2436. u16 len = control & BMU_BBC;
  2437. if (unlikely(netif_msg_rx_status(skge)))
  2438. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2439. dev->name, e - skge->rx_ring.start,
  2440. status, len);
  2441. if (len > skge->rx_buf_size)
  2442. goto error;
  2443. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2444. goto error;
  2445. if (bad_phy_status(skge->hw, status))
  2446. goto error;
  2447. if (phy_length(skge->hw, status) != len)
  2448. goto error;
  2449. if (len < RX_COPY_THRESHOLD) {
  2450. skb = netdev_alloc_skb(dev, len + 2);
  2451. if (!skb)
  2452. goto resubmit;
  2453. skb_reserve(skb, 2);
  2454. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2455. pci_unmap_addr(e, mapaddr),
  2456. len, PCI_DMA_FROMDEVICE);
  2457. skb_copy_from_linear_data(e->skb, skb->data, len);
  2458. pci_dma_sync_single_for_device(skge->hw->pdev,
  2459. pci_unmap_addr(e, mapaddr),
  2460. len, PCI_DMA_FROMDEVICE);
  2461. skge_rx_reuse(e, skge->rx_buf_size);
  2462. } else {
  2463. struct sk_buff *nskb;
  2464. nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
  2465. if (!nskb)
  2466. goto resubmit;
  2467. skb_reserve(nskb, NET_IP_ALIGN);
  2468. pci_unmap_single(skge->hw->pdev,
  2469. pci_unmap_addr(e, mapaddr),
  2470. pci_unmap_len(e, maplen),
  2471. PCI_DMA_FROMDEVICE);
  2472. skb = e->skb;
  2473. prefetch(skb->data);
  2474. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2475. }
  2476. skb_put(skb, len);
  2477. if (skge->rx_csum) {
  2478. skb->csum = csum;
  2479. skb->ip_summed = CHECKSUM_COMPLETE;
  2480. }
  2481. skb->protocol = eth_type_trans(skb, dev);
  2482. return skb;
  2483. error:
  2484. if (netif_msg_rx_err(skge))
  2485. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2486. dev->name, e - skge->rx_ring.start,
  2487. control, status);
  2488. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2489. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2490. skge->net_stats.rx_length_errors++;
  2491. if (status & XMR_FS_FRA_ERR)
  2492. skge->net_stats.rx_frame_errors++;
  2493. if (status & XMR_FS_FCS_ERR)
  2494. skge->net_stats.rx_crc_errors++;
  2495. } else {
  2496. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2497. skge->net_stats.rx_length_errors++;
  2498. if (status & GMR_FS_FRAGMENT)
  2499. skge->net_stats.rx_frame_errors++;
  2500. if (status & GMR_FS_CRC_ERR)
  2501. skge->net_stats.rx_crc_errors++;
  2502. }
  2503. resubmit:
  2504. skge_rx_reuse(e, skge->rx_buf_size);
  2505. return NULL;
  2506. }
  2507. /* Free all buffers in Tx ring which are no longer owned by device */
  2508. static void skge_tx_done(struct net_device *dev)
  2509. {
  2510. struct skge_port *skge = netdev_priv(dev);
  2511. struct skge_ring *ring = &skge->tx_ring;
  2512. struct skge_element *e;
  2513. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2514. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2515. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  2516. if (control & BMU_OWN)
  2517. break;
  2518. skge_tx_free(skge, e, control);
  2519. }
  2520. skge->tx_ring.to_clean = e;
  2521. /* Can run lockless until we need to synchronize to restart queue. */
  2522. smp_mb();
  2523. if (unlikely(netif_queue_stopped(dev) &&
  2524. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2525. netif_tx_lock(dev);
  2526. if (unlikely(netif_queue_stopped(dev) &&
  2527. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2528. netif_wake_queue(dev);
  2529. }
  2530. netif_tx_unlock(dev);
  2531. }
  2532. }
  2533. static int skge_poll(struct napi_struct *napi, int to_do)
  2534. {
  2535. struct skge_port *skge = container_of(napi, struct skge_port, napi);
  2536. struct net_device *dev = skge->netdev;
  2537. struct skge_hw *hw = skge->hw;
  2538. struct skge_ring *ring = &skge->rx_ring;
  2539. struct skge_element *e;
  2540. int work_done = 0;
  2541. skge_tx_done(dev);
  2542. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2543. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2544. struct skge_rx_desc *rd = e->desc;
  2545. struct sk_buff *skb;
  2546. u32 control;
  2547. rmb();
  2548. control = rd->control;
  2549. if (control & BMU_OWN)
  2550. break;
  2551. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2552. if (likely(skb)) {
  2553. dev->last_rx = jiffies;
  2554. netif_receive_skb(skb);
  2555. ++work_done;
  2556. }
  2557. }
  2558. ring->to_clean = e;
  2559. /* restart receiver */
  2560. wmb();
  2561. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2562. if (work_done < to_do) {
  2563. spin_lock_irq(&hw->hw_lock);
  2564. __netif_rx_complete(dev, napi);
  2565. hw->intr_mask |= napimask[skge->port];
  2566. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2567. skge_read32(hw, B0_IMSK);
  2568. spin_unlock_irq(&hw->hw_lock);
  2569. }
  2570. return work_done;
  2571. }
  2572. /* Parity errors seem to happen when Genesis is connected to a switch
  2573. * with no other ports present. Heartbeat error??
  2574. */
  2575. static void skge_mac_parity(struct skge_hw *hw, int port)
  2576. {
  2577. struct net_device *dev = hw->dev[port];
  2578. if (dev) {
  2579. struct skge_port *skge = netdev_priv(dev);
  2580. ++skge->net_stats.tx_heartbeat_errors;
  2581. }
  2582. if (hw->chip_id == CHIP_ID_GENESIS)
  2583. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2584. MFF_CLR_PERR);
  2585. else
  2586. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2587. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2588. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2589. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2590. }
  2591. static void skge_mac_intr(struct skge_hw *hw, int port)
  2592. {
  2593. if (hw->chip_id == CHIP_ID_GENESIS)
  2594. genesis_mac_intr(hw, port);
  2595. else
  2596. yukon_mac_intr(hw, port);
  2597. }
  2598. /* Handle device specific framing and timeout interrupts */
  2599. static void skge_error_irq(struct skge_hw *hw)
  2600. {
  2601. struct pci_dev *pdev = hw->pdev;
  2602. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2603. if (hw->chip_id == CHIP_ID_GENESIS) {
  2604. /* clear xmac errors */
  2605. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2606. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2607. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2608. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2609. } else {
  2610. /* Timestamp (unused) overflow */
  2611. if (hwstatus & IS_IRQ_TIST_OV)
  2612. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2613. }
  2614. if (hwstatus & IS_RAM_RD_PAR) {
  2615. dev_err(&pdev->dev, "Ram read data parity error\n");
  2616. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2617. }
  2618. if (hwstatus & IS_RAM_WR_PAR) {
  2619. dev_err(&pdev->dev, "Ram write data parity error\n");
  2620. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2621. }
  2622. if (hwstatus & IS_M1_PAR_ERR)
  2623. skge_mac_parity(hw, 0);
  2624. if (hwstatus & IS_M2_PAR_ERR)
  2625. skge_mac_parity(hw, 1);
  2626. if (hwstatus & IS_R1_PAR_ERR) {
  2627. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2628. hw->dev[0]->name);
  2629. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2630. }
  2631. if (hwstatus & IS_R2_PAR_ERR) {
  2632. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2633. hw->dev[1]->name);
  2634. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2635. }
  2636. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2637. u16 pci_status, pci_cmd;
  2638. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2639. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2640. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2641. pci_cmd, pci_status);
  2642. /* Write the error bits back to clear them. */
  2643. pci_status &= PCI_STATUS_ERROR_BITS;
  2644. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2645. pci_write_config_word(pdev, PCI_COMMAND,
  2646. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2647. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2648. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2649. /* if error still set then just ignore it */
  2650. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2651. if (hwstatus & IS_IRQ_STAT) {
  2652. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2653. hw->intr_mask &= ~IS_HW_ERR;
  2654. }
  2655. }
  2656. }
  2657. /*
  2658. * Interrupt from PHY are handled in tasklet (softirq)
  2659. * because accessing phy registers requires spin wait which might
  2660. * cause excess interrupt latency.
  2661. */
  2662. static void skge_extirq(unsigned long arg)
  2663. {
  2664. struct skge_hw *hw = (struct skge_hw *) arg;
  2665. int port;
  2666. for (port = 0; port < hw->ports; port++) {
  2667. struct net_device *dev = hw->dev[port];
  2668. if (netif_running(dev)) {
  2669. struct skge_port *skge = netdev_priv(dev);
  2670. spin_lock(&hw->phy_lock);
  2671. if (hw->chip_id != CHIP_ID_GENESIS)
  2672. yukon_phy_intr(skge);
  2673. else if (hw->phy_type == SK_PHY_BCOM)
  2674. bcom_phy_intr(skge);
  2675. spin_unlock(&hw->phy_lock);
  2676. }
  2677. }
  2678. spin_lock_irq(&hw->hw_lock);
  2679. hw->intr_mask |= IS_EXT_REG;
  2680. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2681. skge_read32(hw, B0_IMSK);
  2682. spin_unlock_irq(&hw->hw_lock);
  2683. }
  2684. static irqreturn_t skge_intr(int irq, void *dev_id)
  2685. {
  2686. struct skge_hw *hw = dev_id;
  2687. u32 status;
  2688. int handled = 0;
  2689. spin_lock(&hw->hw_lock);
  2690. /* Reading this register masks IRQ */
  2691. status = skge_read32(hw, B0_SP_ISRC);
  2692. if (status == 0 || status == ~0)
  2693. goto out;
  2694. handled = 1;
  2695. status &= hw->intr_mask;
  2696. if (status & IS_EXT_REG) {
  2697. hw->intr_mask &= ~IS_EXT_REG;
  2698. tasklet_schedule(&hw->phy_task);
  2699. }
  2700. if (status & (IS_XA1_F|IS_R1_F)) {
  2701. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2702. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2703. netif_rx_schedule(hw->dev[0], &skge->napi);
  2704. }
  2705. if (status & IS_PA_TO_TX1)
  2706. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2707. if (status & IS_PA_TO_RX1) {
  2708. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2709. ++skge->net_stats.rx_over_errors;
  2710. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2711. }
  2712. if (status & IS_MAC1)
  2713. skge_mac_intr(hw, 0);
  2714. if (hw->dev[1]) {
  2715. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2716. if (status & (IS_XA2_F|IS_R2_F)) {
  2717. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2718. netif_rx_schedule(hw->dev[1], &skge->napi);
  2719. }
  2720. if (status & IS_PA_TO_RX2) {
  2721. ++skge->net_stats.rx_over_errors;
  2722. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2723. }
  2724. if (status & IS_PA_TO_TX2)
  2725. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2726. if (status & IS_MAC2)
  2727. skge_mac_intr(hw, 1);
  2728. }
  2729. if (status & IS_HW_ERR)
  2730. skge_error_irq(hw);
  2731. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2732. skge_read32(hw, B0_IMSK);
  2733. out:
  2734. spin_unlock(&hw->hw_lock);
  2735. return IRQ_RETVAL(handled);
  2736. }
  2737. #ifdef CONFIG_NET_POLL_CONTROLLER
  2738. static void skge_netpoll(struct net_device *dev)
  2739. {
  2740. struct skge_port *skge = netdev_priv(dev);
  2741. disable_irq(dev->irq);
  2742. skge_intr(dev->irq, skge->hw);
  2743. enable_irq(dev->irq);
  2744. }
  2745. #endif
  2746. static int skge_set_mac_address(struct net_device *dev, void *p)
  2747. {
  2748. struct skge_port *skge = netdev_priv(dev);
  2749. struct skge_hw *hw = skge->hw;
  2750. unsigned port = skge->port;
  2751. const struct sockaddr *addr = p;
  2752. u16 ctrl;
  2753. if (!is_valid_ether_addr(addr->sa_data))
  2754. return -EADDRNOTAVAIL;
  2755. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2756. if (!netif_running(dev)) {
  2757. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2758. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2759. } else {
  2760. /* disable Rx */
  2761. spin_lock_bh(&hw->phy_lock);
  2762. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  2763. gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
  2764. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2765. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2766. if (hw->chip_id == CHIP_ID_GENESIS)
  2767. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2768. else {
  2769. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2770. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2771. }
  2772. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  2773. spin_unlock_bh(&hw->phy_lock);
  2774. }
  2775. return 0;
  2776. }
  2777. static const struct {
  2778. u8 id;
  2779. const char *name;
  2780. } skge_chips[] = {
  2781. { CHIP_ID_GENESIS, "Genesis" },
  2782. { CHIP_ID_YUKON, "Yukon" },
  2783. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2784. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2785. };
  2786. static const char *skge_board_name(const struct skge_hw *hw)
  2787. {
  2788. int i;
  2789. static char buf[16];
  2790. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2791. if (skge_chips[i].id == hw->chip_id)
  2792. return skge_chips[i].name;
  2793. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2794. return buf;
  2795. }
  2796. /*
  2797. * Setup the board data structure, but don't bring up
  2798. * the port(s)
  2799. */
  2800. static int skge_reset(struct skge_hw *hw)
  2801. {
  2802. u32 reg;
  2803. u16 ctst, pci_status;
  2804. u8 t8, mac_cfg, pmd_type;
  2805. int i;
  2806. ctst = skge_read16(hw, B0_CTST);
  2807. /* do a SW reset */
  2808. skge_write8(hw, B0_CTST, CS_RST_SET);
  2809. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2810. /* clear PCI errors, if any */
  2811. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2812. skge_write8(hw, B2_TST_CTRL2, 0);
  2813. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2814. pci_write_config_word(hw->pdev, PCI_STATUS,
  2815. pci_status | PCI_STATUS_ERROR_BITS);
  2816. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2817. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2818. /* restore CLK_RUN bits (for Yukon-Lite) */
  2819. skge_write16(hw, B0_CTST,
  2820. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2821. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2822. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2823. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2824. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2825. switch (hw->chip_id) {
  2826. case CHIP_ID_GENESIS:
  2827. switch (hw->phy_type) {
  2828. case SK_PHY_XMAC:
  2829. hw->phy_addr = PHY_ADDR_XMAC;
  2830. break;
  2831. case SK_PHY_BCOM:
  2832. hw->phy_addr = PHY_ADDR_BCOM;
  2833. break;
  2834. default:
  2835. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2836. hw->phy_type);
  2837. return -EOPNOTSUPP;
  2838. }
  2839. break;
  2840. case CHIP_ID_YUKON:
  2841. case CHIP_ID_YUKON_LITE:
  2842. case CHIP_ID_YUKON_LP:
  2843. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2844. hw->copper = 1;
  2845. hw->phy_addr = PHY_ADDR_MARV;
  2846. break;
  2847. default:
  2848. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2849. hw->chip_id);
  2850. return -EOPNOTSUPP;
  2851. }
  2852. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2853. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2854. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2855. /* read the adapters RAM size */
  2856. t8 = skge_read8(hw, B2_E_0);
  2857. if (hw->chip_id == CHIP_ID_GENESIS) {
  2858. if (t8 == 3) {
  2859. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2860. hw->ram_size = 1024;
  2861. hw->ram_offset = 512;
  2862. } else
  2863. hw->ram_size = t8 * 512;
  2864. } else /* Yukon */
  2865. hw->ram_size = t8 ? t8 * 4 : 128;
  2866. hw->intr_mask = IS_HW_ERR;
  2867. /* Use PHY IRQ for all but fiber based Genesis board */
  2868. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2869. hw->intr_mask |= IS_EXT_REG;
  2870. if (hw->chip_id == CHIP_ID_GENESIS)
  2871. genesis_init(hw);
  2872. else {
  2873. /* switch power to VCC (WA for VAUX problem) */
  2874. skge_write8(hw, B0_POWER_CTRL,
  2875. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2876. /* avoid boards with stuck Hardware error bits */
  2877. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2878. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2879. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2880. hw->intr_mask &= ~IS_HW_ERR;
  2881. }
  2882. /* Clear PHY COMA */
  2883. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2884. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2885. reg &= ~PCI_PHY_COMA;
  2886. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2887. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2888. for (i = 0; i < hw->ports; i++) {
  2889. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2890. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2891. }
  2892. }
  2893. /* turn off hardware timer (unused) */
  2894. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2895. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2896. skge_write8(hw, B0_LED, LED_STAT_ON);
  2897. /* enable the Tx Arbiters */
  2898. for (i = 0; i < hw->ports; i++)
  2899. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2900. /* Initialize ram interface */
  2901. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2902. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2903. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2904. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2905. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2906. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2907. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2908. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2909. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2910. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2911. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2912. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2913. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2914. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2915. /* Set interrupt moderation for Transmit only
  2916. * Receive interrupts avoided by NAPI
  2917. */
  2918. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2919. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2920. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2921. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2922. for (i = 0; i < hw->ports; i++) {
  2923. if (hw->chip_id == CHIP_ID_GENESIS)
  2924. genesis_reset(hw, i);
  2925. else
  2926. yukon_reset(hw, i);
  2927. }
  2928. return 0;
  2929. }
  2930. /* Initialize network device */
  2931. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2932. int highmem)
  2933. {
  2934. struct skge_port *skge;
  2935. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2936. if (!dev) {
  2937. dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
  2938. return NULL;
  2939. }
  2940. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2941. dev->open = skge_up;
  2942. dev->stop = skge_down;
  2943. dev->do_ioctl = skge_ioctl;
  2944. dev->hard_start_xmit = skge_xmit_frame;
  2945. dev->get_stats = skge_get_stats;
  2946. if (hw->chip_id == CHIP_ID_GENESIS)
  2947. dev->set_multicast_list = genesis_set_multicast;
  2948. else
  2949. dev->set_multicast_list = yukon_set_multicast;
  2950. dev->set_mac_address = skge_set_mac_address;
  2951. dev->change_mtu = skge_change_mtu;
  2952. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2953. dev->tx_timeout = skge_tx_timeout;
  2954. dev->watchdog_timeo = TX_WATCHDOG;
  2955. #ifdef CONFIG_NET_POLL_CONTROLLER
  2956. dev->poll_controller = skge_netpoll;
  2957. #endif
  2958. dev->irq = hw->pdev->irq;
  2959. if (highmem)
  2960. dev->features |= NETIF_F_HIGHDMA;
  2961. skge = netdev_priv(dev);
  2962. netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
  2963. skge->netdev = dev;
  2964. skge->hw = hw;
  2965. skge->msg_enable = netif_msg_init(debug, default_msg);
  2966. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2967. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2968. /* Auto speed and flow control */
  2969. skge->autoneg = AUTONEG_ENABLE;
  2970. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  2971. skge->duplex = -1;
  2972. skge->speed = -1;
  2973. skge->advertising = skge_supported_modes(hw);
  2974. if (pci_wake_enabled(hw->pdev))
  2975. skge->wol = wol_supported(hw) & WAKE_MAGIC;
  2976. hw->dev[port] = dev;
  2977. skge->port = port;
  2978. /* Only used for Genesis XMAC */
  2979. setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
  2980. if (hw->chip_id != CHIP_ID_GENESIS) {
  2981. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2982. skge->rx_csum = 1;
  2983. }
  2984. /* read the mac address */
  2985. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2986. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2987. /* device is off until link detection */
  2988. netif_carrier_off(dev);
  2989. netif_stop_queue(dev);
  2990. return dev;
  2991. }
  2992. static void __devinit skge_show_addr(struct net_device *dev)
  2993. {
  2994. const struct skge_port *skge = netdev_priv(dev);
  2995. DECLARE_MAC_BUF(mac);
  2996. if (netif_msg_probe(skge))
  2997. printk(KERN_INFO PFX "%s: addr %s\n",
  2998. dev->name, print_mac(mac, dev->dev_addr));
  2999. }
  3000. static int __devinit skge_probe(struct pci_dev *pdev,
  3001. const struct pci_device_id *ent)
  3002. {
  3003. struct net_device *dev, *dev1;
  3004. struct skge_hw *hw;
  3005. int err, using_dac = 0;
  3006. err = pci_enable_device(pdev);
  3007. if (err) {
  3008. dev_err(&pdev->dev, "cannot enable PCI device\n");
  3009. goto err_out;
  3010. }
  3011. err = pci_request_regions(pdev, DRV_NAME);
  3012. if (err) {
  3013. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  3014. goto err_out_disable_pdev;
  3015. }
  3016. pci_set_master(pdev);
  3017. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3018. using_dac = 1;
  3019. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3020. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  3021. using_dac = 0;
  3022. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3023. }
  3024. if (err) {
  3025. dev_err(&pdev->dev, "no usable DMA configuration\n");
  3026. goto err_out_free_regions;
  3027. }
  3028. #ifdef __BIG_ENDIAN
  3029. /* byte swap descriptors in hardware */
  3030. {
  3031. u32 reg;
  3032. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  3033. reg |= PCI_REV_DESC;
  3034. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  3035. }
  3036. #endif
  3037. err = -ENOMEM;
  3038. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  3039. if (!hw) {
  3040. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  3041. goto err_out_free_regions;
  3042. }
  3043. hw->pdev = pdev;
  3044. spin_lock_init(&hw->hw_lock);
  3045. spin_lock_init(&hw->phy_lock);
  3046. tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
  3047. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  3048. if (!hw->regs) {
  3049. dev_err(&pdev->dev, "cannot map device registers\n");
  3050. goto err_out_free_hw;
  3051. }
  3052. err = skge_reset(hw);
  3053. if (err)
  3054. goto err_out_iounmap;
  3055. printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
  3056. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  3057. skge_board_name(hw), hw->chip_rev);
  3058. dev = skge_devinit(hw, 0, using_dac);
  3059. if (!dev)
  3060. goto err_out_led_off;
  3061. /* Some motherboards are broken and has zero in ROM. */
  3062. if (!is_valid_ether_addr(dev->dev_addr))
  3063. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  3064. err = register_netdev(dev);
  3065. if (err) {
  3066. dev_err(&pdev->dev, "cannot register net device\n");
  3067. goto err_out_free_netdev;
  3068. }
  3069. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
  3070. if (err) {
  3071. dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
  3072. dev->name, pdev->irq);
  3073. goto err_out_unregister;
  3074. }
  3075. skge_show_addr(dev);
  3076. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  3077. if (register_netdev(dev1) == 0)
  3078. skge_show_addr(dev1);
  3079. else {
  3080. /* Failure to register second port need not be fatal */
  3081. dev_warn(&pdev->dev, "register of second port failed\n");
  3082. hw->dev[1] = NULL;
  3083. free_netdev(dev1);
  3084. }
  3085. }
  3086. pci_set_drvdata(pdev, hw);
  3087. return 0;
  3088. err_out_unregister:
  3089. unregister_netdev(dev);
  3090. err_out_free_netdev:
  3091. free_netdev(dev);
  3092. err_out_led_off:
  3093. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3094. err_out_iounmap:
  3095. iounmap(hw->regs);
  3096. err_out_free_hw:
  3097. kfree(hw);
  3098. err_out_free_regions:
  3099. pci_release_regions(pdev);
  3100. err_out_disable_pdev:
  3101. pci_disable_device(pdev);
  3102. pci_set_drvdata(pdev, NULL);
  3103. err_out:
  3104. return err;
  3105. }
  3106. static void __devexit skge_remove(struct pci_dev *pdev)
  3107. {
  3108. struct skge_hw *hw = pci_get_drvdata(pdev);
  3109. struct net_device *dev0, *dev1;
  3110. if (!hw)
  3111. return;
  3112. flush_scheduled_work();
  3113. if ((dev1 = hw->dev[1]))
  3114. unregister_netdev(dev1);
  3115. dev0 = hw->dev[0];
  3116. unregister_netdev(dev0);
  3117. tasklet_disable(&hw->phy_task);
  3118. spin_lock_irq(&hw->hw_lock);
  3119. hw->intr_mask = 0;
  3120. skge_write32(hw, B0_IMSK, 0);
  3121. skge_read32(hw, B0_IMSK);
  3122. spin_unlock_irq(&hw->hw_lock);
  3123. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3124. skge_write8(hw, B0_CTST, CS_RST_SET);
  3125. free_irq(pdev->irq, hw);
  3126. pci_release_regions(pdev);
  3127. pci_disable_device(pdev);
  3128. if (dev1)
  3129. free_netdev(dev1);
  3130. free_netdev(dev0);
  3131. iounmap(hw->regs);
  3132. kfree(hw);
  3133. pci_set_drvdata(pdev, NULL);
  3134. }
  3135. #ifdef CONFIG_PM
  3136. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  3137. {
  3138. struct skge_hw *hw = pci_get_drvdata(pdev);
  3139. int i, err, wol = 0;
  3140. if (!hw)
  3141. return 0;
  3142. err = pci_save_state(pdev);
  3143. if (err)
  3144. return err;
  3145. for (i = 0; i < hw->ports; i++) {
  3146. struct net_device *dev = hw->dev[i];
  3147. struct skge_port *skge = netdev_priv(dev);
  3148. if (netif_running(dev))
  3149. skge_down(dev);
  3150. if (skge->wol)
  3151. skge_wol_init(skge);
  3152. wol |= skge->wol;
  3153. }
  3154. skge_write32(hw, B0_IMSK, 0);
  3155. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  3156. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3157. return 0;
  3158. }
  3159. static int skge_resume(struct pci_dev *pdev)
  3160. {
  3161. struct skge_hw *hw = pci_get_drvdata(pdev);
  3162. int i, err;
  3163. if (!hw)
  3164. return 0;
  3165. err = pci_set_power_state(pdev, PCI_D0);
  3166. if (err)
  3167. goto out;
  3168. err = pci_restore_state(pdev);
  3169. if (err)
  3170. goto out;
  3171. pci_enable_wake(pdev, PCI_D0, 0);
  3172. err = skge_reset(hw);
  3173. if (err)
  3174. goto out;
  3175. for (i = 0; i < hw->ports; i++) {
  3176. struct net_device *dev = hw->dev[i];
  3177. if (netif_running(dev)) {
  3178. err = skge_up(dev);
  3179. if (err) {
  3180. printk(KERN_ERR PFX "%s: could not up: %d\n",
  3181. dev->name, err);
  3182. dev_close(dev);
  3183. goto out;
  3184. }
  3185. }
  3186. }
  3187. out:
  3188. return err;
  3189. }
  3190. #endif
  3191. static void skge_shutdown(struct pci_dev *pdev)
  3192. {
  3193. struct skge_hw *hw = pci_get_drvdata(pdev);
  3194. int i, wol = 0;
  3195. if (!hw)
  3196. return;
  3197. for (i = 0; i < hw->ports; i++) {
  3198. struct net_device *dev = hw->dev[i];
  3199. struct skge_port *skge = netdev_priv(dev);
  3200. if (skge->wol)
  3201. skge_wol_init(skge);
  3202. wol |= skge->wol;
  3203. }
  3204. pci_enable_wake(pdev, PCI_D3hot, wol);
  3205. pci_enable_wake(pdev, PCI_D3cold, wol);
  3206. pci_disable_device(pdev);
  3207. pci_set_power_state(pdev, PCI_D3hot);
  3208. }
  3209. static struct pci_driver skge_driver = {
  3210. .name = DRV_NAME,
  3211. .id_table = skge_id_table,
  3212. .probe = skge_probe,
  3213. .remove = __devexit_p(skge_remove),
  3214. #ifdef CONFIG_PM
  3215. .suspend = skge_suspend,
  3216. .resume = skge_resume,
  3217. #endif
  3218. .shutdown = skge_shutdown,
  3219. };
  3220. static int __init skge_init_module(void)
  3221. {
  3222. return pci_register_driver(&skge_driver);
  3223. }
  3224. static void __exit skge_cleanup_module(void)
  3225. {
  3226. pci_unregister_driver(&skge_driver);
  3227. }
  3228. module_init(skge_init_module);
  3229. module_exit(skge_cleanup_module);