hw.c 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867
  1. /*
  2. * Copyright (c) 2008 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <asm/unaligned.h>
  18. #include "core.h"
  19. #include "hw.h"
  20. #include "reg.h"
  21. #include "phy.h"
  22. #include "initvals.h"
  23. #define ATH9K_CLOCK_RATE_CCK 22
  24. #define ATH9K_CLOCK_RATE_5GHZ_OFDM 40
  25. #define ATH9K_CLOCK_RATE_2GHZ_OFDM 44
  26. extern struct hal_percal_data iq_cal_multi_sample;
  27. extern struct hal_percal_data iq_cal_single_sample;
  28. extern struct hal_percal_data adc_gain_cal_multi_sample;
  29. extern struct hal_percal_data adc_gain_cal_single_sample;
  30. extern struct hal_percal_data adc_dc_cal_multi_sample;
  31. extern struct hal_percal_data adc_dc_cal_single_sample;
  32. extern struct hal_percal_data adc_init_dc_cal;
  33. static bool ath9k_hw_set_reset_reg(struct ath_hal *ah, u32 type);
  34. static void ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan,
  35. enum ath9k_ht_macmode macmode);
  36. static u32 ath9k_hw_ini_fixup(struct ath_hal *ah,
  37. struct ar5416_eeprom_def *pEepData,
  38. u32 reg, u32 value);
  39. static void ath9k_hw_9280_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan);
  40. static void ath9k_hw_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan);
  41. /********************/
  42. /* Helper Functions */
  43. /********************/
  44. static u32 ath9k_hw_mac_usec(struct ath_hal *ah, u32 clks)
  45. {
  46. struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
  47. if (!ah->ah_curchan) /* should really check for CCK instead */
  48. return clks / ATH9K_CLOCK_RATE_CCK;
  49. if (conf->channel->band == IEEE80211_BAND_2GHZ)
  50. return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
  51. return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
  52. }
  53. static u32 ath9k_hw_mac_to_usec(struct ath_hal *ah, u32 clks)
  54. {
  55. struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
  56. if (conf_is_ht40(conf))
  57. return ath9k_hw_mac_usec(ah, clks) / 2;
  58. else
  59. return ath9k_hw_mac_usec(ah, clks);
  60. }
  61. static u32 ath9k_hw_mac_clks(struct ath_hal *ah, u32 usecs)
  62. {
  63. struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
  64. if (!ah->ah_curchan) /* should really check for CCK instead */
  65. return usecs *ATH9K_CLOCK_RATE_CCK;
  66. if (conf->channel->band == IEEE80211_BAND_2GHZ)
  67. return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
  68. return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
  69. }
  70. static u32 ath9k_hw_mac_to_clks(struct ath_hal *ah, u32 usecs)
  71. {
  72. struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
  73. if (conf_is_ht40(conf))
  74. return ath9k_hw_mac_clks(ah, usecs) * 2;
  75. else
  76. return ath9k_hw_mac_clks(ah, usecs);
  77. }
  78. bool ath9k_hw_wait(struct ath_hal *ah, u32 reg, u32 mask, u32 val)
  79. {
  80. int i;
  81. for (i = 0; i < (AH_TIMEOUT / AH_TIME_QUANTUM); i++) {
  82. if ((REG_READ(ah, reg) & mask) == val)
  83. return true;
  84. udelay(AH_TIME_QUANTUM);
  85. }
  86. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  87. "timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  88. reg, REG_READ(ah, reg), mask, val);
  89. return false;
  90. }
  91. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  92. {
  93. u32 retval;
  94. int i;
  95. for (i = 0, retval = 0; i < n; i++) {
  96. retval = (retval << 1) | (val & 1);
  97. val >>= 1;
  98. }
  99. return retval;
  100. }
  101. bool ath9k_get_channel_edges(struct ath_hal *ah,
  102. u16 flags, u16 *low,
  103. u16 *high)
  104. {
  105. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  106. if (flags & CHANNEL_5GHZ) {
  107. *low = pCap->low_5ghz_chan;
  108. *high = pCap->high_5ghz_chan;
  109. return true;
  110. }
  111. if ((flags & CHANNEL_2GHZ)) {
  112. *low = pCap->low_2ghz_chan;
  113. *high = pCap->high_2ghz_chan;
  114. return true;
  115. }
  116. return false;
  117. }
  118. u16 ath9k_hw_computetxtime(struct ath_hal *ah,
  119. struct ath_rate_table *rates,
  120. u32 frameLen, u16 rateix,
  121. bool shortPreamble)
  122. {
  123. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  124. u32 kbps;
  125. kbps = rates->info[rateix].ratekbps;
  126. if (kbps == 0)
  127. return 0;
  128. switch (rates->info[rateix].phy) {
  129. case WLAN_RC_PHY_CCK:
  130. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  131. if (shortPreamble && rates->info[rateix].short_preamble)
  132. phyTime >>= 1;
  133. numBits = frameLen << 3;
  134. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  135. break;
  136. case WLAN_RC_PHY_OFDM:
  137. if (ah->ah_curchan && IS_CHAN_QUARTER_RATE(ah->ah_curchan)) {
  138. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  139. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  140. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  141. txTime = OFDM_SIFS_TIME_QUARTER
  142. + OFDM_PREAMBLE_TIME_QUARTER
  143. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  144. } else if (ah->ah_curchan &&
  145. IS_CHAN_HALF_RATE(ah->ah_curchan)) {
  146. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  147. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  148. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  149. txTime = OFDM_SIFS_TIME_HALF +
  150. OFDM_PREAMBLE_TIME_HALF
  151. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  152. } else {
  153. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  154. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  155. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  156. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  157. + (numSymbols * OFDM_SYMBOL_TIME);
  158. }
  159. break;
  160. default:
  161. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  162. "Unknown phy %u (rate ix %u)\n",
  163. rates->info[rateix].phy, rateix);
  164. txTime = 0;
  165. break;
  166. }
  167. return txTime;
  168. }
  169. u32 ath9k_hw_mhz2ieee(struct ath_hal *ah, u32 freq, u32 flags)
  170. {
  171. if (flags & CHANNEL_2GHZ) {
  172. if (freq == 2484)
  173. return 14;
  174. if (freq < 2484)
  175. return (freq - 2407) / 5;
  176. else
  177. return 15 + ((freq - 2512) / 20);
  178. } else if (flags & CHANNEL_5GHZ) {
  179. if (ath9k_regd_is_public_safety_sku(ah) &&
  180. IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
  181. return ((freq * 10) +
  182. (((freq % 5) == 2) ? 5 : 0) - 49400) / 5;
  183. } else if ((flags & CHANNEL_A) && (freq <= 5000)) {
  184. return (freq - 4000) / 5;
  185. } else {
  186. return (freq - 5000) / 5;
  187. }
  188. } else {
  189. if (freq == 2484)
  190. return 14;
  191. if (freq < 2484)
  192. return (freq - 2407) / 5;
  193. if (freq < 5000) {
  194. if (ath9k_regd_is_public_safety_sku(ah)
  195. && IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
  196. return ((freq * 10) +
  197. (((freq % 5) ==
  198. 2) ? 5 : 0) - 49400) / 5;
  199. } else if (freq > 4900) {
  200. return (freq - 4000) / 5;
  201. } else {
  202. return 15 + ((freq - 2512) / 20);
  203. }
  204. }
  205. return (freq - 5000) / 5;
  206. }
  207. }
  208. void ath9k_hw_get_channel_centers(struct ath_hal *ah,
  209. struct ath9k_channel *chan,
  210. struct chan_centers *centers)
  211. {
  212. int8_t extoff;
  213. struct ath_hal_5416 *ahp = AH5416(ah);
  214. if (!IS_CHAN_HT40(chan)) {
  215. centers->ctl_center = centers->ext_center =
  216. centers->synth_center = chan->channel;
  217. return;
  218. }
  219. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  220. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  221. centers->synth_center =
  222. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  223. extoff = 1;
  224. } else {
  225. centers->synth_center =
  226. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  227. extoff = -1;
  228. }
  229. centers->ctl_center =
  230. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  231. centers->ext_center =
  232. centers->synth_center + (extoff *
  233. ((ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
  234. HT40_CHANNEL_CENTER_SHIFT : 15));
  235. }
  236. /******************/
  237. /* Chip Revisions */
  238. /******************/
  239. static void ath9k_hw_read_revisions(struct ath_hal *ah)
  240. {
  241. u32 val;
  242. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  243. if (val == 0xFF) {
  244. val = REG_READ(ah, AR_SREV);
  245. ah->ah_macVersion = (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  246. ah->ah_macRev = MS(val, AR_SREV_REVISION2);
  247. ah->ah_isPciExpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  248. } else {
  249. if (!AR_SREV_9100(ah))
  250. ah->ah_macVersion = MS(val, AR_SREV_VERSION);
  251. ah->ah_macRev = val & AR_SREV_REVISION;
  252. if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE)
  253. ah->ah_isPciExpress = true;
  254. }
  255. }
  256. static int ath9k_hw_get_radiorev(struct ath_hal *ah)
  257. {
  258. u32 val;
  259. int i;
  260. REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
  261. for (i = 0; i < 8; i++)
  262. REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
  263. val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
  264. val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
  265. return ath9k_hw_reverse_bits(val, 8);
  266. }
  267. /************************************/
  268. /* HW Attach, Detach, Init Routines */
  269. /************************************/
  270. static void ath9k_hw_disablepcie(struct ath_hal *ah)
  271. {
  272. if (!AR_SREV_9100(ah))
  273. return;
  274. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  275. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  276. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  277. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  278. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  279. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  280. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  281. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  282. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  283. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  284. }
  285. static bool ath9k_hw_chip_test(struct ath_hal *ah)
  286. {
  287. u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
  288. u32 regHold[2];
  289. u32 patternData[4] = { 0x55555555,
  290. 0xaaaaaaaa,
  291. 0x66666666,
  292. 0x99999999 };
  293. int i, j;
  294. for (i = 0; i < 2; i++) {
  295. u32 addr = regAddr[i];
  296. u32 wrData, rdData;
  297. regHold[i] = REG_READ(ah, addr);
  298. for (j = 0; j < 0x100; j++) {
  299. wrData = (j << 16) | j;
  300. REG_WRITE(ah, addr, wrData);
  301. rdData = REG_READ(ah, addr);
  302. if (rdData != wrData) {
  303. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  304. "address test failed "
  305. "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  306. addr, wrData, rdData);
  307. return false;
  308. }
  309. }
  310. for (j = 0; j < 4; j++) {
  311. wrData = patternData[j];
  312. REG_WRITE(ah, addr, wrData);
  313. rdData = REG_READ(ah, addr);
  314. if (wrData != rdData) {
  315. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  316. "address test failed "
  317. "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  318. addr, wrData, rdData);
  319. return false;
  320. }
  321. }
  322. REG_WRITE(ah, regAddr[i], regHold[i]);
  323. }
  324. udelay(100);
  325. return true;
  326. }
  327. static const char *ath9k_hw_devname(u16 devid)
  328. {
  329. switch (devid) {
  330. case AR5416_DEVID_PCI:
  331. return "Atheros 5416";
  332. case AR5416_DEVID_PCIE:
  333. return "Atheros 5418";
  334. case AR9160_DEVID_PCI:
  335. return "Atheros 9160";
  336. case AR9280_DEVID_PCI:
  337. case AR9280_DEVID_PCIE:
  338. return "Atheros 9280";
  339. case AR9285_DEVID_PCIE:
  340. return "Atheros 9285";
  341. }
  342. return NULL;
  343. }
  344. static void ath9k_hw_set_defaults(struct ath_hal *ah)
  345. {
  346. int i;
  347. ah->ah_config.dma_beacon_response_time = 2;
  348. ah->ah_config.sw_beacon_response_time = 10;
  349. ah->ah_config.additional_swba_backoff = 0;
  350. ah->ah_config.ack_6mb = 0x0;
  351. ah->ah_config.cwm_ignore_extcca = 0;
  352. ah->ah_config.pcie_powersave_enable = 0;
  353. ah->ah_config.pcie_l1skp_enable = 0;
  354. ah->ah_config.pcie_clock_req = 0;
  355. ah->ah_config.pcie_power_reset = 0x100;
  356. ah->ah_config.pcie_restore = 0;
  357. ah->ah_config.pcie_waen = 0;
  358. ah->ah_config.analog_shiftreg = 1;
  359. ah->ah_config.ht_enable = 1;
  360. ah->ah_config.ofdm_trig_low = 200;
  361. ah->ah_config.ofdm_trig_high = 500;
  362. ah->ah_config.cck_trig_high = 200;
  363. ah->ah_config.cck_trig_low = 100;
  364. ah->ah_config.enable_ani = 1;
  365. ah->ah_config.noise_immunity_level = 4;
  366. ah->ah_config.ofdm_weaksignal_det = 1;
  367. ah->ah_config.cck_weaksignal_thr = 0;
  368. ah->ah_config.spur_immunity_level = 2;
  369. ah->ah_config.firstep_level = 0;
  370. ah->ah_config.rssi_thr_high = 40;
  371. ah->ah_config.rssi_thr_low = 7;
  372. ah->ah_config.diversity_control = 0;
  373. ah->ah_config.antenna_switch_swap = 0;
  374. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  375. ah->ah_config.spurchans[i][0] = AR_NO_SPUR;
  376. ah->ah_config.spurchans[i][1] = AR_NO_SPUR;
  377. }
  378. ah->ah_config.intr_mitigation = 1;
  379. }
  380. static struct ath_hal_5416 *ath9k_hw_newstate(u16 devid,
  381. struct ath_softc *sc,
  382. void __iomem *mem,
  383. int *status)
  384. {
  385. static const u8 defbssidmask[ETH_ALEN] =
  386. { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  387. struct ath_hal_5416 *ahp;
  388. struct ath_hal *ah;
  389. ahp = kzalloc(sizeof(struct ath_hal_5416), GFP_KERNEL);
  390. if (ahp == NULL) {
  391. DPRINTF(sc, ATH_DBG_FATAL,
  392. "Cannot allocate memory for state block\n");
  393. *status = -ENOMEM;
  394. return NULL;
  395. }
  396. ah = &ahp->ah;
  397. ah->ah_sc = sc;
  398. ah->ah_sh = mem;
  399. ah->ah_magic = AR5416_MAGIC;
  400. ah->ah_countryCode = CTRY_DEFAULT;
  401. ah->ah_devid = devid;
  402. ah->ah_subvendorid = 0;
  403. ah->ah_flags = 0;
  404. if ((devid == AR5416_AR9100_DEVID))
  405. ah->ah_macVersion = AR_SREV_VERSION_9100;
  406. if (!AR_SREV_9100(ah))
  407. ah->ah_flags = AH_USE_EEPROM;
  408. ah->ah_powerLimit = MAX_RATE_POWER;
  409. ah->ah_tpScale = ATH9K_TP_SCALE_MAX;
  410. ahp->ah_atimWindow = 0;
  411. ahp->ah_diversityControl = ah->ah_config.diversity_control;
  412. ahp->ah_antennaSwitchSwap =
  413. ah->ah_config.antenna_switch_swap;
  414. ahp->ah_staId1Defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
  415. ahp->ah_beaconInterval = 100;
  416. ahp->ah_enable32kHzClock = DONT_USE_32KHZ;
  417. ahp->ah_slottime = (u32) -1;
  418. ahp->ah_acktimeout = (u32) -1;
  419. ahp->ah_ctstimeout = (u32) -1;
  420. ahp->ah_globaltxtimeout = (u32) -1;
  421. memcpy(&ahp->ah_bssidmask, defbssidmask, ETH_ALEN);
  422. ahp->ah_gBeaconRate = 0;
  423. return ahp;
  424. }
  425. static int ath9k_hw_rfattach(struct ath_hal *ah)
  426. {
  427. bool rfStatus = false;
  428. int ecode = 0;
  429. rfStatus = ath9k_hw_init_rf(ah, &ecode);
  430. if (!rfStatus) {
  431. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  432. "RF setup failed, status %u\n", ecode);
  433. return ecode;
  434. }
  435. return 0;
  436. }
  437. static int ath9k_hw_rf_claim(struct ath_hal *ah)
  438. {
  439. u32 val;
  440. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  441. val = ath9k_hw_get_radiorev(ah);
  442. switch (val & AR_RADIO_SREV_MAJOR) {
  443. case 0:
  444. val = AR_RAD5133_SREV_MAJOR;
  445. break;
  446. case AR_RAD5133_SREV_MAJOR:
  447. case AR_RAD5122_SREV_MAJOR:
  448. case AR_RAD2133_SREV_MAJOR:
  449. case AR_RAD2122_SREV_MAJOR:
  450. break;
  451. default:
  452. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  453. "5G Radio Chip Rev 0x%02X is not "
  454. "supported by this driver\n",
  455. ah->ah_analog5GhzRev);
  456. return -EOPNOTSUPP;
  457. }
  458. ah->ah_analog5GhzRev = val;
  459. return 0;
  460. }
  461. static int ath9k_hw_init_macaddr(struct ath_hal *ah)
  462. {
  463. u32 sum;
  464. int i;
  465. u16 eeval;
  466. struct ath_hal_5416 *ahp = AH5416(ah);
  467. sum = 0;
  468. for (i = 0; i < 3; i++) {
  469. eeval = ath9k_hw_get_eeprom(ah, AR_EEPROM_MAC(i));
  470. sum += eeval;
  471. ahp->ah_macaddr[2 * i] = eeval >> 8;
  472. ahp->ah_macaddr[2 * i + 1] = eeval & 0xff;
  473. }
  474. if (sum == 0 || sum == 0xffff * 3) {
  475. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  476. "mac address read failed: %pM\n",
  477. ahp->ah_macaddr);
  478. return -EADDRNOTAVAIL;
  479. }
  480. return 0;
  481. }
  482. static void ath9k_hw_init_rxgain_ini(struct ath_hal *ah)
  483. {
  484. u32 rxgain_type;
  485. struct ath_hal_5416 *ahp = AH5416(ah);
  486. if (ath9k_hw_get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
  487. rxgain_type = ath9k_hw_get_eeprom(ah, EEP_RXGAIN_TYPE);
  488. if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
  489. INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
  490. ar9280Modes_backoff_13db_rxgain_9280_2,
  491. ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
  492. else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
  493. INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
  494. ar9280Modes_backoff_23db_rxgain_9280_2,
  495. ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
  496. else
  497. INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
  498. ar9280Modes_original_rxgain_9280_2,
  499. ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
  500. } else
  501. INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
  502. ar9280Modes_original_rxgain_9280_2,
  503. ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
  504. }
  505. static void ath9k_hw_init_txgain_ini(struct ath_hal *ah)
  506. {
  507. u32 txgain_type;
  508. struct ath_hal_5416 *ahp = AH5416(ah);
  509. if (ath9k_hw_get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
  510. txgain_type = ath9k_hw_get_eeprom(ah, EEP_TXGAIN_TYPE);
  511. if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
  512. INIT_INI_ARRAY(&ahp->ah_iniModesTxGain,
  513. ar9280Modes_high_power_tx_gain_9280_2,
  514. ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
  515. else
  516. INIT_INI_ARRAY(&ahp->ah_iniModesTxGain,
  517. ar9280Modes_original_tx_gain_9280_2,
  518. ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
  519. } else
  520. INIT_INI_ARRAY(&ahp->ah_iniModesTxGain,
  521. ar9280Modes_original_tx_gain_9280_2,
  522. ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
  523. }
  524. static int ath9k_hw_post_attach(struct ath_hal *ah)
  525. {
  526. int ecode;
  527. if (!ath9k_hw_chip_test(ah)) {
  528. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  529. "hardware self-test failed\n");
  530. return -ENODEV;
  531. }
  532. ecode = ath9k_hw_rf_claim(ah);
  533. if (ecode != 0)
  534. return ecode;
  535. ecode = ath9k_hw_eeprom_attach(ah);
  536. if (ecode != 0)
  537. return ecode;
  538. ecode = ath9k_hw_rfattach(ah);
  539. if (ecode != 0)
  540. return ecode;
  541. if (!AR_SREV_9100(ah)) {
  542. ath9k_hw_ani_setup(ah);
  543. ath9k_hw_ani_attach(ah);
  544. }
  545. return 0;
  546. }
  547. static struct ath_hal *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc,
  548. void __iomem *mem, int *status)
  549. {
  550. struct ath_hal_5416 *ahp;
  551. struct ath_hal *ah;
  552. int ecode;
  553. u32 i, j;
  554. ahp = ath9k_hw_newstate(devid, sc, mem, status);
  555. if (ahp == NULL)
  556. return NULL;
  557. ah = &ahp->ah;
  558. ath9k_hw_set_defaults(ah);
  559. if (ah->ah_config.intr_mitigation != 0)
  560. ahp->ah_intrMitigation = true;
  561. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  562. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "Couldn't reset chip\n");
  563. ecode = -EIO;
  564. goto bad;
  565. }
  566. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  567. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "Couldn't wakeup chip\n");
  568. ecode = -EIO;
  569. goto bad;
  570. }
  571. if (ah->ah_config.serialize_regmode == SER_REG_MODE_AUTO) {
  572. if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) {
  573. ah->ah_config.serialize_regmode =
  574. SER_REG_MODE_ON;
  575. } else {
  576. ah->ah_config.serialize_regmode =
  577. SER_REG_MODE_OFF;
  578. }
  579. }
  580. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  581. "serialize_regmode is %d\n",
  582. ah->ah_config.serialize_regmode);
  583. if ((ah->ah_macVersion != AR_SREV_VERSION_5416_PCI) &&
  584. (ah->ah_macVersion != AR_SREV_VERSION_5416_PCIE) &&
  585. (ah->ah_macVersion != AR_SREV_VERSION_9160) &&
  586. (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah)) && (!AR_SREV_9285(ah))) {
  587. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  588. "Mac Chip Rev 0x%02x.%x is not supported by "
  589. "this driver\n", ah->ah_macVersion, ah->ah_macRev);
  590. ecode = -EOPNOTSUPP;
  591. goto bad;
  592. }
  593. if (AR_SREV_9100(ah)) {
  594. ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
  595. ahp->ah_suppCals = IQ_MISMATCH_CAL;
  596. ah->ah_isPciExpress = false;
  597. }
  598. ah->ah_phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  599. if (AR_SREV_9160_10_OR_LATER(ah)) {
  600. if (AR_SREV_9280_10_OR_LATER(ah)) {
  601. ahp->ah_iqCalData.calData = &iq_cal_single_sample;
  602. ahp->ah_adcGainCalData.calData =
  603. &adc_gain_cal_single_sample;
  604. ahp->ah_adcDcCalData.calData =
  605. &adc_dc_cal_single_sample;
  606. ahp->ah_adcDcCalInitData.calData =
  607. &adc_init_dc_cal;
  608. } else {
  609. ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
  610. ahp->ah_adcGainCalData.calData =
  611. &adc_gain_cal_multi_sample;
  612. ahp->ah_adcDcCalData.calData =
  613. &adc_dc_cal_multi_sample;
  614. ahp->ah_adcDcCalInitData.calData =
  615. &adc_init_dc_cal;
  616. }
  617. ahp->ah_suppCals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
  618. }
  619. if (AR_SREV_9160(ah)) {
  620. ah->ah_config.enable_ani = 1;
  621. ahp->ah_ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL |
  622. ATH9K_ANI_FIRSTEP_LEVEL);
  623. } else {
  624. ahp->ah_ani_function = ATH9K_ANI_ALL;
  625. if (AR_SREV_9280_10_OR_LATER(ah)) {
  626. ahp->ah_ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  627. }
  628. }
  629. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  630. "This Mac Chip Rev 0x%02x.%x is \n",
  631. ah->ah_macVersion, ah->ah_macRev);
  632. if (AR_SREV_9285_12_OR_LATER(ah)) {
  633. INIT_INI_ARRAY(&ahp->ah_iniModes, ar9285Modes_9285_1_2,
  634. ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
  635. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9285Common_9285_1_2,
  636. ARRAY_SIZE(ar9285Common_9285_1_2), 2);
  637. if (ah->ah_config.pcie_clock_req) {
  638. INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
  639. ar9285PciePhy_clkreq_off_L1_9285_1_2,
  640. ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
  641. } else {
  642. INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
  643. ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
  644. ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
  645. 2);
  646. }
  647. } else if (AR_SREV_9285_10_OR_LATER(ah)) {
  648. INIT_INI_ARRAY(&ahp->ah_iniModes, ar9285Modes_9285,
  649. ARRAY_SIZE(ar9285Modes_9285), 6);
  650. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9285Common_9285,
  651. ARRAY_SIZE(ar9285Common_9285), 2);
  652. if (ah->ah_config.pcie_clock_req) {
  653. INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
  654. ar9285PciePhy_clkreq_off_L1_9285,
  655. ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
  656. } else {
  657. INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
  658. ar9285PciePhy_clkreq_always_on_L1_9285,
  659. ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
  660. }
  661. } else if (AR_SREV_9280_20_OR_LATER(ah)) {
  662. INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280_2,
  663. ARRAY_SIZE(ar9280Modes_9280_2), 6);
  664. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280_2,
  665. ARRAY_SIZE(ar9280Common_9280_2), 2);
  666. if (ah->ah_config.pcie_clock_req) {
  667. INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
  668. ar9280PciePhy_clkreq_off_L1_9280,
  669. ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
  670. } else {
  671. INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
  672. ar9280PciePhy_clkreq_always_on_L1_9280,
  673. ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
  674. }
  675. INIT_INI_ARRAY(&ahp->ah_iniModesAdditional,
  676. ar9280Modes_fast_clock_9280_2,
  677. ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
  678. } else if (AR_SREV_9280_10_OR_LATER(ah)) {
  679. INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280,
  680. ARRAY_SIZE(ar9280Modes_9280), 6);
  681. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280,
  682. ARRAY_SIZE(ar9280Common_9280), 2);
  683. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  684. INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9160,
  685. ARRAY_SIZE(ar5416Modes_9160), 6);
  686. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9160,
  687. ARRAY_SIZE(ar5416Common_9160), 2);
  688. INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9160,
  689. ARRAY_SIZE(ar5416Bank0_9160), 2);
  690. INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9160,
  691. ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
  692. INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9160,
  693. ARRAY_SIZE(ar5416Bank1_9160), 2);
  694. INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9160,
  695. ARRAY_SIZE(ar5416Bank2_9160), 2);
  696. INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9160,
  697. ARRAY_SIZE(ar5416Bank3_9160), 3);
  698. INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9160,
  699. ARRAY_SIZE(ar5416Bank6_9160), 3);
  700. INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9160,
  701. ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
  702. INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9160,
  703. ARRAY_SIZE(ar5416Bank7_9160), 2);
  704. if (AR_SREV_9160_11(ah)) {
  705. INIT_INI_ARRAY(&ahp->ah_iniAddac,
  706. ar5416Addac_91601_1,
  707. ARRAY_SIZE(ar5416Addac_91601_1), 2);
  708. } else {
  709. INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9160,
  710. ARRAY_SIZE(ar5416Addac_9160), 2);
  711. }
  712. } else if (AR_SREV_9100_OR_LATER(ah)) {
  713. INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9100,
  714. ARRAY_SIZE(ar5416Modes_9100), 6);
  715. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9100,
  716. ARRAY_SIZE(ar5416Common_9100), 2);
  717. INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9100,
  718. ARRAY_SIZE(ar5416Bank0_9100), 2);
  719. INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9100,
  720. ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
  721. INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9100,
  722. ARRAY_SIZE(ar5416Bank1_9100), 2);
  723. INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9100,
  724. ARRAY_SIZE(ar5416Bank2_9100), 2);
  725. INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9100,
  726. ARRAY_SIZE(ar5416Bank3_9100), 3);
  727. INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9100,
  728. ARRAY_SIZE(ar5416Bank6_9100), 3);
  729. INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9100,
  730. ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
  731. INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9100,
  732. ARRAY_SIZE(ar5416Bank7_9100), 2);
  733. INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9100,
  734. ARRAY_SIZE(ar5416Addac_9100), 2);
  735. } else {
  736. INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes,
  737. ARRAY_SIZE(ar5416Modes), 6);
  738. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common,
  739. ARRAY_SIZE(ar5416Common), 2);
  740. INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0,
  741. ARRAY_SIZE(ar5416Bank0), 2);
  742. INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain,
  743. ARRAY_SIZE(ar5416BB_RfGain), 3);
  744. INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1,
  745. ARRAY_SIZE(ar5416Bank1), 2);
  746. INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2,
  747. ARRAY_SIZE(ar5416Bank2), 2);
  748. INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3,
  749. ARRAY_SIZE(ar5416Bank3), 3);
  750. INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6,
  751. ARRAY_SIZE(ar5416Bank6), 3);
  752. INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC,
  753. ARRAY_SIZE(ar5416Bank6TPC), 3);
  754. INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7,
  755. ARRAY_SIZE(ar5416Bank7), 2);
  756. INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac,
  757. ARRAY_SIZE(ar5416Addac), 2);
  758. }
  759. if (ah->ah_isPciExpress)
  760. ath9k_hw_configpcipowersave(ah, 0);
  761. else
  762. ath9k_hw_disablepcie(ah);
  763. ecode = ath9k_hw_post_attach(ah);
  764. if (ecode != 0)
  765. goto bad;
  766. /* rxgain table */
  767. if (AR_SREV_9280_20(ah))
  768. ath9k_hw_init_rxgain_ini(ah);
  769. /* txgain table */
  770. if (AR_SREV_9280_20(ah))
  771. ath9k_hw_init_txgain_ini(ah);
  772. if (ah->ah_devid == AR9280_DEVID_PCI) {
  773. for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
  774. u32 reg = INI_RA(&ahp->ah_iniModes, i, 0);
  775. for (j = 1; j < ahp->ah_iniModes.ia_columns; j++) {
  776. u32 val = INI_RA(&ahp->ah_iniModes, i, j);
  777. INI_RA(&ahp->ah_iniModes, i, j) =
  778. ath9k_hw_ini_fixup(ah,
  779. &ahp->ah_eeprom.def,
  780. reg, val);
  781. }
  782. }
  783. }
  784. if (!ath9k_hw_fill_cap_info(ah)) {
  785. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  786. "failed ath9k_hw_fill_cap_info\n");
  787. ecode = -EINVAL;
  788. goto bad;
  789. }
  790. ecode = ath9k_hw_init_macaddr(ah);
  791. if (ecode != 0) {
  792. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  793. "failed initializing mac address\n");
  794. goto bad;
  795. }
  796. if (AR_SREV_9285(ah))
  797. ah->ah_txTrigLevel = (AR_FTRIG_256B >> AR_FTRIG_S);
  798. else
  799. ah->ah_txTrigLevel = (AR_FTRIG_512B >> AR_FTRIG_S);
  800. ath9k_init_nfcal_hist_buffer(ah);
  801. return ah;
  802. bad:
  803. if (ahp)
  804. ath9k_hw_detach((struct ath_hal *) ahp);
  805. if (status)
  806. *status = ecode;
  807. return NULL;
  808. }
  809. static void ath9k_hw_init_bb(struct ath_hal *ah,
  810. struct ath9k_channel *chan)
  811. {
  812. u32 synthDelay;
  813. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  814. if (IS_CHAN_B(chan))
  815. synthDelay = (4 * synthDelay) / 22;
  816. else
  817. synthDelay /= 10;
  818. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  819. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  820. }
  821. static void ath9k_hw_init_qos(struct ath_hal *ah)
  822. {
  823. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  824. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  825. REG_WRITE(ah, AR_QOS_NO_ACK,
  826. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  827. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  828. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  829. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  830. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  831. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  832. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  833. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  834. }
  835. static void ath9k_hw_init_pll(struct ath_hal *ah,
  836. struct ath9k_channel *chan)
  837. {
  838. u32 pll;
  839. if (AR_SREV_9100(ah)) {
  840. if (chan && IS_CHAN_5GHZ(chan))
  841. pll = 0x1450;
  842. else
  843. pll = 0x1458;
  844. } else {
  845. if (AR_SREV_9280_10_OR_LATER(ah)) {
  846. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  847. if (chan && IS_CHAN_HALF_RATE(chan))
  848. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  849. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  850. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  851. if (chan && IS_CHAN_5GHZ(chan)) {
  852. pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
  853. if (AR_SREV_9280_20(ah)) {
  854. if (((chan->channel % 20) == 0)
  855. || ((chan->channel % 10) == 0))
  856. pll = 0x2850;
  857. else
  858. pll = 0x142c;
  859. }
  860. } else {
  861. pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
  862. }
  863. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  864. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  865. if (chan && IS_CHAN_HALF_RATE(chan))
  866. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  867. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  868. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  869. if (chan && IS_CHAN_5GHZ(chan))
  870. pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
  871. else
  872. pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
  873. } else {
  874. pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
  875. if (chan && IS_CHAN_HALF_RATE(chan))
  876. pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
  877. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  878. pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
  879. if (chan && IS_CHAN_5GHZ(chan))
  880. pll |= SM(0xa, AR_RTC_PLL_DIV);
  881. else
  882. pll |= SM(0xb, AR_RTC_PLL_DIV);
  883. }
  884. }
  885. REG_WRITE(ah, (u16) (AR_RTC_PLL_CONTROL), pll);
  886. udelay(RTC_PLL_SETTLE_DELAY);
  887. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  888. }
  889. static void ath9k_hw_init_chain_masks(struct ath_hal *ah)
  890. {
  891. struct ath_hal_5416 *ahp = AH5416(ah);
  892. int rx_chainmask, tx_chainmask;
  893. rx_chainmask = ahp->ah_rxchainmask;
  894. tx_chainmask = ahp->ah_txchainmask;
  895. switch (rx_chainmask) {
  896. case 0x5:
  897. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  898. AR_PHY_SWAP_ALT_CHAIN);
  899. case 0x3:
  900. if (((ah)->ah_macVersion <= AR_SREV_VERSION_9160)) {
  901. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
  902. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
  903. break;
  904. }
  905. case 0x1:
  906. case 0x2:
  907. case 0x7:
  908. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  909. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  910. break;
  911. default:
  912. break;
  913. }
  914. REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
  915. if (tx_chainmask == 0x5) {
  916. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  917. AR_PHY_SWAP_ALT_CHAIN);
  918. }
  919. if (AR_SREV_9100(ah))
  920. REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
  921. REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
  922. }
  923. static void ath9k_hw_init_interrupt_masks(struct ath_hal *ah,
  924. enum nl80211_iftype opmode)
  925. {
  926. struct ath_hal_5416 *ahp = AH5416(ah);
  927. ahp->ah_maskReg = AR_IMR_TXERR |
  928. AR_IMR_TXURN |
  929. AR_IMR_RXERR |
  930. AR_IMR_RXORN |
  931. AR_IMR_BCNMISC;
  932. if (ahp->ah_intrMitigation)
  933. ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  934. else
  935. ahp->ah_maskReg |= AR_IMR_RXOK;
  936. ahp->ah_maskReg |= AR_IMR_TXOK;
  937. if (opmode == NL80211_IFTYPE_AP)
  938. ahp->ah_maskReg |= AR_IMR_MIB;
  939. REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
  940. REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
  941. if (!AR_SREV_9100(ah)) {
  942. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  943. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  944. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  945. }
  946. }
  947. static bool ath9k_hw_set_ack_timeout(struct ath_hal *ah, u32 us)
  948. {
  949. struct ath_hal_5416 *ahp = AH5416(ah);
  950. if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
  951. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
  952. ahp->ah_acktimeout = (u32) -1;
  953. return false;
  954. } else {
  955. REG_RMW_FIELD(ah, AR_TIME_OUT,
  956. AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
  957. ahp->ah_acktimeout = us;
  958. return true;
  959. }
  960. }
  961. static bool ath9k_hw_set_cts_timeout(struct ath_hal *ah, u32 us)
  962. {
  963. struct ath_hal_5416 *ahp = AH5416(ah);
  964. if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
  965. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
  966. ahp->ah_ctstimeout = (u32) -1;
  967. return false;
  968. } else {
  969. REG_RMW_FIELD(ah, AR_TIME_OUT,
  970. AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
  971. ahp->ah_ctstimeout = us;
  972. return true;
  973. }
  974. }
  975. static bool ath9k_hw_set_global_txtimeout(struct ath_hal *ah, u32 tu)
  976. {
  977. struct ath_hal_5416 *ahp = AH5416(ah);
  978. if (tu > 0xFFFF) {
  979. DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
  980. "bad global tx timeout %u\n", tu);
  981. ahp->ah_globaltxtimeout = (u32) -1;
  982. return false;
  983. } else {
  984. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  985. ahp->ah_globaltxtimeout = tu;
  986. return true;
  987. }
  988. }
  989. static void ath9k_hw_init_user_settings(struct ath_hal *ah)
  990. {
  991. struct ath_hal_5416 *ahp = AH5416(ah);
  992. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ahp->ah_miscMode 0x%x\n",
  993. ahp->ah_miscMode);
  994. if (ahp->ah_miscMode != 0)
  995. REG_WRITE(ah, AR_PCU_MISC,
  996. REG_READ(ah, AR_PCU_MISC) | ahp->ah_miscMode);
  997. if (ahp->ah_slottime != (u32) -1)
  998. ath9k_hw_setslottime(ah, ahp->ah_slottime);
  999. if (ahp->ah_acktimeout != (u32) -1)
  1000. ath9k_hw_set_ack_timeout(ah, ahp->ah_acktimeout);
  1001. if (ahp->ah_ctstimeout != (u32) -1)
  1002. ath9k_hw_set_cts_timeout(ah, ahp->ah_ctstimeout);
  1003. if (ahp->ah_globaltxtimeout != (u32) -1)
  1004. ath9k_hw_set_global_txtimeout(ah, ahp->ah_globaltxtimeout);
  1005. }
  1006. const char *ath9k_hw_probe(u16 vendorid, u16 devid)
  1007. {
  1008. return vendorid == ATHEROS_VENDOR_ID ?
  1009. ath9k_hw_devname(devid) : NULL;
  1010. }
  1011. void ath9k_hw_detach(struct ath_hal *ah)
  1012. {
  1013. if (!AR_SREV_9100(ah))
  1014. ath9k_hw_ani_detach(ah);
  1015. ath9k_hw_rfdetach(ah);
  1016. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  1017. kfree(ah);
  1018. }
  1019. struct ath_hal *ath9k_hw_attach(u16 devid, struct ath_softc *sc,
  1020. void __iomem *mem, int *error)
  1021. {
  1022. struct ath_hal *ah = NULL;
  1023. switch (devid) {
  1024. case AR5416_DEVID_PCI:
  1025. case AR5416_DEVID_PCIE:
  1026. case AR9160_DEVID_PCI:
  1027. case AR9280_DEVID_PCI:
  1028. case AR9280_DEVID_PCIE:
  1029. case AR9285_DEVID_PCIE:
  1030. ah = ath9k_hw_do_attach(devid, sc, mem, error);
  1031. break;
  1032. default:
  1033. *error = -ENXIO;
  1034. break;
  1035. }
  1036. return ah;
  1037. }
  1038. /*******/
  1039. /* INI */
  1040. /*******/
  1041. static void ath9k_hw_override_ini(struct ath_hal *ah,
  1042. struct ath9k_channel *chan)
  1043. {
  1044. /*
  1045. * Set the RX_ABORT and RX_DIS and clear if off only after
  1046. * RXE is set for MAC. This prevents frames with corrupted
  1047. * descriptor status.
  1048. */
  1049. REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
  1050. if (!AR_SREV_5416_V20_OR_LATER(ah) ||
  1051. AR_SREV_9280_10_OR_LATER(ah))
  1052. return;
  1053. REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
  1054. }
  1055. static u32 ath9k_hw_def_ini_fixup(struct ath_hal *ah,
  1056. struct ar5416_eeprom_def *pEepData,
  1057. u32 reg, u32 value)
  1058. {
  1059. struct base_eep_header *pBase = &(pEepData->baseEepHeader);
  1060. switch (ah->ah_devid) {
  1061. case AR9280_DEVID_PCI:
  1062. if (reg == 0x7894) {
  1063. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  1064. "ini VAL: %x EEPROM: %x\n", value,
  1065. (pBase->version & 0xff));
  1066. if ((pBase->version & 0xff) > 0x0a) {
  1067. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  1068. "PWDCLKIND: %d\n",
  1069. pBase->pwdclkind);
  1070. value &= ~AR_AN_TOP2_PWDCLKIND;
  1071. value |= AR_AN_TOP2_PWDCLKIND &
  1072. (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
  1073. } else {
  1074. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  1075. "PWDCLKIND Earlier Rev\n");
  1076. }
  1077. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  1078. "final ini VAL: %x\n", value);
  1079. }
  1080. break;
  1081. }
  1082. return value;
  1083. }
  1084. static u32 ath9k_hw_ini_fixup(struct ath_hal *ah,
  1085. struct ar5416_eeprom_def *pEepData,
  1086. u32 reg, u32 value)
  1087. {
  1088. struct ath_hal_5416 *ahp = AH5416(ah);
  1089. if (ahp->ah_eep_map == EEP_MAP_4KBITS)
  1090. return value;
  1091. else
  1092. return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
  1093. }
  1094. static int ath9k_hw_process_ini(struct ath_hal *ah,
  1095. struct ath9k_channel *chan,
  1096. enum ath9k_ht_macmode macmode)
  1097. {
  1098. int i, regWrites = 0;
  1099. struct ath_hal_5416 *ahp = AH5416(ah);
  1100. u32 modesIndex, freqIndex;
  1101. int status;
  1102. switch (chan->chanmode) {
  1103. case CHANNEL_A:
  1104. case CHANNEL_A_HT20:
  1105. modesIndex = 1;
  1106. freqIndex = 1;
  1107. break;
  1108. case CHANNEL_A_HT40PLUS:
  1109. case CHANNEL_A_HT40MINUS:
  1110. modesIndex = 2;
  1111. freqIndex = 1;
  1112. break;
  1113. case CHANNEL_G:
  1114. case CHANNEL_G_HT20:
  1115. case CHANNEL_B:
  1116. modesIndex = 4;
  1117. freqIndex = 2;
  1118. break;
  1119. case CHANNEL_G_HT40PLUS:
  1120. case CHANNEL_G_HT40MINUS:
  1121. modesIndex = 3;
  1122. freqIndex = 2;
  1123. break;
  1124. default:
  1125. return -EINVAL;
  1126. }
  1127. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  1128. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
  1129. ath9k_hw_set_addac(ah, chan);
  1130. if (AR_SREV_5416_V22_OR_LATER(ah)) {
  1131. REG_WRITE_ARRAY(&ahp->ah_iniAddac, 1, regWrites);
  1132. } else {
  1133. struct ar5416IniArray temp;
  1134. u32 addacSize =
  1135. sizeof(u32) * ahp->ah_iniAddac.ia_rows *
  1136. ahp->ah_iniAddac.ia_columns;
  1137. memcpy(ahp->ah_addac5416_21,
  1138. ahp->ah_iniAddac.ia_array, addacSize);
  1139. (ahp->ah_addac5416_21)[31 * ahp->ah_iniAddac.ia_columns + 1] = 0;
  1140. temp.ia_array = ahp->ah_addac5416_21;
  1141. temp.ia_columns = ahp->ah_iniAddac.ia_columns;
  1142. temp.ia_rows = ahp->ah_iniAddac.ia_rows;
  1143. REG_WRITE_ARRAY(&temp, 1, regWrites);
  1144. }
  1145. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
  1146. for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
  1147. u32 reg = INI_RA(&ahp->ah_iniModes, i, 0);
  1148. u32 val = INI_RA(&ahp->ah_iniModes, i, modesIndex);
  1149. REG_WRITE(ah, reg, val);
  1150. if (reg >= 0x7800 && reg < 0x78a0
  1151. && ah->ah_config.analog_shiftreg) {
  1152. udelay(100);
  1153. }
  1154. DO_DELAY(regWrites);
  1155. }
  1156. if (AR_SREV_9280(ah))
  1157. REG_WRITE_ARRAY(&ahp->ah_iniModesRxGain, modesIndex, regWrites);
  1158. if (AR_SREV_9280(ah))
  1159. REG_WRITE_ARRAY(&ahp->ah_iniModesTxGain, modesIndex, regWrites);
  1160. for (i = 0; i < ahp->ah_iniCommon.ia_rows; i++) {
  1161. u32 reg = INI_RA(&ahp->ah_iniCommon, i, 0);
  1162. u32 val = INI_RA(&ahp->ah_iniCommon, i, 1);
  1163. REG_WRITE(ah, reg, val);
  1164. if (reg >= 0x7800 && reg < 0x78a0
  1165. && ah->ah_config.analog_shiftreg) {
  1166. udelay(100);
  1167. }
  1168. DO_DELAY(regWrites);
  1169. }
  1170. ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
  1171. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
  1172. REG_WRITE_ARRAY(&ahp->ah_iniModesAdditional, modesIndex,
  1173. regWrites);
  1174. }
  1175. ath9k_hw_override_ini(ah, chan);
  1176. ath9k_hw_set_regs(ah, chan, macmode);
  1177. ath9k_hw_init_chain_masks(ah);
  1178. status = ath9k_hw_set_txpower(ah, chan,
  1179. ath9k_regd_get_ctl(ah, chan),
  1180. ath9k_regd_get_antenna_allowed(ah,
  1181. chan),
  1182. chan->maxRegTxPower * 2,
  1183. min((u32) MAX_RATE_POWER,
  1184. (u32) ah->ah_powerLimit));
  1185. if (status != 0) {
  1186. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  1187. "error init'ing transmit power\n");
  1188. return -EIO;
  1189. }
  1190. if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
  1191. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  1192. "ar5416SetRfRegs failed\n");
  1193. return -EIO;
  1194. }
  1195. return 0;
  1196. }
  1197. /****************************************/
  1198. /* Reset and Channel Switching Routines */
  1199. /****************************************/
  1200. static void ath9k_hw_set_rfmode(struct ath_hal *ah, struct ath9k_channel *chan)
  1201. {
  1202. u32 rfMode = 0;
  1203. if (chan == NULL)
  1204. return;
  1205. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  1206. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  1207. if (!AR_SREV_9280_10_OR_LATER(ah))
  1208. rfMode |= (IS_CHAN_5GHZ(chan)) ?
  1209. AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
  1210. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
  1211. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  1212. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  1213. }
  1214. static void ath9k_hw_mark_phy_inactive(struct ath_hal *ah)
  1215. {
  1216. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  1217. }
  1218. static inline void ath9k_hw_set_dma(struct ath_hal *ah)
  1219. {
  1220. u32 regval;
  1221. regval = REG_READ(ah, AR_AHB_MODE);
  1222. REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
  1223. regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
  1224. REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
  1225. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->ah_txTrigLevel);
  1226. regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
  1227. REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
  1228. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1229. if (AR_SREV_9285(ah)) {
  1230. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1231. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  1232. } else {
  1233. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1234. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  1235. }
  1236. }
  1237. static void ath9k_hw_set_operating_mode(struct ath_hal *ah, int opmode)
  1238. {
  1239. u32 val;
  1240. val = REG_READ(ah, AR_STA_ID1);
  1241. val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
  1242. switch (opmode) {
  1243. case NL80211_IFTYPE_AP:
  1244. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
  1245. | AR_STA_ID1_KSRCH_MODE);
  1246. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1247. break;
  1248. case NL80211_IFTYPE_ADHOC:
  1249. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
  1250. | AR_STA_ID1_KSRCH_MODE);
  1251. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1252. break;
  1253. case NL80211_IFTYPE_STATION:
  1254. case NL80211_IFTYPE_MONITOR:
  1255. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  1256. break;
  1257. }
  1258. }
  1259. static inline void ath9k_hw_get_delta_slope_vals(struct ath_hal *ah,
  1260. u32 coef_scaled,
  1261. u32 *coef_mantissa,
  1262. u32 *coef_exponent)
  1263. {
  1264. u32 coef_exp, coef_man;
  1265. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1266. if ((coef_scaled >> coef_exp) & 0x1)
  1267. break;
  1268. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1269. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1270. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1271. *coef_exponent = coef_exp - 16;
  1272. }
  1273. static void ath9k_hw_set_delta_slope(struct ath_hal *ah,
  1274. struct ath9k_channel *chan)
  1275. {
  1276. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  1277. u32 clockMhzScaled = 0x64000000;
  1278. struct chan_centers centers;
  1279. if (IS_CHAN_HALF_RATE(chan))
  1280. clockMhzScaled = clockMhzScaled >> 1;
  1281. else if (IS_CHAN_QUARTER_RATE(chan))
  1282. clockMhzScaled = clockMhzScaled >> 2;
  1283. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1284. coef_scaled = clockMhzScaled / centers.synth_center;
  1285. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  1286. &ds_coef_exp);
  1287. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  1288. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  1289. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  1290. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  1291. coef_scaled = (9 * coef_scaled) / 10;
  1292. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  1293. &ds_coef_exp);
  1294. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  1295. AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
  1296. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  1297. AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
  1298. }
  1299. static bool ath9k_hw_set_reset(struct ath_hal *ah, int type)
  1300. {
  1301. u32 rst_flags;
  1302. u32 tmpReg;
  1303. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1304. AR_RTC_FORCE_WAKE_ON_INT);
  1305. if (AR_SREV_9100(ah)) {
  1306. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1307. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1308. } else {
  1309. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1310. if (tmpReg &
  1311. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1312. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1313. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1314. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1315. } else {
  1316. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1317. }
  1318. rst_flags = AR_RTC_RC_MAC_WARM;
  1319. if (type == ATH9K_RESET_COLD)
  1320. rst_flags |= AR_RTC_RC_MAC_COLD;
  1321. }
  1322. REG_WRITE(ah, (u16) (AR_RTC_RC), rst_flags);
  1323. udelay(50);
  1324. REG_WRITE(ah, (u16) (AR_RTC_RC), 0);
  1325. if (!ath9k_hw_wait(ah, (u16) (AR_RTC_RC), AR_RTC_RC_M, 0)) {
  1326. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  1327. "RTC stuck in MAC reset\n");
  1328. return false;
  1329. }
  1330. if (!AR_SREV_9100(ah))
  1331. REG_WRITE(ah, AR_RC, 0);
  1332. ath9k_hw_init_pll(ah, NULL);
  1333. if (AR_SREV_9100(ah))
  1334. udelay(50);
  1335. return true;
  1336. }
  1337. static bool ath9k_hw_set_reset_power_on(struct ath_hal *ah)
  1338. {
  1339. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1340. AR_RTC_FORCE_WAKE_ON_INT);
  1341. REG_WRITE(ah, (u16) (AR_RTC_RESET), 0);
  1342. REG_WRITE(ah, (u16) (AR_RTC_RESET), 1);
  1343. if (!ath9k_hw_wait(ah,
  1344. AR_RTC_STATUS,
  1345. AR_RTC_STATUS_M,
  1346. AR_RTC_STATUS_ON)) {
  1347. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
  1348. return false;
  1349. }
  1350. ath9k_hw_read_revisions(ah);
  1351. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1352. }
  1353. static bool ath9k_hw_set_reset_reg(struct ath_hal *ah, u32 type)
  1354. {
  1355. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1356. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1357. switch (type) {
  1358. case ATH9K_RESET_POWER_ON:
  1359. return ath9k_hw_set_reset_power_on(ah);
  1360. break;
  1361. case ATH9K_RESET_WARM:
  1362. case ATH9K_RESET_COLD:
  1363. return ath9k_hw_set_reset(ah, type);
  1364. break;
  1365. default:
  1366. return false;
  1367. }
  1368. }
  1369. static void ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan,
  1370. enum ath9k_ht_macmode macmode)
  1371. {
  1372. u32 phymode;
  1373. u32 enableDacFifo = 0;
  1374. struct ath_hal_5416 *ahp = AH5416(ah);
  1375. if (AR_SREV_9285_10_OR_LATER(ah))
  1376. enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
  1377. AR_PHY_FC_ENABLE_DAC_FIFO);
  1378. phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
  1379. | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
  1380. if (IS_CHAN_HT40(chan)) {
  1381. phymode |= AR_PHY_FC_DYN2040_EN;
  1382. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  1383. (chan->chanmode == CHANNEL_G_HT40PLUS))
  1384. phymode |= AR_PHY_FC_DYN2040_PRI_CH;
  1385. if (ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
  1386. phymode |= AR_PHY_FC_DYN2040_EXT_CH;
  1387. }
  1388. REG_WRITE(ah, AR_PHY_TURBO, phymode);
  1389. ath9k_hw_set11nmac2040(ah, macmode);
  1390. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  1391. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  1392. }
  1393. static bool ath9k_hw_chip_reset(struct ath_hal *ah,
  1394. struct ath9k_channel *chan)
  1395. {
  1396. struct ath_hal_5416 *ahp = AH5416(ah);
  1397. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1398. return false;
  1399. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1400. return false;
  1401. ahp->ah_chipFullSleep = false;
  1402. ath9k_hw_init_pll(ah, chan);
  1403. ath9k_hw_set_rfmode(ah, chan);
  1404. return true;
  1405. }
  1406. static struct ath9k_channel *ath9k_hw_check_chan(struct ath_hal *ah,
  1407. struct ath9k_channel *chan)
  1408. {
  1409. if (!(IS_CHAN_2GHZ(chan) ^ IS_CHAN_5GHZ(chan))) {
  1410. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1411. "invalid channel %u/0x%x; not marked as "
  1412. "2GHz or 5GHz\n", chan->channel, chan->channelFlags);
  1413. return NULL;
  1414. }
  1415. if (!IS_CHAN_OFDM(chan) &&
  1416. !IS_CHAN_B(chan) &&
  1417. !IS_CHAN_HT20(chan) &&
  1418. !IS_CHAN_HT40(chan)) {
  1419. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1420. "invalid channel %u/0x%x; not marked as "
  1421. "OFDM or CCK or HT20 or HT40PLUS or HT40MINUS\n",
  1422. chan->channel, chan->channelFlags);
  1423. return NULL;
  1424. }
  1425. return ath9k_regd_check_channel(ah, chan);
  1426. }
  1427. static bool ath9k_hw_channel_change(struct ath_hal *ah,
  1428. struct ath9k_channel *chan,
  1429. enum ath9k_ht_macmode macmode)
  1430. {
  1431. u32 synthDelay, qnum;
  1432. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1433. if (ath9k_hw_numtxpending(ah, qnum)) {
  1434. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
  1435. "Transmit frames pending on queue %d\n", qnum);
  1436. return false;
  1437. }
  1438. }
  1439. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  1440. if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  1441. AR_PHY_RFBUS_GRANT_EN)) {
  1442. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  1443. "Could not kill baseband RX\n");
  1444. return false;
  1445. }
  1446. ath9k_hw_set_regs(ah, chan, macmode);
  1447. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1448. if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
  1449. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1450. "failed to set channel\n");
  1451. return false;
  1452. }
  1453. } else {
  1454. if (!(ath9k_hw_set_channel(ah, chan))) {
  1455. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1456. "failed to set channel\n");
  1457. return false;
  1458. }
  1459. }
  1460. if (ath9k_hw_set_txpower(ah, chan,
  1461. ath9k_regd_get_ctl(ah, chan),
  1462. ath9k_regd_get_antenna_allowed(ah, chan),
  1463. chan->maxRegTxPower * 2,
  1464. min((u32) MAX_RATE_POWER,
  1465. (u32) ah->ah_powerLimit)) != 0) {
  1466. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1467. "error init'ing transmit power\n");
  1468. return false;
  1469. }
  1470. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  1471. if (IS_CHAN_B(chan))
  1472. synthDelay = (4 * synthDelay) / 22;
  1473. else
  1474. synthDelay /= 10;
  1475. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  1476. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  1477. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1478. ath9k_hw_set_delta_slope(ah, chan);
  1479. if (AR_SREV_9280_10_OR_LATER(ah))
  1480. ath9k_hw_9280_spur_mitigate(ah, chan);
  1481. else
  1482. ath9k_hw_spur_mitigate(ah, chan);
  1483. if (!chan->oneTimeCalsDone)
  1484. chan->oneTimeCalsDone = true;
  1485. return true;
  1486. }
  1487. static void ath9k_hw_9280_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan)
  1488. {
  1489. int bb_spur = AR_NO_SPUR;
  1490. int freq;
  1491. int bin, cur_bin;
  1492. int bb_spur_off, spur_subchannel_sd;
  1493. int spur_freq_sd;
  1494. int spur_delta_phase;
  1495. int denominator;
  1496. int upper, lower, cur_vit_mask;
  1497. int tmp, newVal;
  1498. int i;
  1499. int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
  1500. AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
  1501. };
  1502. int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
  1503. AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
  1504. };
  1505. int inc[4] = { 0, 100, 0, 0 };
  1506. struct chan_centers centers;
  1507. int8_t mask_m[123];
  1508. int8_t mask_p[123];
  1509. int8_t mask_amt;
  1510. int tmp_mask;
  1511. int cur_bb_spur;
  1512. bool is2GHz = IS_CHAN_2GHZ(chan);
  1513. memset(&mask_m, 0, sizeof(int8_t) * 123);
  1514. memset(&mask_p, 0, sizeof(int8_t) * 123);
  1515. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1516. freq = centers.synth_center;
  1517. ah->ah_config.spurmode = SPUR_ENABLE_EEPROM;
  1518. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  1519. cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
  1520. if (is2GHz)
  1521. cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
  1522. else
  1523. cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
  1524. if (AR_NO_SPUR == cur_bb_spur)
  1525. break;
  1526. cur_bb_spur = cur_bb_spur - freq;
  1527. if (IS_CHAN_HT40(chan)) {
  1528. if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
  1529. (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
  1530. bb_spur = cur_bb_spur;
  1531. break;
  1532. }
  1533. } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
  1534. (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
  1535. bb_spur = cur_bb_spur;
  1536. break;
  1537. }
  1538. }
  1539. if (AR_NO_SPUR == bb_spur) {
  1540. REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
  1541. AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
  1542. return;
  1543. } else {
  1544. REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
  1545. AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
  1546. }
  1547. bin = bb_spur * 320;
  1548. tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
  1549. newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
  1550. AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
  1551. AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
  1552. AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
  1553. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
  1554. newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
  1555. AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
  1556. AR_PHY_SPUR_REG_MASK_RATE_SELECT |
  1557. AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
  1558. SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
  1559. REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
  1560. if (IS_CHAN_HT40(chan)) {
  1561. if (bb_spur < 0) {
  1562. spur_subchannel_sd = 1;
  1563. bb_spur_off = bb_spur + 10;
  1564. } else {
  1565. spur_subchannel_sd = 0;
  1566. bb_spur_off = bb_spur - 10;
  1567. }
  1568. } else {
  1569. spur_subchannel_sd = 0;
  1570. bb_spur_off = bb_spur;
  1571. }
  1572. if (IS_CHAN_HT40(chan))
  1573. spur_delta_phase =
  1574. ((bb_spur * 262144) /
  1575. 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  1576. else
  1577. spur_delta_phase =
  1578. ((bb_spur * 524288) /
  1579. 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  1580. denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
  1581. spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
  1582. newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
  1583. SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
  1584. SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
  1585. REG_WRITE(ah, AR_PHY_TIMING11, newVal);
  1586. newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
  1587. REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
  1588. cur_bin = -6000;
  1589. upper = bin + 100;
  1590. lower = bin - 100;
  1591. for (i = 0; i < 4; i++) {
  1592. int pilot_mask = 0;
  1593. int chan_mask = 0;
  1594. int bp = 0;
  1595. for (bp = 0; bp < 30; bp++) {
  1596. if ((cur_bin > lower) && (cur_bin < upper)) {
  1597. pilot_mask = pilot_mask | 0x1 << bp;
  1598. chan_mask = chan_mask | 0x1 << bp;
  1599. }
  1600. cur_bin += 100;
  1601. }
  1602. cur_bin += inc[i];
  1603. REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
  1604. REG_WRITE(ah, chan_mask_reg[i], chan_mask);
  1605. }
  1606. cur_vit_mask = 6100;
  1607. upper = bin + 120;
  1608. lower = bin - 120;
  1609. for (i = 0; i < 123; i++) {
  1610. if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
  1611. /* workaround for gcc bug #37014 */
  1612. volatile int tmp = abs(cur_vit_mask - bin);
  1613. if (tmp < 75)
  1614. mask_amt = 1;
  1615. else
  1616. mask_amt = 0;
  1617. if (cur_vit_mask < 0)
  1618. mask_m[abs(cur_vit_mask / 100)] = mask_amt;
  1619. else
  1620. mask_p[cur_vit_mask / 100] = mask_amt;
  1621. }
  1622. cur_vit_mask -= 100;
  1623. }
  1624. tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
  1625. | (mask_m[48] << 26) | (mask_m[49] << 24)
  1626. | (mask_m[50] << 22) | (mask_m[51] << 20)
  1627. | (mask_m[52] << 18) | (mask_m[53] << 16)
  1628. | (mask_m[54] << 14) | (mask_m[55] << 12)
  1629. | (mask_m[56] << 10) | (mask_m[57] << 8)
  1630. | (mask_m[58] << 6) | (mask_m[59] << 4)
  1631. | (mask_m[60] << 2) | (mask_m[61] << 0);
  1632. REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
  1633. REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
  1634. tmp_mask = (mask_m[31] << 28)
  1635. | (mask_m[32] << 26) | (mask_m[33] << 24)
  1636. | (mask_m[34] << 22) | (mask_m[35] << 20)
  1637. | (mask_m[36] << 18) | (mask_m[37] << 16)
  1638. | (mask_m[48] << 14) | (mask_m[39] << 12)
  1639. | (mask_m[40] << 10) | (mask_m[41] << 8)
  1640. | (mask_m[42] << 6) | (mask_m[43] << 4)
  1641. | (mask_m[44] << 2) | (mask_m[45] << 0);
  1642. REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
  1643. REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
  1644. tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
  1645. | (mask_m[18] << 26) | (mask_m[18] << 24)
  1646. | (mask_m[20] << 22) | (mask_m[20] << 20)
  1647. | (mask_m[22] << 18) | (mask_m[22] << 16)
  1648. | (mask_m[24] << 14) | (mask_m[24] << 12)
  1649. | (mask_m[25] << 10) | (mask_m[26] << 8)
  1650. | (mask_m[27] << 6) | (mask_m[28] << 4)
  1651. | (mask_m[29] << 2) | (mask_m[30] << 0);
  1652. REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
  1653. REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
  1654. tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
  1655. | (mask_m[2] << 26) | (mask_m[3] << 24)
  1656. | (mask_m[4] << 22) | (mask_m[5] << 20)
  1657. | (mask_m[6] << 18) | (mask_m[7] << 16)
  1658. | (mask_m[8] << 14) | (mask_m[9] << 12)
  1659. | (mask_m[10] << 10) | (mask_m[11] << 8)
  1660. | (mask_m[12] << 6) | (mask_m[13] << 4)
  1661. | (mask_m[14] << 2) | (mask_m[15] << 0);
  1662. REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
  1663. REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
  1664. tmp_mask = (mask_p[15] << 28)
  1665. | (mask_p[14] << 26) | (mask_p[13] << 24)
  1666. | (mask_p[12] << 22) | (mask_p[11] << 20)
  1667. | (mask_p[10] << 18) | (mask_p[9] << 16)
  1668. | (mask_p[8] << 14) | (mask_p[7] << 12)
  1669. | (mask_p[6] << 10) | (mask_p[5] << 8)
  1670. | (mask_p[4] << 6) | (mask_p[3] << 4)
  1671. | (mask_p[2] << 2) | (mask_p[1] << 0);
  1672. REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
  1673. REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
  1674. tmp_mask = (mask_p[30] << 28)
  1675. | (mask_p[29] << 26) | (mask_p[28] << 24)
  1676. | (mask_p[27] << 22) | (mask_p[26] << 20)
  1677. | (mask_p[25] << 18) | (mask_p[24] << 16)
  1678. | (mask_p[23] << 14) | (mask_p[22] << 12)
  1679. | (mask_p[21] << 10) | (mask_p[20] << 8)
  1680. | (mask_p[19] << 6) | (mask_p[18] << 4)
  1681. | (mask_p[17] << 2) | (mask_p[16] << 0);
  1682. REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
  1683. REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
  1684. tmp_mask = (mask_p[45] << 28)
  1685. | (mask_p[44] << 26) | (mask_p[43] << 24)
  1686. | (mask_p[42] << 22) | (mask_p[41] << 20)
  1687. | (mask_p[40] << 18) | (mask_p[39] << 16)
  1688. | (mask_p[38] << 14) | (mask_p[37] << 12)
  1689. | (mask_p[36] << 10) | (mask_p[35] << 8)
  1690. | (mask_p[34] << 6) | (mask_p[33] << 4)
  1691. | (mask_p[32] << 2) | (mask_p[31] << 0);
  1692. REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
  1693. REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
  1694. tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
  1695. | (mask_p[59] << 26) | (mask_p[58] << 24)
  1696. | (mask_p[57] << 22) | (mask_p[56] << 20)
  1697. | (mask_p[55] << 18) | (mask_p[54] << 16)
  1698. | (mask_p[53] << 14) | (mask_p[52] << 12)
  1699. | (mask_p[51] << 10) | (mask_p[50] << 8)
  1700. | (mask_p[49] << 6) | (mask_p[48] << 4)
  1701. | (mask_p[47] << 2) | (mask_p[46] << 0);
  1702. REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
  1703. REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
  1704. }
  1705. static void ath9k_hw_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan)
  1706. {
  1707. int bb_spur = AR_NO_SPUR;
  1708. int bin, cur_bin;
  1709. int spur_freq_sd;
  1710. int spur_delta_phase;
  1711. int denominator;
  1712. int upper, lower, cur_vit_mask;
  1713. int tmp, new;
  1714. int i;
  1715. int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
  1716. AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
  1717. };
  1718. int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
  1719. AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
  1720. };
  1721. int inc[4] = { 0, 100, 0, 0 };
  1722. int8_t mask_m[123];
  1723. int8_t mask_p[123];
  1724. int8_t mask_amt;
  1725. int tmp_mask;
  1726. int cur_bb_spur;
  1727. bool is2GHz = IS_CHAN_2GHZ(chan);
  1728. memset(&mask_m, 0, sizeof(int8_t) * 123);
  1729. memset(&mask_p, 0, sizeof(int8_t) * 123);
  1730. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  1731. cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
  1732. if (AR_NO_SPUR == cur_bb_spur)
  1733. break;
  1734. cur_bb_spur = cur_bb_spur - (chan->channel * 10);
  1735. if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
  1736. bb_spur = cur_bb_spur;
  1737. break;
  1738. }
  1739. }
  1740. if (AR_NO_SPUR == bb_spur)
  1741. return;
  1742. bin = bb_spur * 32;
  1743. tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
  1744. new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
  1745. AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
  1746. AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
  1747. AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
  1748. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
  1749. new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
  1750. AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
  1751. AR_PHY_SPUR_REG_MASK_RATE_SELECT |
  1752. AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
  1753. SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
  1754. REG_WRITE(ah, AR_PHY_SPUR_REG, new);
  1755. spur_delta_phase = ((bb_spur * 524288) / 100) &
  1756. AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  1757. denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
  1758. spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
  1759. new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
  1760. SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
  1761. SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
  1762. REG_WRITE(ah, AR_PHY_TIMING11, new);
  1763. cur_bin = -6000;
  1764. upper = bin + 100;
  1765. lower = bin - 100;
  1766. for (i = 0; i < 4; i++) {
  1767. int pilot_mask = 0;
  1768. int chan_mask = 0;
  1769. int bp = 0;
  1770. for (bp = 0; bp < 30; bp++) {
  1771. if ((cur_bin > lower) && (cur_bin < upper)) {
  1772. pilot_mask = pilot_mask | 0x1 << bp;
  1773. chan_mask = chan_mask | 0x1 << bp;
  1774. }
  1775. cur_bin += 100;
  1776. }
  1777. cur_bin += inc[i];
  1778. REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
  1779. REG_WRITE(ah, chan_mask_reg[i], chan_mask);
  1780. }
  1781. cur_vit_mask = 6100;
  1782. upper = bin + 120;
  1783. lower = bin - 120;
  1784. for (i = 0; i < 123; i++) {
  1785. if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
  1786. /* workaround for gcc bug #37014 */
  1787. volatile int tmp = abs(cur_vit_mask - bin);
  1788. if (tmp < 75)
  1789. mask_amt = 1;
  1790. else
  1791. mask_amt = 0;
  1792. if (cur_vit_mask < 0)
  1793. mask_m[abs(cur_vit_mask / 100)] = mask_amt;
  1794. else
  1795. mask_p[cur_vit_mask / 100] = mask_amt;
  1796. }
  1797. cur_vit_mask -= 100;
  1798. }
  1799. tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
  1800. | (mask_m[48] << 26) | (mask_m[49] << 24)
  1801. | (mask_m[50] << 22) | (mask_m[51] << 20)
  1802. | (mask_m[52] << 18) | (mask_m[53] << 16)
  1803. | (mask_m[54] << 14) | (mask_m[55] << 12)
  1804. | (mask_m[56] << 10) | (mask_m[57] << 8)
  1805. | (mask_m[58] << 6) | (mask_m[59] << 4)
  1806. | (mask_m[60] << 2) | (mask_m[61] << 0);
  1807. REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
  1808. REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
  1809. tmp_mask = (mask_m[31] << 28)
  1810. | (mask_m[32] << 26) | (mask_m[33] << 24)
  1811. | (mask_m[34] << 22) | (mask_m[35] << 20)
  1812. | (mask_m[36] << 18) | (mask_m[37] << 16)
  1813. | (mask_m[48] << 14) | (mask_m[39] << 12)
  1814. | (mask_m[40] << 10) | (mask_m[41] << 8)
  1815. | (mask_m[42] << 6) | (mask_m[43] << 4)
  1816. | (mask_m[44] << 2) | (mask_m[45] << 0);
  1817. REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
  1818. REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
  1819. tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
  1820. | (mask_m[18] << 26) | (mask_m[18] << 24)
  1821. | (mask_m[20] << 22) | (mask_m[20] << 20)
  1822. | (mask_m[22] << 18) | (mask_m[22] << 16)
  1823. | (mask_m[24] << 14) | (mask_m[24] << 12)
  1824. | (mask_m[25] << 10) | (mask_m[26] << 8)
  1825. | (mask_m[27] << 6) | (mask_m[28] << 4)
  1826. | (mask_m[29] << 2) | (mask_m[30] << 0);
  1827. REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
  1828. REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
  1829. tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
  1830. | (mask_m[2] << 26) | (mask_m[3] << 24)
  1831. | (mask_m[4] << 22) | (mask_m[5] << 20)
  1832. | (mask_m[6] << 18) | (mask_m[7] << 16)
  1833. | (mask_m[8] << 14) | (mask_m[9] << 12)
  1834. | (mask_m[10] << 10) | (mask_m[11] << 8)
  1835. | (mask_m[12] << 6) | (mask_m[13] << 4)
  1836. | (mask_m[14] << 2) | (mask_m[15] << 0);
  1837. REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
  1838. REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
  1839. tmp_mask = (mask_p[15] << 28)
  1840. | (mask_p[14] << 26) | (mask_p[13] << 24)
  1841. | (mask_p[12] << 22) | (mask_p[11] << 20)
  1842. | (mask_p[10] << 18) | (mask_p[9] << 16)
  1843. | (mask_p[8] << 14) | (mask_p[7] << 12)
  1844. | (mask_p[6] << 10) | (mask_p[5] << 8)
  1845. | (mask_p[4] << 6) | (mask_p[3] << 4)
  1846. | (mask_p[2] << 2) | (mask_p[1] << 0);
  1847. REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
  1848. REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
  1849. tmp_mask = (mask_p[30] << 28)
  1850. | (mask_p[29] << 26) | (mask_p[28] << 24)
  1851. | (mask_p[27] << 22) | (mask_p[26] << 20)
  1852. | (mask_p[25] << 18) | (mask_p[24] << 16)
  1853. | (mask_p[23] << 14) | (mask_p[22] << 12)
  1854. | (mask_p[21] << 10) | (mask_p[20] << 8)
  1855. | (mask_p[19] << 6) | (mask_p[18] << 4)
  1856. | (mask_p[17] << 2) | (mask_p[16] << 0);
  1857. REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
  1858. REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
  1859. tmp_mask = (mask_p[45] << 28)
  1860. | (mask_p[44] << 26) | (mask_p[43] << 24)
  1861. | (mask_p[42] << 22) | (mask_p[41] << 20)
  1862. | (mask_p[40] << 18) | (mask_p[39] << 16)
  1863. | (mask_p[38] << 14) | (mask_p[37] << 12)
  1864. | (mask_p[36] << 10) | (mask_p[35] << 8)
  1865. | (mask_p[34] << 6) | (mask_p[33] << 4)
  1866. | (mask_p[32] << 2) | (mask_p[31] << 0);
  1867. REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
  1868. REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
  1869. tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
  1870. | (mask_p[59] << 26) | (mask_p[58] << 24)
  1871. | (mask_p[57] << 22) | (mask_p[56] << 20)
  1872. | (mask_p[55] << 18) | (mask_p[54] << 16)
  1873. | (mask_p[53] << 14) | (mask_p[52] << 12)
  1874. | (mask_p[51] << 10) | (mask_p[50] << 8)
  1875. | (mask_p[49] << 6) | (mask_p[48] << 4)
  1876. | (mask_p[47] << 2) | (mask_p[46] << 0);
  1877. REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
  1878. REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
  1879. }
  1880. int ath9k_hw_reset(struct ath_hal *ah, struct ath9k_channel *chan,
  1881. bool bChannelChange)
  1882. {
  1883. u32 saveLedState;
  1884. struct ath_softc *sc = ah->ah_sc;
  1885. struct ath_hal_5416 *ahp = AH5416(ah);
  1886. struct ath9k_channel *curchan = ah->ah_curchan;
  1887. u32 saveDefAntenna;
  1888. u32 macStaId1;
  1889. int i, rx_chainmask, r;
  1890. ahp->ah_extprotspacing = sc->sc_ht_extprotspacing;
  1891. ahp->ah_txchainmask = sc->sc_tx_chainmask;
  1892. ahp->ah_rxchainmask = sc->sc_rx_chainmask;
  1893. if (AR_SREV_9280(ah)) {
  1894. ahp->ah_txchainmask &= 0x3;
  1895. ahp->ah_rxchainmask &= 0x3;
  1896. }
  1897. if (ath9k_hw_check_chan(ah, chan) == NULL) {
  1898. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1899. "invalid channel %u/0x%x; no mapping\n",
  1900. chan->channel, chan->channelFlags);
  1901. return -EINVAL;
  1902. }
  1903. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1904. return -EIO;
  1905. if (curchan)
  1906. ath9k_hw_getnf(ah, curchan);
  1907. if (bChannelChange &&
  1908. (ahp->ah_chipFullSleep != true) &&
  1909. (ah->ah_curchan != NULL) &&
  1910. (chan->channel != ah->ah_curchan->channel) &&
  1911. ((chan->channelFlags & CHANNEL_ALL) ==
  1912. (ah->ah_curchan->channelFlags & CHANNEL_ALL)) &&
  1913. (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
  1914. !IS_CHAN_A_5MHZ_SPACED(ah->ah_curchan)))) {
  1915. if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
  1916. ath9k_hw_loadnf(ah, ah->ah_curchan);
  1917. ath9k_hw_start_nfcal(ah);
  1918. return 0;
  1919. }
  1920. }
  1921. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1922. if (saveDefAntenna == 0)
  1923. saveDefAntenna = 1;
  1924. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1925. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1926. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1927. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1928. ath9k_hw_mark_phy_inactive(ah);
  1929. if (!ath9k_hw_chip_reset(ah, chan)) {
  1930. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "chip reset failed\n");
  1931. return -EINVAL;
  1932. }
  1933. if (AR_SREV_9280(ah)) {
  1934. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  1935. AR_GPIO_JTAG_DISABLE);
  1936. if (test_bit(ATH9K_MODE_11A, ah->ah_caps.wireless_modes)) {
  1937. if (IS_CHAN_5GHZ(chan))
  1938. ath9k_hw_set_gpio(ah, 9, 0);
  1939. else
  1940. ath9k_hw_set_gpio(ah, 9, 1);
  1941. }
  1942. ath9k_hw_cfg_output(ah, 9, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1943. }
  1944. r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
  1945. if (r)
  1946. return r;
  1947. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1948. ath9k_hw_set_delta_slope(ah, chan);
  1949. if (AR_SREV_9280_10_OR_LATER(ah))
  1950. ath9k_hw_9280_spur_mitigate(ah, chan);
  1951. else
  1952. ath9k_hw_spur_mitigate(ah, chan);
  1953. if (!ath9k_hw_eeprom_set_board_values(ah, chan)) {
  1954. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1955. "error setting board options\n");
  1956. return -EIO;
  1957. }
  1958. ath9k_hw_decrease_chain_power(ah, chan);
  1959. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ahp->ah_macaddr));
  1960. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ahp->ah_macaddr + 4)
  1961. | macStaId1
  1962. | AR_STA_ID1_RTS_USE_DEF
  1963. | (ah->ah_config.
  1964. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1965. | ahp->ah_staId1Defaults);
  1966. ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
  1967. REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask));
  1968. REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4));
  1969. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1970. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid));
  1971. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) |
  1972. ((ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S));
  1973. REG_WRITE(ah, AR_ISR, ~0);
  1974. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1975. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1976. if (!(ath9k_hw_ar9280_set_channel(ah, chan)))
  1977. return -EIO;
  1978. } else {
  1979. if (!(ath9k_hw_set_channel(ah, chan)))
  1980. return -EIO;
  1981. }
  1982. for (i = 0; i < AR_NUM_DCU; i++)
  1983. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1984. ahp->ah_intrTxqs = 0;
  1985. for (i = 0; i < ah->ah_caps.total_queues; i++)
  1986. ath9k_hw_resettxqueue(ah, i);
  1987. ath9k_hw_init_interrupt_masks(ah, ah->ah_opmode);
  1988. ath9k_hw_init_qos(ah);
  1989. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1990. if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1991. ath9k_enable_rfkill(ah);
  1992. #endif
  1993. ath9k_hw_init_user_settings(ah);
  1994. REG_WRITE(ah, AR_STA_ID1,
  1995. REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  1996. ath9k_hw_set_dma(ah);
  1997. REG_WRITE(ah, AR_OBS, 8);
  1998. if (ahp->ah_intrMitigation) {
  1999. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  2000. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  2001. }
  2002. ath9k_hw_init_bb(ah, chan);
  2003. if (!ath9k_hw_init_cal(ah, chan))
  2004. return -EIO;;
  2005. rx_chainmask = ahp->ah_rxchainmask;
  2006. if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
  2007. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  2008. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  2009. }
  2010. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  2011. if (AR_SREV_9100(ah)) {
  2012. u32 mask;
  2013. mask = REG_READ(ah, AR_CFG);
  2014. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  2015. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  2016. "CFG Byte Swap Set 0x%x\n", mask);
  2017. } else {
  2018. mask =
  2019. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  2020. REG_WRITE(ah, AR_CFG, mask);
  2021. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  2022. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  2023. }
  2024. } else {
  2025. #ifdef __BIG_ENDIAN
  2026. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  2027. #endif
  2028. }
  2029. return 0;
  2030. }
  2031. /************************/
  2032. /* Key Cache Management */
  2033. /************************/
  2034. bool ath9k_hw_keyreset(struct ath_hal *ah, u16 entry)
  2035. {
  2036. u32 keyType;
  2037. if (entry >= ah->ah_caps.keycache_size) {
  2038. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2039. "entry %u out of range\n", entry);
  2040. return false;
  2041. }
  2042. keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
  2043. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
  2044. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
  2045. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
  2046. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
  2047. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
  2048. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
  2049. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
  2050. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
  2051. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  2052. u16 micentry = entry + 64;
  2053. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
  2054. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  2055. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
  2056. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  2057. }
  2058. if (ah->ah_curchan == NULL)
  2059. return true;
  2060. return true;
  2061. }
  2062. bool ath9k_hw_keysetmac(struct ath_hal *ah, u16 entry, const u8 *mac)
  2063. {
  2064. u32 macHi, macLo;
  2065. if (entry >= ah->ah_caps.keycache_size) {
  2066. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2067. "entry %u out of range\n", entry);
  2068. return false;
  2069. }
  2070. if (mac != NULL) {
  2071. macHi = (mac[5] << 8) | mac[4];
  2072. macLo = (mac[3] << 24) |
  2073. (mac[2] << 16) |
  2074. (mac[1] << 8) |
  2075. mac[0];
  2076. macLo >>= 1;
  2077. macLo |= (macHi & 1) << 31;
  2078. macHi >>= 1;
  2079. } else {
  2080. macLo = macHi = 0;
  2081. }
  2082. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
  2083. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
  2084. return true;
  2085. }
  2086. bool ath9k_hw_set_keycache_entry(struct ath_hal *ah, u16 entry,
  2087. const struct ath9k_keyval *k,
  2088. const u8 *mac, int xorKey)
  2089. {
  2090. const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2091. u32 key0, key1, key2, key3, key4;
  2092. u32 keyType;
  2093. u32 xorMask = xorKey ?
  2094. (ATH9K_KEY_XOR << 24 | ATH9K_KEY_XOR << 16 | ATH9K_KEY_XOR << 8
  2095. | ATH9K_KEY_XOR) : 0;
  2096. struct ath_hal_5416 *ahp = AH5416(ah);
  2097. if (entry >= pCap->keycache_size) {
  2098. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2099. "entry %u out of range\n", entry);
  2100. return false;
  2101. }
  2102. switch (k->kv_type) {
  2103. case ATH9K_CIPHER_AES_OCB:
  2104. keyType = AR_KEYTABLE_TYPE_AES;
  2105. break;
  2106. case ATH9K_CIPHER_AES_CCM:
  2107. if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
  2108. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2109. "AES-CCM not supported by mac rev 0x%x\n",
  2110. ah->ah_macRev);
  2111. return false;
  2112. }
  2113. keyType = AR_KEYTABLE_TYPE_CCM;
  2114. break;
  2115. case ATH9K_CIPHER_TKIP:
  2116. keyType = AR_KEYTABLE_TYPE_TKIP;
  2117. if (ATH9K_IS_MIC_ENABLED(ah)
  2118. && entry + 64 >= pCap->keycache_size) {
  2119. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2120. "entry %u inappropriate for TKIP\n", entry);
  2121. return false;
  2122. }
  2123. break;
  2124. case ATH9K_CIPHER_WEP:
  2125. if (k->kv_len < LEN_WEP40) {
  2126. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2127. "WEP key length %u too small\n", k->kv_len);
  2128. return false;
  2129. }
  2130. if (k->kv_len <= LEN_WEP40)
  2131. keyType = AR_KEYTABLE_TYPE_40;
  2132. else if (k->kv_len <= LEN_WEP104)
  2133. keyType = AR_KEYTABLE_TYPE_104;
  2134. else
  2135. keyType = AR_KEYTABLE_TYPE_128;
  2136. break;
  2137. case ATH9K_CIPHER_CLR:
  2138. keyType = AR_KEYTABLE_TYPE_CLR;
  2139. break;
  2140. default:
  2141. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2142. "cipher %u not supported\n", k->kv_type);
  2143. return false;
  2144. }
  2145. key0 = get_unaligned_le32(k->kv_val + 0) ^ xorMask;
  2146. key1 = (get_unaligned_le16(k->kv_val + 4) ^ xorMask) & 0xffff;
  2147. key2 = get_unaligned_le32(k->kv_val + 6) ^ xorMask;
  2148. key3 = (get_unaligned_le16(k->kv_val + 10) ^ xorMask) & 0xffff;
  2149. key4 = get_unaligned_le32(k->kv_val + 12) ^ xorMask;
  2150. if (k->kv_len <= LEN_WEP104)
  2151. key4 &= 0xff;
  2152. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  2153. u16 micentry = entry + 64;
  2154. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
  2155. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
  2156. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  2157. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  2158. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  2159. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  2160. (void) ath9k_hw_keysetmac(ah, entry, mac);
  2161. if (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) {
  2162. u32 mic0, mic1, mic2, mic3, mic4;
  2163. mic0 = get_unaligned_le32(k->kv_mic + 0);
  2164. mic2 = get_unaligned_le32(k->kv_mic + 4);
  2165. mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
  2166. mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
  2167. mic4 = get_unaligned_le32(k->kv_txmic + 4);
  2168. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  2169. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
  2170. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  2171. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
  2172. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
  2173. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  2174. AR_KEYTABLE_TYPE_CLR);
  2175. } else {
  2176. u32 mic0, mic2;
  2177. mic0 = get_unaligned_le32(k->kv_mic + 0);
  2178. mic2 = get_unaligned_le32(k->kv_mic + 4);
  2179. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  2180. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  2181. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  2182. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  2183. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
  2184. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  2185. AR_KEYTABLE_TYPE_CLR);
  2186. }
  2187. REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
  2188. REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
  2189. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  2190. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  2191. } else {
  2192. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  2193. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  2194. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  2195. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  2196. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  2197. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  2198. (void) ath9k_hw_keysetmac(ah, entry, mac);
  2199. }
  2200. if (ah->ah_curchan == NULL)
  2201. return true;
  2202. return true;
  2203. }
  2204. bool ath9k_hw_keyisvalid(struct ath_hal *ah, u16 entry)
  2205. {
  2206. if (entry < ah->ah_caps.keycache_size) {
  2207. u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
  2208. if (val & AR_KEYTABLE_VALID)
  2209. return true;
  2210. }
  2211. return false;
  2212. }
  2213. /******************************/
  2214. /* Power Management (Chipset) */
  2215. /******************************/
  2216. static void ath9k_set_power_sleep(struct ath_hal *ah, int setChip)
  2217. {
  2218. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2219. if (setChip) {
  2220. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  2221. AR_RTC_FORCE_WAKE_EN);
  2222. if (!AR_SREV_9100(ah))
  2223. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  2224. REG_CLR_BIT(ah, (u16) (AR_RTC_RESET),
  2225. AR_RTC_RESET_EN);
  2226. }
  2227. }
  2228. static void ath9k_set_power_network_sleep(struct ath_hal *ah, int setChip)
  2229. {
  2230. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2231. if (setChip) {
  2232. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2233. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2234. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  2235. AR_RTC_FORCE_WAKE_ON_INT);
  2236. } else {
  2237. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  2238. AR_RTC_FORCE_WAKE_EN);
  2239. }
  2240. }
  2241. }
  2242. static bool ath9k_hw_set_power_awake(struct ath_hal *ah,
  2243. int setChip)
  2244. {
  2245. u32 val;
  2246. int i;
  2247. if (setChip) {
  2248. if ((REG_READ(ah, AR_RTC_STATUS) &
  2249. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  2250. if (ath9k_hw_set_reset_reg(ah,
  2251. ATH9K_RESET_POWER_ON) != true) {
  2252. return false;
  2253. }
  2254. }
  2255. if (AR_SREV_9100(ah))
  2256. REG_SET_BIT(ah, AR_RTC_RESET,
  2257. AR_RTC_RESET_EN);
  2258. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  2259. AR_RTC_FORCE_WAKE_EN);
  2260. udelay(50);
  2261. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  2262. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  2263. if (val == AR_RTC_STATUS_ON)
  2264. break;
  2265. udelay(50);
  2266. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  2267. AR_RTC_FORCE_WAKE_EN);
  2268. }
  2269. if (i == 0) {
  2270. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  2271. "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
  2272. return false;
  2273. }
  2274. }
  2275. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2276. return true;
  2277. }
  2278. bool ath9k_hw_setpower(struct ath_hal *ah,
  2279. enum ath9k_power_mode mode)
  2280. {
  2281. struct ath_hal_5416 *ahp = AH5416(ah);
  2282. static const char *modes[] = {
  2283. "AWAKE",
  2284. "FULL-SLEEP",
  2285. "NETWORK SLEEP",
  2286. "UNDEFINED"
  2287. };
  2288. int status = true, setChip = true;
  2289. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s -> %s (%s)\n",
  2290. modes[ahp->ah_powerMode], modes[mode],
  2291. setChip ? "set chip " : "");
  2292. switch (mode) {
  2293. case ATH9K_PM_AWAKE:
  2294. status = ath9k_hw_set_power_awake(ah, setChip);
  2295. break;
  2296. case ATH9K_PM_FULL_SLEEP:
  2297. ath9k_set_power_sleep(ah, setChip);
  2298. ahp->ah_chipFullSleep = true;
  2299. break;
  2300. case ATH9K_PM_NETWORK_SLEEP:
  2301. ath9k_set_power_network_sleep(ah, setChip);
  2302. break;
  2303. default:
  2304. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  2305. "Unknown power mode %u\n", mode);
  2306. return false;
  2307. }
  2308. ahp->ah_powerMode = mode;
  2309. return status;
  2310. }
  2311. void ath9k_hw_configpcipowersave(struct ath_hal *ah, int restore)
  2312. {
  2313. struct ath_hal_5416 *ahp = AH5416(ah);
  2314. u8 i;
  2315. if (ah->ah_isPciExpress != true)
  2316. return;
  2317. if (ah->ah_config.pcie_powersave_enable == 2)
  2318. return;
  2319. if (restore)
  2320. return;
  2321. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2322. for (i = 0; i < ahp->ah_iniPcieSerdes.ia_rows; i++) {
  2323. REG_WRITE(ah, INI_RA(&ahp->ah_iniPcieSerdes, i, 0),
  2324. INI_RA(&ahp->ah_iniPcieSerdes, i, 1));
  2325. }
  2326. udelay(1000);
  2327. } else if (AR_SREV_9280(ah) &&
  2328. (ah->ah_macRev == AR_SREV_REVISION_9280_10)) {
  2329. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
  2330. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  2331. REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
  2332. REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
  2333. REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
  2334. if (ah->ah_config.pcie_clock_req)
  2335. REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
  2336. else
  2337. REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
  2338. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  2339. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  2340. REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
  2341. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  2342. udelay(1000);
  2343. } else {
  2344. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  2345. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  2346. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
  2347. REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
  2348. REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
  2349. REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
  2350. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  2351. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  2352. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
  2353. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  2354. }
  2355. REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
  2356. if (ah->ah_config.pcie_waen) {
  2357. REG_WRITE(ah, AR_WA, ah->ah_config.pcie_waen);
  2358. } else {
  2359. if (AR_SREV_9285(ah))
  2360. REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
  2361. else if (AR_SREV_9280(ah))
  2362. REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
  2363. else
  2364. REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
  2365. }
  2366. }
  2367. /**********************/
  2368. /* Interrupt Handling */
  2369. /**********************/
  2370. bool ath9k_hw_intrpend(struct ath_hal *ah)
  2371. {
  2372. u32 host_isr;
  2373. if (AR_SREV_9100(ah))
  2374. return true;
  2375. host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
  2376. if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
  2377. return true;
  2378. host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  2379. if ((host_isr & AR_INTR_SYNC_DEFAULT)
  2380. && (host_isr != AR_INTR_SPURIOUS))
  2381. return true;
  2382. return false;
  2383. }
  2384. bool ath9k_hw_getisr(struct ath_hal *ah, enum ath9k_int *masked)
  2385. {
  2386. u32 isr = 0;
  2387. u32 mask2 = 0;
  2388. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2389. u32 sync_cause = 0;
  2390. bool fatal_int = false;
  2391. struct ath_hal_5416 *ahp = AH5416(ah);
  2392. if (!AR_SREV_9100(ah)) {
  2393. if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
  2394. if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
  2395. == AR_RTC_STATUS_ON) {
  2396. isr = REG_READ(ah, AR_ISR);
  2397. }
  2398. }
  2399. sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
  2400. AR_INTR_SYNC_DEFAULT;
  2401. *masked = 0;
  2402. if (!isr && !sync_cause)
  2403. return false;
  2404. } else {
  2405. *masked = 0;
  2406. isr = REG_READ(ah, AR_ISR);
  2407. }
  2408. if (isr) {
  2409. if (isr & AR_ISR_BCNMISC) {
  2410. u32 isr2;
  2411. isr2 = REG_READ(ah, AR_ISR_S2);
  2412. if (isr2 & AR_ISR_S2_TIM)
  2413. mask2 |= ATH9K_INT_TIM;
  2414. if (isr2 & AR_ISR_S2_DTIM)
  2415. mask2 |= ATH9K_INT_DTIM;
  2416. if (isr2 & AR_ISR_S2_DTIMSYNC)
  2417. mask2 |= ATH9K_INT_DTIMSYNC;
  2418. if (isr2 & (AR_ISR_S2_CABEND))
  2419. mask2 |= ATH9K_INT_CABEND;
  2420. if (isr2 & AR_ISR_S2_GTT)
  2421. mask2 |= ATH9K_INT_GTT;
  2422. if (isr2 & AR_ISR_S2_CST)
  2423. mask2 |= ATH9K_INT_CST;
  2424. }
  2425. isr = REG_READ(ah, AR_ISR_RAC);
  2426. if (isr == 0xffffffff) {
  2427. *masked = 0;
  2428. return false;
  2429. }
  2430. *masked = isr & ATH9K_INT_COMMON;
  2431. if (ahp->ah_intrMitigation) {
  2432. if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
  2433. *masked |= ATH9K_INT_RX;
  2434. }
  2435. if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
  2436. *masked |= ATH9K_INT_RX;
  2437. if (isr &
  2438. (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
  2439. AR_ISR_TXEOL)) {
  2440. u32 s0_s, s1_s;
  2441. *masked |= ATH9K_INT_TX;
  2442. s0_s = REG_READ(ah, AR_ISR_S0_S);
  2443. ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
  2444. ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
  2445. s1_s = REG_READ(ah, AR_ISR_S1_S);
  2446. ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
  2447. ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
  2448. }
  2449. if (isr & AR_ISR_RXORN) {
  2450. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  2451. "receive FIFO overrun interrupt\n");
  2452. }
  2453. if (!AR_SREV_9100(ah)) {
  2454. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2455. u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
  2456. if (isr5 & AR_ISR_S5_TIM_TIMER)
  2457. *masked |= ATH9K_INT_TIM_TIMER;
  2458. }
  2459. }
  2460. *masked |= mask2;
  2461. }
  2462. if (AR_SREV_9100(ah))
  2463. return true;
  2464. if (sync_cause) {
  2465. fatal_int =
  2466. (sync_cause &
  2467. (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
  2468. ? true : false;
  2469. if (fatal_int) {
  2470. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
  2471. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2472. "received PCI FATAL interrupt\n");
  2473. }
  2474. if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
  2475. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2476. "received PCI PERR interrupt\n");
  2477. }
  2478. }
  2479. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
  2480. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  2481. "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
  2482. REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
  2483. REG_WRITE(ah, AR_RC, 0);
  2484. *masked |= ATH9K_INT_FATAL;
  2485. }
  2486. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
  2487. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  2488. "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
  2489. }
  2490. REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
  2491. (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
  2492. }
  2493. return true;
  2494. }
  2495. enum ath9k_int ath9k_hw_intrget(struct ath_hal *ah)
  2496. {
  2497. return AH5416(ah)->ah_maskReg;
  2498. }
  2499. enum ath9k_int ath9k_hw_set_interrupts(struct ath_hal *ah, enum ath9k_int ints)
  2500. {
  2501. struct ath_hal_5416 *ahp = AH5416(ah);
  2502. u32 omask = ahp->ah_maskReg;
  2503. u32 mask, mask2;
  2504. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2505. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
  2506. if (omask & ATH9K_INT_GLOBAL) {
  2507. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
  2508. REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
  2509. (void) REG_READ(ah, AR_IER);
  2510. if (!AR_SREV_9100(ah)) {
  2511. REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
  2512. (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
  2513. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  2514. (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
  2515. }
  2516. }
  2517. mask = ints & ATH9K_INT_COMMON;
  2518. mask2 = 0;
  2519. if (ints & ATH9K_INT_TX) {
  2520. if (ahp->ah_txOkInterruptMask)
  2521. mask |= AR_IMR_TXOK;
  2522. if (ahp->ah_txDescInterruptMask)
  2523. mask |= AR_IMR_TXDESC;
  2524. if (ahp->ah_txErrInterruptMask)
  2525. mask |= AR_IMR_TXERR;
  2526. if (ahp->ah_txEolInterruptMask)
  2527. mask |= AR_IMR_TXEOL;
  2528. }
  2529. if (ints & ATH9K_INT_RX) {
  2530. mask |= AR_IMR_RXERR;
  2531. if (ahp->ah_intrMitigation)
  2532. mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
  2533. else
  2534. mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
  2535. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
  2536. mask |= AR_IMR_GENTMR;
  2537. }
  2538. if (ints & (ATH9K_INT_BMISC)) {
  2539. mask |= AR_IMR_BCNMISC;
  2540. if (ints & ATH9K_INT_TIM)
  2541. mask2 |= AR_IMR_S2_TIM;
  2542. if (ints & ATH9K_INT_DTIM)
  2543. mask2 |= AR_IMR_S2_DTIM;
  2544. if (ints & ATH9K_INT_DTIMSYNC)
  2545. mask2 |= AR_IMR_S2_DTIMSYNC;
  2546. if (ints & ATH9K_INT_CABEND)
  2547. mask2 |= (AR_IMR_S2_CABEND);
  2548. }
  2549. if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
  2550. mask |= AR_IMR_BCNMISC;
  2551. if (ints & ATH9K_INT_GTT)
  2552. mask2 |= AR_IMR_S2_GTT;
  2553. if (ints & ATH9K_INT_CST)
  2554. mask2 |= AR_IMR_S2_CST;
  2555. }
  2556. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
  2557. REG_WRITE(ah, AR_IMR, mask);
  2558. mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
  2559. AR_IMR_S2_DTIM |
  2560. AR_IMR_S2_DTIMSYNC |
  2561. AR_IMR_S2_CABEND |
  2562. AR_IMR_S2_CABTO |
  2563. AR_IMR_S2_TSFOOR |
  2564. AR_IMR_S2_GTT | AR_IMR_S2_CST);
  2565. REG_WRITE(ah, AR_IMR_S2, mask | mask2);
  2566. ahp->ah_maskReg = ints;
  2567. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2568. if (ints & ATH9K_INT_TIM_TIMER)
  2569. REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
  2570. else
  2571. REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
  2572. }
  2573. if (ints & ATH9K_INT_GLOBAL) {
  2574. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
  2575. REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
  2576. if (!AR_SREV_9100(ah)) {
  2577. REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
  2578. AR_INTR_MAC_IRQ);
  2579. REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
  2580. REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
  2581. AR_INTR_SYNC_DEFAULT);
  2582. REG_WRITE(ah, AR_INTR_SYNC_MASK,
  2583. AR_INTR_SYNC_DEFAULT);
  2584. }
  2585. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
  2586. REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
  2587. }
  2588. return omask;
  2589. }
  2590. /*******************/
  2591. /* Beacon Handling */
  2592. /*******************/
  2593. void ath9k_hw_beaconinit(struct ath_hal *ah, u32 next_beacon, u32 beacon_period)
  2594. {
  2595. struct ath_hal_5416 *ahp = AH5416(ah);
  2596. int flags = 0;
  2597. ahp->ah_beaconInterval = beacon_period;
  2598. switch (ah->ah_opmode) {
  2599. case NL80211_IFTYPE_STATION:
  2600. case NL80211_IFTYPE_MONITOR:
  2601. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  2602. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
  2603. REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
  2604. flags |= AR_TBTT_TIMER_EN;
  2605. break;
  2606. case NL80211_IFTYPE_ADHOC:
  2607. REG_SET_BIT(ah, AR_TXCFG,
  2608. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  2609. REG_WRITE(ah, AR_NEXT_NDP_TIMER,
  2610. TU_TO_USEC(next_beacon +
  2611. (ahp->ah_atimWindow ? ahp->
  2612. ah_atimWindow : 1)));
  2613. flags |= AR_NDP_TIMER_EN;
  2614. case NL80211_IFTYPE_AP:
  2615. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  2616. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
  2617. TU_TO_USEC(next_beacon -
  2618. ah->ah_config.
  2619. dma_beacon_response_time));
  2620. REG_WRITE(ah, AR_NEXT_SWBA,
  2621. TU_TO_USEC(next_beacon -
  2622. ah->ah_config.
  2623. sw_beacon_response_time));
  2624. flags |=
  2625. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  2626. break;
  2627. default:
  2628. DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
  2629. "%s: unsupported opmode: %d\n",
  2630. __func__, ah->ah_opmode);
  2631. return;
  2632. break;
  2633. }
  2634. REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  2635. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  2636. REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
  2637. REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
  2638. beacon_period &= ~ATH9K_BEACON_ENA;
  2639. if (beacon_period & ATH9K_BEACON_RESET_TSF) {
  2640. beacon_period &= ~ATH9K_BEACON_RESET_TSF;
  2641. ath9k_hw_reset_tsf(ah);
  2642. }
  2643. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  2644. }
  2645. void ath9k_hw_set_sta_beacon_timers(struct ath_hal *ah,
  2646. const struct ath9k_beacon_state *bs)
  2647. {
  2648. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  2649. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2650. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  2651. REG_WRITE(ah, AR_BEACON_PERIOD,
  2652. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  2653. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  2654. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  2655. REG_RMW_FIELD(ah, AR_RSSI_THR,
  2656. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  2657. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  2658. if (bs->bs_sleepduration > beaconintval)
  2659. beaconintval = bs->bs_sleepduration;
  2660. dtimperiod = bs->bs_dtimperiod;
  2661. if (bs->bs_sleepduration > dtimperiod)
  2662. dtimperiod = bs->bs_sleepduration;
  2663. if (beaconintval == dtimperiod)
  2664. nextTbtt = bs->bs_nextdtim;
  2665. else
  2666. nextTbtt = bs->bs_nexttbtt;
  2667. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  2668. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  2669. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  2670. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  2671. REG_WRITE(ah, AR_NEXT_DTIM,
  2672. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  2673. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  2674. REG_WRITE(ah, AR_SLEEP1,
  2675. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  2676. | AR_SLEEP1_ASSUME_DTIM);
  2677. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  2678. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  2679. else
  2680. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  2681. REG_WRITE(ah, AR_SLEEP2,
  2682. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  2683. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  2684. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  2685. REG_SET_BIT(ah, AR_TIMER_MODE,
  2686. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  2687. AR_DTIM_TIMER_EN);
  2688. }
  2689. /*******************/
  2690. /* HW Capabilities */
  2691. /*******************/
  2692. bool ath9k_hw_fill_cap_info(struct ath_hal *ah)
  2693. {
  2694. struct ath_hal_5416 *ahp = AH5416(ah);
  2695. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2696. u16 capField = 0, eeval;
  2697. eeval = ath9k_hw_get_eeprom(ah, EEP_REG_0);
  2698. ah->ah_currentRD = eeval;
  2699. eeval = ath9k_hw_get_eeprom(ah, EEP_REG_1);
  2700. ah->ah_currentRDExt = eeval;
  2701. capField = ath9k_hw_get_eeprom(ah, EEP_OP_CAP);
  2702. if (ah->ah_opmode != NL80211_IFTYPE_AP &&
  2703. ah->ah_subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  2704. if (ah->ah_currentRD == 0x64 || ah->ah_currentRD == 0x65)
  2705. ah->ah_currentRD += 5;
  2706. else if (ah->ah_currentRD == 0x41)
  2707. ah->ah_currentRD = 0x43;
  2708. DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
  2709. "regdomain mapped to 0x%x\n", ah->ah_currentRD);
  2710. }
  2711. eeval = ath9k_hw_get_eeprom(ah, EEP_OP_MODE);
  2712. bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
  2713. if (eeval & AR5416_OPFLAGS_11A) {
  2714. set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
  2715. if (ah->ah_config.ht_enable) {
  2716. if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
  2717. set_bit(ATH9K_MODE_11NA_HT20,
  2718. pCap->wireless_modes);
  2719. if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
  2720. set_bit(ATH9K_MODE_11NA_HT40PLUS,
  2721. pCap->wireless_modes);
  2722. set_bit(ATH9K_MODE_11NA_HT40MINUS,
  2723. pCap->wireless_modes);
  2724. }
  2725. }
  2726. }
  2727. if (eeval & AR5416_OPFLAGS_11G) {
  2728. set_bit(ATH9K_MODE_11B, pCap->wireless_modes);
  2729. set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
  2730. if (ah->ah_config.ht_enable) {
  2731. if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
  2732. set_bit(ATH9K_MODE_11NG_HT20,
  2733. pCap->wireless_modes);
  2734. if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
  2735. set_bit(ATH9K_MODE_11NG_HT40PLUS,
  2736. pCap->wireless_modes);
  2737. set_bit(ATH9K_MODE_11NG_HT40MINUS,
  2738. pCap->wireless_modes);
  2739. }
  2740. }
  2741. }
  2742. pCap->tx_chainmask = ath9k_hw_get_eeprom(ah, EEP_TX_MASK);
  2743. if ((ah->ah_isPciExpress)
  2744. || (eeval & AR5416_OPFLAGS_11A)) {
  2745. pCap->rx_chainmask =
  2746. ath9k_hw_get_eeprom(ah, EEP_RX_MASK);
  2747. } else {
  2748. pCap->rx_chainmask =
  2749. (ath9k_hw_gpio_get(ah, 0)) ? 0x5 : 0x7;
  2750. }
  2751. if (!(AR_SREV_9280(ah) && (ah->ah_macRev == 0)))
  2752. ahp->ah_miscMode |= AR_PCU_MIC_NEW_LOC_ENA;
  2753. pCap->low_2ghz_chan = 2312;
  2754. pCap->high_2ghz_chan = 2732;
  2755. pCap->low_5ghz_chan = 4920;
  2756. pCap->high_5ghz_chan = 6100;
  2757. pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
  2758. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
  2759. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
  2760. pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
  2761. pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
  2762. pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
  2763. pCap->hw_caps |= ATH9K_HW_CAP_CHAN_SPREAD;
  2764. if (ah->ah_config.ht_enable)
  2765. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2766. else
  2767. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2768. pCap->hw_caps |= ATH9K_HW_CAP_GTT;
  2769. pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
  2770. pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
  2771. pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
  2772. if (capField & AR_EEPROM_EEPCAP_MAXQCU)
  2773. pCap->total_queues =
  2774. MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
  2775. else
  2776. pCap->total_queues = ATH9K_NUM_TX_QUEUES;
  2777. if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
  2778. pCap->keycache_size =
  2779. 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
  2780. else
  2781. pCap->keycache_size = AR_KEYTABLE_SIZE;
  2782. pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
  2783. pCap->num_mr_retries = 4;
  2784. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  2785. if (AR_SREV_9280_10_OR_LATER(ah))
  2786. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2787. else
  2788. pCap->num_gpio_pins = AR_NUM_GPIO;
  2789. if (AR_SREV_9280_10_OR_LATER(ah)) {
  2790. pCap->hw_caps |= ATH9K_HW_CAP_WOW;
  2791. pCap->hw_caps |= ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
  2792. } else {
  2793. pCap->hw_caps &= ~ATH9K_HW_CAP_WOW;
  2794. pCap->hw_caps &= ~ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
  2795. }
  2796. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  2797. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  2798. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2799. } else {
  2800. pCap->rts_aggr_limit = (8 * 1024);
  2801. }
  2802. pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
  2803. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2804. ah->ah_rfsilent = ath9k_hw_get_eeprom(ah, EEP_RF_SILENT);
  2805. if (ah->ah_rfsilent & EEP_RFSILENT_ENABLED) {
  2806. ah->ah_rfkill_gpio =
  2807. MS(ah->ah_rfsilent, EEP_RFSILENT_GPIO_SEL);
  2808. ah->ah_rfkill_polarity =
  2809. MS(ah->ah_rfsilent, EEP_RFSILENT_POLARITY);
  2810. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2811. }
  2812. #endif
  2813. if ((ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) ||
  2814. (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE) ||
  2815. (ah->ah_macVersion == AR_SREV_VERSION_9160) ||
  2816. (ah->ah_macVersion == AR_SREV_VERSION_9100) ||
  2817. (ah->ah_macVersion == AR_SREV_VERSION_9280))
  2818. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2819. else
  2820. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2821. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2822. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2823. else
  2824. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2825. if (ah->ah_currentRDExt & (1 << REG_EXT_JAPAN_MIDBAND)) {
  2826. pCap->reg_cap =
  2827. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  2828. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
  2829. AR_EEPROM_EEREGCAP_EN_KK_U2 |
  2830. AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
  2831. } else {
  2832. pCap->reg_cap =
  2833. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  2834. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
  2835. }
  2836. pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
  2837. pCap->num_antcfg_5ghz =
  2838. ath9k_hw_get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
  2839. pCap->num_antcfg_2ghz =
  2840. ath9k_hw_get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
  2841. return true;
  2842. }
  2843. bool ath9k_hw_getcapability(struct ath_hal *ah, enum ath9k_capability_type type,
  2844. u32 capability, u32 *result)
  2845. {
  2846. struct ath_hal_5416 *ahp = AH5416(ah);
  2847. const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2848. switch (type) {
  2849. case ATH9K_CAP_CIPHER:
  2850. switch (capability) {
  2851. case ATH9K_CIPHER_AES_CCM:
  2852. case ATH9K_CIPHER_AES_OCB:
  2853. case ATH9K_CIPHER_TKIP:
  2854. case ATH9K_CIPHER_WEP:
  2855. case ATH9K_CIPHER_MIC:
  2856. case ATH9K_CIPHER_CLR:
  2857. return true;
  2858. default:
  2859. return false;
  2860. }
  2861. case ATH9K_CAP_TKIP_MIC:
  2862. switch (capability) {
  2863. case 0:
  2864. return true;
  2865. case 1:
  2866. return (ahp->ah_staId1Defaults &
  2867. AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
  2868. false;
  2869. }
  2870. case ATH9K_CAP_TKIP_SPLIT:
  2871. return (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) ?
  2872. false : true;
  2873. case ATH9K_CAP_WME_TKIPMIC:
  2874. return 0;
  2875. case ATH9K_CAP_PHYCOUNTERS:
  2876. return ahp->ah_hasHwPhyCounters ? 0 : -ENXIO;
  2877. case ATH9K_CAP_DIVERSITY:
  2878. return (REG_READ(ah, AR_PHY_CCK_DETECT) &
  2879. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
  2880. true : false;
  2881. case ATH9K_CAP_PHYDIAG:
  2882. return true;
  2883. case ATH9K_CAP_MCAST_KEYSRCH:
  2884. switch (capability) {
  2885. case 0:
  2886. return true;
  2887. case 1:
  2888. if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
  2889. return false;
  2890. } else {
  2891. return (ahp->ah_staId1Defaults &
  2892. AR_STA_ID1_MCAST_KSRCH) ? true :
  2893. false;
  2894. }
  2895. }
  2896. return false;
  2897. case ATH9K_CAP_TSF_ADJUST:
  2898. return (ahp->ah_miscMode & AR_PCU_TX_ADD_TSF) ?
  2899. true : false;
  2900. case ATH9K_CAP_RFSILENT:
  2901. if (capability == 3)
  2902. return false;
  2903. case ATH9K_CAP_ANT_CFG_2GHZ:
  2904. *result = pCap->num_antcfg_2ghz;
  2905. return true;
  2906. case ATH9K_CAP_ANT_CFG_5GHZ:
  2907. *result = pCap->num_antcfg_5ghz;
  2908. return true;
  2909. case ATH9K_CAP_TXPOW:
  2910. switch (capability) {
  2911. case 0:
  2912. return 0;
  2913. case 1:
  2914. *result = ah->ah_powerLimit;
  2915. return 0;
  2916. case 2:
  2917. *result = ah->ah_maxPowerLevel;
  2918. return 0;
  2919. case 3:
  2920. *result = ah->ah_tpScale;
  2921. return 0;
  2922. }
  2923. return false;
  2924. default:
  2925. return false;
  2926. }
  2927. }
  2928. bool ath9k_hw_setcapability(struct ath_hal *ah, enum ath9k_capability_type type,
  2929. u32 capability, u32 setting, int *status)
  2930. {
  2931. struct ath_hal_5416 *ahp = AH5416(ah);
  2932. u32 v;
  2933. switch (type) {
  2934. case ATH9K_CAP_TKIP_MIC:
  2935. if (setting)
  2936. ahp->ah_staId1Defaults |=
  2937. AR_STA_ID1_CRPT_MIC_ENABLE;
  2938. else
  2939. ahp->ah_staId1Defaults &=
  2940. ~AR_STA_ID1_CRPT_MIC_ENABLE;
  2941. return true;
  2942. case ATH9K_CAP_DIVERSITY:
  2943. v = REG_READ(ah, AR_PHY_CCK_DETECT);
  2944. if (setting)
  2945. v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  2946. else
  2947. v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  2948. REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
  2949. return true;
  2950. case ATH9K_CAP_MCAST_KEYSRCH:
  2951. if (setting)
  2952. ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
  2953. else
  2954. ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
  2955. return true;
  2956. case ATH9K_CAP_TSF_ADJUST:
  2957. if (setting)
  2958. ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
  2959. else
  2960. ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
  2961. return true;
  2962. default:
  2963. return false;
  2964. }
  2965. }
  2966. /****************************/
  2967. /* GPIO / RFKILL / Antennae */
  2968. /****************************/
  2969. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hal *ah,
  2970. u32 gpio, u32 type)
  2971. {
  2972. int addr;
  2973. u32 gpio_shift, tmp;
  2974. if (gpio > 11)
  2975. addr = AR_GPIO_OUTPUT_MUX3;
  2976. else if (gpio > 5)
  2977. addr = AR_GPIO_OUTPUT_MUX2;
  2978. else
  2979. addr = AR_GPIO_OUTPUT_MUX1;
  2980. gpio_shift = (gpio % 6) * 5;
  2981. if (AR_SREV_9280_20_OR_LATER(ah)
  2982. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2983. REG_RMW(ah, addr, (type << gpio_shift),
  2984. (0x1f << gpio_shift));
  2985. } else {
  2986. tmp = REG_READ(ah, addr);
  2987. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2988. tmp &= ~(0x1f << gpio_shift);
  2989. tmp |= (type << gpio_shift);
  2990. REG_WRITE(ah, addr, tmp);
  2991. }
  2992. }
  2993. void ath9k_hw_cfg_gpio_input(struct ath_hal *ah, u32 gpio)
  2994. {
  2995. u32 gpio_shift;
  2996. ASSERT(gpio < ah->ah_caps.num_gpio_pins);
  2997. gpio_shift = gpio << 1;
  2998. REG_RMW(ah,
  2999. AR_GPIO_OE_OUT,
  3000. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  3001. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  3002. }
  3003. u32 ath9k_hw_gpio_get(struct ath_hal *ah, u32 gpio)
  3004. {
  3005. if (gpio >= ah->ah_caps.num_gpio_pins)
  3006. return 0xffffffff;
  3007. if (AR_SREV_9280_10_OR_LATER(ah)) {
  3008. return (MS
  3009. (REG_READ(ah, AR_GPIO_IN_OUT),
  3010. AR928X_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) != 0;
  3011. } else {
  3012. return (MS(REG_READ(ah, AR_GPIO_IN_OUT), AR_GPIO_IN_VAL) &
  3013. AR_GPIO_BIT(gpio)) != 0;
  3014. }
  3015. }
  3016. void ath9k_hw_cfg_output(struct ath_hal *ah, u32 gpio,
  3017. u32 ah_signal_type)
  3018. {
  3019. u32 gpio_shift;
  3020. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  3021. gpio_shift = 2 * gpio;
  3022. REG_RMW(ah,
  3023. AR_GPIO_OE_OUT,
  3024. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  3025. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  3026. }
  3027. void ath9k_hw_set_gpio(struct ath_hal *ah, u32 gpio, u32 val)
  3028. {
  3029. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  3030. AR_GPIO_BIT(gpio));
  3031. }
  3032. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  3033. void ath9k_enable_rfkill(struct ath_hal *ah)
  3034. {
  3035. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  3036. AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
  3037. REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
  3038. AR_GPIO_INPUT_MUX2_RFSILENT);
  3039. ath9k_hw_cfg_gpio_input(ah, ah->ah_rfkill_gpio);
  3040. REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
  3041. }
  3042. #endif
  3043. int ath9k_hw_select_antconfig(struct ath_hal *ah, u32 cfg)
  3044. {
  3045. struct ath9k_channel *chan = ah->ah_curchan;
  3046. const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  3047. u16 ant_config;
  3048. u32 halNumAntConfig;
  3049. halNumAntConfig = IS_CHAN_2GHZ(chan) ?
  3050. pCap->num_antcfg_2ghz : pCap->num_antcfg_5ghz;
  3051. if (cfg < halNumAntConfig) {
  3052. if (!ath9k_hw_get_eeprom_antenna_cfg(ah, chan,
  3053. cfg, &ant_config)) {
  3054. REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
  3055. return 0;
  3056. }
  3057. }
  3058. return -EINVAL;
  3059. }
  3060. u32 ath9k_hw_getdefantenna(struct ath_hal *ah)
  3061. {
  3062. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  3063. }
  3064. void ath9k_hw_setantenna(struct ath_hal *ah, u32 antenna)
  3065. {
  3066. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  3067. }
  3068. bool ath9k_hw_setantennaswitch(struct ath_hal *ah,
  3069. enum ath9k_ant_setting settings,
  3070. struct ath9k_channel *chan,
  3071. u8 *tx_chainmask,
  3072. u8 *rx_chainmask,
  3073. u8 *antenna_cfgd)
  3074. {
  3075. struct ath_hal_5416 *ahp = AH5416(ah);
  3076. static u8 tx_chainmask_cfg, rx_chainmask_cfg;
  3077. if (AR_SREV_9280(ah)) {
  3078. if (!tx_chainmask_cfg) {
  3079. tx_chainmask_cfg = *tx_chainmask;
  3080. rx_chainmask_cfg = *rx_chainmask;
  3081. }
  3082. switch (settings) {
  3083. case ATH9K_ANT_FIXED_A:
  3084. *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
  3085. *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
  3086. *antenna_cfgd = true;
  3087. break;
  3088. case ATH9K_ANT_FIXED_B:
  3089. if (ah->ah_caps.tx_chainmask >
  3090. ATH9K_ANTENNA1_CHAINMASK) {
  3091. *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
  3092. }
  3093. *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
  3094. *antenna_cfgd = true;
  3095. break;
  3096. case ATH9K_ANT_VARIABLE:
  3097. *tx_chainmask = tx_chainmask_cfg;
  3098. *rx_chainmask = rx_chainmask_cfg;
  3099. *antenna_cfgd = true;
  3100. break;
  3101. default:
  3102. break;
  3103. }
  3104. } else {
  3105. ahp->ah_diversityControl = settings;
  3106. }
  3107. return true;
  3108. }
  3109. /*********************/
  3110. /* General Operation */
  3111. /*********************/
  3112. u32 ath9k_hw_getrxfilter(struct ath_hal *ah)
  3113. {
  3114. u32 bits = REG_READ(ah, AR_RX_FILTER);
  3115. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  3116. if (phybits & AR_PHY_ERR_RADAR)
  3117. bits |= ATH9K_RX_FILTER_PHYRADAR;
  3118. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  3119. bits |= ATH9K_RX_FILTER_PHYERR;
  3120. return bits;
  3121. }
  3122. void ath9k_hw_setrxfilter(struct ath_hal *ah, u32 bits)
  3123. {
  3124. u32 phybits;
  3125. REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
  3126. phybits = 0;
  3127. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  3128. phybits |= AR_PHY_ERR_RADAR;
  3129. if (bits & ATH9K_RX_FILTER_PHYERR)
  3130. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  3131. REG_WRITE(ah, AR_PHY_ERR, phybits);
  3132. if (phybits)
  3133. REG_WRITE(ah, AR_RXCFG,
  3134. REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
  3135. else
  3136. REG_WRITE(ah, AR_RXCFG,
  3137. REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
  3138. }
  3139. bool ath9k_hw_phy_disable(struct ath_hal *ah)
  3140. {
  3141. return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
  3142. }
  3143. bool ath9k_hw_disable(struct ath_hal *ah)
  3144. {
  3145. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  3146. return false;
  3147. return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
  3148. }
  3149. bool ath9k_hw_set_txpowerlimit(struct ath_hal *ah, u32 limit)
  3150. {
  3151. struct ath9k_channel *chan = ah->ah_curchan;
  3152. ah->ah_powerLimit = min(limit, (u32) MAX_RATE_POWER);
  3153. if (ath9k_hw_set_txpower(ah, chan,
  3154. ath9k_regd_get_ctl(ah, chan),
  3155. ath9k_regd_get_antenna_allowed(ah, chan),
  3156. chan->maxRegTxPower * 2,
  3157. min((u32) MAX_RATE_POWER,
  3158. (u32) ah->ah_powerLimit)) != 0)
  3159. return false;
  3160. return true;
  3161. }
  3162. void ath9k_hw_getmac(struct ath_hal *ah, u8 *mac)
  3163. {
  3164. struct ath_hal_5416 *ahp = AH5416(ah);
  3165. memcpy(mac, ahp->ah_macaddr, ETH_ALEN);
  3166. }
  3167. bool ath9k_hw_setmac(struct ath_hal *ah, const u8 *mac)
  3168. {
  3169. struct ath_hal_5416 *ahp = AH5416(ah);
  3170. memcpy(ahp->ah_macaddr, mac, ETH_ALEN);
  3171. return true;
  3172. }
  3173. void ath9k_hw_setopmode(struct ath_hal *ah)
  3174. {
  3175. ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
  3176. }
  3177. void ath9k_hw_setmcastfilter(struct ath_hal *ah, u32 filter0, u32 filter1)
  3178. {
  3179. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  3180. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  3181. }
  3182. void ath9k_hw_getbssidmask(struct ath_hal *ah, u8 *mask)
  3183. {
  3184. struct ath_hal_5416 *ahp = AH5416(ah);
  3185. memcpy(mask, ahp->ah_bssidmask, ETH_ALEN);
  3186. }
  3187. bool ath9k_hw_setbssidmask(struct ath_hal *ah, const u8 *mask)
  3188. {
  3189. struct ath_hal_5416 *ahp = AH5416(ah);
  3190. memcpy(ahp->ah_bssidmask, mask, ETH_ALEN);
  3191. REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask));
  3192. REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4));
  3193. return true;
  3194. }
  3195. void ath9k_hw_write_associd(struct ath_hal *ah, const u8 *bssid, u16 assocId)
  3196. {
  3197. struct ath_hal_5416 *ahp = AH5416(ah);
  3198. memcpy(ahp->ah_bssid, bssid, ETH_ALEN);
  3199. ahp->ah_assocId = assocId;
  3200. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid));
  3201. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) |
  3202. ((assocId & 0x3fff) << AR_BSS_ID1_AID_S));
  3203. }
  3204. u64 ath9k_hw_gettsf64(struct ath_hal *ah)
  3205. {
  3206. u64 tsf;
  3207. tsf = REG_READ(ah, AR_TSF_U32);
  3208. tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
  3209. return tsf;
  3210. }
  3211. void ath9k_hw_reset_tsf(struct ath_hal *ah)
  3212. {
  3213. int count;
  3214. count = 0;
  3215. while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
  3216. count++;
  3217. if (count > 10) {
  3218. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  3219. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  3220. break;
  3221. }
  3222. udelay(10);
  3223. }
  3224. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  3225. }
  3226. bool ath9k_hw_set_tsfadjust(struct ath_hal *ah, u32 setting)
  3227. {
  3228. struct ath_hal_5416 *ahp = AH5416(ah);
  3229. if (setting)
  3230. ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
  3231. else
  3232. ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
  3233. return true;
  3234. }
  3235. bool ath9k_hw_setslottime(struct ath_hal *ah, u32 us)
  3236. {
  3237. struct ath_hal_5416 *ahp = AH5416(ah);
  3238. if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
  3239. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
  3240. ahp->ah_slottime = (u32) -1;
  3241. return false;
  3242. } else {
  3243. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
  3244. ahp->ah_slottime = us;
  3245. return true;
  3246. }
  3247. }
  3248. void ath9k_hw_set11nmac2040(struct ath_hal *ah, enum ath9k_ht_macmode mode)
  3249. {
  3250. u32 macmode;
  3251. if (mode == ATH9K_HT_MACMODE_2040 &&
  3252. !ah->ah_config.cwm_ignore_extcca)
  3253. macmode = AR_2040_JOINED_RX_CLEAR;
  3254. else
  3255. macmode = 0;
  3256. REG_WRITE(ah, AR_2040_MODE, macmode);
  3257. }