bitops.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538
  1. /* $Id: bitops.h,v 1.67 2001/11/19 18:36:34 davem Exp $
  2. * bitops.h: Bit string operations on the Sparc.
  3. *
  4. * Copyright 1995 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright 1996 Eddie C. Dost (ecd@skynet.be)
  6. * Copyright 2001 Anton Blanchard (anton@samba.org)
  7. */
  8. #ifndef _SPARC_BITOPS_H
  9. #define _SPARC_BITOPS_H
  10. #include <linux/compiler.h>
  11. #include <asm/byteorder.h>
  12. #ifdef __KERNEL__
  13. /*
  14. * Set bit 'nr' in 32-bit quantity at address 'addr' where bit '0'
  15. * is in the highest of the four bytes and bit '31' is the high bit
  16. * within the first byte. Sparc is BIG-Endian. Unless noted otherwise
  17. * all bit-ops return 0 if bit was previously clear and != 0 otherwise.
  18. */
  19. static inline int test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
  20. {
  21. register unsigned long mask asm("g2");
  22. register unsigned long *ADDR asm("g1");
  23. register int tmp1 asm("g3");
  24. register int tmp2 asm("g4");
  25. register int tmp3 asm("g5");
  26. register int tmp4 asm("g7");
  27. ADDR = ((unsigned long *) addr) + (nr >> 5);
  28. mask = 1 << (nr & 31);
  29. __asm__ __volatile__(
  30. "mov %%o7, %%g4\n\t"
  31. "call ___set_bit\n\t"
  32. " add %%o7, 8, %%o7\n"
  33. : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
  34. : "0" (mask), "r" (ADDR)
  35. : "memory", "cc");
  36. return mask != 0;
  37. }
  38. static inline void set_bit(unsigned long nr, volatile unsigned long *addr)
  39. {
  40. register unsigned long mask asm("g2");
  41. register unsigned long *ADDR asm("g1");
  42. register int tmp1 asm("g3");
  43. register int tmp2 asm("g4");
  44. register int tmp3 asm("g5");
  45. register int tmp4 asm("g7");
  46. ADDR = ((unsigned long *) addr) + (nr >> 5);
  47. mask = 1 << (nr & 31);
  48. __asm__ __volatile__(
  49. "mov %%o7, %%g4\n\t"
  50. "call ___set_bit\n\t"
  51. " add %%o7, 8, %%o7\n"
  52. : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
  53. : "0" (mask), "r" (ADDR)
  54. : "memory", "cc");
  55. }
  56. static inline int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
  57. {
  58. register unsigned long mask asm("g2");
  59. register unsigned long *ADDR asm("g1");
  60. register int tmp1 asm("g3");
  61. register int tmp2 asm("g4");
  62. register int tmp3 asm("g5");
  63. register int tmp4 asm("g7");
  64. ADDR = ((unsigned long *) addr) + (nr >> 5);
  65. mask = 1 << (nr & 31);
  66. __asm__ __volatile__(
  67. "mov %%o7, %%g4\n\t"
  68. "call ___clear_bit\n\t"
  69. " add %%o7, 8, %%o7\n"
  70. : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
  71. : "0" (mask), "r" (ADDR)
  72. : "memory", "cc");
  73. return mask != 0;
  74. }
  75. static inline void clear_bit(unsigned long nr, volatile unsigned long *addr)
  76. {
  77. register unsigned long mask asm("g2");
  78. register unsigned long *ADDR asm("g1");
  79. register int tmp1 asm("g3");
  80. register int tmp2 asm("g4");
  81. register int tmp3 asm("g5");
  82. register int tmp4 asm("g7");
  83. ADDR = ((unsigned long *) addr) + (nr >> 5);
  84. mask = 1 << (nr & 31);
  85. __asm__ __volatile__(
  86. "mov %%o7, %%g4\n\t"
  87. "call ___clear_bit\n\t"
  88. " add %%o7, 8, %%o7\n"
  89. : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
  90. : "0" (mask), "r" (ADDR)
  91. : "memory", "cc");
  92. }
  93. static inline int test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
  94. {
  95. register unsigned long mask asm("g2");
  96. register unsigned long *ADDR asm("g1");
  97. register int tmp1 asm("g3");
  98. register int tmp2 asm("g4");
  99. register int tmp3 asm("g5");
  100. register int tmp4 asm("g7");
  101. ADDR = ((unsigned long *) addr) + (nr >> 5);
  102. mask = 1 << (nr & 31);
  103. __asm__ __volatile__(
  104. "mov %%o7, %%g4\n\t"
  105. "call ___change_bit\n\t"
  106. " add %%o7, 8, %%o7\n"
  107. : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
  108. : "0" (mask), "r" (ADDR)
  109. : "memory", "cc");
  110. return mask != 0;
  111. }
  112. static inline void change_bit(unsigned long nr, volatile unsigned long *addr)
  113. {
  114. register unsigned long mask asm("g2");
  115. register unsigned long *ADDR asm("g1");
  116. register int tmp1 asm("g3");
  117. register int tmp2 asm("g4");
  118. register int tmp3 asm("g5");
  119. register int tmp4 asm("g7");
  120. ADDR = ((unsigned long *) addr) + (nr >> 5);
  121. mask = 1 << (nr & 31);
  122. __asm__ __volatile__(
  123. "mov %%o7, %%g4\n\t"
  124. "call ___change_bit\n\t"
  125. " add %%o7, 8, %%o7\n"
  126. : "=&r" (mask), "=r" (tmp1), "=r" (tmp2), "=r" (tmp3), "=r" (tmp4)
  127. : "0" (mask), "r" (ADDR)
  128. : "memory", "cc");
  129. }
  130. /*
  131. * non-atomic versions
  132. */
  133. static inline void __set_bit(int nr, volatile unsigned long *addr)
  134. {
  135. unsigned long mask = 1UL << (nr & 0x1f);
  136. unsigned long *p = ((unsigned long *)addr) + (nr >> 5);
  137. *p |= mask;
  138. }
  139. static inline void __clear_bit(int nr, volatile unsigned long *addr)
  140. {
  141. unsigned long mask = 1UL << (nr & 0x1f);
  142. unsigned long *p = ((unsigned long *)addr) + (nr >> 5);
  143. *p &= ~mask;
  144. }
  145. static inline void __change_bit(int nr, volatile unsigned long *addr)
  146. {
  147. unsigned long mask = 1UL << (nr & 0x1f);
  148. unsigned long *p = ((unsigned long *)addr) + (nr >> 5);
  149. *p ^= mask;
  150. }
  151. static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
  152. {
  153. unsigned long mask = 1UL << (nr & 0x1f);
  154. unsigned long *p = ((unsigned long *)addr) + (nr >> 5);
  155. unsigned long old = *p;
  156. *p = old | mask;
  157. return (old & mask) != 0;
  158. }
  159. static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
  160. {
  161. unsigned long mask = 1UL << (nr & 0x1f);
  162. unsigned long *p = ((unsigned long *)addr) + (nr >> 5);
  163. unsigned long old = *p;
  164. *p = old & ~mask;
  165. return (old & mask) != 0;
  166. }
  167. static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
  168. {
  169. unsigned long mask = 1UL << (nr & 0x1f);
  170. unsigned long *p = ((unsigned long *)addr) + (nr >> 5);
  171. unsigned long old = *p;
  172. *p = old ^ mask;
  173. return (old & mask) != 0;
  174. }
  175. #define smp_mb__before_clear_bit() do { } while(0)
  176. #define smp_mb__after_clear_bit() do { } while(0)
  177. /* The following routine need not be atomic. */
  178. static inline int test_bit(int nr, __const__ volatile unsigned long *addr)
  179. {
  180. return (1UL & (((unsigned long *)addr)[nr >> 5] >> (nr & 31))) != 0UL;
  181. }
  182. /* The easy/cheese version for now. */
  183. static inline unsigned long ffz(unsigned long word)
  184. {
  185. unsigned long result = 0;
  186. while(word & 1) {
  187. result++;
  188. word >>= 1;
  189. }
  190. return result;
  191. }
  192. /**
  193. * __ffs - find first bit in word.
  194. * @word: The word to search
  195. *
  196. * Undefined if no bit exists, so code should check against 0 first.
  197. */
  198. static inline int __ffs(unsigned long word)
  199. {
  200. int num = 0;
  201. if ((word & 0xffff) == 0) {
  202. num += 16;
  203. word >>= 16;
  204. }
  205. if ((word & 0xff) == 0) {
  206. num += 8;
  207. word >>= 8;
  208. }
  209. if ((word & 0xf) == 0) {
  210. num += 4;
  211. word >>= 4;
  212. }
  213. if ((word & 0x3) == 0) {
  214. num += 2;
  215. word >>= 2;
  216. }
  217. if ((word & 0x1) == 0)
  218. num += 1;
  219. return num;
  220. }
  221. /*
  222. * Every architecture must define this function. It's the fastest
  223. * way of searching a 140-bit bitmap where the first 100 bits are
  224. * unlikely to be set. It's guaranteed that at least one of the 140
  225. * bits is cleared.
  226. */
  227. static inline int sched_find_first_bit(unsigned long *b)
  228. {
  229. if (unlikely(b[0]))
  230. return __ffs(b[0]);
  231. if (unlikely(b[1]))
  232. return __ffs(b[1]) + 32;
  233. if (unlikely(b[2]))
  234. return __ffs(b[2]) + 64;
  235. if (b[3])
  236. return __ffs(b[3]) + 96;
  237. return __ffs(b[4]) + 128;
  238. }
  239. /*
  240. * ffs: find first bit set. This is defined the same way as
  241. * the libc and compiler builtin ffs routines, therefore
  242. * differs in spirit from the above ffz (man ffs).
  243. */
  244. static inline int ffs(int x)
  245. {
  246. if (!x)
  247. return 0;
  248. return __ffs((unsigned long)x) + 1;
  249. }
  250. /*
  251. * fls: find last (most-significant) bit set.
  252. * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
  253. */
  254. #define fls(x) generic_fls(x)
  255. #define fls64(x) generic_fls64(x)
  256. /*
  257. * hweightN: returns the hamming weight (i.e. the number
  258. * of bits set) of a N-bit word
  259. */
  260. #define hweight32(x) generic_hweight32(x)
  261. #define hweight16(x) generic_hweight16(x)
  262. #define hweight8(x) generic_hweight8(x)
  263. /*
  264. * find_next_zero_bit() finds the first zero bit in a bit string of length
  265. * 'size' bits, starting the search at bit 'offset'. This is largely based
  266. * on Linus's ALPHA routines, which are pretty portable BTW.
  267. */
  268. static inline unsigned long find_next_zero_bit(const unsigned long *addr,
  269. unsigned long size, unsigned long offset)
  270. {
  271. const unsigned long *p = addr + (offset >> 5);
  272. unsigned long result = offset & ~31UL;
  273. unsigned long tmp;
  274. if (offset >= size)
  275. return size;
  276. size -= result;
  277. offset &= 31UL;
  278. if (offset) {
  279. tmp = *(p++);
  280. tmp |= ~0UL >> (32-offset);
  281. if (size < 32)
  282. goto found_first;
  283. if (~tmp)
  284. goto found_middle;
  285. size -= 32;
  286. result += 32;
  287. }
  288. while (size & ~31UL) {
  289. if (~(tmp = *(p++)))
  290. goto found_middle;
  291. result += 32;
  292. size -= 32;
  293. }
  294. if (!size)
  295. return result;
  296. tmp = *p;
  297. found_first:
  298. tmp |= ~0UL << size;
  299. if (tmp == ~0UL) /* Are any bits zero? */
  300. return result + size; /* Nope. */
  301. found_middle:
  302. return result + ffz(tmp);
  303. }
  304. /*
  305. * Linus sez that gcc can optimize the following correctly, we'll see if this
  306. * holds on the Sparc as it does for the ALPHA.
  307. */
  308. #define find_first_zero_bit(addr, size) \
  309. find_next_zero_bit((addr), (size), 0)
  310. /**
  311. * find_next_bit - find the first set bit in a memory region
  312. * @addr: The address to base the search on
  313. * @offset: The bitnumber to start searching at
  314. * @size: The maximum size to search
  315. *
  316. * Scheduler induced bitop, do not use.
  317. */
  318. static inline int find_next_bit(const unsigned long *addr, int size, int offset)
  319. {
  320. const unsigned long *p = addr + (offset >> 5);
  321. int num = offset & ~0x1f;
  322. unsigned long word;
  323. word = *p++;
  324. word &= ~((1 << (offset & 0x1f)) - 1);
  325. while (num < size) {
  326. if (word != 0) {
  327. return __ffs(word) + num;
  328. }
  329. word = *p++;
  330. num += 0x20;
  331. }
  332. return num;
  333. }
  334. /**
  335. * find_first_bit - find the first set bit in a memory region
  336. * @addr: The address to start the search at
  337. * @size: The maximum size to search
  338. *
  339. * Returns the bit-number of the first set bit, not the number of the byte
  340. * containing a bit.
  341. */
  342. #define find_first_bit(addr, size) \
  343. find_next_bit((addr), (size), 0)
  344. /*
  345. */
  346. static inline int test_le_bit(int nr, __const__ unsigned long * addr)
  347. {
  348. __const__ unsigned char *ADDR = (__const__ unsigned char *) addr;
  349. return (ADDR[nr >> 3] >> (nr & 7)) & 1;
  350. }
  351. /*
  352. * non-atomic versions
  353. */
  354. static inline void __set_le_bit(int nr, unsigned long *addr)
  355. {
  356. unsigned char *ADDR = (unsigned char *)addr;
  357. ADDR += nr >> 3;
  358. *ADDR |= 1 << (nr & 0x07);
  359. }
  360. static inline void __clear_le_bit(int nr, unsigned long *addr)
  361. {
  362. unsigned char *ADDR = (unsigned char *)addr;
  363. ADDR += nr >> 3;
  364. *ADDR &= ~(1 << (nr & 0x07));
  365. }
  366. static inline int __test_and_set_le_bit(int nr, unsigned long *addr)
  367. {
  368. int mask, retval;
  369. unsigned char *ADDR = (unsigned char *)addr;
  370. ADDR += nr >> 3;
  371. mask = 1 << (nr & 0x07);
  372. retval = (mask & *ADDR) != 0;
  373. *ADDR |= mask;
  374. return retval;
  375. }
  376. static inline int __test_and_clear_le_bit(int nr, unsigned long *addr)
  377. {
  378. int mask, retval;
  379. unsigned char *ADDR = (unsigned char *)addr;
  380. ADDR += nr >> 3;
  381. mask = 1 << (nr & 0x07);
  382. retval = (mask & *ADDR) != 0;
  383. *ADDR &= ~mask;
  384. return retval;
  385. }
  386. static inline unsigned long find_next_zero_le_bit(const unsigned long *addr,
  387. unsigned long size, unsigned long offset)
  388. {
  389. const unsigned long *p = addr + (offset >> 5);
  390. unsigned long result = offset & ~31UL;
  391. unsigned long tmp;
  392. if (offset >= size)
  393. return size;
  394. size -= result;
  395. offset &= 31UL;
  396. if(offset) {
  397. tmp = *(p++);
  398. tmp |= __swab32(~0UL >> (32-offset));
  399. if(size < 32)
  400. goto found_first;
  401. if(~tmp)
  402. goto found_middle;
  403. size -= 32;
  404. result += 32;
  405. }
  406. while(size & ~31UL) {
  407. if(~(tmp = *(p++)))
  408. goto found_middle;
  409. result += 32;
  410. size -= 32;
  411. }
  412. if(!size)
  413. return result;
  414. tmp = *p;
  415. found_first:
  416. tmp = __swab32(tmp) | (~0UL << size);
  417. if (tmp == ~0UL) /* Are any bits zero? */
  418. return result + size; /* Nope. */
  419. return result + ffz(tmp);
  420. found_middle:
  421. return result + ffz(__swab32(tmp));
  422. }
  423. #define find_first_zero_le_bit(addr, size) \
  424. find_next_zero_le_bit((addr), (size), 0)
  425. #define ext2_set_bit(nr,addr) \
  426. __test_and_set_le_bit((nr),(unsigned long *)(addr))
  427. #define ext2_clear_bit(nr,addr) \
  428. __test_and_clear_le_bit((nr),(unsigned long *)(addr))
  429. #define ext2_set_bit_atomic(lock, nr, addr) \
  430. ({ \
  431. int ret; \
  432. spin_lock(lock); \
  433. ret = ext2_set_bit((nr), (unsigned long *)(addr)); \
  434. spin_unlock(lock); \
  435. ret; \
  436. })
  437. #define ext2_clear_bit_atomic(lock, nr, addr) \
  438. ({ \
  439. int ret; \
  440. spin_lock(lock); \
  441. ret = ext2_clear_bit((nr), (unsigned long *)(addr)); \
  442. spin_unlock(lock); \
  443. ret; \
  444. })
  445. #define ext2_test_bit(nr,addr) \
  446. test_le_bit((nr),(unsigned long *)(addr))
  447. #define ext2_find_first_zero_bit(addr, size) \
  448. find_first_zero_le_bit((unsigned long *)(addr), (size))
  449. #define ext2_find_next_zero_bit(addr, size, off) \
  450. find_next_zero_le_bit((unsigned long *)(addr), (size), (off))
  451. /* Bitmap functions for the minix filesystem. */
  452. #define minix_test_and_set_bit(nr,addr) \
  453. test_and_set_bit((nr),(unsigned long *)(addr))
  454. #define minix_set_bit(nr,addr) \
  455. set_bit((nr),(unsigned long *)(addr))
  456. #define minix_test_and_clear_bit(nr,addr) \
  457. test_and_clear_bit((nr),(unsigned long *)(addr))
  458. #define minix_test_bit(nr,addr) \
  459. test_bit((nr),(unsigned long *)(addr))
  460. #define minix_find_first_zero_bit(addr,size) \
  461. find_first_zero_bit((unsigned long *)(addr),(size))
  462. #endif /* __KERNEL__ */
  463. #endif /* defined(_SPARC_BITOPS_H) */