intelfbhw.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/config.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/errno.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/tty.h>
  27. #include <linux/slab.h>
  28. #include <linux/delay.h>
  29. #include <linux/fb.h>
  30. #include <linux/ioport.h>
  31. #include <linux/init.h>
  32. #include <linux/pci.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/pagemap.h>
  35. #include <asm/io.h>
  36. #include "intelfb.h"
  37. #include "intelfbhw.h"
  38. int
  39. intelfbhw_get_chipset(struct pci_dev *pdev, const char **name, int *chipset,
  40. int *mobile)
  41. {
  42. u32 tmp;
  43. if (!pdev || !name || !chipset || !mobile)
  44. return 1;
  45. switch (pdev->device) {
  46. case PCI_DEVICE_ID_INTEL_830M:
  47. *name = "Intel(R) 830M";
  48. *chipset = INTEL_830M;
  49. *mobile = 1;
  50. return 0;
  51. case PCI_DEVICE_ID_INTEL_845G:
  52. *name = "Intel(R) 845G";
  53. *chipset = INTEL_845G;
  54. *mobile = 0;
  55. return 0;
  56. case PCI_DEVICE_ID_INTEL_85XGM:
  57. tmp = 0;
  58. *mobile = 1;
  59. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  60. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  61. INTEL_85X_VARIANT_MASK) {
  62. case INTEL_VAR_855GME:
  63. *name = "Intel(R) 855GME";
  64. *chipset = INTEL_855GME;
  65. return 0;
  66. case INTEL_VAR_855GM:
  67. *name = "Intel(R) 855GM";
  68. *chipset = INTEL_855GM;
  69. return 0;
  70. case INTEL_VAR_852GME:
  71. *name = "Intel(R) 852GME";
  72. *chipset = INTEL_852GME;
  73. return 0;
  74. case INTEL_VAR_852GM:
  75. *name = "Intel(R) 852GM";
  76. *chipset = INTEL_852GM;
  77. return 0;
  78. default:
  79. *name = "Intel(R) 852GM/855GM";
  80. *chipset = INTEL_85XGM;
  81. return 0;
  82. }
  83. break;
  84. case PCI_DEVICE_ID_INTEL_865G:
  85. *name = "Intel(R) 865G";
  86. *chipset = INTEL_865G;
  87. *mobile = 0;
  88. return 0;
  89. case PCI_DEVICE_ID_INTEL_915G:
  90. *name = "Intel(R) 915G";
  91. *chipset = INTEL_915G;
  92. *mobile = 0;
  93. return 0;
  94. case PCI_DEVICE_ID_INTEL_915GM:
  95. *name = "Intel(R) 915GM";
  96. *chipset = INTEL_915GM;
  97. *mobile = 1;
  98. return 0;
  99. default:
  100. return 1;
  101. }
  102. }
  103. int
  104. intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  105. int *stolen_size)
  106. {
  107. struct pci_dev *bridge_dev;
  108. u16 tmp;
  109. if (!pdev || !aperture_size || !stolen_size)
  110. return 1;
  111. /* Find the bridge device. It is always 0:0.0 */
  112. if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
  113. ERR_MSG("cannot find bridge device\n");
  114. return 1;
  115. }
  116. /* Get the fb aperture size and "stolen" memory amount. */
  117. tmp = 0;
  118. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  119. switch (pdev->device) {
  120. case PCI_DEVICE_ID_INTEL_830M:
  121. case PCI_DEVICE_ID_INTEL_845G:
  122. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  123. *aperture_size = MB(64);
  124. else
  125. *aperture_size = MB(128);
  126. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  127. case INTEL_830_GMCH_GMS_STOLEN_512:
  128. *stolen_size = KB(512) - KB(132);
  129. return 0;
  130. case INTEL_830_GMCH_GMS_STOLEN_1024:
  131. *stolen_size = MB(1) - KB(132);
  132. return 0;
  133. case INTEL_830_GMCH_GMS_STOLEN_8192:
  134. *stolen_size = MB(8) - KB(132);
  135. return 0;
  136. case INTEL_830_GMCH_GMS_LOCAL:
  137. ERR_MSG("only local memory found\n");
  138. return 1;
  139. case INTEL_830_GMCH_GMS_DISABLED:
  140. ERR_MSG("video memory is disabled\n");
  141. return 1;
  142. default:
  143. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  144. tmp & INTEL_830_GMCH_GMS_MASK);
  145. return 1;
  146. }
  147. break;
  148. default:
  149. *aperture_size = MB(128);
  150. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  151. case INTEL_855_GMCH_GMS_STOLEN_1M:
  152. *stolen_size = MB(1) - KB(132);
  153. return 0;
  154. case INTEL_855_GMCH_GMS_STOLEN_4M:
  155. *stolen_size = MB(4) - KB(132);
  156. return 0;
  157. case INTEL_855_GMCH_GMS_STOLEN_8M:
  158. *stolen_size = MB(8) - KB(132);
  159. return 0;
  160. case INTEL_855_GMCH_GMS_STOLEN_16M:
  161. *stolen_size = MB(16) - KB(132);
  162. return 0;
  163. case INTEL_855_GMCH_GMS_STOLEN_32M:
  164. *stolen_size = MB(32) - KB(132);
  165. return 0;
  166. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  167. *stolen_size = MB(48) - KB(132);
  168. return 0;
  169. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  170. *stolen_size = MB(64) - KB(132);
  171. return 0;
  172. case INTEL_855_GMCH_GMS_DISABLED:
  173. ERR_MSG("video memory is disabled\n");
  174. return 0;
  175. default:
  176. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  177. tmp & INTEL_855_GMCH_GMS_MASK);
  178. return 1;
  179. }
  180. }
  181. }
  182. int
  183. intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  184. {
  185. int dvo = 0;
  186. if (INREG(LVDS) & PORT_ENABLE)
  187. dvo |= LVDS_PORT;
  188. if (INREG(DVOA) & PORT_ENABLE)
  189. dvo |= DVOA_PORT;
  190. if (INREG(DVOB) & PORT_ENABLE)
  191. dvo |= DVOB_PORT;
  192. if (INREG(DVOC) & PORT_ENABLE)
  193. dvo |= DVOC_PORT;
  194. return dvo;
  195. }
  196. const char *
  197. intelfbhw_dvo_to_string(int dvo)
  198. {
  199. if (dvo & DVOA_PORT)
  200. return "DVO port A";
  201. else if (dvo & DVOB_PORT)
  202. return "DVO port B";
  203. else if (dvo & DVOC_PORT)
  204. return "DVO port C";
  205. else if (dvo & LVDS_PORT)
  206. return "LVDS port";
  207. else
  208. return NULL;
  209. }
  210. int
  211. intelfbhw_validate_mode(struct intelfb_info *dinfo,
  212. struct fb_var_screeninfo *var)
  213. {
  214. int bytes_per_pixel;
  215. int tmp;
  216. #if VERBOSE > 0
  217. DBG_MSG("intelfbhw_validate_mode\n");
  218. #endif
  219. bytes_per_pixel = var->bits_per_pixel / 8;
  220. if (bytes_per_pixel == 3)
  221. bytes_per_pixel = 4;
  222. /* Check if enough video memory. */
  223. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  224. if (tmp > dinfo->fb.size) {
  225. WRN_MSG("Not enough video ram for mode "
  226. "(%d KByte vs %d KByte).\n",
  227. BtoKB(tmp), BtoKB(dinfo->fb.size));
  228. return 1;
  229. }
  230. /* Check if x/y limits are OK. */
  231. if (var->xres - 1 > HACTIVE_MASK) {
  232. WRN_MSG("X resolution too large (%d vs %d).\n",
  233. var->xres, HACTIVE_MASK + 1);
  234. return 1;
  235. }
  236. if (var->yres - 1 > VACTIVE_MASK) {
  237. WRN_MSG("Y resolution too large (%d vs %d).\n",
  238. var->yres, VACTIVE_MASK + 1);
  239. return 1;
  240. }
  241. /* Check for interlaced/doublescan modes. */
  242. if (var->vmode & FB_VMODE_INTERLACED) {
  243. WRN_MSG("Mode is interlaced.\n");
  244. return 1;
  245. }
  246. if (var->vmode & FB_VMODE_DOUBLE) {
  247. WRN_MSG("Mode is double-scan.\n");
  248. return 1;
  249. }
  250. /* Check if clock is OK. */
  251. tmp = 1000000000 / var->pixclock;
  252. if (tmp < MIN_CLOCK) {
  253. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  254. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  255. return 1;
  256. }
  257. if (tmp > MAX_CLOCK) {
  258. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  259. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  260. return 1;
  261. }
  262. return 0;
  263. }
  264. int
  265. intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  266. {
  267. struct intelfb_info *dinfo = GET_DINFO(info);
  268. u32 offset, xoffset, yoffset;
  269. #if VERBOSE > 0
  270. DBG_MSG("intelfbhw_pan_display\n");
  271. #endif
  272. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  273. yoffset = var->yoffset;
  274. if ((xoffset + var->xres > var->xres_virtual) ||
  275. (yoffset + var->yres > var->yres_virtual))
  276. return -EINVAL;
  277. offset = (yoffset * dinfo->pitch) +
  278. (xoffset * var->bits_per_pixel) / 8;
  279. offset += dinfo->fb.offset << 12;
  280. OUTREG(DSPABASE, offset);
  281. return 0;
  282. }
  283. /* Blank the screen. */
  284. void
  285. intelfbhw_do_blank(int blank, struct fb_info *info)
  286. {
  287. struct intelfb_info *dinfo = GET_DINFO(info);
  288. u32 tmp;
  289. #if VERBOSE > 0
  290. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  291. #endif
  292. /* Turn plane A on or off */
  293. tmp = INREG(DSPACNTR);
  294. if (blank)
  295. tmp &= ~DISPPLANE_PLANE_ENABLE;
  296. else
  297. tmp |= DISPPLANE_PLANE_ENABLE;
  298. OUTREG(DSPACNTR, tmp);
  299. /* Flush */
  300. tmp = INREG(DSPABASE);
  301. OUTREG(DSPABASE, tmp);
  302. /* Turn off/on the HW cursor */
  303. #if VERBOSE > 0
  304. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  305. #endif
  306. if (dinfo->cursor_on) {
  307. if (blank) {
  308. intelfbhw_cursor_hide(dinfo);
  309. } else {
  310. intelfbhw_cursor_show(dinfo);
  311. }
  312. dinfo->cursor_on = 1;
  313. }
  314. dinfo->cursor_blanked = blank;
  315. /* Set DPMS level */
  316. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  317. switch (blank) {
  318. case FB_BLANK_UNBLANK:
  319. case FB_BLANK_NORMAL:
  320. tmp |= ADPA_DPMS_D0;
  321. break;
  322. case FB_BLANK_VSYNC_SUSPEND:
  323. tmp |= ADPA_DPMS_D1;
  324. break;
  325. case FB_BLANK_HSYNC_SUSPEND:
  326. tmp |= ADPA_DPMS_D2;
  327. break;
  328. case FB_BLANK_POWERDOWN:
  329. tmp |= ADPA_DPMS_D3;
  330. break;
  331. }
  332. OUTREG(ADPA, tmp);
  333. return;
  334. }
  335. void
  336. intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  337. unsigned red, unsigned green, unsigned blue,
  338. unsigned transp)
  339. {
  340. #if VERBOSE > 0
  341. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  342. regno, red, green, blue);
  343. #endif
  344. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  345. PALETTE_A : PALETTE_B;
  346. OUTREG(palette_reg + (regno << 2),
  347. (red << PALETTE_8_RED_SHIFT) |
  348. (green << PALETTE_8_GREEN_SHIFT) |
  349. (blue << PALETTE_8_BLUE_SHIFT));
  350. }
  351. int
  352. intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  353. int flag)
  354. {
  355. int i;
  356. #if VERBOSE > 0
  357. DBG_MSG("intelfbhw_read_hw_state\n");
  358. #endif
  359. if (!hw || !dinfo)
  360. return -1;
  361. /* Read in as much of the HW state as possible. */
  362. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  363. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  364. hw->vga_pd = INREG(VGAPD);
  365. hw->dpll_a = INREG(DPLL_A);
  366. hw->dpll_b = INREG(DPLL_B);
  367. hw->fpa0 = INREG(FPA0);
  368. hw->fpa1 = INREG(FPA1);
  369. hw->fpb0 = INREG(FPB0);
  370. hw->fpb1 = INREG(FPB1);
  371. if (flag == 1)
  372. return flag;
  373. #if 0
  374. /* This seems to be a problem with the 852GM/855GM */
  375. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  376. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  377. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  378. }
  379. #endif
  380. if (flag == 2)
  381. return flag;
  382. hw->htotal_a = INREG(HTOTAL_A);
  383. hw->hblank_a = INREG(HBLANK_A);
  384. hw->hsync_a = INREG(HSYNC_A);
  385. hw->vtotal_a = INREG(VTOTAL_A);
  386. hw->vblank_a = INREG(VBLANK_A);
  387. hw->vsync_a = INREG(VSYNC_A);
  388. hw->src_size_a = INREG(SRC_SIZE_A);
  389. hw->bclrpat_a = INREG(BCLRPAT_A);
  390. hw->htotal_b = INREG(HTOTAL_B);
  391. hw->hblank_b = INREG(HBLANK_B);
  392. hw->hsync_b = INREG(HSYNC_B);
  393. hw->vtotal_b = INREG(VTOTAL_B);
  394. hw->vblank_b = INREG(VBLANK_B);
  395. hw->vsync_b = INREG(VSYNC_B);
  396. hw->src_size_b = INREG(SRC_SIZE_B);
  397. hw->bclrpat_b = INREG(BCLRPAT_B);
  398. if (flag == 3)
  399. return flag;
  400. hw->adpa = INREG(ADPA);
  401. hw->dvoa = INREG(DVOA);
  402. hw->dvob = INREG(DVOB);
  403. hw->dvoc = INREG(DVOC);
  404. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  405. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  406. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  407. hw->lvds = INREG(LVDS);
  408. if (flag == 4)
  409. return flag;
  410. hw->pipe_a_conf = INREG(PIPEACONF);
  411. hw->pipe_b_conf = INREG(PIPEBCONF);
  412. hw->disp_arb = INREG(DISPARB);
  413. if (flag == 5)
  414. return flag;
  415. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  416. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  417. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  418. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  419. if (flag == 6)
  420. return flag;
  421. for (i = 0; i < 4; i++) {
  422. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  423. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  424. }
  425. if (flag == 7)
  426. return flag;
  427. hw->cursor_size = INREG(CURSOR_SIZE);
  428. if (flag == 8)
  429. return flag;
  430. hw->disp_a_ctrl = INREG(DSPACNTR);
  431. hw->disp_b_ctrl = INREG(DSPBCNTR);
  432. hw->disp_a_base = INREG(DSPABASE);
  433. hw->disp_b_base = INREG(DSPBBASE);
  434. hw->disp_a_stride = INREG(DSPASTRIDE);
  435. hw->disp_b_stride = INREG(DSPBSTRIDE);
  436. if (flag == 9)
  437. return flag;
  438. hw->vgacntrl = INREG(VGACNTRL);
  439. if (flag == 10)
  440. return flag;
  441. hw->add_id = INREG(ADD_ID);
  442. if (flag == 11)
  443. return flag;
  444. for (i = 0; i < 7; i++) {
  445. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  446. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  447. if (i < 3)
  448. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  449. }
  450. for (i = 0; i < 8; i++)
  451. hw->fence[i] = INREG(FENCE + (i << 2));
  452. hw->instpm = INREG(INSTPM);
  453. hw->mem_mode = INREG(MEM_MODE);
  454. hw->fw_blc_0 = INREG(FW_BLC_0);
  455. hw->fw_blc_1 = INREG(FW_BLC_1);
  456. return 0;
  457. }
  458. void
  459. intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
  460. {
  461. #if REGDUMP
  462. int i, m1, m2, n, p1, p2;
  463. DBG_MSG("intelfbhw_print_hw_state\n");
  464. if (!hw || !dinfo)
  465. return;
  466. /* Read in as much of the HW state as possible. */
  467. printk("hw state dump start\n");
  468. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  469. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  470. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  471. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  472. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  473. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  474. if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
  475. p1 = 0;
  476. else
  477. p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
  478. p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
  479. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  480. m1, m2, n, p1, p2);
  481. printk(" VGA0: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
  482. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  483. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  484. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  485. if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
  486. p1 = 0;
  487. else
  488. p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
  489. p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
  490. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  491. m1, m2, n, p1, p2);
  492. printk(" VGA1: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
  493. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  494. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  495. printk(" FPA0: 0x%08x\n", hw->fpa0);
  496. printk(" FPA1: 0x%08x\n", hw->fpa1);
  497. printk(" FPB0: 0x%08x\n", hw->fpb0);
  498. printk(" FPB1: 0x%08x\n", hw->fpb1);
  499. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  500. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  501. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  502. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  503. p1 = 0;
  504. else
  505. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  506. p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  507. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  508. m1, m2, n, p1, p2);
  509. printk(" PLLA0: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
  510. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  511. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  512. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  513. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  514. p1 = 0;
  515. else
  516. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  517. p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  518. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  519. m1, m2, n, p1, p2);
  520. printk(" PLLA1: clock is %d\n", CALC_VCLOCK(m1, m2, n, p1, p2));
  521. #if 0
  522. printk(" PALETTE_A:\n");
  523. for (i = 0; i < PALETTE_8_ENTRIES)
  524. printk(" %3d: 0x%08x\n", i, hw->palette_a[i];
  525. printk(" PALETTE_B:\n");
  526. for (i = 0; i < PALETTE_8_ENTRIES)
  527. printk(" %3d: 0x%08x\n", i, hw->palette_b[i];
  528. #endif
  529. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  530. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  531. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  532. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  533. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  534. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  535. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  536. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  537. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  538. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  539. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  540. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  541. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  542. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  543. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  544. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  545. printk(" ADPA: 0x%08x\n", hw->adpa);
  546. printk(" DVOA: 0x%08x\n", hw->dvoa);
  547. printk(" DVOB: 0x%08x\n", hw->dvob);
  548. printk(" DVOC: 0x%08x\n", hw->dvoc);
  549. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  550. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  551. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  552. printk(" LVDS: 0x%08x\n", hw->lvds);
  553. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  554. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  555. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  556. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  557. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  558. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  559. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  560. printk(" CURSOR_A_PALETTE: ");
  561. for (i = 0; i < 4; i++) {
  562. printk("0x%08x", hw->cursor_a_palette[i]);
  563. if (i < 3)
  564. printk(", ");
  565. }
  566. printk("\n");
  567. printk(" CURSOR_B_PALETTE: ");
  568. for (i = 0; i < 4; i++) {
  569. printk("0x%08x", hw->cursor_b_palette[i]);
  570. if (i < 3)
  571. printk(", ");
  572. }
  573. printk("\n");
  574. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  575. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  576. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  577. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  578. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  579. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  580. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  581. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  582. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  583. for (i = 0; i < 7; i++) {
  584. printk(" SWF0%d 0x%08x\n", i,
  585. hw->swf0x[i]);
  586. }
  587. for (i = 0; i < 7; i++) {
  588. printk(" SWF1%d 0x%08x\n", i,
  589. hw->swf1x[i]);
  590. }
  591. for (i = 0; i < 3; i++) {
  592. printk(" SWF3%d 0x%08x\n", i,
  593. hw->swf3x[i]);
  594. }
  595. for (i = 0; i < 8; i++)
  596. printk(" FENCE%d 0x%08x\n", i,
  597. hw->fence[i]);
  598. printk(" INSTPM 0x%08x\n", hw->instpm);
  599. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  600. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  601. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  602. printk("hw state dump end\n");
  603. #endif
  604. }
  605. /* Split the M parameter into M1 and M2. */
  606. static int
  607. splitm(unsigned int m, unsigned int *retm1, unsigned int *retm2)
  608. {
  609. int m1, m2;
  610. m1 = (m - 2 - (MIN_M2 + MAX_M2) / 2) / 5 - 2;
  611. if (m1 < MIN_M1)
  612. m1 = MIN_M1;
  613. if (m1 > MAX_M1)
  614. m1 = MAX_M1;
  615. m2 = m - 5 * (m1 + 2) - 2;
  616. if (m2 < MIN_M2 || m2 > MAX_M2 || m2 >= m1) {
  617. return 1;
  618. } else {
  619. *retm1 = (unsigned int)m1;
  620. *retm2 = (unsigned int)m2;
  621. return 0;
  622. }
  623. }
  624. /* Split the P parameter into P1 and P2. */
  625. static int
  626. splitp(unsigned int p, unsigned int *retp1, unsigned int *retp2)
  627. {
  628. int p1, p2;
  629. if (p % 4 == 0)
  630. p2 = 1;
  631. else
  632. p2 = 0;
  633. p1 = (p / (1 << (p2 + 1))) - 2;
  634. if (p % 4 == 0 && p1 < MIN_P1) {
  635. p2 = 0;
  636. p1 = (p / (1 << (p2 + 1))) - 2;
  637. }
  638. if (p1 < MIN_P1 || p1 > MAX_P1 || (p1 + 2) * (1 << (p2 + 1)) != p) {
  639. return 1;
  640. } else {
  641. *retp1 = (unsigned int)p1;
  642. *retp2 = (unsigned int)p2;
  643. return 0;
  644. }
  645. }
  646. static int
  647. calc_pll_params(int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
  648. u32 *retp2, u32 *retclock)
  649. {
  650. u32 m1, m2, n, p1, p2, n1;
  651. u32 f_vco, p, p_best = 0, m, f_out;
  652. u32 err_max, err_target, err_best = 10000000;
  653. u32 n_best = 0, m_best = 0, f_best, f_err;
  654. u32 p_min, p_max, p_inc, div_min, div_max;
  655. /* Accept 0.5% difference, but aim for 0.1% */
  656. err_max = 5 * clock / 1000;
  657. err_target = clock / 1000;
  658. DBG_MSG("Clock is %d\n", clock);
  659. div_max = MAX_VCO_FREQ / clock;
  660. div_min = ROUND_UP_TO(MIN_VCO_FREQ, clock) / clock;
  661. if (clock <= P_TRANSITION_CLOCK)
  662. p_inc = 4;
  663. else
  664. p_inc = 2;
  665. p_min = ROUND_UP_TO(div_min, p_inc);
  666. p_max = ROUND_DOWN_TO(div_max, p_inc);
  667. if (p_min < MIN_P)
  668. p_min = 4;
  669. if (p_max > MAX_P)
  670. p_max = 128;
  671. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  672. p = p_min;
  673. do {
  674. if (splitp(p, &p1, &p2)) {
  675. WRN_MSG("cannot split p = %d\n", p);
  676. p += p_inc;
  677. continue;
  678. }
  679. n = MIN_N;
  680. f_vco = clock * p;
  681. do {
  682. m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
  683. if (m < MIN_M)
  684. m = MIN_M;
  685. if (m > MAX_M)
  686. m = MAX_M;
  687. f_out = CALC_VCLOCK3(m, n, p);
  688. if (splitm(m, &m1, &m2)) {
  689. WRN_MSG("cannot split m = %d\n", m);
  690. n++;
  691. continue;
  692. }
  693. if (clock > f_out)
  694. f_err = clock - f_out;
  695. else
  696. f_err = f_out - clock;
  697. if (f_err < err_best) {
  698. m_best = m;
  699. n_best = n;
  700. p_best = p;
  701. f_best = f_out;
  702. err_best = f_err;
  703. }
  704. n++;
  705. } while ((n <= MAX_N) && (f_out >= clock));
  706. p += p_inc;
  707. } while ((p <= p_max));
  708. if (!m_best) {
  709. WRN_MSG("cannot find parameters for clock %d\n", clock);
  710. return 1;
  711. }
  712. m = m_best;
  713. n = n_best;
  714. p = p_best;
  715. splitm(m, &m1, &m2);
  716. splitp(p, &p1, &p2);
  717. n1 = n - 2;
  718. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  719. "f: %d (%d), VCO: %d\n",
  720. m, m1, m2, n, n1, p, p1, p2,
  721. CALC_VCLOCK3(m, n, p), CALC_VCLOCK(m1, m2, n1, p1, p2),
  722. CALC_VCLOCK3(m, n, p) * p);
  723. *retm1 = m1;
  724. *retm2 = m2;
  725. *retn = n1;
  726. *retp1 = p1;
  727. *retp2 = p2;
  728. *retclock = CALC_VCLOCK(m1, m2, n1, p1, p2);
  729. return 0;
  730. }
  731. static __inline__ int
  732. check_overflow(u32 value, u32 limit, const char *description)
  733. {
  734. if (value > limit) {
  735. WRN_MSG("%s value %d exceeds limit %d\n",
  736. description, value, limit);
  737. return 1;
  738. }
  739. return 0;
  740. }
  741. /* It is assumed that hw is filled in with the initial state information. */
  742. int
  743. intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  744. struct fb_var_screeninfo *var)
  745. {
  746. int pipe = PIPE_A;
  747. u32 *dpll, *fp0, *fp1;
  748. u32 m1, m2, n, p1, p2, clock_target, clock;
  749. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  750. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  751. u32 vsync_pol, hsync_pol;
  752. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  753. DBG_MSG("intelfbhw_mode_to_hw\n");
  754. /* Disable VGA */
  755. hw->vgacntrl |= VGA_DISABLE;
  756. /* Check whether pipe A or pipe B is enabled. */
  757. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  758. pipe = PIPE_A;
  759. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  760. pipe = PIPE_B;
  761. /* Set which pipe's registers will be set. */
  762. if (pipe == PIPE_B) {
  763. dpll = &hw->dpll_b;
  764. fp0 = &hw->fpb0;
  765. fp1 = &hw->fpb1;
  766. hs = &hw->hsync_b;
  767. hb = &hw->hblank_b;
  768. ht = &hw->htotal_b;
  769. vs = &hw->vsync_b;
  770. vb = &hw->vblank_b;
  771. vt = &hw->vtotal_b;
  772. ss = &hw->src_size_b;
  773. pipe_conf = &hw->pipe_b_conf;
  774. } else {
  775. dpll = &hw->dpll_a;
  776. fp0 = &hw->fpa0;
  777. fp1 = &hw->fpa1;
  778. hs = &hw->hsync_a;
  779. hb = &hw->hblank_a;
  780. ht = &hw->htotal_a;
  781. vs = &hw->vsync_a;
  782. vb = &hw->vblank_a;
  783. vt = &hw->vtotal_a;
  784. ss = &hw->src_size_a;
  785. pipe_conf = &hw->pipe_a_conf;
  786. }
  787. /* Use ADPA register for sync control. */
  788. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  789. /* sync polarity */
  790. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  791. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  792. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  793. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  794. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  795. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  796. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  797. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  798. /* Connect correct pipe to the analog port DAC */
  799. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  800. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  801. /* Set DPMS state to D0 (on) */
  802. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  803. hw->adpa |= ADPA_DPMS_D0;
  804. hw->adpa |= ADPA_DAC_ENABLE;
  805. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  806. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  807. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  808. /* Desired clock in kHz */
  809. clock_target = 1000000000 / var->pixclock;
  810. if (calc_pll_params(clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {
  811. WRN_MSG("calc_pll_params failed\n");
  812. return 1;
  813. }
  814. /* Check for overflow. */
  815. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  816. return 1;
  817. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  818. return 1;
  819. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  820. return 1;
  821. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  822. return 1;
  823. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  824. return 1;
  825. *dpll &= ~DPLL_P1_FORCE_DIV2;
  826. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  827. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  828. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  829. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  830. (m1 << FP_M1_DIVISOR_SHIFT) |
  831. (m2 << FP_M2_DIVISOR_SHIFT);
  832. *fp1 = *fp0;
  833. hw->dvob &= ~PORT_ENABLE;
  834. hw->dvoc &= ~PORT_ENABLE;
  835. /* Use display plane A. */
  836. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  837. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  838. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  839. switch (intelfb_var_to_depth(var)) {
  840. case 8:
  841. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  842. break;
  843. case 15:
  844. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  845. break;
  846. case 16:
  847. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  848. break;
  849. case 24:
  850. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  851. break;
  852. }
  853. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  854. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  855. /* Set CRTC registers. */
  856. hactive = var->xres;
  857. hsync_start = hactive + var->right_margin;
  858. hsync_end = hsync_start + var->hsync_len;
  859. htotal = hsync_end + var->left_margin;
  860. hblank_start = hactive;
  861. hblank_end = htotal;
  862. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  863. hactive, hsync_start, hsync_end, htotal, hblank_start,
  864. hblank_end);
  865. vactive = var->yres;
  866. vsync_start = vactive + var->lower_margin;
  867. vsync_end = vsync_start + var->vsync_len;
  868. vtotal = vsync_end + var->upper_margin;
  869. vblank_start = vactive;
  870. vblank_end = vtotal;
  871. vblank_end = vsync_end + 1;
  872. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  873. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  874. vblank_end);
  875. /* Adjust for register values, and check for overflow. */
  876. hactive--;
  877. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  878. return 1;
  879. hsync_start--;
  880. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  881. return 1;
  882. hsync_end--;
  883. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  884. return 1;
  885. htotal--;
  886. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  887. return 1;
  888. hblank_start--;
  889. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  890. return 1;
  891. hblank_end--;
  892. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  893. return 1;
  894. vactive--;
  895. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  896. return 1;
  897. vsync_start--;
  898. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  899. return 1;
  900. vsync_end--;
  901. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  902. return 1;
  903. vtotal--;
  904. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  905. return 1;
  906. vblank_start--;
  907. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  908. return 1;
  909. vblank_end--;
  910. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  911. return 1;
  912. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  913. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  914. (hblank_end << HSYNCEND_SHIFT);
  915. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  916. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  917. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  918. (vblank_end << VSYNCEND_SHIFT);
  919. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  920. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  921. (vactive << SRC_SIZE_VERT_SHIFT);
  922. hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
  923. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  924. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  925. var->xoffset * var->bits_per_pixel / 8;
  926. hw->disp_a_base += dinfo->fb.offset << 12;
  927. /* Check stride alignment. */
  928. if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
  929. WRN_MSG("display stride %d has bad alignment %d\n",
  930. hw->disp_a_stride, STRIDE_ALIGNMENT);
  931. return 1;
  932. }
  933. /* Set the palette to 8-bit mode. */
  934. *pipe_conf &= ~PIPECONF_GAMMA;
  935. return 0;
  936. }
  937. /* Program a (non-VGA) video mode. */
  938. int
  939. intelfbhw_program_mode(struct intelfb_info *dinfo,
  940. const struct intelfb_hwstate *hw, int blank)
  941. {
  942. int pipe = PIPE_A;
  943. u32 tmp;
  944. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  945. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  946. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
  947. u32 hsync_reg, htotal_reg, hblank_reg;
  948. u32 vsync_reg, vtotal_reg, vblank_reg;
  949. u32 src_size_reg;
  950. /* Assume single pipe, display plane A, analog CRT. */
  951. #if VERBOSE > 0
  952. DBG_MSG("intelfbhw_program_mode\n");
  953. #endif
  954. /* Disable VGA */
  955. tmp = INREG(VGACNTRL);
  956. tmp |= VGA_DISABLE;
  957. OUTREG(VGACNTRL, tmp);
  958. /* Check whether pipe A or pipe B is enabled. */
  959. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  960. pipe = PIPE_A;
  961. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  962. pipe = PIPE_B;
  963. dinfo->pipe = pipe;
  964. if (pipe == PIPE_B) {
  965. dpll = &hw->dpll_b;
  966. fp0 = &hw->fpb0;
  967. fp1 = &hw->fpb1;
  968. pipe_conf = &hw->pipe_b_conf;
  969. hs = &hw->hsync_b;
  970. hb = &hw->hblank_b;
  971. ht = &hw->htotal_b;
  972. vs = &hw->vsync_b;
  973. vb = &hw->vblank_b;
  974. vt = &hw->vtotal_b;
  975. ss = &hw->src_size_b;
  976. dpll_reg = DPLL_B;
  977. fp0_reg = FPB0;
  978. fp1_reg = FPB1;
  979. pipe_conf_reg = PIPEBCONF;
  980. hsync_reg = HSYNC_B;
  981. htotal_reg = HTOTAL_B;
  982. hblank_reg = HBLANK_B;
  983. vsync_reg = VSYNC_B;
  984. vtotal_reg = VTOTAL_B;
  985. vblank_reg = VBLANK_B;
  986. src_size_reg = SRC_SIZE_B;
  987. } else {
  988. dpll = &hw->dpll_a;
  989. fp0 = &hw->fpa0;
  990. fp1 = &hw->fpa1;
  991. pipe_conf = &hw->pipe_a_conf;
  992. hs = &hw->hsync_a;
  993. hb = &hw->hblank_a;
  994. ht = &hw->htotal_a;
  995. vs = &hw->vsync_a;
  996. vb = &hw->vblank_a;
  997. vt = &hw->vtotal_a;
  998. ss = &hw->src_size_a;
  999. dpll_reg = DPLL_A;
  1000. fp0_reg = FPA0;
  1001. fp1_reg = FPA1;
  1002. pipe_conf_reg = PIPEACONF;
  1003. hsync_reg = HSYNC_A;
  1004. htotal_reg = HTOTAL_A;
  1005. hblank_reg = HBLANK_A;
  1006. vsync_reg = VSYNC_A;
  1007. vtotal_reg = VTOTAL_A;
  1008. vblank_reg = VBLANK_A;
  1009. src_size_reg = SRC_SIZE_A;
  1010. }
  1011. /* Disable planes A and B. */
  1012. tmp = INREG(DSPACNTR);
  1013. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1014. OUTREG(DSPACNTR, tmp);
  1015. tmp = INREG(DSPBCNTR);
  1016. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1017. OUTREG(DSPBCNTR, tmp);
  1018. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1019. mdelay(20);
  1020. /* Disable Sync */
  1021. tmp = INREG(ADPA);
  1022. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1023. tmp |= ADPA_DPMS_D3;
  1024. OUTREG(ADPA, tmp);
  1025. /* turn off pipe */
  1026. tmp = INREG(pipe_conf_reg);
  1027. tmp &= ~PIPECONF_ENABLE;
  1028. OUTREG(pipe_conf_reg, tmp);
  1029. /* turn off PLL */
  1030. tmp = INREG(dpll_reg);
  1031. dpll_reg &= ~DPLL_VCO_ENABLE;
  1032. OUTREG(dpll_reg, tmp);
  1033. /* Set PLL parameters */
  1034. OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
  1035. OUTREG(fp0_reg, *fp0);
  1036. OUTREG(fp1_reg, *fp1);
  1037. /* Set pipe parameters */
  1038. OUTREG(hsync_reg, *hs);
  1039. OUTREG(hblank_reg, *hb);
  1040. OUTREG(htotal_reg, *ht);
  1041. OUTREG(vsync_reg, *vs);
  1042. OUTREG(vblank_reg, *vb);
  1043. OUTREG(vtotal_reg, *vt);
  1044. OUTREG(src_size_reg, *ss);
  1045. /* Set DVOs B/C */
  1046. OUTREG(DVOB, hw->dvob);
  1047. OUTREG(DVOC, hw->dvoc);
  1048. /* Set ADPA */
  1049. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1050. /* Enable PLL */
  1051. tmp = INREG(dpll_reg);
  1052. tmp |= DPLL_VCO_ENABLE;
  1053. OUTREG(dpll_reg, tmp);
  1054. /* Enable pipe */
  1055. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1056. /* Enable sync */
  1057. tmp = INREG(ADPA);
  1058. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1059. tmp |= ADPA_DPMS_D0;
  1060. OUTREG(ADPA, tmp);
  1061. /* setup display plane */
  1062. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1063. /*
  1064. * i830M errata: the display plane must be enabled
  1065. * to allow writes to the other bits in the plane
  1066. * control register.
  1067. */
  1068. tmp = INREG(DSPACNTR);
  1069. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1070. tmp |= DISPPLANE_PLANE_ENABLE;
  1071. OUTREG(DSPACNTR, tmp);
  1072. OUTREG(DSPACNTR,
  1073. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1074. mdelay(1);
  1075. }
  1076. }
  1077. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1078. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1079. OUTREG(DSPABASE, hw->disp_a_base);
  1080. /* Enable plane */
  1081. if (!blank) {
  1082. tmp = INREG(DSPACNTR);
  1083. tmp |= DISPPLANE_PLANE_ENABLE;
  1084. OUTREG(DSPACNTR, tmp);
  1085. OUTREG(DSPABASE, hw->disp_a_base);
  1086. }
  1087. return 0;
  1088. }
  1089. /* forward declarations */
  1090. static void refresh_ring(struct intelfb_info *dinfo);
  1091. static void reset_state(struct intelfb_info *dinfo);
  1092. static void do_flush(struct intelfb_info *dinfo);
  1093. static int
  1094. wait_ring(struct intelfb_info *dinfo, int n)
  1095. {
  1096. int i = 0;
  1097. unsigned long end;
  1098. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1099. #if VERBOSE > 0
  1100. DBG_MSG("wait_ring: %d\n", n);
  1101. #endif
  1102. end = jiffies + (HZ * 3);
  1103. while (dinfo->ring_space < n) {
  1104. dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
  1105. RING_HEAD_MASK);
  1106. if (dinfo->ring_tail + RING_MIN_FREE <
  1107. (u32 __iomem) dinfo->ring_head)
  1108. dinfo->ring_space = (u32 __iomem) dinfo->ring_head
  1109. - (dinfo->ring_tail + RING_MIN_FREE);
  1110. else
  1111. dinfo->ring_space = (dinfo->ring.size +
  1112. (u32 __iomem) dinfo->ring_head)
  1113. - (dinfo->ring_tail + RING_MIN_FREE);
  1114. if ((u32 __iomem) dinfo->ring_head != last_head) {
  1115. end = jiffies + (HZ * 3);
  1116. last_head = (u32 __iomem) dinfo->ring_head;
  1117. }
  1118. i++;
  1119. if (time_before(end, jiffies)) {
  1120. if (!i) {
  1121. /* Try again */
  1122. reset_state(dinfo);
  1123. refresh_ring(dinfo);
  1124. do_flush(dinfo);
  1125. end = jiffies + (HZ * 3);
  1126. i = 1;
  1127. } else {
  1128. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1129. dinfo->ring_space, n);
  1130. WRN_MSG("lockup - turning off hardware "
  1131. "acceleration\n");
  1132. dinfo->ring_lockup = 1;
  1133. break;
  1134. }
  1135. }
  1136. udelay(1);
  1137. }
  1138. return i;
  1139. }
  1140. static void
  1141. do_flush(struct intelfb_info *dinfo) {
  1142. START_RING(2);
  1143. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1144. OUT_RING(MI_NOOP);
  1145. ADVANCE_RING();
  1146. }
  1147. void
  1148. intelfbhw_do_sync(struct intelfb_info *dinfo)
  1149. {
  1150. #if VERBOSE > 0
  1151. DBG_MSG("intelfbhw_do_sync\n");
  1152. #endif
  1153. if (!dinfo->accel)
  1154. return;
  1155. /*
  1156. * Send a flush, then wait until the ring is empty. This is what
  1157. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1158. * than the recommended method (both have problems).
  1159. */
  1160. do_flush(dinfo);
  1161. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1162. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1163. }
  1164. static void
  1165. refresh_ring(struct intelfb_info *dinfo)
  1166. {
  1167. #if VERBOSE > 0
  1168. DBG_MSG("refresh_ring\n");
  1169. #endif
  1170. dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
  1171. RING_HEAD_MASK);
  1172. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1173. if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
  1174. dinfo->ring_space = (u32 __iomem) dinfo->ring_head
  1175. - (dinfo->ring_tail + RING_MIN_FREE);
  1176. else
  1177. dinfo->ring_space = (dinfo->ring.size +
  1178. (u32 __iomem) dinfo->ring_head)
  1179. - (dinfo->ring_tail + RING_MIN_FREE);
  1180. }
  1181. static void
  1182. reset_state(struct intelfb_info *dinfo)
  1183. {
  1184. int i;
  1185. u32 tmp;
  1186. #if VERBOSE > 0
  1187. DBG_MSG("reset_state\n");
  1188. #endif
  1189. for (i = 0; i < FENCE_NUM; i++)
  1190. OUTREG(FENCE + (i << 2), 0);
  1191. /* Flush the ring buffer if it's enabled. */
  1192. tmp = INREG(PRI_RING_LENGTH);
  1193. if (tmp & RING_ENABLE) {
  1194. #if VERBOSE > 0
  1195. DBG_MSG("reset_state: ring was enabled\n");
  1196. #endif
  1197. refresh_ring(dinfo);
  1198. intelfbhw_do_sync(dinfo);
  1199. DO_RING_IDLE();
  1200. }
  1201. OUTREG(PRI_RING_LENGTH, 0);
  1202. OUTREG(PRI_RING_HEAD, 0);
  1203. OUTREG(PRI_RING_TAIL, 0);
  1204. OUTREG(PRI_RING_START, 0);
  1205. }
  1206. /* Stop the 2D engine, and turn off the ring buffer. */
  1207. void
  1208. intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1209. {
  1210. #if VERBOSE > 0
  1211. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
  1212. dinfo->ring_active);
  1213. #endif
  1214. if (!dinfo->accel)
  1215. return;
  1216. dinfo->ring_active = 0;
  1217. reset_state(dinfo);
  1218. }
  1219. /*
  1220. * Enable the ring buffer, and initialise the 2D engine.
  1221. * It is assumed that the graphics engine has been stopped by previously
  1222. * calling intelfb_2d_stop().
  1223. */
  1224. void
  1225. intelfbhw_2d_start(struct intelfb_info *dinfo)
  1226. {
  1227. #if VERBOSE > 0
  1228. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1229. dinfo->accel, dinfo->ring_active);
  1230. #endif
  1231. if (!dinfo->accel)
  1232. return;
  1233. /* Initialise the primary ring buffer. */
  1234. OUTREG(PRI_RING_LENGTH, 0);
  1235. OUTREG(PRI_RING_TAIL, 0);
  1236. OUTREG(PRI_RING_HEAD, 0);
  1237. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1238. OUTREG(PRI_RING_LENGTH,
  1239. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1240. RING_NO_REPORT | RING_ENABLE);
  1241. refresh_ring(dinfo);
  1242. dinfo->ring_active = 1;
  1243. }
  1244. /* 2D fillrect (solid fill or invert) */
  1245. void
  1246. intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
  1247. u32 color, u32 pitch, u32 bpp, u32 rop)
  1248. {
  1249. u32 br00, br09, br13, br14, br16;
  1250. #if VERBOSE > 0
  1251. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1252. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1253. #endif
  1254. br00 = COLOR_BLT_CMD;
  1255. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1256. br13 = (rop << ROP_SHIFT) | pitch;
  1257. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1258. br16 = color;
  1259. switch (bpp) {
  1260. case 8:
  1261. br13 |= COLOR_DEPTH_8;
  1262. break;
  1263. case 16:
  1264. br13 |= COLOR_DEPTH_16;
  1265. break;
  1266. case 32:
  1267. br13 |= COLOR_DEPTH_32;
  1268. br00 |= WRITE_ALPHA | WRITE_RGB;
  1269. break;
  1270. }
  1271. START_RING(6);
  1272. OUT_RING(br00);
  1273. OUT_RING(br13);
  1274. OUT_RING(br14);
  1275. OUT_RING(br09);
  1276. OUT_RING(br16);
  1277. OUT_RING(MI_NOOP);
  1278. ADVANCE_RING();
  1279. #if VERBOSE > 0
  1280. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1281. dinfo->ring_tail, dinfo->ring_space);
  1282. #endif
  1283. }
  1284. void
  1285. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1286. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1287. {
  1288. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1289. #if VERBOSE > 0
  1290. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1291. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1292. #endif
  1293. br00 = XY_SRC_COPY_BLT_CMD;
  1294. br09 = dinfo->fb_start;
  1295. br11 = (pitch << PITCH_SHIFT);
  1296. br12 = dinfo->fb_start;
  1297. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1298. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1299. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1300. ((dsty + h) << HEIGHT_SHIFT);
  1301. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1302. switch (bpp) {
  1303. case 8:
  1304. br13 |= COLOR_DEPTH_8;
  1305. break;
  1306. case 16:
  1307. br13 |= COLOR_DEPTH_16;
  1308. break;
  1309. case 32:
  1310. br13 |= COLOR_DEPTH_32;
  1311. br00 |= WRITE_ALPHA | WRITE_RGB;
  1312. break;
  1313. }
  1314. START_RING(8);
  1315. OUT_RING(br00);
  1316. OUT_RING(br13);
  1317. OUT_RING(br22);
  1318. OUT_RING(br23);
  1319. OUT_RING(br09);
  1320. OUT_RING(br26);
  1321. OUT_RING(br11);
  1322. OUT_RING(br12);
  1323. ADVANCE_RING();
  1324. }
  1325. int
  1326. intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1327. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
  1328. {
  1329. int nbytes, ndwords, pad, tmp;
  1330. u32 br00, br09, br13, br18, br19, br22, br23;
  1331. int dat, ix, iy, iw;
  1332. int i, j;
  1333. #if VERBOSE > 0
  1334. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1335. #endif
  1336. /* size in bytes of a padded scanline */
  1337. nbytes = ROUND_UP_TO(w, 16) / 8;
  1338. /* Total bytes of padded scanline data to write out. */
  1339. nbytes = nbytes * h;
  1340. /*
  1341. * Check if the glyph data exceeds the immediate mode limit.
  1342. * It would take a large font (1K pixels) to hit this limit.
  1343. */
  1344. if (nbytes > MAX_MONO_IMM_SIZE)
  1345. return 0;
  1346. /* Src data is packaged a dword (32-bit) at a time. */
  1347. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1348. /*
  1349. * Ring has to be padded to a quad word. But because the command starts
  1350. with 7 bytes, pad only if there is an even number of ndwords
  1351. */
  1352. pad = !(ndwords % 2);
  1353. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1354. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1355. br09 = dinfo->fb_start;
  1356. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1357. br18 = bg;
  1358. br19 = fg;
  1359. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1360. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1361. switch (bpp) {
  1362. case 8:
  1363. br13 |= COLOR_DEPTH_8;
  1364. break;
  1365. case 16:
  1366. br13 |= COLOR_DEPTH_16;
  1367. break;
  1368. case 32:
  1369. br13 |= COLOR_DEPTH_32;
  1370. br00 |= WRITE_ALPHA | WRITE_RGB;
  1371. break;
  1372. }
  1373. START_RING(8 + ndwords);
  1374. OUT_RING(br00);
  1375. OUT_RING(br13);
  1376. OUT_RING(br22);
  1377. OUT_RING(br23);
  1378. OUT_RING(br09);
  1379. OUT_RING(br18);
  1380. OUT_RING(br19);
  1381. ix = iy = 0;
  1382. iw = ROUND_UP_TO(w, 8) / 8;
  1383. while (ndwords--) {
  1384. dat = 0;
  1385. for (j = 0; j < 2; ++j) {
  1386. for (i = 0; i < 2; ++i) {
  1387. if (ix != iw || i == 0)
  1388. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1389. }
  1390. if (ix == iw && iy != (h-1)) {
  1391. ix = 0;
  1392. ++iy;
  1393. }
  1394. }
  1395. OUT_RING(dat);
  1396. }
  1397. if (pad)
  1398. OUT_RING(MI_NOOP);
  1399. ADVANCE_RING();
  1400. return 1;
  1401. }
  1402. /* HW cursor functions. */
  1403. void
  1404. intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1405. {
  1406. u32 tmp;
  1407. #if VERBOSE > 0
  1408. DBG_MSG("intelfbhw_cursor_init\n");
  1409. #endif
  1410. if (dinfo->mobile) {
  1411. if (!dinfo->cursor.physical)
  1412. return;
  1413. tmp = INREG(CURSOR_A_CONTROL);
  1414. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1415. CURSOR_MEM_TYPE_LOCAL |
  1416. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1417. tmp |= CURSOR_MODE_DISABLE;
  1418. OUTREG(CURSOR_A_CONTROL, tmp);
  1419. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1420. } else {
  1421. tmp = INREG(CURSOR_CONTROL);
  1422. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1423. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1424. tmp = CURSOR_FORMAT_3C;
  1425. OUTREG(CURSOR_CONTROL, tmp);
  1426. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1427. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1428. (64 << CURSOR_SIZE_V_SHIFT);
  1429. OUTREG(CURSOR_SIZE, tmp);
  1430. }
  1431. }
  1432. void
  1433. intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1434. {
  1435. u32 tmp;
  1436. #if VERBOSE > 0
  1437. DBG_MSG("intelfbhw_cursor_hide\n");
  1438. #endif
  1439. dinfo->cursor_on = 0;
  1440. if (dinfo->mobile) {
  1441. if (!dinfo->cursor.physical)
  1442. return;
  1443. tmp = INREG(CURSOR_A_CONTROL);
  1444. tmp &= ~CURSOR_MODE_MASK;
  1445. tmp |= CURSOR_MODE_DISABLE;
  1446. OUTREG(CURSOR_A_CONTROL, tmp);
  1447. /* Flush changes */
  1448. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1449. } else {
  1450. tmp = INREG(CURSOR_CONTROL);
  1451. tmp &= ~CURSOR_ENABLE;
  1452. OUTREG(CURSOR_CONTROL, tmp);
  1453. }
  1454. }
  1455. void
  1456. intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1457. {
  1458. u32 tmp;
  1459. #if VERBOSE > 0
  1460. DBG_MSG("intelfbhw_cursor_show\n");
  1461. #endif
  1462. dinfo->cursor_on = 1;
  1463. if (dinfo->cursor_blanked)
  1464. return;
  1465. if (dinfo->mobile) {
  1466. if (!dinfo->cursor.physical)
  1467. return;
  1468. tmp = INREG(CURSOR_A_CONTROL);
  1469. tmp &= ~CURSOR_MODE_MASK;
  1470. tmp |= CURSOR_MODE_64_4C_AX;
  1471. OUTREG(CURSOR_A_CONTROL, tmp);
  1472. /* Flush changes */
  1473. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1474. } else {
  1475. tmp = INREG(CURSOR_CONTROL);
  1476. tmp |= CURSOR_ENABLE;
  1477. OUTREG(CURSOR_CONTROL, tmp);
  1478. }
  1479. }
  1480. void
  1481. intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1482. {
  1483. u32 tmp;
  1484. #if VERBOSE > 0
  1485. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1486. #endif
  1487. /*
  1488. * Sets the position. The coordinates are assumed to already
  1489. * have any offset adjusted. Assume that the cursor is never
  1490. * completely off-screen, and that x, y are always >= 0.
  1491. */
  1492. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1493. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1494. OUTREG(CURSOR_A_POSITION, tmp);
  1495. }
  1496. void
  1497. intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1498. {
  1499. #if VERBOSE > 0
  1500. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1501. #endif
  1502. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1503. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1504. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1505. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1506. }
  1507. void
  1508. intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1509. u8 *data)
  1510. {
  1511. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1512. int i, j, w = width / 8;
  1513. int mod = width % 8, t_mask, d_mask;
  1514. #if VERBOSE > 0
  1515. DBG_MSG("intelfbhw_cursor_load\n");
  1516. #endif
  1517. if (!dinfo->cursor.virtual)
  1518. return;
  1519. t_mask = 0xff >> mod;
  1520. d_mask = ~(0xff >> mod);
  1521. for (i = height; i--; ) {
  1522. for (j = 0; j < w; j++) {
  1523. writeb(0x00, addr + j);
  1524. writeb(*(data++), addr + j+8);
  1525. }
  1526. if (mod) {
  1527. writeb(t_mask, addr + j);
  1528. writeb(*(data++) & d_mask, addr + j+8);
  1529. }
  1530. addr += 16;
  1531. }
  1532. }
  1533. void
  1534. intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
  1535. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1536. int i, j;
  1537. #if VERBOSE > 0
  1538. DBG_MSG("intelfbhw_cursor_reset\n");
  1539. #endif
  1540. if (!dinfo->cursor.virtual)
  1541. return;
  1542. for (i = 64; i--; ) {
  1543. for (j = 0; j < 8; j++) {
  1544. writeb(0xff, addr + j+0);
  1545. writeb(0x00, addr + j+8);
  1546. }
  1547. addr += 16;
  1548. }
  1549. }