cipher.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Cipher operations.
  5. *
  6. * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
  7. * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the Free
  11. * Software Foundation; either version 2 of the License, or (at your option)
  12. * any later version.
  13. *
  14. */
  15. #include <linux/compiler.h>
  16. #include <linux/kernel.h>
  17. #include <linux/crypto.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/slab.h>
  21. #include <linux/string.h>
  22. #include <asm/scatterlist.h>
  23. #include "internal.h"
  24. #include "scatterwalk.h"
  25. static inline void xor_64(u8 *a, const u8 *b)
  26. {
  27. ((u32 *)a)[0] ^= ((u32 *)b)[0];
  28. ((u32 *)a)[1] ^= ((u32 *)b)[1];
  29. }
  30. static inline void xor_128(u8 *a, const u8 *b)
  31. {
  32. ((u32 *)a)[0] ^= ((u32 *)b)[0];
  33. ((u32 *)a)[1] ^= ((u32 *)b)[1];
  34. ((u32 *)a)[2] ^= ((u32 *)b)[2];
  35. ((u32 *)a)[3] ^= ((u32 *)b)[3];
  36. }
  37. static unsigned int crypt_slow(const struct cipher_desc *desc,
  38. struct scatter_walk *in,
  39. struct scatter_walk *out, unsigned int bsize)
  40. {
  41. unsigned long alignmask = crypto_tfm_alg_alignmask(desc->tfm);
  42. u8 buffer[bsize * 2 + alignmask];
  43. u8 *src = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
  44. u8 *dst = src + bsize;
  45. unsigned int n;
  46. n = scatterwalk_copychunks(src, in, bsize, 0);
  47. scatterwalk_advance(in, n);
  48. desc->prfn(desc, dst, src, bsize);
  49. n = scatterwalk_copychunks(dst, out, bsize, 1);
  50. scatterwalk_advance(out, n);
  51. return bsize;
  52. }
  53. static inline unsigned int crypt_fast(const struct cipher_desc *desc,
  54. struct scatter_walk *in,
  55. struct scatter_walk *out,
  56. unsigned int nbytes, u8 *tmp)
  57. {
  58. u8 *src, *dst;
  59. src = in->data;
  60. dst = scatterwalk_samebuf(in, out) ? src : out->data;
  61. if (tmp) {
  62. memcpy(tmp, in->data, nbytes);
  63. src = tmp;
  64. dst = tmp;
  65. }
  66. nbytes = desc->prfn(desc, dst, src, nbytes);
  67. if (tmp)
  68. memcpy(out->data, tmp, nbytes);
  69. scatterwalk_advance(in, nbytes);
  70. scatterwalk_advance(out, nbytes);
  71. return nbytes;
  72. }
  73. /*
  74. * Generic encrypt/decrypt wrapper for ciphers, handles operations across
  75. * multiple page boundaries by using temporary blocks. In user context,
  76. * the kernel is given a chance to schedule us once per page.
  77. */
  78. static int crypt(const struct cipher_desc *desc,
  79. struct scatterlist *dst,
  80. struct scatterlist *src,
  81. unsigned int nbytes)
  82. {
  83. struct scatter_walk walk_in, walk_out;
  84. struct crypto_tfm *tfm = desc->tfm;
  85. const unsigned int bsize = crypto_tfm_alg_blocksize(tfm);
  86. unsigned int alignmask = crypto_tfm_alg_alignmask(tfm);
  87. unsigned long buffer = 0;
  88. if (!nbytes)
  89. return 0;
  90. if (nbytes % bsize) {
  91. tfm->crt_flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
  92. return -EINVAL;
  93. }
  94. scatterwalk_start(&walk_in, src);
  95. scatterwalk_start(&walk_out, dst);
  96. for(;;) {
  97. unsigned int n = nbytes;
  98. u8 *tmp = NULL;
  99. if (!scatterwalk_aligned(&walk_in, alignmask) ||
  100. !scatterwalk_aligned(&walk_out, alignmask)) {
  101. if (!buffer) {
  102. buffer = __get_free_page(GFP_ATOMIC);
  103. if (!buffer)
  104. n = 0;
  105. }
  106. tmp = (u8 *)buffer;
  107. }
  108. scatterwalk_map(&walk_in, 0);
  109. scatterwalk_map(&walk_out, 1);
  110. n = scatterwalk_clamp(&walk_in, n);
  111. n = scatterwalk_clamp(&walk_out, n);
  112. if (likely(n >= bsize))
  113. n = crypt_fast(desc, &walk_in, &walk_out, n, tmp);
  114. else
  115. n = crypt_slow(desc, &walk_in, &walk_out, bsize);
  116. nbytes -= n;
  117. scatterwalk_done(&walk_in, 0, nbytes);
  118. scatterwalk_done(&walk_out, 1, nbytes);
  119. if (!nbytes)
  120. break;
  121. crypto_yield(tfm);
  122. }
  123. if (buffer)
  124. free_page(buffer);
  125. return 0;
  126. }
  127. static int crypt_iv_unaligned(struct cipher_desc *desc,
  128. struct scatterlist *dst,
  129. struct scatterlist *src,
  130. unsigned int nbytes)
  131. {
  132. struct crypto_tfm *tfm = desc->tfm;
  133. unsigned long alignmask = crypto_tfm_alg_alignmask(tfm);
  134. u8 *iv = desc->info;
  135. if (unlikely(((unsigned long)iv & alignmask))) {
  136. unsigned int ivsize = tfm->crt_cipher.cit_ivsize;
  137. u8 buffer[ivsize + alignmask];
  138. u8 *tmp = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
  139. int err;
  140. desc->info = memcpy(tmp, iv, ivsize);
  141. err = crypt(desc, dst, src, nbytes);
  142. memcpy(iv, tmp, ivsize);
  143. return err;
  144. }
  145. return crypt(desc, dst, src, nbytes);
  146. }
  147. static unsigned int cbc_process_encrypt(const struct cipher_desc *desc,
  148. u8 *dst, const u8 *src,
  149. unsigned int nbytes)
  150. {
  151. struct crypto_tfm *tfm = desc->tfm;
  152. void (*xor)(u8 *, const u8 *) = tfm->crt_u.cipher.cit_xor_block;
  153. int bsize = crypto_tfm_alg_blocksize(tfm);
  154. void (*fn)(void *, u8 *, const u8 *) = desc->crfn;
  155. u8 *iv = desc->info;
  156. unsigned int done = 0;
  157. nbytes -= bsize;
  158. do {
  159. xor(iv, src);
  160. fn(crypto_tfm_ctx(tfm), dst, iv);
  161. memcpy(iv, dst, bsize);
  162. src += bsize;
  163. dst += bsize;
  164. } while ((done += bsize) <= nbytes);
  165. return done;
  166. }
  167. static unsigned int cbc_process_decrypt(const struct cipher_desc *desc,
  168. u8 *dst, const u8 *src,
  169. unsigned int nbytes)
  170. {
  171. struct crypto_tfm *tfm = desc->tfm;
  172. void (*xor)(u8 *, const u8 *) = tfm->crt_u.cipher.cit_xor_block;
  173. int bsize = crypto_tfm_alg_blocksize(tfm);
  174. unsigned long alignmask = crypto_tfm_alg_alignmask(desc->tfm);
  175. u8 stack[src == dst ? bsize + alignmask : 0];
  176. u8 *buf = (u8 *)ALIGN((unsigned long)stack, alignmask + 1);
  177. u8 **dst_p = src == dst ? &buf : &dst;
  178. void (*fn)(void *, u8 *, const u8 *) = desc->crfn;
  179. u8 *iv = desc->info;
  180. unsigned int done = 0;
  181. nbytes -= bsize;
  182. do {
  183. u8 *tmp_dst = *dst_p;
  184. fn(crypto_tfm_ctx(tfm), tmp_dst, src);
  185. xor(tmp_dst, iv);
  186. memcpy(iv, src, bsize);
  187. if (tmp_dst != dst)
  188. memcpy(dst, tmp_dst, bsize);
  189. src += bsize;
  190. dst += bsize;
  191. } while ((done += bsize) <= nbytes);
  192. return done;
  193. }
  194. static unsigned int ecb_process(const struct cipher_desc *desc, u8 *dst,
  195. const u8 *src, unsigned int nbytes)
  196. {
  197. struct crypto_tfm *tfm = desc->tfm;
  198. int bsize = crypto_tfm_alg_blocksize(tfm);
  199. void (*fn)(void *, u8 *, const u8 *) = desc->crfn;
  200. unsigned int done = 0;
  201. nbytes -= bsize;
  202. do {
  203. fn(crypto_tfm_ctx(tfm), dst, src);
  204. src += bsize;
  205. dst += bsize;
  206. } while ((done += bsize) <= nbytes);
  207. return done;
  208. }
  209. static int setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen)
  210. {
  211. struct cipher_alg *cia = &tfm->__crt_alg->cra_cipher;
  212. if (keylen < cia->cia_min_keysize || keylen > cia->cia_max_keysize) {
  213. tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  214. return -EINVAL;
  215. } else
  216. return cia->cia_setkey(crypto_tfm_ctx(tfm), key, keylen,
  217. &tfm->crt_flags);
  218. }
  219. static int ecb_encrypt(struct crypto_tfm *tfm,
  220. struct scatterlist *dst,
  221. struct scatterlist *src, unsigned int nbytes)
  222. {
  223. struct cipher_desc desc;
  224. struct cipher_alg *cipher = &tfm->__crt_alg->cra_cipher;
  225. desc.tfm = tfm;
  226. desc.crfn = cipher->cia_encrypt;
  227. desc.prfn = cipher->cia_encrypt_ecb ?: ecb_process;
  228. return crypt(&desc, dst, src, nbytes);
  229. }
  230. static int ecb_decrypt(struct crypto_tfm *tfm,
  231. struct scatterlist *dst,
  232. struct scatterlist *src,
  233. unsigned int nbytes)
  234. {
  235. struct cipher_desc desc;
  236. struct cipher_alg *cipher = &tfm->__crt_alg->cra_cipher;
  237. desc.tfm = tfm;
  238. desc.crfn = cipher->cia_decrypt;
  239. desc.prfn = cipher->cia_decrypt_ecb ?: ecb_process;
  240. return crypt(&desc, dst, src, nbytes);
  241. }
  242. static int cbc_encrypt(struct crypto_tfm *tfm,
  243. struct scatterlist *dst,
  244. struct scatterlist *src,
  245. unsigned int nbytes)
  246. {
  247. struct cipher_desc desc;
  248. struct cipher_alg *cipher = &tfm->__crt_alg->cra_cipher;
  249. desc.tfm = tfm;
  250. desc.crfn = cipher->cia_encrypt;
  251. desc.prfn = cipher->cia_encrypt_cbc ?: cbc_process_encrypt;
  252. desc.info = tfm->crt_cipher.cit_iv;
  253. return crypt(&desc, dst, src, nbytes);
  254. }
  255. static int cbc_encrypt_iv(struct crypto_tfm *tfm,
  256. struct scatterlist *dst,
  257. struct scatterlist *src,
  258. unsigned int nbytes, u8 *iv)
  259. {
  260. struct cipher_desc desc;
  261. struct cipher_alg *cipher = &tfm->__crt_alg->cra_cipher;
  262. desc.tfm = tfm;
  263. desc.crfn = cipher->cia_encrypt;
  264. desc.prfn = cipher->cia_encrypt_cbc ?: cbc_process_encrypt;
  265. desc.info = iv;
  266. return crypt_iv_unaligned(&desc, dst, src, nbytes);
  267. }
  268. static int cbc_decrypt(struct crypto_tfm *tfm,
  269. struct scatterlist *dst,
  270. struct scatterlist *src,
  271. unsigned int nbytes)
  272. {
  273. struct cipher_desc desc;
  274. struct cipher_alg *cipher = &tfm->__crt_alg->cra_cipher;
  275. desc.tfm = tfm;
  276. desc.crfn = cipher->cia_decrypt;
  277. desc.prfn = cipher->cia_decrypt_cbc ?: cbc_process_decrypt;
  278. desc.info = tfm->crt_cipher.cit_iv;
  279. return crypt(&desc, dst, src, nbytes);
  280. }
  281. static int cbc_decrypt_iv(struct crypto_tfm *tfm,
  282. struct scatterlist *dst,
  283. struct scatterlist *src,
  284. unsigned int nbytes, u8 *iv)
  285. {
  286. struct cipher_desc desc;
  287. struct cipher_alg *cipher = &tfm->__crt_alg->cra_cipher;
  288. desc.tfm = tfm;
  289. desc.crfn = cipher->cia_decrypt;
  290. desc.prfn = cipher->cia_decrypt_cbc ?: cbc_process_decrypt;
  291. desc.info = iv;
  292. return crypt_iv_unaligned(&desc, dst, src, nbytes);
  293. }
  294. static int nocrypt(struct crypto_tfm *tfm,
  295. struct scatterlist *dst,
  296. struct scatterlist *src,
  297. unsigned int nbytes)
  298. {
  299. return -ENOSYS;
  300. }
  301. static int nocrypt_iv(struct crypto_tfm *tfm,
  302. struct scatterlist *dst,
  303. struct scatterlist *src,
  304. unsigned int nbytes, u8 *iv)
  305. {
  306. return -ENOSYS;
  307. }
  308. int crypto_init_cipher_flags(struct crypto_tfm *tfm, u32 flags)
  309. {
  310. u32 mode = flags & CRYPTO_TFM_MODE_MASK;
  311. tfm->crt_cipher.cit_mode = mode ? mode : CRYPTO_TFM_MODE_ECB;
  312. return 0;
  313. }
  314. int crypto_init_cipher_ops(struct crypto_tfm *tfm)
  315. {
  316. int ret = 0;
  317. struct cipher_tfm *ops = &tfm->crt_cipher;
  318. ops->cit_setkey = setkey;
  319. switch (tfm->crt_cipher.cit_mode) {
  320. case CRYPTO_TFM_MODE_ECB:
  321. ops->cit_encrypt = ecb_encrypt;
  322. ops->cit_decrypt = ecb_decrypt;
  323. break;
  324. case CRYPTO_TFM_MODE_CBC:
  325. ops->cit_encrypt = cbc_encrypt;
  326. ops->cit_decrypt = cbc_decrypt;
  327. ops->cit_encrypt_iv = cbc_encrypt_iv;
  328. ops->cit_decrypt_iv = cbc_decrypt_iv;
  329. break;
  330. case CRYPTO_TFM_MODE_CFB:
  331. ops->cit_encrypt = nocrypt;
  332. ops->cit_decrypt = nocrypt;
  333. ops->cit_encrypt_iv = nocrypt_iv;
  334. ops->cit_decrypt_iv = nocrypt_iv;
  335. break;
  336. case CRYPTO_TFM_MODE_CTR:
  337. ops->cit_encrypt = nocrypt;
  338. ops->cit_decrypt = nocrypt;
  339. ops->cit_encrypt_iv = nocrypt_iv;
  340. ops->cit_decrypt_iv = nocrypt_iv;
  341. break;
  342. default:
  343. BUG();
  344. }
  345. if (ops->cit_mode == CRYPTO_TFM_MODE_CBC) {
  346. unsigned long align;
  347. unsigned long addr;
  348. switch (crypto_tfm_alg_blocksize(tfm)) {
  349. case 8:
  350. ops->cit_xor_block = xor_64;
  351. break;
  352. case 16:
  353. ops->cit_xor_block = xor_128;
  354. break;
  355. default:
  356. printk(KERN_WARNING "%s: block size %u not supported\n",
  357. crypto_tfm_alg_name(tfm),
  358. crypto_tfm_alg_blocksize(tfm));
  359. ret = -EINVAL;
  360. goto out;
  361. }
  362. ops->cit_ivsize = crypto_tfm_alg_blocksize(tfm);
  363. align = crypto_tfm_alg_alignmask(tfm) + 1;
  364. addr = (unsigned long)crypto_tfm_ctx(tfm);
  365. addr = ALIGN(addr, align);
  366. addr += ALIGN(tfm->__crt_alg->cra_ctxsize, align);
  367. ops->cit_iv = (void *)addr;
  368. }
  369. out:
  370. return ret;
  371. }
  372. void crypto_exit_cipher_ops(struct crypto_tfm *tfm)
  373. {
  374. }