dma.h 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313
  1. /*
  2. * linux/include/asm/dma.h: Defines for using and allocating dma channels.
  3. * Written by Hennus Bergman, 1992.
  4. * High DMA channel support & info by Hannu Savolainen
  5. * and John Boyd, Nov. 1992.
  6. *
  7. * NOTE: all this is true *only* for ISA/EISA expansions on Mips boards
  8. * and can only be used for expansion cards. Onboard DMA controllers, such
  9. * as the R4030 on Jazz boards behave totally different!
  10. */
  11. #ifndef _ASM_DMA_H
  12. #define _ASM_DMA_H
  13. #include <linux/config.h>
  14. #include <asm/io.h> /* need byte IO */
  15. #include <linux/spinlock.h> /* And spinlocks */
  16. #include <linux/delay.h>
  17. #include <asm/system.h>
  18. #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
  19. #define dma_outb outb_p
  20. #else
  21. #define dma_outb outb
  22. #endif
  23. #define dma_inb inb
  24. /*
  25. * NOTES about DMA transfers:
  26. *
  27. * controller 1: channels 0-3, byte operations, ports 00-1F
  28. * controller 2: channels 4-7, word operations, ports C0-DF
  29. *
  30. * - ALL registers are 8 bits only, regardless of transfer size
  31. * - channel 4 is not used - cascades 1 into 2.
  32. * - channels 0-3 are byte - addresses/counts are for physical bytes
  33. * - channels 5-7 are word - addresses/counts are for physical words
  34. * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
  35. * - transfer count loaded to registers is 1 less than actual count
  36. * - controller 2 offsets are all even (2x offsets for controller 1)
  37. * - page registers for 5-7 don't use data bit 0, represent 128K pages
  38. * - page registers for 0-3 use bit 0, represent 64K pages
  39. *
  40. * DMA transfers are limited to the lower 16MB of _physical_ memory.
  41. * Note that addresses loaded into registers must be _physical_ addresses,
  42. * not logical addresses (which may differ if paging is active).
  43. *
  44. * Address mapping for channels 0-3:
  45. *
  46. * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)
  47. * | ... | | ... | | ... |
  48. * | ... | | ... | | ... |
  49. * | ... | | ... | | ... |
  50. * P7 ... P0 A7 ... A0 A7 ... A0
  51. * | Page | Addr MSB | Addr LSB | (DMA registers)
  52. *
  53. * Address mapping for channels 5-7:
  54. *
  55. * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)
  56. * | ... | \ \ ... \ \ \ ... \ \
  57. * | ... | \ \ ... \ \ \ ... \ (not used)
  58. * | ... | \ \ ... \ \ \ ... \
  59. * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0
  60. * | Page | Addr MSB | Addr LSB | (DMA registers)
  61. *
  62. * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
  63. * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
  64. * the hardware level, so odd-byte transfers aren't possible).
  65. *
  66. * Transfer count (_not # bytes_) is limited to 64K, represented as actual
  67. * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,
  68. * and up to 128K bytes may be transferred on channels 5-7 in one operation.
  69. *
  70. */
  71. #define MAX_DMA_CHANNELS 8
  72. /*
  73. * The maximum address in KSEG0 that we can perform a DMA transfer to on this
  74. * platform. This describes only the PC style part of the DMA logic like on
  75. * Deskstations or Acer PICA but not the much more versatile DMA logic used
  76. * for the local devices on Acer PICA or Magnums.
  77. */
  78. #ifdef CONFIG_SGI_IP22
  79. /* Horrible hack to have a correct DMA window on IP22 */
  80. #include <asm/sgi/mc.h>
  81. #define MAX_DMA_ADDRESS (PAGE_OFFSET + SGIMC_SEG0_BADDR + 0x01000000)
  82. #else
  83. #define MAX_DMA_ADDRESS (PAGE_OFFSET + 0x01000000)
  84. #endif
  85. /* 8237 DMA controllers */
  86. #define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
  87. #define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
  88. /* DMA controller registers */
  89. #define DMA1_CMD_REG 0x08 /* command register (w) */
  90. #define DMA1_STAT_REG 0x08 /* status register (r) */
  91. #define DMA1_REQ_REG 0x09 /* request register (w) */
  92. #define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
  93. #define DMA1_MODE_REG 0x0B /* mode register (w) */
  94. #define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
  95. #define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
  96. #define DMA1_RESET_REG 0x0D /* Master Clear (w) */
  97. #define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
  98. #define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
  99. #define DMA2_CMD_REG 0xD0 /* command register (w) */
  100. #define DMA2_STAT_REG 0xD0 /* status register (r) */
  101. #define DMA2_REQ_REG 0xD2 /* request register (w) */
  102. #define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
  103. #define DMA2_MODE_REG 0xD6 /* mode register (w) */
  104. #define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
  105. #define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
  106. #define DMA2_RESET_REG 0xDA /* Master Clear (w) */
  107. #define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
  108. #define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
  109. #define DMA_ADDR_0 0x00 /* DMA address registers */
  110. #define DMA_ADDR_1 0x02
  111. #define DMA_ADDR_2 0x04
  112. #define DMA_ADDR_3 0x06
  113. #define DMA_ADDR_4 0xC0
  114. #define DMA_ADDR_5 0xC4
  115. #define DMA_ADDR_6 0xC8
  116. #define DMA_ADDR_7 0xCC
  117. #define DMA_CNT_0 0x01 /* DMA count registers */
  118. #define DMA_CNT_1 0x03
  119. #define DMA_CNT_2 0x05
  120. #define DMA_CNT_3 0x07
  121. #define DMA_CNT_4 0xC2
  122. #define DMA_CNT_5 0xC6
  123. #define DMA_CNT_6 0xCA
  124. #define DMA_CNT_7 0xCE
  125. #define DMA_PAGE_0 0x87 /* DMA page registers */
  126. #define DMA_PAGE_1 0x83
  127. #define DMA_PAGE_2 0x81
  128. #define DMA_PAGE_3 0x82
  129. #define DMA_PAGE_5 0x8B
  130. #define DMA_PAGE_6 0x89
  131. #define DMA_PAGE_7 0x8A
  132. #define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */
  133. #define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */
  134. #define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */
  135. #define DMA_AUTOINIT 0x10
  136. extern spinlock_t dma_spin_lock;
  137. static __inline__ unsigned long claim_dma_lock(void)
  138. {
  139. unsigned long flags;
  140. spin_lock_irqsave(&dma_spin_lock, flags);
  141. return flags;
  142. }
  143. static __inline__ void release_dma_lock(unsigned long flags)
  144. {
  145. spin_unlock_irqrestore(&dma_spin_lock, flags);
  146. }
  147. /* enable/disable a specific DMA channel */
  148. static __inline__ void enable_dma(unsigned int dmanr)
  149. {
  150. if (dmanr<=3)
  151. dma_outb(dmanr, DMA1_MASK_REG);
  152. else
  153. dma_outb(dmanr & 3, DMA2_MASK_REG);
  154. }
  155. static __inline__ void disable_dma(unsigned int dmanr)
  156. {
  157. if (dmanr<=3)
  158. dma_outb(dmanr | 4, DMA1_MASK_REG);
  159. else
  160. dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
  161. }
  162. /* Clear the 'DMA Pointer Flip Flop'.
  163. * Write 0 for LSB/MSB, 1 for MSB/LSB access.
  164. * Use this once to initialize the FF to a known state.
  165. * After that, keep track of it. :-)
  166. * --- In order to do that, the DMA routines below should ---
  167. * --- only be used while holding the DMA lock ! ---
  168. */
  169. static __inline__ void clear_dma_ff(unsigned int dmanr)
  170. {
  171. if (dmanr<=3)
  172. dma_outb(0, DMA1_CLEAR_FF_REG);
  173. else
  174. dma_outb(0, DMA2_CLEAR_FF_REG);
  175. }
  176. /* set mode (above) for a specific DMA channel */
  177. static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
  178. {
  179. if (dmanr<=3)
  180. dma_outb(mode | dmanr, DMA1_MODE_REG);
  181. else
  182. dma_outb(mode | (dmanr&3), DMA2_MODE_REG);
  183. }
  184. /* Set only the page register bits of the transfer address.
  185. * This is used for successive transfers when we know the contents of
  186. * the lower 16 bits of the DMA current address register, but a 64k boundary
  187. * may have been crossed.
  188. */
  189. static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
  190. {
  191. switch(dmanr) {
  192. case 0:
  193. dma_outb(pagenr, DMA_PAGE_0);
  194. break;
  195. case 1:
  196. dma_outb(pagenr, DMA_PAGE_1);
  197. break;
  198. case 2:
  199. dma_outb(pagenr, DMA_PAGE_2);
  200. break;
  201. case 3:
  202. dma_outb(pagenr, DMA_PAGE_3);
  203. break;
  204. case 5:
  205. dma_outb(pagenr & 0xfe, DMA_PAGE_5);
  206. break;
  207. case 6:
  208. dma_outb(pagenr & 0xfe, DMA_PAGE_6);
  209. break;
  210. case 7:
  211. dma_outb(pagenr & 0xfe, DMA_PAGE_7);
  212. break;
  213. }
  214. }
  215. /* Set transfer address & page bits for specific DMA channel.
  216. * Assumes dma flipflop is clear.
  217. */
  218. static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
  219. {
  220. set_dma_page(dmanr, a>>16);
  221. if (dmanr <= 3) {
  222. dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
  223. dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
  224. } else {
  225. dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
  226. dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
  227. }
  228. }
  229. /* Set transfer size (max 64k for DMA0..3, 128k for DMA5..7) for
  230. * a specific DMA channel.
  231. * You must ensure the parameters are valid.
  232. * NOTE: from a manual: "the number of transfers is one more
  233. * than the initial word count"! This is taken into account.
  234. * Assumes dma flip-flop is clear.
  235. * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
  236. */
  237. static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
  238. {
  239. count--;
  240. if (dmanr <= 3) {
  241. dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
  242. dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
  243. } else {
  244. dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
  245. dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
  246. }
  247. }
  248. /* Get DMA residue count. After a DMA transfer, this
  249. * should return zero. Reading this while a DMA transfer is
  250. * still in progress will return unpredictable results.
  251. * If called before the channel has been used, it may return 1.
  252. * Otherwise, it returns the number of _bytes_ left to transfer.
  253. *
  254. * Assumes DMA flip-flop is clear.
  255. */
  256. static __inline__ int get_dma_residue(unsigned int dmanr)
  257. {
  258. unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
  259. : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
  260. /* using short to get 16-bit wrap around */
  261. unsigned short count;
  262. count = 1 + dma_inb(io_port);
  263. count += dma_inb(io_port) << 8;
  264. return (dmanr<=3)? count : (count<<1);
  265. }
  266. /* These are in kernel/dma.c: */
  267. extern int request_dma(unsigned int dmanr, const char * device_id); /* reserve a DMA channel */
  268. extern void free_dma(unsigned int dmanr); /* release it again */
  269. /* From PCI */
  270. #ifdef CONFIG_PCI
  271. extern int isa_dma_bridge_buggy;
  272. #else
  273. #define isa_dma_bridge_buggy (0)
  274. #endif
  275. #endif /* _ASM_DMA_H */