123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703 |
- #ifndef _ASM_M32R_BITOPS_H
- #define _ASM_M32R_BITOPS_H
- /*
- * linux/include/asm-m32r/bitops.h
- *
- * Copyright 1992, Linus Torvalds.
- *
- * M32R version:
- * Copyright (C) 2001, 2002 Hitoshi Yamamoto
- * Copyright (C) 2004 Hirokazu Takata <takata at linux-m32r.org>
- */
- #include <linux/config.h>
- #include <linux/compiler.h>
- #include <asm/assembler.h>
- #include <asm/system.h>
- #include <asm/byteorder.h>
- #include <asm/types.h>
- /*
- * These have to be done with inline assembly: that way the bit-setting
- * is guaranteed to be atomic. All bit operations return 0 if the bit
- * was cleared before the operation and != 0 if it was not.
- *
- * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
- */
- /**
- * set_bit - Atomically set a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * This function is atomic and may not be reordered. See __set_bit()
- * if you do not require the atomic guarantees.
- * Note that @nr may be almost arbitrarily large; this function is not
- * restricted to acting on a single-word quantity.
- */
- static __inline__ void set_bit(int nr, volatile void * addr)
- {
- __u32 mask;
- volatile __u32 *a = addr;
- unsigned long flags;
- unsigned long tmp;
- a += (nr >> 5);
- mask = (1 << (nr & 0x1F));
- local_irq_save(flags);
- __asm__ __volatile__ (
- DCACHE_CLEAR("%0", "r6", "%1")
- M32R_LOCK" %0, @%1; \n\t"
- "or %0, %2; \n\t"
- M32R_UNLOCK" %0, @%1; \n\t"
- : "=&r" (tmp)
- : "r" (a), "r" (mask)
- : "memory"
- #ifdef CONFIG_CHIP_M32700_TS1
- , "r6"
- #endif /* CONFIG_CHIP_M32700_TS1 */
- );
- local_irq_restore(flags);
- }
- /**
- * __set_bit - Set a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * Unlike set_bit(), this function is non-atomic and may be reordered.
- * If it's called on the same region of memory simultaneously, the effect
- * may be that only one operation succeeds.
- */
- static __inline__ void __set_bit(int nr, volatile void * addr)
- {
- __u32 mask;
- volatile __u32 *a = addr;
- a += (nr >> 5);
- mask = (1 << (nr & 0x1F));
- *a |= mask;
- }
- /**
- * clear_bit - Clears a bit in memory
- * @nr: Bit to clear
- * @addr: Address to start counting from
- *
- * clear_bit() is atomic and may not be reordered. However, it does
- * not contain a memory barrier, so if it is used for locking purposes,
- * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
- * in order to ensure changes are visible on other processors.
- */
- static __inline__ void clear_bit(int nr, volatile void * addr)
- {
- __u32 mask;
- volatile __u32 *a = addr;
- unsigned long flags;
- unsigned long tmp;
- a += (nr >> 5);
- mask = (1 << (nr & 0x1F));
- local_irq_save(flags);
- __asm__ __volatile__ (
- DCACHE_CLEAR("%0", "r6", "%1")
- M32R_LOCK" %0, @%1; \n\t"
- "and %0, %2; \n\t"
- M32R_UNLOCK" %0, @%1; \n\t"
- : "=&r" (tmp)
- : "r" (a), "r" (~mask)
- : "memory"
- #ifdef CONFIG_CHIP_M32700_TS1
- , "r6"
- #endif /* CONFIG_CHIP_M32700_TS1 */
- );
- local_irq_restore(flags);
- }
- static __inline__ void __clear_bit(int nr, volatile unsigned long * addr)
- {
- unsigned long mask;
- volatile unsigned long *a = addr;
- a += (nr >> 5);
- mask = (1 << (nr & 0x1F));
- *a &= ~mask;
- }
- #define smp_mb__before_clear_bit() barrier()
- #define smp_mb__after_clear_bit() barrier()
- /**
- * __change_bit - Toggle a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * Unlike change_bit(), this function is non-atomic and may be reordered.
- * If it's called on the same region of memory simultaneously, the effect
- * may be that only one operation succeeds.
- */
- static __inline__ void __change_bit(int nr, volatile void * addr)
- {
- __u32 mask;
- volatile __u32 *a = addr;
- a += (nr >> 5);
- mask = (1 << (nr & 0x1F));
- *a ^= mask;
- }
- /**
- * change_bit - Toggle a bit in memory
- * @nr: Bit to clear
- * @addr: Address to start counting from
- *
- * change_bit() is atomic and may not be reordered.
- * Note that @nr may be almost arbitrarily large; this function is not
- * restricted to acting on a single-word quantity.
- */
- static __inline__ void change_bit(int nr, volatile void * addr)
- {
- __u32 mask;
- volatile __u32 *a = addr;
- unsigned long flags;
- unsigned long tmp;
- a += (nr >> 5);
- mask = (1 << (nr & 0x1F));
- local_irq_save(flags);
- __asm__ __volatile__ (
- DCACHE_CLEAR("%0", "r6", "%1")
- M32R_LOCK" %0, @%1; \n\t"
- "xor %0, %2; \n\t"
- M32R_UNLOCK" %0, @%1; \n\t"
- : "=&r" (tmp)
- : "r" (a), "r" (mask)
- : "memory"
- #ifdef CONFIG_CHIP_M32700_TS1
- , "r6"
- #endif /* CONFIG_CHIP_M32700_TS1 */
- );
- local_irq_restore(flags);
- }
- /**
- * test_and_set_bit - Set a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is atomic and cannot be reordered.
- * It also implies a memory barrier.
- */
- static __inline__ int test_and_set_bit(int nr, volatile void * addr)
- {
- __u32 mask, oldbit;
- volatile __u32 *a = addr;
- unsigned long flags;
- unsigned long tmp;
- a += (nr >> 5);
- mask = (1 << (nr & 0x1F));
- local_irq_save(flags);
- __asm__ __volatile__ (
- DCACHE_CLEAR("%0", "%1", "%2")
- M32R_LOCK" %0, @%2; \n\t"
- "mv %1, %0; \n\t"
- "and %0, %3; \n\t"
- "or %1, %3; \n\t"
- M32R_UNLOCK" %1, @%2; \n\t"
- : "=&r" (oldbit), "=&r" (tmp)
- : "r" (a), "r" (mask)
- : "memory"
- );
- local_irq_restore(flags);
- return (oldbit != 0);
- }
- /**
- * __test_and_set_bit - Set a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is non-atomic and can be reordered.
- * If two examples of this operation race, one can appear to succeed
- * but actually fail. You must protect multiple accesses with a lock.
- */
- static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
- {
- __u32 mask, oldbit;
- volatile __u32 *a = addr;
- a += (nr >> 5);
- mask = (1 << (nr & 0x1F));
- oldbit = (*a & mask);
- *a |= mask;
- return (oldbit != 0);
- }
- /**
- * test_and_clear_bit - Clear a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is atomic and cannot be reordered.
- * It also implies a memory barrier.
- */
- static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
- {
- __u32 mask, oldbit;
- volatile __u32 *a = addr;
- unsigned long flags;
- unsigned long tmp;
- a += (nr >> 5);
- mask = (1 << (nr & 0x1F));
- local_irq_save(flags);
- __asm__ __volatile__ (
- DCACHE_CLEAR("%0", "%1", "%3")
- M32R_LOCK" %0, @%3; \n\t"
- "mv %1, %0; \n\t"
- "and %0, %2; \n\t"
- "not %2, %2; \n\t"
- "and %1, %2; \n\t"
- M32R_UNLOCK" %1, @%3; \n\t"
- : "=&r" (oldbit), "=&r" (tmp), "+r" (mask)
- : "r" (a)
- : "memory"
- );
- local_irq_restore(flags);
- return (oldbit != 0);
- }
- /**
- * __test_and_clear_bit - Clear a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is non-atomic and can be reordered.
- * If two examples of this operation race, one can appear to succeed
- * but actually fail. You must protect multiple accesses with a lock.
- */
- static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
- {
- __u32 mask, oldbit;
- volatile __u32 *a = addr;
- a += (nr >> 5);
- mask = (1 << (nr & 0x1F));
- oldbit = (*a & mask);
- *a &= ~mask;
- return (oldbit != 0);
- }
- /* WARNING: non atomic and it can be reordered! */
- static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
- {
- __u32 mask, oldbit;
- volatile __u32 *a = addr;
- a += (nr >> 5);
- mask = (1 << (nr & 0x1F));
- oldbit = (*a & mask);
- *a ^= mask;
- return (oldbit != 0);
- }
- /**
- * test_and_change_bit - Change a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is atomic and cannot be reordered.
- * It also implies a memory barrier.
- */
- static __inline__ int test_and_change_bit(int nr, volatile void * addr)
- {
- __u32 mask, oldbit;
- volatile __u32 *a = addr;
- unsigned long flags;
- unsigned long tmp;
- a += (nr >> 5);
- mask = (1 << (nr & 0x1F));
- local_irq_save(flags);
- __asm__ __volatile__ (
- DCACHE_CLEAR("%0", "%1", "%2")
- M32R_LOCK" %0, @%2; \n\t"
- "mv %1, %0; \n\t"
- "and %0, %3; \n\t"
- "xor %1, %3; \n\t"
- M32R_UNLOCK" %1, @%2; \n\t"
- : "=&r" (oldbit), "=&r" (tmp)
- : "r" (a), "r" (mask)
- : "memory"
- );
- local_irq_restore(flags);
- return (oldbit != 0);
- }
- /**
- * test_bit - Determine whether a bit is set
- * @nr: bit number to test
- * @addr: Address to start counting from
- */
- static __inline__ int test_bit(int nr, const volatile void * addr)
- {
- __u32 mask;
- const volatile __u32 *a = addr;
- a += (nr >> 5);
- mask = (1 << (nr & 0x1F));
- return ((*a & mask) != 0);
- }
- /**
- * ffz - find first zero in word.
- * @word: The word to search
- *
- * Undefined if no zero exists, so code should check against ~0UL first.
- */
- static __inline__ unsigned long ffz(unsigned long word)
- {
- int k;
- word = ~word;
- k = 0;
- if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
- if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
- if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
- if (!(word & 0x00000003)) { k += 2; word >>= 2; }
- if (!(word & 0x00000001)) { k += 1; }
- return k;
- }
- /**
- * find_first_zero_bit - find the first zero bit in a memory region
- * @addr: The address to start the search at
- * @size: The maximum size to search
- *
- * Returns the bit-number of the first zero bit, not the number of the byte
- * containing a bit.
- */
- #define find_first_zero_bit(addr, size) \
- find_next_zero_bit((addr), (size), 0)
- /**
- * find_next_zero_bit - find the first zero bit in a memory region
- * @addr: The address to base the search on
- * @offset: The bitnumber to start searching at
- * @size: The maximum size to search
- */
- static __inline__ int find_next_zero_bit(const unsigned long *addr,
- int size, int offset)
- {
- const unsigned long *p = addr + (offset >> 5);
- unsigned long result = offset & ~31UL;
- unsigned long tmp;
- if (offset >= size)
- return size;
- size -= result;
- offset &= 31UL;
- if (offset) {
- tmp = *(p++);
- tmp |= ~0UL >> (32-offset);
- if (size < 32)
- goto found_first;
- if (~tmp)
- goto found_middle;
- size -= 32;
- result += 32;
- }
- while (size & ~31UL) {
- if (~(tmp = *(p++)))
- goto found_middle;
- result += 32;
- size -= 32;
- }
- if (!size)
- return result;
- tmp = *p;
- found_first:
- tmp |= ~0UL << size;
- found_middle:
- return result + ffz(tmp);
- }
- /**
- * __ffs - find first bit in word.
- * @word: The word to search
- *
- * Undefined if no bit exists, so code should check against 0 first.
- */
- static __inline__ unsigned long __ffs(unsigned long word)
- {
- int k = 0;
- if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
- if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
- if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
- if (!(word & 0x00000003)) { k += 2; word >>= 2; }
- if (!(word & 0x00000001)) { k += 1;}
- return k;
- }
- /*
- * fls: find last bit set.
- */
- #define fls(x) generic_fls(x)
- #define fls64(x) generic_fls64(x)
- #ifdef __KERNEL__
- /*
- * Every architecture must define this function. It's the fastest
- * way of searching a 140-bit bitmap where the first 100 bits are
- * unlikely to be set. It's guaranteed that at least one of the 140
- * bits is cleared.
- */
- static inline int sched_find_first_bit(unsigned long *b)
- {
- if (unlikely(b[0]))
- return __ffs(b[0]);
- if (unlikely(b[1]))
- return __ffs(b[1]) + 32;
- if (unlikely(b[2]))
- return __ffs(b[2]) + 64;
- if (b[3])
- return __ffs(b[3]) + 96;
- return __ffs(b[4]) + 128;
- }
- /**
- * find_next_bit - find the first set bit in a memory region
- * @addr: The address to base the search on
- * @offset: The bitnumber to start searching at
- * @size: The maximum size to search
- */
- static inline unsigned long find_next_bit(const unsigned long *addr,
- unsigned long size, unsigned long offset)
- {
- unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
- unsigned int result = offset & ~31UL;
- unsigned int tmp;
- if (offset >= size)
- return size;
- size -= result;
- offset &= 31UL;
- if (offset) {
- tmp = *p++;
- tmp &= ~0UL << offset;
- if (size < 32)
- goto found_first;
- if (tmp)
- goto found_middle;
- size -= 32;
- result += 32;
- }
- while (size >= 32) {
- if ((tmp = *p++) != 0)
- goto found_middle;
- result += 32;
- size -= 32;
- }
- if (!size)
- return result;
- tmp = *p;
- found_first:
- tmp &= ~0UL >> (32 - size);
- if (tmp == 0UL) /* Are any bits set? */
- return result + size; /* Nope. */
- found_middle:
- return result + __ffs(tmp);
- }
- /**
- * find_first_bit - find the first set bit in a memory region
- * @addr: The address to start the search at
- * @size: The maximum size to search
- *
- * Returns the bit-number of the first set bit, not the number of the byte
- * containing a bit.
- */
- #define find_first_bit(addr, size) \
- find_next_bit((addr), (size), 0)
- /**
- * ffs - find first bit set
- * @x: the word to search
- *
- * This is defined the same way as
- * the libc and compiler builtin ffs routines, therefore
- * differs in spirit from the above ffz (man ffs).
- */
- #define ffs(x) generic_ffs(x)
- /**
- * hweightN - returns the hamming weight of a N-bit word
- * @x: the word to weigh
- *
- * The Hamming Weight of a number is the total number of bits set in it.
- */
- #define hweight32(x) generic_hweight32(x)
- #define hweight16(x) generic_hweight16(x)
- #define hweight8(x) generic_hweight8(x)
- #endif /* __KERNEL__ */
- #ifdef __KERNEL__
- /*
- * ext2_XXXX function
- * orig: include/asm-sh/bitops.h
- */
- #ifdef __LITTLE_ENDIAN__
- #define ext2_set_bit test_and_set_bit
- #define ext2_clear_bit __test_and_clear_bit
- #define ext2_test_bit test_bit
- #define ext2_find_first_zero_bit find_first_zero_bit
- #define ext2_find_next_zero_bit find_next_zero_bit
- #else
- static inline int ext2_set_bit(int nr, volatile void * addr)
- {
- __u8 mask, oldbit;
- volatile __u8 *a = addr;
- a += (nr >> 3);
- mask = (1 << (nr & 0x07));
- oldbit = (*a & mask);
- *a |= mask;
- return (oldbit != 0);
- }
- static inline int ext2_clear_bit(int nr, volatile void * addr)
- {
- __u8 mask, oldbit;
- volatile __u8 *a = addr;
- a += (nr >> 3);
- mask = (1 << (nr & 0x07));
- oldbit = (*a & mask);
- *a &= ~mask;
- return (oldbit != 0);
- }
- static inline int ext2_test_bit(int nr, const volatile void * addr)
- {
- __u32 mask;
- const volatile __u8 *a = addr;
- a += (nr >> 3);
- mask = (1 << (nr & 0x07));
- return ((mask & *a) != 0);
- }
- #define ext2_find_first_zero_bit(addr, size) \
- ext2_find_next_zero_bit((addr), (size), 0)
- static inline unsigned long ext2_find_next_zero_bit(void *addr,
- unsigned long size, unsigned long offset)
- {
- unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
- unsigned long result = offset & ~31UL;
- unsigned long tmp;
- if (offset >= size)
- return size;
- size -= result;
- offset &= 31UL;
- if(offset) {
- /* We hold the little endian value in tmp, but then the
- * shift is illegal. So we could keep a big endian value
- * in tmp, like this:
- *
- * tmp = __swab32(*(p++));
- * tmp |= ~0UL >> (32-offset);
- *
- * but this would decrease preformance, so we change the
- * shift:
- */
- tmp = *(p++);
- tmp |= __swab32(~0UL >> (32-offset));
- if(size < 32)
- goto found_first;
- if(~tmp)
- goto found_middle;
- size -= 32;
- result += 32;
- }
- while(size & ~31UL) {
- if(~(tmp = *(p++)))
- goto found_middle;
- result += 32;
- size -= 32;
- }
- if(!size)
- return result;
- tmp = *p;
- found_first:
- /* tmp is little endian, so we would have to swab the shift,
- * see above. But then we have to swab tmp below for ffz, so
- * we might as well do this here.
- */
- return result + ffz(__swab32(tmp) | (~0UL << size));
- found_middle:
- return result + ffz(__swab32(tmp));
- }
- #endif
- #define ext2_set_bit_atomic(lock, nr, addr) \
- ({ \
- int ret; \
- spin_lock(lock); \
- ret = ext2_set_bit((nr), (addr)); \
- spin_unlock(lock); \
- ret; \
- })
- #define ext2_clear_bit_atomic(lock, nr, addr) \
- ({ \
- int ret; \
- spin_lock(lock); \
- ret = ext2_clear_bit((nr), (addr)); \
- spin_unlock(lock); \
- ret; \
- })
- /* Bitmap functions for the minix filesystem. */
- #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
- #define minix_set_bit(nr,addr) __set_bit(nr,addr)
- #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
- #define minix_test_bit(nr,addr) test_bit(nr,addr)
- #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
- #endif /* __KERNEL__ */
- #endif /* _ASM_M32R_BITOPS_H */
|