time.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/module.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/errno.h>
  33. #include <linux/smp_lock.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/security.h>
  36. #include <linux/fs.h>
  37. #include <linux/module.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/unistd.h>
  40. /*
  41. * The timezone where the local system is located. Used as a default by some
  42. * programs who obtain this value by using gettimeofday.
  43. */
  44. struct timezone sys_tz;
  45. EXPORT_SYMBOL(sys_tz);
  46. #ifdef __ARCH_WANT_SYS_TIME
  47. /*
  48. * sys_time() can be implemented in user-level using
  49. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  50. * why not move it into the appropriate arch directory (for those
  51. * architectures that need it).
  52. */
  53. asmlinkage long sys_time(time_t __user * tloc)
  54. {
  55. time_t i;
  56. struct timeval tv;
  57. do_gettimeofday(&tv);
  58. i = tv.tv_sec;
  59. if (tloc) {
  60. if (put_user(i,tloc))
  61. i = -EFAULT;
  62. }
  63. return i;
  64. }
  65. /*
  66. * sys_stime() can be implemented in user-level using
  67. * sys_settimeofday(). Is this for backwards compatibility? If so,
  68. * why not move it into the appropriate arch directory (for those
  69. * architectures that need it).
  70. */
  71. asmlinkage long sys_stime(time_t __user *tptr)
  72. {
  73. struct timespec tv;
  74. int err;
  75. if (get_user(tv.tv_sec, tptr))
  76. return -EFAULT;
  77. tv.tv_nsec = 0;
  78. err = security_settime(&tv, NULL);
  79. if (err)
  80. return err;
  81. do_settimeofday(&tv);
  82. return 0;
  83. }
  84. #endif /* __ARCH_WANT_SYS_TIME */
  85. asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
  86. {
  87. if (likely(tv != NULL)) {
  88. struct timeval ktv;
  89. do_gettimeofday(&ktv);
  90. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  91. return -EFAULT;
  92. }
  93. if (unlikely(tz != NULL)) {
  94. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  95. return -EFAULT;
  96. }
  97. return 0;
  98. }
  99. /*
  100. * Adjust the time obtained from the CMOS to be UTC time instead of
  101. * local time.
  102. *
  103. * This is ugly, but preferable to the alternatives. Otherwise we
  104. * would either need to write a program to do it in /etc/rc (and risk
  105. * confusion if the program gets run more than once; it would also be
  106. * hard to make the program warp the clock precisely n hours) or
  107. * compile in the timezone information into the kernel. Bad, bad....
  108. *
  109. * - TYT, 1992-01-01
  110. *
  111. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  112. * as real UNIX machines always do it. This avoids all headaches about
  113. * daylight saving times and warping kernel clocks.
  114. */
  115. static inline void warp_clock(void)
  116. {
  117. write_seqlock_irq(&xtime_lock);
  118. wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
  119. xtime.tv_sec += sys_tz.tz_minuteswest * 60;
  120. time_interpolator_reset();
  121. write_sequnlock_irq(&xtime_lock);
  122. clock_was_set();
  123. }
  124. /*
  125. * In case for some reason the CMOS clock has not already been running
  126. * in UTC, but in some local time: The first time we set the timezone,
  127. * we will warp the clock so that it is ticking UTC time instead of
  128. * local time. Presumably, if someone is setting the timezone then we
  129. * are running in an environment where the programs understand about
  130. * timezones. This should be done at boot time in the /etc/rc script,
  131. * as soon as possible, so that the clock can be set right. Otherwise,
  132. * various programs will get confused when the clock gets warped.
  133. */
  134. int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
  135. {
  136. static int firsttime = 1;
  137. int error = 0;
  138. if (tv && !timespec_valid(tv))
  139. return -EINVAL;
  140. error = security_settime(tv, tz);
  141. if (error)
  142. return error;
  143. if (tz) {
  144. /* SMP safe, global irq locking makes it work. */
  145. sys_tz = *tz;
  146. if (firsttime) {
  147. firsttime = 0;
  148. if (!tv)
  149. warp_clock();
  150. }
  151. }
  152. if (tv)
  153. {
  154. /* SMP safe, again the code in arch/foo/time.c should
  155. * globally block out interrupts when it runs.
  156. */
  157. return do_settimeofday(tv);
  158. }
  159. return 0;
  160. }
  161. asmlinkage long sys_settimeofday(struct timeval __user *tv,
  162. struct timezone __user *tz)
  163. {
  164. struct timeval user_tv;
  165. struct timespec new_ts;
  166. struct timezone new_tz;
  167. if (tv) {
  168. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  169. return -EFAULT;
  170. new_ts.tv_sec = user_tv.tv_sec;
  171. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  172. }
  173. if (tz) {
  174. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  175. return -EFAULT;
  176. }
  177. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  178. }
  179. long pps_offset; /* pps time offset (us) */
  180. long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */
  181. long pps_freq; /* frequency offset (scaled ppm) */
  182. long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */
  183. long pps_valid = PPS_VALID; /* pps signal watchdog counter */
  184. int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */
  185. long pps_jitcnt; /* jitter limit exceeded */
  186. long pps_calcnt; /* calibration intervals */
  187. long pps_errcnt; /* calibration errors */
  188. long pps_stbcnt; /* stability limit exceeded */
  189. /* hook for a loadable hardpps kernel module */
  190. void (*hardpps_ptr)(struct timeval *);
  191. /* we call this to notify the arch when the clock is being
  192. * controlled. If no such arch routine, do nothing.
  193. */
  194. void __attribute__ ((weak)) notify_arch_cmos_timer(void)
  195. {
  196. return;
  197. }
  198. /* adjtimex mainly allows reading (and writing, if superuser) of
  199. * kernel time-keeping variables. used by xntpd.
  200. */
  201. int do_adjtimex(struct timex *txc)
  202. {
  203. long ltemp, mtemp, save_adjust;
  204. int result;
  205. /* In order to modify anything, you gotta be super-user! */
  206. if (txc->modes && !capable(CAP_SYS_TIME))
  207. return -EPERM;
  208. /* Now we validate the data before disabling interrupts */
  209. if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
  210. /* singleshot must not be used with any other mode bits */
  211. if (txc->modes != ADJ_OFFSET_SINGLESHOT)
  212. return -EINVAL;
  213. if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
  214. /* adjustment Offset limited to +- .512 seconds */
  215. if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
  216. return -EINVAL;
  217. /* if the quartz is off by more than 10% something is VERY wrong ! */
  218. if (txc->modes & ADJ_TICK)
  219. if (txc->tick < 900000/USER_HZ ||
  220. txc->tick > 1100000/USER_HZ)
  221. return -EINVAL;
  222. write_seqlock_irq(&xtime_lock);
  223. result = time_state; /* mostly `TIME_OK' */
  224. /* Save for later - semantics of adjtime is to return old value */
  225. save_adjust = time_next_adjust ? time_next_adjust : time_adjust;
  226. #if 0 /* STA_CLOCKERR is never set yet */
  227. time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
  228. #endif
  229. /* If there are input parameters, then process them */
  230. if (txc->modes)
  231. {
  232. if (txc->modes & ADJ_STATUS) /* only set allowed bits */
  233. time_status = (txc->status & ~STA_RONLY) |
  234. (time_status & STA_RONLY);
  235. if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
  236. if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
  237. result = -EINVAL;
  238. goto leave;
  239. }
  240. time_freq = txc->freq - pps_freq;
  241. }
  242. if (txc->modes & ADJ_MAXERROR) {
  243. if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
  244. result = -EINVAL;
  245. goto leave;
  246. }
  247. time_maxerror = txc->maxerror;
  248. }
  249. if (txc->modes & ADJ_ESTERROR) {
  250. if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
  251. result = -EINVAL;
  252. goto leave;
  253. }
  254. time_esterror = txc->esterror;
  255. }
  256. if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
  257. if (txc->constant < 0) { /* NTP v4 uses values > 6 */
  258. result = -EINVAL;
  259. goto leave;
  260. }
  261. time_constant = txc->constant;
  262. }
  263. if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
  264. if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
  265. /* adjtime() is independent from ntp_adjtime() */
  266. if ((time_next_adjust = txc->offset) == 0)
  267. time_adjust = 0;
  268. }
  269. else if ( time_status & (STA_PLL | STA_PPSTIME) ) {
  270. ltemp = (time_status & (STA_PPSTIME | STA_PPSSIGNAL)) ==
  271. (STA_PPSTIME | STA_PPSSIGNAL) ?
  272. pps_offset : txc->offset;
  273. /*
  274. * Scale the phase adjustment and
  275. * clamp to the operating range.
  276. */
  277. if (ltemp > MAXPHASE)
  278. time_offset = MAXPHASE << SHIFT_UPDATE;
  279. else if (ltemp < -MAXPHASE)
  280. time_offset = -(MAXPHASE << SHIFT_UPDATE);
  281. else
  282. time_offset = ltemp << SHIFT_UPDATE;
  283. /*
  284. * Select whether the frequency is to be controlled
  285. * and in which mode (PLL or FLL). Clamp to the operating
  286. * range. Ugly multiply/divide should be replaced someday.
  287. */
  288. if (time_status & STA_FREQHOLD || time_reftime == 0)
  289. time_reftime = xtime.tv_sec;
  290. mtemp = xtime.tv_sec - time_reftime;
  291. time_reftime = xtime.tv_sec;
  292. if (time_status & STA_FLL) {
  293. if (mtemp >= MINSEC) {
  294. ltemp = (time_offset / mtemp) << (SHIFT_USEC -
  295. SHIFT_UPDATE);
  296. time_freq += shift_right(ltemp, SHIFT_KH);
  297. } else /* calibration interval too short (p. 12) */
  298. result = TIME_ERROR;
  299. } else { /* PLL mode */
  300. if (mtemp < MAXSEC) {
  301. ltemp *= mtemp;
  302. time_freq += shift_right(ltemp,(time_constant +
  303. time_constant +
  304. SHIFT_KF - SHIFT_USEC));
  305. } else /* calibration interval too long (p. 12) */
  306. result = TIME_ERROR;
  307. }
  308. time_freq = min(time_freq, time_tolerance);
  309. time_freq = max(time_freq, -time_tolerance);
  310. } /* STA_PLL || STA_PPSTIME */
  311. } /* txc->modes & ADJ_OFFSET */
  312. if (txc->modes & ADJ_TICK) {
  313. tick_usec = txc->tick;
  314. tick_nsec = TICK_USEC_TO_NSEC(tick_usec);
  315. }
  316. } /* txc->modes */
  317. leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0
  318. || ((time_status & (STA_PPSFREQ|STA_PPSTIME)) != 0
  319. && (time_status & STA_PPSSIGNAL) == 0)
  320. /* p. 24, (b) */
  321. || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
  322. == (STA_PPSTIME|STA_PPSJITTER))
  323. /* p. 24, (c) */
  324. || ((time_status & STA_PPSFREQ) != 0
  325. && (time_status & (STA_PPSWANDER|STA_PPSERROR)) != 0))
  326. /* p. 24, (d) */
  327. result = TIME_ERROR;
  328. if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
  329. txc->offset = save_adjust;
  330. else {
  331. txc->offset = shift_right(time_offset, SHIFT_UPDATE);
  332. }
  333. txc->freq = time_freq + pps_freq;
  334. txc->maxerror = time_maxerror;
  335. txc->esterror = time_esterror;
  336. txc->status = time_status;
  337. txc->constant = time_constant;
  338. txc->precision = time_precision;
  339. txc->tolerance = time_tolerance;
  340. txc->tick = tick_usec;
  341. txc->ppsfreq = pps_freq;
  342. txc->jitter = pps_jitter >> PPS_AVG;
  343. txc->shift = pps_shift;
  344. txc->stabil = pps_stabil;
  345. txc->jitcnt = pps_jitcnt;
  346. txc->calcnt = pps_calcnt;
  347. txc->errcnt = pps_errcnt;
  348. txc->stbcnt = pps_stbcnt;
  349. write_sequnlock_irq(&xtime_lock);
  350. do_gettimeofday(&txc->time);
  351. notify_arch_cmos_timer();
  352. return(result);
  353. }
  354. asmlinkage long sys_adjtimex(struct timex __user *txc_p)
  355. {
  356. struct timex txc; /* Local copy of parameter */
  357. int ret;
  358. /* Copy the user data space into the kernel copy
  359. * structure. But bear in mind that the structures
  360. * may change
  361. */
  362. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  363. return -EFAULT;
  364. ret = do_adjtimex(&txc);
  365. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  366. }
  367. inline struct timespec current_kernel_time(void)
  368. {
  369. struct timespec now;
  370. unsigned long seq;
  371. do {
  372. seq = read_seqbegin(&xtime_lock);
  373. now = xtime;
  374. } while (read_seqretry(&xtime_lock, seq));
  375. return now;
  376. }
  377. EXPORT_SYMBOL(current_kernel_time);
  378. /**
  379. * current_fs_time - Return FS time
  380. * @sb: Superblock.
  381. *
  382. * Return the current time truncated to the time granuality supported by
  383. * the fs.
  384. */
  385. struct timespec current_fs_time(struct super_block *sb)
  386. {
  387. struct timespec now = current_kernel_time();
  388. return timespec_trunc(now, sb->s_time_gran);
  389. }
  390. EXPORT_SYMBOL(current_fs_time);
  391. /**
  392. * timespec_trunc - Truncate timespec to a granuality
  393. * @t: Timespec
  394. * @gran: Granuality in ns.
  395. *
  396. * Truncate a timespec to a granuality. gran must be smaller than a second.
  397. * Always rounds down.
  398. *
  399. * This function should be only used for timestamps returned by
  400. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  401. * it doesn't handle the better resolution of the later.
  402. */
  403. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  404. {
  405. /*
  406. * Division is pretty slow so avoid it for common cases.
  407. * Currently current_kernel_time() never returns better than
  408. * jiffies resolution. Exploit that.
  409. */
  410. if (gran <= jiffies_to_usecs(1) * 1000) {
  411. /* nothing */
  412. } else if (gran == 1000000000) {
  413. t.tv_nsec = 0;
  414. } else {
  415. t.tv_nsec -= t.tv_nsec % gran;
  416. }
  417. return t;
  418. }
  419. EXPORT_SYMBOL(timespec_trunc);
  420. #ifdef CONFIG_TIME_INTERPOLATION
  421. void getnstimeofday (struct timespec *tv)
  422. {
  423. unsigned long seq,sec,nsec;
  424. do {
  425. seq = read_seqbegin(&xtime_lock);
  426. sec = xtime.tv_sec;
  427. nsec = xtime.tv_nsec+time_interpolator_get_offset();
  428. } while (unlikely(read_seqretry(&xtime_lock, seq)));
  429. while (unlikely(nsec >= NSEC_PER_SEC)) {
  430. nsec -= NSEC_PER_SEC;
  431. ++sec;
  432. }
  433. tv->tv_sec = sec;
  434. tv->tv_nsec = nsec;
  435. }
  436. EXPORT_SYMBOL_GPL(getnstimeofday);
  437. int do_settimeofday (struct timespec *tv)
  438. {
  439. time_t wtm_sec, sec = tv->tv_sec;
  440. long wtm_nsec, nsec = tv->tv_nsec;
  441. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  442. return -EINVAL;
  443. write_seqlock_irq(&xtime_lock);
  444. {
  445. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  446. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  447. set_normalized_timespec(&xtime, sec, nsec);
  448. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  449. time_adjust = 0; /* stop active adjtime() */
  450. time_status |= STA_UNSYNC;
  451. time_maxerror = NTP_PHASE_LIMIT;
  452. time_esterror = NTP_PHASE_LIMIT;
  453. time_interpolator_reset();
  454. }
  455. write_sequnlock_irq(&xtime_lock);
  456. clock_was_set();
  457. return 0;
  458. }
  459. EXPORT_SYMBOL(do_settimeofday);
  460. void do_gettimeofday (struct timeval *tv)
  461. {
  462. unsigned long seq, nsec, usec, sec, offset;
  463. do {
  464. seq = read_seqbegin(&xtime_lock);
  465. offset = time_interpolator_get_offset();
  466. sec = xtime.tv_sec;
  467. nsec = xtime.tv_nsec;
  468. } while (unlikely(read_seqretry(&xtime_lock, seq)));
  469. usec = (nsec + offset) / 1000;
  470. while (unlikely(usec >= USEC_PER_SEC)) {
  471. usec -= USEC_PER_SEC;
  472. ++sec;
  473. }
  474. tv->tv_sec = sec;
  475. tv->tv_usec = usec;
  476. }
  477. EXPORT_SYMBOL(do_gettimeofday);
  478. #else
  479. /*
  480. * Simulate gettimeofday using do_gettimeofday which only allows a timeval
  481. * and therefore only yields usec accuracy
  482. */
  483. void getnstimeofday(struct timespec *tv)
  484. {
  485. struct timeval x;
  486. do_gettimeofday(&x);
  487. tv->tv_sec = x.tv_sec;
  488. tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
  489. }
  490. EXPORT_SYMBOL_GPL(getnstimeofday);
  491. #endif
  492. /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  493. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  494. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  495. *
  496. * [For the Julian calendar (which was used in Russia before 1917,
  497. * Britain & colonies before 1752, anywhere else before 1582,
  498. * and is still in use by some communities) leave out the
  499. * -year/100+year/400 terms, and add 10.]
  500. *
  501. * This algorithm was first published by Gauss (I think).
  502. *
  503. * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  504. * machines were long is 32-bit! (However, as time_t is signed, we
  505. * will already get problems at other places on 2038-01-19 03:14:08)
  506. */
  507. unsigned long
  508. mktime(const unsigned int year0, const unsigned int mon0,
  509. const unsigned int day, const unsigned int hour,
  510. const unsigned int min, const unsigned int sec)
  511. {
  512. unsigned int mon = mon0, year = year0;
  513. /* 1..12 -> 11,12,1..10 */
  514. if (0 >= (int) (mon -= 2)) {
  515. mon += 12; /* Puts Feb last since it has leap day */
  516. year -= 1;
  517. }
  518. return ((((unsigned long)
  519. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  520. year*365 - 719499
  521. )*24 + hour /* now have hours */
  522. )*60 + min /* now have minutes */
  523. )*60 + sec; /* finally seconds */
  524. }
  525. EXPORT_SYMBOL(mktime);
  526. /**
  527. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  528. *
  529. * @ts: pointer to timespec variable to be set
  530. * @sec: seconds to set
  531. * @nsec: nanoseconds to set
  532. *
  533. * Set seconds and nanoseconds field of a timespec variable and
  534. * normalize to the timespec storage format
  535. *
  536. * Note: The tv_nsec part is always in the range of
  537. * 0 <= tv_nsec < NSEC_PER_SEC
  538. * For negative values only the tv_sec field is negative !
  539. */
  540. void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
  541. {
  542. while (nsec >= NSEC_PER_SEC) {
  543. nsec -= NSEC_PER_SEC;
  544. ++sec;
  545. }
  546. while (nsec < 0) {
  547. nsec += NSEC_PER_SEC;
  548. --sec;
  549. }
  550. ts->tv_sec = sec;
  551. ts->tv_nsec = nsec;
  552. }
  553. /**
  554. * ns_to_timespec - Convert nanoseconds to timespec
  555. * @nsec: the nanoseconds value to be converted
  556. *
  557. * Returns the timespec representation of the nsec parameter.
  558. */
  559. struct timespec ns_to_timespec(const nsec_t nsec)
  560. {
  561. struct timespec ts;
  562. if (!nsec)
  563. return (struct timespec) {0, 0};
  564. ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
  565. if (unlikely(nsec < 0))
  566. set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
  567. return ts;
  568. }
  569. /**
  570. * ns_to_timeval - Convert nanoseconds to timeval
  571. * @nsec: the nanoseconds value to be converted
  572. *
  573. * Returns the timeval representation of the nsec parameter.
  574. */
  575. struct timeval ns_to_timeval(const nsec_t nsec)
  576. {
  577. struct timespec ts = ns_to_timespec(nsec);
  578. struct timeval tv;
  579. tv.tv_sec = ts.tv_sec;
  580. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  581. return tv;
  582. }
  583. #if (BITS_PER_LONG < 64)
  584. u64 get_jiffies_64(void)
  585. {
  586. unsigned long seq;
  587. u64 ret;
  588. do {
  589. seq = read_seqbegin(&xtime_lock);
  590. ret = jiffies_64;
  591. } while (read_seqretry(&xtime_lock, seq));
  592. return ret;
  593. }
  594. EXPORT_SYMBOL(get_jiffies_64);
  595. #endif
  596. EXPORT_SYMBOL(jiffies);