intel_pm.c 158 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <drm/i915_powerwell.h>
  33. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  34. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  35. * during in-memory transfers and, therefore, reduce the power packet.
  36. *
  37. * The benefits of FBC are mostly visible with solid backgrounds and
  38. * variation-less patterns.
  39. *
  40. * FBC-related functionality can be enabled by the means of the
  41. * i915.i915_enable_fbc parameter
  42. */
  43. static bool intel_crtc_active(struct drm_crtc *crtc)
  44. {
  45. /* Be paranoid as we can arrive here with only partial
  46. * state retrieved from the hardware during setup.
  47. */
  48. return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
  49. }
  50. static void i8xx_disable_fbc(struct drm_device *dev)
  51. {
  52. struct drm_i915_private *dev_priv = dev->dev_private;
  53. u32 fbc_ctl;
  54. /* Disable compression */
  55. fbc_ctl = I915_READ(FBC_CONTROL);
  56. if ((fbc_ctl & FBC_CTL_EN) == 0)
  57. return;
  58. fbc_ctl &= ~FBC_CTL_EN;
  59. I915_WRITE(FBC_CONTROL, fbc_ctl);
  60. /* Wait for compressing bit to clear */
  61. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  62. DRM_DEBUG_KMS("FBC idle timed out\n");
  63. return;
  64. }
  65. DRM_DEBUG_KMS("disabled FBC\n");
  66. }
  67. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  68. {
  69. struct drm_device *dev = crtc->dev;
  70. struct drm_i915_private *dev_priv = dev->dev_private;
  71. struct drm_framebuffer *fb = crtc->fb;
  72. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  73. struct drm_i915_gem_object *obj = intel_fb->obj;
  74. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  75. int cfb_pitch;
  76. int plane, i;
  77. u32 fbc_ctl, fbc_ctl2;
  78. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  79. if (fb->pitches[0] < cfb_pitch)
  80. cfb_pitch = fb->pitches[0];
  81. /* FBC_CTL wants 64B units */
  82. cfb_pitch = (cfb_pitch / 64) - 1;
  83. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  84. /* Clear old tags */
  85. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  86. I915_WRITE(FBC_TAG + (i * 4), 0);
  87. /* Set it up... */
  88. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  89. fbc_ctl2 |= plane;
  90. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  91. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  92. /* enable it... */
  93. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  94. if (IS_I945GM(dev))
  95. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  96. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  97. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  98. fbc_ctl |= obj->fence_reg;
  99. I915_WRITE(FBC_CONTROL, fbc_ctl);
  100. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
  101. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  102. }
  103. static bool i8xx_fbc_enabled(struct drm_device *dev)
  104. {
  105. struct drm_i915_private *dev_priv = dev->dev_private;
  106. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  107. }
  108. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  109. {
  110. struct drm_device *dev = crtc->dev;
  111. struct drm_i915_private *dev_priv = dev->dev_private;
  112. struct drm_framebuffer *fb = crtc->fb;
  113. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  114. struct drm_i915_gem_object *obj = intel_fb->obj;
  115. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  116. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  117. unsigned long stall_watermark = 200;
  118. u32 dpfc_ctl;
  119. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  120. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  121. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  122. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  123. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  124. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  125. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  126. /* enable it... */
  127. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  128. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  129. }
  130. static void g4x_disable_fbc(struct drm_device *dev)
  131. {
  132. struct drm_i915_private *dev_priv = dev->dev_private;
  133. u32 dpfc_ctl;
  134. /* Disable compression */
  135. dpfc_ctl = I915_READ(DPFC_CONTROL);
  136. if (dpfc_ctl & DPFC_CTL_EN) {
  137. dpfc_ctl &= ~DPFC_CTL_EN;
  138. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  139. DRM_DEBUG_KMS("disabled FBC\n");
  140. }
  141. }
  142. static bool g4x_fbc_enabled(struct drm_device *dev)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  146. }
  147. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  148. {
  149. struct drm_i915_private *dev_priv = dev->dev_private;
  150. u32 blt_ecoskpd;
  151. /* Make sure blitter notifies FBC of writes */
  152. gen6_gt_force_wake_get(dev_priv);
  153. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  154. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  155. GEN6_BLITTER_LOCK_SHIFT;
  156. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  157. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  158. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  159. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  160. GEN6_BLITTER_LOCK_SHIFT);
  161. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  162. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  163. gen6_gt_force_wake_put(dev_priv);
  164. }
  165. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  166. {
  167. struct drm_device *dev = crtc->dev;
  168. struct drm_i915_private *dev_priv = dev->dev_private;
  169. struct drm_framebuffer *fb = crtc->fb;
  170. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  171. struct drm_i915_gem_object *obj = intel_fb->obj;
  172. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  173. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  174. unsigned long stall_watermark = 200;
  175. u32 dpfc_ctl;
  176. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  177. dpfc_ctl &= DPFC_RESERVED;
  178. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  179. /* Set persistent mode for front-buffer rendering, ala X. */
  180. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  181. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  182. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  183. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  184. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  185. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  186. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  187. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  188. /* enable it... */
  189. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  190. if (IS_GEN6(dev)) {
  191. I915_WRITE(SNB_DPFC_CTL_SA,
  192. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  193. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  194. sandybridge_blit_fbc_update(dev);
  195. }
  196. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  197. }
  198. static void ironlake_disable_fbc(struct drm_device *dev)
  199. {
  200. struct drm_i915_private *dev_priv = dev->dev_private;
  201. u32 dpfc_ctl;
  202. /* Disable compression */
  203. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  204. if (dpfc_ctl & DPFC_CTL_EN) {
  205. dpfc_ctl &= ~DPFC_CTL_EN;
  206. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  207. if (IS_IVYBRIDGE(dev))
  208. /* WaFbcDisableDpfcClockGating:ivb */
  209. I915_WRITE(ILK_DSPCLK_GATE_D,
  210. I915_READ(ILK_DSPCLK_GATE_D) &
  211. ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
  212. if (IS_HASWELL(dev))
  213. /* WaFbcDisableDpfcClockGating:hsw */
  214. I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
  215. I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
  216. ~HSW_DPFC_GATING_DISABLE);
  217. DRM_DEBUG_KMS("disabled FBC\n");
  218. }
  219. }
  220. static bool ironlake_fbc_enabled(struct drm_device *dev)
  221. {
  222. struct drm_i915_private *dev_priv = dev->dev_private;
  223. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  224. }
  225. static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  226. {
  227. struct drm_device *dev = crtc->dev;
  228. struct drm_i915_private *dev_priv = dev->dev_private;
  229. struct drm_framebuffer *fb = crtc->fb;
  230. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  231. struct drm_i915_gem_object *obj = intel_fb->obj;
  232. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  233. I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
  234. I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
  235. IVB_DPFC_CTL_FENCE_EN |
  236. intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
  237. if (IS_IVYBRIDGE(dev)) {
  238. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  239. I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
  240. /* WaFbcDisableDpfcClockGating:ivb */
  241. I915_WRITE(ILK_DSPCLK_GATE_D,
  242. I915_READ(ILK_DSPCLK_GATE_D) |
  243. ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
  244. } else {
  245. /* WaFbcAsynchFlipDisableFbcQueue:hsw */
  246. I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
  247. HSW_BYPASS_FBC_QUEUE);
  248. /* WaFbcDisableDpfcClockGating:hsw */
  249. I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
  250. I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
  251. HSW_DPFC_GATING_DISABLE);
  252. }
  253. I915_WRITE(SNB_DPFC_CTL_SA,
  254. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  255. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  256. sandybridge_blit_fbc_update(dev);
  257. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  258. }
  259. bool intel_fbc_enabled(struct drm_device *dev)
  260. {
  261. struct drm_i915_private *dev_priv = dev->dev_private;
  262. if (!dev_priv->display.fbc_enabled)
  263. return false;
  264. return dev_priv->display.fbc_enabled(dev);
  265. }
  266. static void intel_fbc_work_fn(struct work_struct *__work)
  267. {
  268. struct intel_fbc_work *work =
  269. container_of(to_delayed_work(__work),
  270. struct intel_fbc_work, work);
  271. struct drm_device *dev = work->crtc->dev;
  272. struct drm_i915_private *dev_priv = dev->dev_private;
  273. mutex_lock(&dev->struct_mutex);
  274. if (work == dev_priv->fbc.fbc_work) {
  275. /* Double check that we haven't switched fb without cancelling
  276. * the prior work.
  277. */
  278. if (work->crtc->fb == work->fb) {
  279. dev_priv->display.enable_fbc(work->crtc,
  280. work->interval);
  281. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  282. dev_priv->fbc.fb_id = work->crtc->fb->base.id;
  283. dev_priv->fbc.y = work->crtc->y;
  284. }
  285. dev_priv->fbc.fbc_work = NULL;
  286. }
  287. mutex_unlock(&dev->struct_mutex);
  288. kfree(work);
  289. }
  290. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  291. {
  292. if (dev_priv->fbc.fbc_work == NULL)
  293. return;
  294. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  295. /* Synchronisation is provided by struct_mutex and checking of
  296. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  297. * entirely asynchronously.
  298. */
  299. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  300. /* tasklet was killed before being run, clean up */
  301. kfree(dev_priv->fbc.fbc_work);
  302. /* Mark the work as no longer wanted so that if it does
  303. * wake-up (because the work was already running and waiting
  304. * for our mutex), it will discover that is no longer
  305. * necessary to run.
  306. */
  307. dev_priv->fbc.fbc_work = NULL;
  308. }
  309. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  310. {
  311. struct intel_fbc_work *work;
  312. struct drm_device *dev = crtc->dev;
  313. struct drm_i915_private *dev_priv = dev->dev_private;
  314. if (!dev_priv->display.enable_fbc)
  315. return;
  316. intel_cancel_fbc_work(dev_priv);
  317. work = kzalloc(sizeof *work, GFP_KERNEL);
  318. if (work == NULL) {
  319. DRM_ERROR("Failed to allocate FBC work structure\n");
  320. dev_priv->display.enable_fbc(crtc, interval);
  321. return;
  322. }
  323. work->crtc = crtc;
  324. work->fb = crtc->fb;
  325. work->interval = interval;
  326. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  327. dev_priv->fbc.fbc_work = work;
  328. /* Delay the actual enabling to let pageflipping cease and the
  329. * display to settle before starting the compression. Note that
  330. * this delay also serves a second purpose: it allows for a
  331. * vblank to pass after disabling the FBC before we attempt
  332. * to modify the control registers.
  333. *
  334. * A more complicated solution would involve tracking vblanks
  335. * following the termination of the page-flipping sequence
  336. * and indeed performing the enable as a co-routine and not
  337. * waiting synchronously upon the vblank.
  338. *
  339. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  340. */
  341. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  342. }
  343. void intel_disable_fbc(struct drm_device *dev)
  344. {
  345. struct drm_i915_private *dev_priv = dev->dev_private;
  346. intel_cancel_fbc_work(dev_priv);
  347. if (!dev_priv->display.disable_fbc)
  348. return;
  349. dev_priv->display.disable_fbc(dev);
  350. dev_priv->fbc.plane = -1;
  351. }
  352. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  353. enum no_fbc_reason reason)
  354. {
  355. if (dev_priv->fbc.no_fbc_reason == reason)
  356. return false;
  357. dev_priv->fbc.no_fbc_reason = reason;
  358. return true;
  359. }
  360. /**
  361. * intel_update_fbc - enable/disable FBC as needed
  362. * @dev: the drm_device
  363. *
  364. * Set up the framebuffer compression hardware at mode set time. We
  365. * enable it if possible:
  366. * - plane A only (on pre-965)
  367. * - no pixel mulitply/line duplication
  368. * - no alpha buffer discard
  369. * - no dual wide
  370. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  371. *
  372. * We can't assume that any compression will take place (worst case),
  373. * so the compressed buffer has to be the same size as the uncompressed
  374. * one. It also must reside (along with the line length buffer) in
  375. * stolen memory.
  376. *
  377. * We need to enable/disable FBC on a global basis.
  378. */
  379. void intel_update_fbc(struct drm_device *dev)
  380. {
  381. struct drm_i915_private *dev_priv = dev->dev_private;
  382. struct drm_crtc *crtc = NULL, *tmp_crtc;
  383. struct intel_crtc *intel_crtc;
  384. struct drm_framebuffer *fb;
  385. struct intel_framebuffer *intel_fb;
  386. struct drm_i915_gem_object *obj;
  387. const struct drm_display_mode *mode;
  388. const struct drm_display_mode *adjusted_mode;
  389. unsigned int max_hdisplay, max_vdisplay;
  390. if (!I915_HAS_FBC(dev)) {
  391. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  392. return;
  393. }
  394. if (!i915_powersave) {
  395. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  396. DRM_DEBUG_KMS("fbc disabled per module param\n");
  397. return;
  398. }
  399. /*
  400. * If FBC is already on, we just have to verify that we can
  401. * keep it that way...
  402. * Need to disable if:
  403. * - more than one pipe is active
  404. * - changing FBC params (stride, fence, mode)
  405. * - new fb is too large to fit in compressed buffer
  406. * - going to an unsupported config (interlace, pixel multiply, etc.)
  407. */
  408. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  409. if (intel_crtc_active(tmp_crtc) &&
  410. !to_intel_crtc(tmp_crtc)->primary_disabled) {
  411. if (crtc) {
  412. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  413. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  414. goto out_disable;
  415. }
  416. crtc = tmp_crtc;
  417. }
  418. }
  419. if (!crtc || crtc->fb == NULL) {
  420. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  421. DRM_DEBUG_KMS("no output, disabling\n");
  422. goto out_disable;
  423. }
  424. intel_crtc = to_intel_crtc(crtc);
  425. fb = crtc->fb;
  426. intel_fb = to_intel_framebuffer(fb);
  427. obj = intel_fb->obj;
  428. mode = &intel_crtc->config.requested_mode;
  429. adjusted_mode = &intel_crtc->config.adjusted_mode;
  430. if (i915_enable_fbc < 0 &&
  431. INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
  432. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  433. DRM_DEBUG_KMS("disabled per chip default\n");
  434. goto out_disable;
  435. }
  436. if (!i915_enable_fbc) {
  437. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  438. DRM_DEBUG_KMS("fbc disabled per module param\n");
  439. goto out_disable;
  440. }
  441. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  442. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  443. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  444. DRM_DEBUG_KMS("mode incompatible with compression, "
  445. "disabling\n");
  446. goto out_disable;
  447. }
  448. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  449. max_hdisplay = 4096;
  450. max_vdisplay = 2048;
  451. } else {
  452. max_hdisplay = 2048;
  453. max_vdisplay = 1536;
  454. }
  455. if ((mode->hdisplay > max_hdisplay) ||
  456. (mode->vdisplay > max_vdisplay)) {
  457. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  458. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  459. goto out_disable;
  460. }
  461. if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
  462. intel_crtc->plane != 0) {
  463. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  464. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  465. goto out_disable;
  466. }
  467. /* The use of a CPU fence is mandatory in order to detect writes
  468. * by the CPU to the scanout and trigger updates to the FBC.
  469. */
  470. if (obj->tiling_mode != I915_TILING_X ||
  471. obj->fence_reg == I915_FENCE_REG_NONE) {
  472. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  473. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  474. goto out_disable;
  475. }
  476. /* If the kernel debugger is active, always disable compression */
  477. if (in_dbg_master())
  478. goto out_disable;
  479. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
  480. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  481. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  482. goto out_disable;
  483. }
  484. /* If the scanout has not changed, don't modify the FBC settings.
  485. * Note that we make the fundamental assumption that the fb->obj
  486. * cannot be unpinned (and have its GTT offset and fence revoked)
  487. * without first being decoupled from the scanout and FBC disabled.
  488. */
  489. if (dev_priv->fbc.plane == intel_crtc->plane &&
  490. dev_priv->fbc.fb_id == fb->base.id &&
  491. dev_priv->fbc.y == crtc->y)
  492. return;
  493. if (intel_fbc_enabled(dev)) {
  494. /* We update FBC along two paths, after changing fb/crtc
  495. * configuration (modeswitching) and after page-flipping
  496. * finishes. For the latter, we know that not only did
  497. * we disable the FBC at the start of the page-flip
  498. * sequence, but also more than one vblank has passed.
  499. *
  500. * For the former case of modeswitching, it is possible
  501. * to switch between two FBC valid configurations
  502. * instantaneously so we do need to disable the FBC
  503. * before we can modify its control registers. We also
  504. * have to wait for the next vblank for that to take
  505. * effect. However, since we delay enabling FBC we can
  506. * assume that a vblank has passed since disabling and
  507. * that we can safely alter the registers in the deferred
  508. * callback.
  509. *
  510. * In the scenario that we go from a valid to invalid
  511. * and then back to valid FBC configuration we have
  512. * no strict enforcement that a vblank occurred since
  513. * disabling the FBC. However, along all current pipe
  514. * disabling paths we do need to wait for a vblank at
  515. * some point. And we wait before enabling FBC anyway.
  516. */
  517. DRM_DEBUG_KMS("disabling active FBC for update\n");
  518. intel_disable_fbc(dev);
  519. }
  520. intel_enable_fbc(crtc, 500);
  521. dev_priv->fbc.no_fbc_reason = FBC_OK;
  522. return;
  523. out_disable:
  524. /* Multiple disables should be harmless */
  525. if (intel_fbc_enabled(dev)) {
  526. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  527. intel_disable_fbc(dev);
  528. }
  529. i915_gem_stolen_cleanup_compression(dev);
  530. }
  531. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  532. {
  533. drm_i915_private_t *dev_priv = dev->dev_private;
  534. u32 tmp;
  535. tmp = I915_READ(CLKCFG);
  536. switch (tmp & CLKCFG_FSB_MASK) {
  537. case CLKCFG_FSB_533:
  538. dev_priv->fsb_freq = 533; /* 133*4 */
  539. break;
  540. case CLKCFG_FSB_800:
  541. dev_priv->fsb_freq = 800; /* 200*4 */
  542. break;
  543. case CLKCFG_FSB_667:
  544. dev_priv->fsb_freq = 667; /* 167*4 */
  545. break;
  546. case CLKCFG_FSB_400:
  547. dev_priv->fsb_freq = 400; /* 100*4 */
  548. break;
  549. }
  550. switch (tmp & CLKCFG_MEM_MASK) {
  551. case CLKCFG_MEM_533:
  552. dev_priv->mem_freq = 533;
  553. break;
  554. case CLKCFG_MEM_667:
  555. dev_priv->mem_freq = 667;
  556. break;
  557. case CLKCFG_MEM_800:
  558. dev_priv->mem_freq = 800;
  559. break;
  560. }
  561. /* detect pineview DDR3 setting */
  562. tmp = I915_READ(CSHRDDR3CTL);
  563. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  564. }
  565. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  566. {
  567. drm_i915_private_t *dev_priv = dev->dev_private;
  568. u16 ddrpll, csipll;
  569. ddrpll = I915_READ16(DDRMPLL1);
  570. csipll = I915_READ16(CSIPLL0);
  571. switch (ddrpll & 0xff) {
  572. case 0xc:
  573. dev_priv->mem_freq = 800;
  574. break;
  575. case 0x10:
  576. dev_priv->mem_freq = 1066;
  577. break;
  578. case 0x14:
  579. dev_priv->mem_freq = 1333;
  580. break;
  581. case 0x18:
  582. dev_priv->mem_freq = 1600;
  583. break;
  584. default:
  585. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  586. ddrpll & 0xff);
  587. dev_priv->mem_freq = 0;
  588. break;
  589. }
  590. dev_priv->ips.r_t = dev_priv->mem_freq;
  591. switch (csipll & 0x3ff) {
  592. case 0x00c:
  593. dev_priv->fsb_freq = 3200;
  594. break;
  595. case 0x00e:
  596. dev_priv->fsb_freq = 3733;
  597. break;
  598. case 0x010:
  599. dev_priv->fsb_freq = 4266;
  600. break;
  601. case 0x012:
  602. dev_priv->fsb_freq = 4800;
  603. break;
  604. case 0x014:
  605. dev_priv->fsb_freq = 5333;
  606. break;
  607. case 0x016:
  608. dev_priv->fsb_freq = 5866;
  609. break;
  610. case 0x018:
  611. dev_priv->fsb_freq = 6400;
  612. break;
  613. default:
  614. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  615. csipll & 0x3ff);
  616. dev_priv->fsb_freq = 0;
  617. break;
  618. }
  619. if (dev_priv->fsb_freq == 3200) {
  620. dev_priv->ips.c_m = 0;
  621. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  622. dev_priv->ips.c_m = 1;
  623. } else {
  624. dev_priv->ips.c_m = 2;
  625. }
  626. }
  627. static const struct cxsr_latency cxsr_latency_table[] = {
  628. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  629. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  630. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  631. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  632. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  633. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  634. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  635. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  636. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  637. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  638. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  639. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  640. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  641. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  642. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  643. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  644. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  645. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  646. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  647. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  648. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  649. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  650. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  651. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  652. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  653. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  654. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  655. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  656. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  657. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  658. };
  659. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  660. int is_ddr3,
  661. int fsb,
  662. int mem)
  663. {
  664. const struct cxsr_latency *latency;
  665. int i;
  666. if (fsb == 0 || mem == 0)
  667. return NULL;
  668. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  669. latency = &cxsr_latency_table[i];
  670. if (is_desktop == latency->is_desktop &&
  671. is_ddr3 == latency->is_ddr3 &&
  672. fsb == latency->fsb_freq && mem == latency->mem_freq)
  673. return latency;
  674. }
  675. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  676. return NULL;
  677. }
  678. static void pineview_disable_cxsr(struct drm_device *dev)
  679. {
  680. struct drm_i915_private *dev_priv = dev->dev_private;
  681. /* deactivate cxsr */
  682. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  683. }
  684. /*
  685. * Latency for FIFO fetches is dependent on several factors:
  686. * - memory configuration (speed, channels)
  687. * - chipset
  688. * - current MCH state
  689. * It can be fairly high in some situations, so here we assume a fairly
  690. * pessimal value. It's a tradeoff between extra memory fetches (if we
  691. * set this value too high, the FIFO will fetch frequently to stay full)
  692. * and power consumption (set it too low to save power and we might see
  693. * FIFO underruns and display "flicker").
  694. *
  695. * A value of 5us seems to be a good balance; safe for very low end
  696. * platforms but not overly aggressive on lower latency configs.
  697. */
  698. static const int latency_ns = 5000;
  699. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  700. {
  701. struct drm_i915_private *dev_priv = dev->dev_private;
  702. uint32_t dsparb = I915_READ(DSPARB);
  703. int size;
  704. size = dsparb & 0x7f;
  705. if (plane)
  706. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  707. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  708. plane ? "B" : "A", size);
  709. return size;
  710. }
  711. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  712. {
  713. struct drm_i915_private *dev_priv = dev->dev_private;
  714. uint32_t dsparb = I915_READ(DSPARB);
  715. int size;
  716. size = dsparb & 0x1ff;
  717. if (plane)
  718. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  719. size >>= 1; /* Convert to cachelines */
  720. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  721. plane ? "B" : "A", size);
  722. return size;
  723. }
  724. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  725. {
  726. struct drm_i915_private *dev_priv = dev->dev_private;
  727. uint32_t dsparb = I915_READ(DSPARB);
  728. int size;
  729. size = dsparb & 0x7f;
  730. size >>= 2; /* Convert to cachelines */
  731. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  732. plane ? "B" : "A",
  733. size);
  734. return size;
  735. }
  736. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  737. {
  738. struct drm_i915_private *dev_priv = dev->dev_private;
  739. uint32_t dsparb = I915_READ(DSPARB);
  740. int size;
  741. size = dsparb & 0x7f;
  742. size >>= 1; /* Convert to cachelines */
  743. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  744. plane ? "B" : "A", size);
  745. return size;
  746. }
  747. /* Pineview has different values for various configs */
  748. static const struct intel_watermark_params pineview_display_wm = {
  749. PINEVIEW_DISPLAY_FIFO,
  750. PINEVIEW_MAX_WM,
  751. PINEVIEW_DFT_WM,
  752. PINEVIEW_GUARD_WM,
  753. PINEVIEW_FIFO_LINE_SIZE
  754. };
  755. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  756. PINEVIEW_DISPLAY_FIFO,
  757. PINEVIEW_MAX_WM,
  758. PINEVIEW_DFT_HPLLOFF_WM,
  759. PINEVIEW_GUARD_WM,
  760. PINEVIEW_FIFO_LINE_SIZE
  761. };
  762. static const struct intel_watermark_params pineview_cursor_wm = {
  763. PINEVIEW_CURSOR_FIFO,
  764. PINEVIEW_CURSOR_MAX_WM,
  765. PINEVIEW_CURSOR_DFT_WM,
  766. PINEVIEW_CURSOR_GUARD_WM,
  767. PINEVIEW_FIFO_LINE_SIZE,
  768. };
  769. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  770. PINEVIEW_CURSOR_FIFO,
  771. PINEVIEW_CURSOR_MAX_WM,
  772. PINEVIEW_CURSOR_DFT_WM,
  773. PINEVIEW_CURSOR_GUARD_WM,
  774. PINEVIEW_FIFO_LINE_SIZE
  775. };
  776. static const struct intel_watermark_params g4x_wm_info = {
  777. G4X_FIFO_SIZE,
  778. G4X_MAX_WM,
  779. G4X_MAX_WM,
  780. 2,
  781. G4X_FIFO_LINE_SIZE,
  782. };
  783. static const struct intel_watermark_params g4x_cursor_wm_info = {
  784. I965_CURSOR_FIFO,
  785. I965_CURSOR_MAX_WM,
  786. I965_CURSOR_DFT_WM,
  787. 2,
  788. G4X_FIFO_LINE_SIZE,
  789. };
  790. static const struct intel_watermark_params valleyview_wm_info = {
  791. VALLEYVIEW_FIFO_SIZE,
  792. VALLEYVIEW_MAX_WM,
  793. VALLEYVIEW_MAX_WM,
  794. 2,
  795. G4X_FIFO_LINE_SIZE,
  796. };
  797. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  798. I965_CURSOR_FIFO,
  799. VALLEYVIEW_CURSOR_MAX_WM,
  800. I965_CURSOR_DFT_WM,
  801. 2,
  802. G4X_FIFO_LINE_SIZE,
  803. };
  804. static const struct intel_watermark_params i965_cursor_wm_info = {
  805. I965_CURSOR_FIFO,
  806. I965_CURSOR_MAX_WM,
  807. I965_CURSOR_DFT_WM,
  808. 2,
  809. I915_FIFO_LINE_SIZE,
  810. };
  811. static const struct intel_watermark_params i945_wm_info = {
  812. I945_FIFO_SIZE,
  813. I915_MAX_WM,
  814. 1,
  815. 2,
  816. I915_FIFO_LINE_SIZE
  817. };
  818. static const struct intel_watermark_params i915_wm_info = {
  819. I915_FIFO_SIZE,
  820. I915_MAX_WM,
  821. 1,
  822. 2,
  823. I915_FIFO_LINE_SIZE
  824. };
  825. static const struct intel_watermark_params i855_wm_info = {
  826. I855GM_FIFO_SIZE,
  827. I915_MAX_WM,
  828. 1,
  829. 2,
  830. I830_FIFO_LINE_SIZE
  831. };
  832. static const struct intel_watermark_params i830_wm_info = {
  833. I830_FIFO_SIZE,
  834. I915_MAX_WM,
  835. 1,
  836. 2,
  837. I830_FIFO_LINE_SIZE
  838. };
  839. static const struct intel_watermark_params ironlake_display_wm_info = {
  840. ILK_DISPLAY_FIFO,
  841. ILK_DISPLAY_MAXWM,
  842. ILK_DISPLAY_DFTWM,
  843. 2,
  844. ILK_FIFO_LINE_SIZE
  845. };
  846. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  847. ILK_CURSOR_FIFO,
  848. ILK_CURSOR_MAXWM,
  849. ILK_CURSOR_DFTWM,
  850. 2,
  851. ILK_FIFO_LINE_SIZE
  852. };
  853. static const struct intel_watermark_params ironlake_display_srwm_info = {
  854. ILK_DISPLAY_SR_FIFO,
  855. ILK_DISPLAY_MAX_SRWM,
  856. ILK_DISPLAY_DFT_SRWM,
  857. 2,
  858. ILK_FIFO_LINE_SIZE
  859. };
  860. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  861. ILK_CURSOR_SR_FIFO,
  862. ILK_CURSOR_MAX_SRWM,
  863. ILK_CURSOR_DFT_SRWM,
  864. 2,
  865. ILK_FIFO_LINE_SIZE
  866. };
  867. static const struct intel_watermark_params sandybridge_display_wm_info = {
  868. SNB_DISPLAY_FIFO,
  869. SNB_DISPLAY_MAXWM,
  870. SNB_DISPLAY_DFTWM,
  871. 2,
  872. SNB_FIFO_LINE_SIZE
  873. };
  874. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  875. SNB_CURSOR_FIFO,
  876. SNB_CURSOR_MAXWM,
  877. SNB_CURSOR_DFTWM,
  878. 2,
  879. SNB_FIFO_LINE_SIZE
  880. };
  881. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  882. SNB_DISPLAY_SR_FIFO,
  883. SNB_DISPLAY_MAX_SRWM,
  884. SNB_DISPLAY_DFT_SRWM,
  885. 2,
  886. SNB_FIFO_LINE_SIZE
  887. };
  888. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  889. SNB_CURSOR_SR_FIFO,
  890. SNB_CURSOR_MAX_SRWM,
  891. SNB_CURSOR_DFT_SRWM,
  892. 2,
  893. SNB_FIFO_LINE_SIZE
  894. };
  895. /**
  896. * intel_calculate_wm - calculate watermark level
  897. * @clock_in_khz: pixel clock
  898. * @wm: chip FIFO params
  899. * @pixel_size: display pixel size
  900. * @latency_ns: memory latency for the platform
  901. *
  902. * Calculate the watermark level (the level at which the display plane will
  903. * start fetching from memory again). Each chip has a different display
  904. * FIFO size and allocation, so the caller needs to figure that out and pass
  905. * in the correct intel_watermark_params structure.
  906. *
  907. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  908. * on the pixel size. When it reaches the watermark level, it'll start
  909. * fetching FIFO line sized based chunks from memory until the FIFO fills
  910. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  911. * will occur, and a display engine hang could result.
  912. */
  913. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  914. const struct intel_watermark_params *wm,
  915. int fifo_size,
  916. int pixel_size,
  917. unsigned long latency_ns)
  918. {
  919. long entries_required, wm_size;
  920. /*
  921. * Note: we need to make sure we don't overflow for various clock &
  922. * latency values.
  923. * clocks go from a few thousand to several hundred thousand.
  924. * latency is usually a few thousand
  925. */
  926. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  927. 1000;
  928. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  929. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  930. wm_size = fifo_size - (entries_required + wm->guard_size);
  931. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  932. /* Don't promote wm_size to unsigned... */
  933. if (wm_size > (long)wm->max_wm)
  934. wm_size = wm->max_wm;
  935. if (wm_size <= 0)
  936. wm_size = wm->default_wm;
  937. return wm_size;
  938. }
  939. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  940. {
  941. struct drm_crtc *crtc, *enabled = NULL;
  942. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  943. if (intel_crtc_active(crtc)) {
  944. if (enabled)
  945. return NULL;
  946. enabled = crtc;
  947. }
  948. }
  949. return enabled;
  950. }
  951. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  952. {
  953. struct drm_device *dev = unused_crtc->dev;
  954. struct drm_i915_private *dev_priv = dev->dev_private;
  955. struct drm_crtc *crtc;
  956. const struct cxsr_latency *latency;
  957. u32 reg;
  958. unsigned long wm;
  959. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  960. dev_priv->fsb_freq, dev_priv->mem_freq);
  961. if (!latency) {
  962. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  963. pineview_disable_cxsr(dev);
  964. return;
  965. }
  966. crtc = single_enabled_crtc(dev);
  967. if (crtc) {
  968. int clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
  969. int pixel_size = crtc->fb->bits_per_pixel / 8;
  970. /* Display SR */
  971. wm = intel_calculate_wm(clock, &pineview_display_wm,
  972. pineview_display_wm.fifo_size,
  973. pixel_size, latency->display_sr);
  974. reg = I915_READ(DSPFW1);
  975. reg &= ~DSPFW_SR_MASK;
  976. reg |= wm << DSPFW_SR_SHIFT;
  977. I915_WRITE(DSPFW1, reg);
  978. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  979. /* cursor SR */
  980. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  981. pineview_display_wm.fifo_size,
  982. pixel_size, latency->cursor_sr);
  983. reg = I915_READ(DSPFW3);
  984. reg &= ~DSPFW_CURSOR_SR_MASK;
  985. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  986. I915_WRITE(DSPFW3, reg);
  987. /* Display HPLL off SR */
  988. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  989. pineview_display_hplloff_wm.fifo_size,
  990. pixel_size, latency->display_hpll_disable);
  991. reg = I915_READ(DSPFW3);
  992. reg &= ~DSPFW_HPLL_SR_MASK;
  993. reg |= wm & DSPFW_HPLL_SR_MASK;
  994. I915_WRITE(DSPFW3, reg);
  995. /* cursor HPLL off SR */
  996. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  997. pineview_display_hplloff_wm.fifo_size,
  998. pixel_size, latency->cursor_hpll_disable);
  999. reg = I915_READ(DSPFW3);
  1000. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  1001. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  1002. I915_WRITE(DSPFW3, reg);
  1003. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  1004. /* activate cxsr */
  1005. I915_WRITE(DSPFW3,
  1006. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  1007. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  1008. } else {
  1009. pineview_disable_cxsr(dev);
  1010. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  1011. }
  1012. }
  1013. static bool g4x_compute_wm0(struct drm_device *dev,
  1014. int plane,
  1015. const struct intel_watermark_params *display,
  1016. int display_latency_ns,
  1017. const struct intel_watermark_params *cursor,
  1018. int cursor_latency_ns,
  1019. int *plane_wm,
  1020. int *cursor_wm)
  1021. {
  1022. struct drm_crtc *crtc;
  1023. const struct drm_display_mode *adjusted_mode;
  1024. int htotal, hdisplay, clock, pixel_size;
  1025. int line_time_us, line_count;
  1026. int entries, tlb_miss;
  1027. crtc = intel_get_crtc_for_plane(dev, plane);
  1028. if (!intel_crtc_active(crtc)) {
  1029. *cursor_wm = cursor->guard_size;
  1030. *plane_wm = display->guard_size;
  1031. return false;
  1032. }
  1033. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1034. clock = adjusted_mode->clock;
  1035. htotal = adjusted_mode->htotal;
  1036. hdisplay = to_intel_crtc(crtc)->config.requested_mode.hdisplay;
  1037. pixel_size = crtc->fb->bits_per_pixel / 8;
  1038. /* Use the small buffer method to calculate plane watermark */
  1039. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1040. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  1041. if (tlb_miss > 0)
  1042. entries += tlb_miss;
  1043. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1044. *plane_wm = entries + display->guard_size;
  1045. if (*plane_wm > (int)display->max_wm)
  1046. *plane_wm = display->max_wm;
  1047. /* Use the large buffer method to calculate cursor watermark */
  1048. line_time_us = ((htotal * 1000) / clock);
  1049. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  1050. entries = line_count * 64 * pixel_size;
  1051. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  1052. if (tlb_miss > 0)
  1053. entries += tlb_miss;
  1054. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1055. *cursor_wm = entries + cursor->guard_size;
  1056. if (*cursor_wm > (int)cursor->max_wm)
  1057. *cursor_wm = (int)cursor->max_wm;
  1058. return true;
  1059. }
  1060. /*
  1061. * Check the wm result.
  1062. *
  1063. * If any calculated watermark values is larger than the maximum value that
  1064. * can be programmed into the associated watermark register, that watermark
  1065. * must be disabled.
  1066. */
  1067. static bool g4x_check_srwm(struct drm_device *dev,
  1068. int display_wm, int cursor_wm,
  1069. const struct intel_watermark_params *display,
  1070. const struct intel_watermark_params *cursor)
  1071. {
  1072. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1073. display_wm, cursor_wm);
  1074. if (display_wm > display->max_wm) {
  1075. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1076. display_wm, display->max_wm);
  1077. return false;
  1078. }
  1079. if (cursor_wm > cursor->max_wm) {
  1080. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1081. cursor_wm, cursor->max_wm);
  1082. return false;
  1083. }
  1084. if (!(display_wm || cursor_wm)) {
  1085. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1086. return false;
  1087. }
  1088. return true;
  1089. }
  1090. static bool g4x_compute_srwm(struct drm_device *dev,
  1091. int plane,
  1092. int latency_ns,
  1093. const struct intel_watermark_params *display,
  1094. const struct intel_watermark_params *cursor,
  1095. int *display_wm, int *cursor_wm)
  1096. {
  1097. struct drm_crtc *crtc;
  1098. const struct drm_display_mode *adjusted_mode;
  1099. int hdisplay, htotal, pixel_size, clock;
  1100. unsigned long line_time_us;
  1101. int line_count, line_size;
  1102. int small, large;
  1103. int entries;
  1104. if (!latency_ns) {
  1105. *display_wm = *cursor_wm = 0;
  1106. return false;
  1107. }
  1108. crtc = intel_get_crtc_for_plane(dev, plane);
  1109. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1110. clock = adjusted_mode->clock;
  1111. htotal = adjusted_mode->htotal;
  1112. hdisplay = to_intel_crtc(crtc)->config.requested_mode.hdisplay;
  1113. pixel_size = crtc->fb->bits_per_pixel / 8;
  1114. line_time_us = (htotal * 1000) / clock;
  1115. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1116. line_size = hdisplay * pixel_size;
  1117. /* Use the minimum of the small and large buffer method for primary */
  1118. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1119. large = line_count * line_size;
  1120. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1121. *display_wm = entries + display->guard_size;
  1122. /* calculate the self-refresh watermark for display cursor */
  1123. entries = line_count * pixel_size * 64;
  1124. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1125. *cursor_wm = entries + cursor->guard_size;
  1126. return g4x_check_srwm(dev,
  1127. *display_wm, *cursor_wm,
  1128. display, cursor);
  1129. }
  1130. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1131. int plane,
  1132. int *plane_prec_mult,
  1133. int *plane_dl,
  1134. int *cursor_prec_mult,
  1135. int *cursor_dl)
  1136. {
  1137. struct drm_crtc *crtc;
  1138. int clock, pixel_size;
  1139. int entries;
  1140. crtc = intel_get_crtc_for_plane(dev, plane);
  1141. if (!intel_crtc_active(crtc))
  1142. return false;
  1143. clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
  1144. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1145. entries = (clock / 1000) * pixel_size;
  1146. *plane_prec_mult = (entries > 256) ?
  1147. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1148. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1149. pixel_size);
  1150. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1151. *cursor_prec_mult = (entries > 256) ?
  1152. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1153. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1154. return true;
  1155. }
  1156. /*
  1157. * Update drain latency registers of memory arbiter
  1158. *
  1159. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1160. * to be programmed. Each plane has a drain latency multiplier and a drain
  1161. * latency value.
  1162. */
  1163. static void vlv_update_drain_latency(struct drm_device *dev)
  1164. {
  1165. struct drm_i915_private *dev_priv = dev->dev_private;
  1166. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1167. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1168. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1169. either 16 or 32 */
  1170. /* For plane A, Cursor A */
  1171. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1172. &cursor_prec_mult, &cursora_dl)) {
  1173. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1174. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1175. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1176. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1177. I915_WRITE(VLV_DDL1, cursora_prec |
  1178. (cursora_dl << DDL_CURSORA_SHIFT) |
  1179. planea_prec | planea_dl);
  1180. }
  1181. /* For plane B, Cursor B */
  1182. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1183. &cursor_prec_mult, &cursorb_dl)) {
  1184. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1185. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1186. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1187. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1188. I915_WRITE(VLV_DDL2, cursorb_prec |
  1189. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1190. planeb_prec | planeb_dl);
  1191. }
  1192. }
  1193. #define single_plane_enabled(mask) is_power_of_2(mask)
  1194. static void valleyview_update_wm(struct drm_crtc *crtc)
  1195. {
  1196. struct drm_device *dev = crtc->dev;
  1197. static const int sr_latency_ns = 12000;
  1198. struct drm_i915_private *dev_priv = dev->dev_private;
  1199. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1200. int plane_sr, cursor_sr;
  1201. int ignore_plane_sr, ignore_cursor_sr;
  1202. unsigned int enabled = 0;
  1203. vlv_update_drain_latency(dev);
  1204. if (g4x_compute_wm0(dev, PIPE_A,
  1205. &valleyview_wm_info, latency_ns,
  1206. &valleyview_cursor_wm_info, latency_ns,
  1207. &planea_wm, &cursora_wm))
  1208. enabled |= 1 << PIPE_A;
  1209. if (g4x_compute_wm0(dev, PIPE_B,
  1210. &valleyview_wm_info, latency_ns,
  1211. &valleyview_cursor_wm_info, latency_ns,
  1212. &planeb_wm, &cursorb_wm))
  1213. enabled |= 1 << PIPE_B;
  1214. if (single_plane_enabled(enabled) &&
  1215. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1216. sr_latency_ns,
  1217. &valleyview_wm_info,
  1218. &valleyview_cursor_wm_info,
  1219. &plane_sr, &ignore_cursor_sr) &&
  1220. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1221. 2*sr_latency_ns,
  1222. &valleyview_wm_info,
  1223. &valleyview_cursor_wm_info,
  1224. &ignore_plane_sr, &cursor_sr)) {
  1225. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1226. } else {
  1227. I915_WRITE(FW_BLC_SELF_VLV,
  1228. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1229. plane_sr = cursor_sr = 0;
  1230. }
  1231. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1232. planea_wm, cursora_wm,
  1233. planeb_wm, cursorb_wm,
  1234. plane_sr, cursor_sr);
  1235. I915_WRITE(DSPFW1,
  1236. (plane_sr << DSPFW_SR_SHIFT) |
  1237. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1238. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1239. planea_wm);
  1240. I915_WRITE(DSPFW2,
  1241. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1242. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1243. I915_WRITE(DSPFW3,
  1244. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1245. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1246. }
  1247. static void g4x_update_wm(struct drm_crtc *crtc)
  1248. {
  1249. struct drm_device *dev = crtc->dev;
  1250. static const int sr_latency_ns = 12000;
  1251. struct drm_i915_private *dev_priv = dev->dev_private;
  1252. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1253. int plane_sr, cursor_sr;
  1254. unsigned int enabled = 0;
  1255. if (g4x_compute_wm0(dev, PIPE_A,
  1256. &g4x_wm_info, latency_ns,
  1257. &g4x_cursor_wm_info, latency_ns,
  1258. &planea_wm, &cursora_wm))
  1259. enabled |= 1 << PIPE_A;
  1260. if (g4x_compute_wm0(dev, PIPE_B,
  1261. &g4x_wm_info, latency_ns,
  1262. &g4x_cursor_wm_info, latency_ns,
  1263. &planeb_wm, &cursorb_wm))
  1264. enabled |= 1 << PIPE_B;
  1265. if (single_plane_enabled(enabled) &&
  1266. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1267. sr_latency_ns,
  1268. &g4x_wm_info,
  1269. &g4x_cursor_wm_info,
  1270. &plane_sr, &cursor_sr)) {
  1271. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1272. } else {
  1273. I915_WRITE(FW_BLC_SELF,
  1274. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1275. plane_sr = cursor_sr = 0;
  1276. }
  1277. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1278. planea_wm, cursora_wm,
  1279. planeb_wm, cursorb_wm,
  1280. plane_sr, cursor_sr);
  1281. I915_WRITE(DSPFW1,
  1282. (plane_sr << DSPFW_SR_SHIFT) |
  1283. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1284. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1285. planea_wm);
  1286. I915_WRITE(DSPFW2,
  1287. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1288. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1289. /* HPLL off in SR has some issues on G4x... disable it */
  1290. I915_WRITE(DSPFW3,
  1291. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1292. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1293. }
  1294. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1295. {
  1296. struct drm_device *dev = unused_crtc->dev;
  1297. struct drm_i915_private *dev_priv = dev->dev_private;
  1298. struct drm_crtc *crtc;
  1299. int srwm = 1;
  1300. int cursor_sr = 16;
  1301. /* Calc sr entries for one plane configs */
  1302. crtc = single_enabled_crtc(dev);
  1303. if (crtc) {
  1304. /* self-refresh has much higher latency */
  1305. static const int sr_latency_ns = 12000;
  1306. const struct drm_display_mode *adjusted_mode =
  1307. &to_intel_crtc(crtc)->config.adjusted_mode;
  1308. int clock = adjusted_mode->clock;
  1309. int htotal = adjusted_mode->htotal;
  1310. int hdisplay = to_intel_crtc(crtc)->config.requested_mode.hdisplay;
  1311. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1312. unsigned long line_time_us;
  1313. int entries;
  1314. line_time_us = ((htotal * 1000) / clock);
  1315. /* Use ns/us then divide to preserve precision */
  1316. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1317. pixel_size * hdisplay;
  1318. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1319. srwm = I965_FIFO_SIZE - entries;
  1320. if (srwm < 0)
  1321. srwm = 1;
  1322. srwm &= 0x1ff;
  1323. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1324. entries, srwm);
  1325. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1326. pixel_size * 64;
  1327. entries = DIV_ROUND_UP(entries,
  1328. i965_cursor_wm_info.cacheline_size);
  1329. cursor_sr = i965_cursor_wm_info.fifo_size -
  1330. (entries + i965_cursor_wm_info.guard_size);
  1331. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1332. cursor_sr = i965_cursor_wm_info.max_wm;
  1333. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1334. "cursor %d\n", srwm, cursor_sr);
  1335. if (IS_CRESTLINE(dev))
  1336. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1337. } else {
  1338. /* Turn off self refresh if both pipes are enabled */
  1339. if (IS_CRESTLINE(dev))
  1340. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1341. & ~FW_BLC_SELF_EN);
  1342. }
  1343. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1344. srwm);
  1345. /* 965 has limitations... */
  1346. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1347. (8 << 16) | (8 << 8) | (8 << 0));
  1348. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1349. /* update cursor SR watermark */
  1350. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1351. }
  1352. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1353. {
  1354. struct drm_device *dev = unused_crtc->dev;
  1355. struct drm_i915_private *dev_priv = dev->dev_private;
  1356. const struct intel_watermark_params *wm_info;
  1357. uint32_t fwater_lo;
  1358. uint32_t fwater_hi;
  1359. int cwm, srwm = 1;
  1360. int fifo_size;
  1361. int planea_wm, planeb_wm;
  1362. struct drm_crtc *crtc, *enabled = NULL;
  1363. if (IS_I945GM(dev))
  1364. wm_info = &i945_wm_info;
  1365. else if (!IS_GEN2(dev))
  1366. wm_info = &i915_wm_info;
  1367. else
  1368. wm_info = &i855_wm_info;
  1369. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1370. crtc = intel_get_crtc_for_plane(dev, 0);
  1371. if (intel_crtc_active(crtc)) {
  1372. int cpp = crtc->fb->bits_per_pixel / 8;
  1373. if (IS_GEN2(dev))
  1374. cpp = 4;
  1375. planea_wm = intel_calculate_wm(to_intel_crtc(crtc)->config.adjusted_mode.clock,
  1376. wm_info, fifo_size, cpp,
  1377. latency_ns);
  1378. enabled = crtc;
  1379. } else
  1380. planea_wm = fifo_size - wm_info->guard_size;
  1381. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1382. crtc = intel_get_crtc_for_plane(dev, 1);
  1383. if (intel_crtc_active(crtc)) {
  1384. int cpp = crtc->fb->bits_per_pixel / 8;
  1385. if (IS_GEN2(dev))
  1386. cpp = 4;
  1387. planeb_wm = intel_calculate_wm(to_intel_crtc(crtc)->config.adjusted_mode.clock,
  1388. wm_info, fifo_size, cpp,
  1389. latency_ns);
  1390. if (enabled == NULL)
  1391. enabled = crtc;
  1392. else
  1393. enabled = NULL;
  1394. } else
  1395. planeb_wm = fifo_size - wm_info->guard_size;
  1396. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1397. /*
  1398. * Overlay gets an aggressive default since video jitter is bad.
  1399. */
  1400. cwm = 2;
  1401. /* Play safe and disable self-refresh before adjusting watermarks. */
  1402. if (IS_I945G(dev) || IS_I945GM(dev))
  1403. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1404. else if (IS_I915GM(dev))
  1405. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  1406. /* Calc sr entries for one plane configs */
  1407. if (HAS_FW_BLC(dev) && enabled) {
  1408. /* self-refresh has much higher latency */
  1409. static const int sr_latency_ns = 6000;
  1410. const struct drm_display_mode *adjusted_mode =
  1411. &to_intel_crtc(enabled)->config.adjusted_mode;
  1412. int clock = adjusted_mode->clock;
  1413. int htotal = adjusted_mode->htotal;
  1414. int hdisplay = to_intel_crtc(crtc)->config.requested_mode.hdisplay;
  1415. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1416. unsigned long line_time_us;
  1417. int entries;
  1418. line_time_us = (htotal * 1000) / clock;
  1419. /* Use ns/us then divide to preserve precision */
  1420. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1421. pixel_size * hdisplay;
  1422. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1423. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1424. srwm = wm_info->fifo_size - entries;
  1425. if (srwm < 0)
  1426. srwm = 1;
  1427. if (IS_I945G(dev) || IS_I945GM(dev))
  1428. I915_WRITE(FW_BLC_SELF,
  1429. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1430. else if (IS_I915GM(dev))
  1431. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1432. }
  1433. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1434. planea_wm, planeb_wm, cwm, srwm);
  1435. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1436. fwater_hi = (cwm & 0x1f);
  1437. /* Set request length to 8 cachelines per fetch */
  1438. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1439. fwater_hi = fwater_hi | (1 << 8);
  1440. I915_WRITE(FW_BLC, fwater_lo);
  1441. I915_WRITE(FW_BLC2, fwater_hi);
  1442. if (HAS_FW_BLC(dev)) {
  1443. if (enabled) {
  1444. if (IS_I945G(dev) || IS_I945GM(dev))
  1445. I915_WRITE(FW_BLC_SELF,
  1446. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1447. else if (IS_I915GM(dev))
  1448. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  1449. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1450. } else
  1451. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1452. }
  1453. }
  1454. static void i830_update_wm(struct drm_crtc *unused_crtc)
  1455. {
  1456. struct drm_device *dev = unused_crtc->dev;
  1457. struct drm_i915_private *dev_priv = dev->dev_private;
  1458. struct drm_crtc *crtc;
  1459. uint32_t fwater_lo;
  1460. int planea_wm;
  1461. crtc = single_enabled_crtc(dev);
  1462. if (crtc == NULL)
  1463. return;
  1464. planea_wm = intel_calculate_wm(to_intel_crtc(crtc)->config.adjusted_mode.clock,
  1465. &i830_wm_info,
  1466. dev_priv->display.get_fifo_size(dev, 0),
  1467. 4, latency_ns);
  1468. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1469. fwater_lo |= (3<<8) | planea_wm;
  1470. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1471. I915_WRITE(FW_BLC, fwater_lo);
  1472. }
  1473. /*
  1474. * Check the wm result.
  1475. *
  1476. * If any calculated watermark values is larger than the maximum value that
  1477. * can be programmed into the associated watermark register, that watermark
  1478. * must be disabled.
  1479. */
  1480. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  1481. int fbc_wm, int display_wm, int cursor_wm,
  1482. const struct intel_watermark_params *display,
  1483. const struct intel_watermark_params *cursor)
  1484. {
  1485. struct drm_i915_private *dev_priv = dev->dev_private;
  1486. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  1487. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  1488. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  1489. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  1490. fbc_wm, SNB_FBC_MAX_SRWM, level);
  1491. /* fbc has it's own way to disable FBC WM */
  1492. I915_WRITE(DISP_ARB_CTL,
  1493. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  1494. return false;
  1495. } else if (INTEL_INFO(dev)->gen >= 6) {
  1496. /* enable FBC WM (except on ILK, where it must remain off) */
  1497. I915_WRITE(DISP_ARB_CTL,
  1498. I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
  1499. }
  1500. if (display_wm > display->max_wm) {
  1501. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  1502. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  1503. return false;
  1504. }
  1505. if (cursor_wm > cursor->max_wm) {
  1506. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  1507. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  1508. return false;
  1509. }
  1510. if (!(fbc_wm || display_wm || cursor_wm)) {
  1511. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  1512. return false;
  1513. }
  1514. return true;
  1515. }
  1516. /*
  1517. * Compute watermark values of WM[1-3],
  1518. */
  1519. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  1520. int latency_ns,
  1521. const struct intel_watermark_params *display,
  1522. const struct intel_watermark_params *cursor,
  1523. int *fbc_wm, int *display_wm, int *cursor_wm)
  1524. {
  1525. struct drm_crtc *crtc;
  1526. const struct drm_display_mode *adjusted_mode;
  1527. unsigned long line_time_us;
  1528. int hdisplay, htotal, pixel_size, clock;
  1529. int line_count, line_size;
  1530. int small, large;
  1531. int entries;
  1532. if (!latency_ns) {
  1533. *fbc_wm = *display_wm = *cursor_wm = 0;
  1534. return false;
  1535. }
  1536. crtc = intel_get_crtc_for_plane(dev, plane);
  1537. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1538. clock = adjusted_mode->clock;
  1539. htotal = adjusted_mode->htotal;
  1540. hdisplay = to_intel_crtc(crtc)->config.requested_mode.hdisplay;
  1541. pixel_size = crtc->fb->bits_per_pixel / 8;
  1542. line_time_us = (htotal * 1000) / clock;
  1543. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1544. line_size = hdisplay * pixel_size;
  1545. /* Use the minimum of the small and large buffer method for primary */
  1546. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1547. large = line_count * line_size;
  1548. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1549. *display_wm = entries + display->guard_size;
  1550. /*
  1551. * Spec says:
  1552. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  1553. */
  1554. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  1555. /* calculate the self-refresh watermark for display cursor */
  1556. entries = line_count * pixel_size * 64;
  1557. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1558. *cursor_wm = entries + cursor->guard_size;
  1559. return ironlake_check_srwm(dev, level,
  1560. *fbc_wm, *display_wm, *cursor_wm,
  1561. display, cursor);
  1562. }
  1563. static void ironlake_update_wm(struct drm_crtc *crtc)
  1564. {
  1565. struct drm_device *dev = crtc->dev;
  1566. struct drm_i915_private *dev_priv = dev->dev_private;
  1567. int fbc_wm, plane_wm, cursor_wm;
  1568. unsigned int enabled;
  1569. enabled = 0;
  1570. if (g4x_compute_wm0(dev, PIPE_A,
  1571. &ironlake_display_wm_info,
  1572. dev_priv->wm.pri_latency[0] * 100,
  1573. &ironlake_cursor_wm_info,
  1574. dev_priv->wm.cur_latency[0] * 100,
  1575. &plane_wm, &cursor_wm)) {
  1576. I915_WRITE(WM0_PIPEA_ILK,
  1577. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1578. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1579. " plane %d, " "cursor: %d\n",
  1580. plane_wm, cursor_wm);
  1581. enabled |= 1 << PIPE_A;
  1582. }
  1583. if (g4x_compute_wm0(dev, PIPE_B,
  1584. &ironlake_display_wm_info,
  1585. dev_priv->wm.pri_latency[0] * 100,
  1586. &ironlake_cursor_wm_info,
  1587. dev_priv->wm.cur_latency[0] * 100,
  1588. &plane_wm, &cursor_wm)) {
  1589. I915_WRITE(WM0_PIPEB_ILK,
  1590. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1591. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1592. " plane %d, cursor: %d\n",
  1593. plane_wm, cursor_wm);
  1594. enabled |= 1 << PIPE_B;
  1595. }
  1596. /*
  1597. * Calculate and update the self-refresh watermark only when one
  1598. * display plane is used.
  1599. */
  1600. I915_WRITE(WM3_LP_ILK, 0);
  1601. I915_WRITE(WM2_LP_ILK, 0);
  1602. I915_WRITE(WM1_LP_ILK, 0);
  1603. if (!single_plane_enabled(enabled))
  1604. return;
  1605. enabled = ffs(enabled) - 1;
  1606. /* WM1 */
  1607. if (!ironlake_compute_srwm(dev, 1, enabled,
  1608. dev_priv->wm.pri_latency[1] * 500,
  1609. &ironlake_display_srwm_info,
  1610. &ironlake_cursor_srwm_info,
  1611. &fbc_wm, &plane_wm, &cursor_wm))
  1612. return;
  1613. I915_WRITE(WM1_LP_ILK,
  1614. WM1_LP_SR_EN |
  1615. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1616. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1617. (plane_wm << WM1_LP_SR_SHIFT) |
  1618. cursor_wm);
  1619. /* WM2 */
  1620. if (!ironlake_compute_srwm(dev, 2, enabled,
  1621. dev_priv->wm.pri_latency[2] * 500,
  1622. &ironlake_display_srwm_info,
  1623. &ironlake_cursor_srwm_info,
  1624. &fbc_wm, &plane_wm, &cursor_wm))
  1625. return;
  1626. I915_WRITE(WM2_LP_ILK,
  1627. WM2_LP_EN |
  1628. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1629. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1630. (plane_wm << WM1_LP_SR_SHIFT) |
  1631. cursor_wm);
  1632. /*
  1633. * WM3 is unsupported on ILK, probably because we don't have latency
  1634. * data for that power state
  1635. */
  1636. }
  1637. static void sandybridge_update_wm(struct drm_crtc *crtc)
  1638. {
  1639. struct drm_device *dev = crtc->dev;
  1640. struct drm_i915_private *dev_priv = dev->dev_private;
  1641. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1642. u32 val;
  1643. int fbc_wm, plane_wm, cursor_wm;
  1644. unsigned int enabled;
  1645. enabled = 0;
  1646. if (g4x_compute_wm0(dev, PIPE_A,
  1647. &sandybridge_display_wm_info, latency,
  1648. &sandybridge_cursor_wm_info, latency,
  1649. &plane_wm, &cursor_wm)) {
  1650. val = I915_READ(WM0_PIPEA_ILK);
  1651. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1652. I915_WRITE(WM0_PIPEA_ILK, val |
  1653. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1654. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1655. " plane %d, " "cursor: %d\n",
  1656. plane_wm, cursor_wm);
  1657. enabled |= 1 << PIPE_A;
  1658. }
  1659. if (g4x_compute_wm0(dev, PIPE_B,
  1660. &sandybridge_display_wm_info, latency,
  1661. &sandybridge_cursor_wm_info, latency,
  1662. &plane_wm, &cursor_wm)) {
  1663. val = I915_READ(WM0_PIPEB_ILK);
  1664. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1665. I915_WRITE(WM0_PIPEB_ILK, val |
  1666. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1667. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1668. " plane %d, cursor: %d\n",
  1669. plane_wm, cursor_wm);
  1670. enabled |= 1 << PIPE_B;
  1671. }
  1672. /*
  1673. * Calculate and update the self-refresh watermark only when one
  1674. * display plane is used.
  1675. *
  1676. * SNB support 3 levels of watermark.
  1677. *
  1678. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1679. * and disabled in the descending order
  1680. *
  1681. */
  1682. I915_WRITE(WM3_LP_ILK, 0);
  1683. I915_WRITE(WM2_LP_ILK, 0);
  1684. I915_WRITE(WM1_LP_ILK, 0);
  1685. if (!single_plane_enabled(enabled) ||
  1686. dev_priv->sprite_scaling_enabled)
  1687. return;
  1688. enabled = ffs(enabled) - 1;
  1689. /* WM1 */
  1690. if (!ironlake_compute_srwm(dev, 1, enabled,
  1691. dev_priv->wm.pri_latency[1] * 500,
  1692. &sandybridge_display_srwm_info,
  1693. &sandybridge_cursor_srwm_info,
  1694. &fbc_wm, &plane_wm, &cursor_wm))
  1695. return;
  1696. I915_WRITE(WM1_LP_ILK,
  1697. WM1_LP_SR_EN |
  1698. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1699. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1700. (plane_wm << WM1_LP_SR_SHIFT) |
  1701. cursor_wm);
  1702. /* WM2 */
  1703. if (!ironlake_compute_srwm(dev, 2, enabled,
  1704. dev_priv->wm.pri_latency[2] * 500,
  1705. &sandybridge_display_srwm_info,
  1706. &sandybridge_cursor_srwm_info,
  1707. &fbc_wm, &plane_wm, &cursor_wm))
  1708. return;
  1709. I915_WRITE(WM2_LP_ILK,
  1710. WM2_LP_EN |
  1711. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1712. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1713. (plane_wm << WM1_LP_SR_SHIFT) |
  1714. cursor_wm);
  1715. /* WM3 */
  1716. if (!ironlake_compute_srwm(dev, 3, enabled,
  1717. dev_priv->wm.pri_latency[3] * 500,
  1718. &sandybridge_display_srwm_info,
  1719. &sandybridge_cursor_srwm_info,
  1720. &fbc_wm, &plane_wm, &cursor_wm))
  1721. return;
  1722. I915_WRITE(WM3_LP_ILK,
  1723. WM3_LP_EN |
  1724. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1725. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1726. (plane_wm << WM1_LP_SR_SHIFT) |
  1727. cursor_wm);
  1728. }
  1729. static void ivybridge_update_wm(struct drm_crtc *crtc)
  1730. {
  1731. struct drm_device *dev = crtc->dev;
  1732. struct drm_i915_private *dev_priv = dev->dev_private;
  1733. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1734. u32 val;
  1735. int fbc_wm, plane_wm, cursor_wm;
  1736. int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
  1737. unsigned int enabled;
  1738. enabled = 0;
  1739. if (g4x_compute_wm0(dev, PIPE_A,
  1740. &sandybridge_display_wm_info, latency,
  1741. &sandybridge_cursor_wm_info, latency,
  1742. &plane_wm, &cursor_wm)) {
  1743. val = I915_READ(WM0_PIPEA_ILK);
  1744. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1745. I915_WRITE(WM0_PIPEA_ILK, val |
  1746. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1747. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1748. " plane %d, " "cursor: %d\n",
  1749. plane_wm, cursor_wm);
  1750. enabled |= 1 << PIPE_A;
  1751. }
  1752. if (g4x_compute_wm0(dev, PIPE_B,
  1753. &sandybridge_display_wm_info, latency,
  1754. &sandybridge_cursor_wm_info, latency,
  1755. &plane_wm, &cursor_wm)) {
  1756. val = I915_READ(WM0_PIPEB_ILK);
  1757. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1758. I915_WRITE(WM0_PIPEB_ILK, val |
  1759. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1760. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1761. " plane %d, cursor: %d\n",
  1762. plane_wm, cursor_wm);
  1763. enabled |= 1 << PIPE_B;
  1764. }
  1765. if (g4x_compute_wm0(dev, PIPE_C,
  1766. &sandybridge_display_wm_info, latency,
  1767. &sandybridge_cursor_wm_info, latency,
  1768. &plane_wm, &cursor_wm)) {
  1769. val = I915_READ(WM0_PIPEC_IVB);
  1770. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1771. I915_WRITE(WM0_PIPEC_IVB, val |
  1772. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1773. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  1774. " plane %d, cursor: %d\n",
  1775. plane_wm, cursor_wm);
  1776. enabled |= 1 << PIPE_C;
  1777. }
  1778. /*
  1779. * Calculate and update the self-refresh watermark only when one
  1780. * display plane is used.
  1781. *
  1782. * SNB support 3 levels of watermark.
  1783. *
  1784. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1785. * and disabled in the descending order
  1786. *
  1787. */
  1788. I915_WRITE(WM3_LP_ILK, 0);
  1789. I915_WRITE(WM2_LP_ILK, 0);
  1790. I915_WRITE(WM1_LP_ILK, 0);
  1791. if (!single_plane_enabled(enabled) ||
  1792. dev_priv->sprite_scaling_enabled)
  1793. return;
  1794. enabled = ffs(enabled) - 1;
  1795. /* WM1 */
  1796. if (!ironlake_compute_srwm(dev, 1, enabled,
  1797. dev_priv->wm.pri_latency[1] * 500,
  1798. &sandybridge_display_srwm_info,
  1799. &sandybridge_cursor_srwm_info,
  1800. &fbc_wm, &plane_wm, &cursor_wm))
  1801. return;
  1802. I915_WRITE(WM1_LP_ILK,
  1803. WM1_LP_SR_EN |
  1804. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1805. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1806. (plane_wm << WM1_LP_SR_SHIFT) |
  1807. cursor_wm);
  1808. /* WM2 */
  1809. if (!ironlake_compute_srwm(dev, 2, enabled,
  1810. dev_priv->wm.pri_latency[2] * 500,
  1811. &sandybridge_display_srwm_info,
  1812. &sandybridge_cursor_srwm_info,
  1813. &fbc_wm, &plane_wm, &cursor_wm))
  1814. return;
  1815. I915_WRITE(WM2_LP_ILK,
  1816. WM2_LP_EN |
  1817. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1818. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1819. (plane_wm << WM1_LP_SR_SHIFT) |
  1820. cursor_wm);
  1821. /* WM3, note we have to correct the cursor latency */
  1822. if (!ironlake_compute_srwm(dev, 3, enabled,
  1823. dev_priv->wm.pri_latency[3] * 500,
  1824. &sandybridge_display_srwm_info,
  1825. &sandybridge_cursor_srwm_info,
  1826. &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
  1827. !ironlake_compute_srwm(dev, 3, enabled,
  1828. dev_priv->wm.cur_latency[3] * 500,
  1829. &sandybridge_display_srwm_info,
  1830. &sandybridge_cursor_srwm_info,
  1831. &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
  1832. return;
  1833. I915_WRITE(WM3_LP_ILK,
  1834. WM3_LP_EN |
  1835. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1836. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1837. (plane_wm << WM1_LP_SR_SHIFT) |
  1838. cursor_wm);
  1839. }
  1840. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1841. struct drm_crtc *crtc)
  1842. {
  1843. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1844. uint32_t pixel_rate, pfit_size;
  1845. pixel_rate = intel_crtc->config.adjusted_mode.clock;
  1846. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1847. * adjust the pixel_rate here. */
  1848. pfit_size = intel_crtc->config.pch_pfit.size;
  1849. if (pfit_size) {
  1850. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1851. pipe_w = intel_crtc->config.requested_mode.hdisplay;
  1852. pipe_h = intel_crtc->config.requested_mode.vdisplay;
  1853. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1854. pfit_h = pfit_size & 0xFFFF;
  1855. if (pipe_w < pfit_w)
  1856. pipe_w = pfit_w;
  1857. if (pipe_h < pfit_h)
  1858. pipe_h = pfit_h;
  1859. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1860. pfit_w * pfit_h);
  1861. }
  1862. return pixel_rate;
  1863. }
  1864. /* latency must be in 0.1us units. */
  1865. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1866. uint32_t latency)
  1867. {
  1868. uint64_t ret;
  1869. if (WARN(latency == 0, "Latency value missing\n"))
  1870. return UINT_MAX;
  1871. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1872. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1873. return ret;
  1874. }
  1875. /* latency must be in 0.1us units. */
  1876. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1877. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1878. uint32_t latency)
  1879. {
  1880. uint32_t ret;
  1881. if (WARN(latency == 0, "Latency value missing\n"))
  1882. return UINT_MAX;
  1883. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1884. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1885. ret = DIV_ROUND_UP(ret, 64) + 2;
  1886. return ret;
  1887. }
  1888. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1889. uint8_t bytes_per_pixel)
  1890. {
  1891. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1892. }
  1893. struct hsw_pipe_wm_parameters {
  1894. bool active;
  1895. uint32_t pipe_htotal;
  1896. uint32_t pixel_rate;
  1897. struct intel_plane_wm_parameters pri;
  1898. struct intel_plane_wm_parameters spr;
  1899. struct intel_plane_wm_parameters cur;
  1900. };
  1901. struct hsw_wm_maximums {
  1902. uint16_t pri;
  1903. uint16_t spr;
  1904. uint16_t cur;
  1905. uint16_t fbc;
  1906. };
  1907. struct hsw_wm_values {
  1908. uint32_t wm_pipe[3];
  1909. uint32_t wm_lp[3];
  1910. uint32_t wm_lp_spr[3];
  1911. uint32_t wm_linetime[3];
  1912. bool enable_fbc_wm;
  1913. };
  1914. /* used in computing the new watermarks state */
  1915. struct intel_wm_config {
  1916. unsigned int num_pipes_active;
  1917. bool sprites_enabled;
  1918. bool sprites_scaled;
  1919. bool fbc_wm_enabled;
  1920. };
  1921. /*
  1922. * For both WM_PIPE and WM_LP.
  1923. * mem_value must be in 0.1us units.
  1924. */
  1925. static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
  1926. uint32_t mem_value,
  1927. bool is_lp)
  1928. {
  1929. uint32_t method1, method2;
  1930. if (!params->active || !params->pri.enabled)
  1931. return 0;
  1932. method1 = ilk_wm_method1(params->pixel_rate,
  1933. params->pri.bytes_per_pixel,
  1934. mem_value);
  1935. if (!is_lp)
  1936. return method1;
  1937. method2 = ilk_wm_method2(params->pixel_rate,
  1938. params->pipe_htotal,
  1939. params->pri.horiz_pixels,
  1940. params->pri.bytes_per_pixel,
  1941. mem_value);
  1942. return min(method1, method2);
  1943. }
  1944. /*
  1945. * For both WM_PIPE and WM_LP.
  1946. * mem_value must be in 0.1us units.
  1947. */
  1948. static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
  1949. uint32_t mem_value)
  1950. {
  1951. uint32_t method1, method2;
  1952. if (!params->active || !params->spr.enabled)
  1953. return 0;
  1954. method1 = ilk_wm_method1(params->pixel_rate,
  1955. params->spr.bytes_per_pixel,
  1956. mem_value);
  1957. method2 = ilk_wm_method2(params->pixel_rate,
  1958. params->pipe_htotal,
  1959. params->spr.horiz_pixels,
  1960. params->spr.bytes_per_pixel,
  1961. mem_value);
  1962. return min(method1, method2);
  1963. }
  1964. /*
  1965. * For both WM_PIPE and WM_LP.
  1966. * mem_value must be in 0.1us units.
  1967. */
  1968. static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
  1969. uint32_t mem_value)
  1970. {
  1971. if (!params->active || !params->cur.enabled)
  1972. return 0;
  1973. return ilk_wm_method2(params->pixel_rate,
  1974. params->pipe_htotal,
  1975. params->cur.horiz_pixels,
  1976. params->cur.bytes_per_pixel,
  1977. mem_value);
  1978. }
  1979. /* Only for WM_LP. */
  1980. static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
  1981. uint32_t pri_val)
  1982. {
  1983. if (!params->active || !params->pri.enabled)
  1984. return 0;
  1985. return ilk_wm_fbc(pri_val,
  1986. params->pri.horiz_pixels,
  1987. params->pri.bytes_per_pixel);
  1988. }
  1989. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1990. {
  1991. if (INTEL_INFO(dev)->gen >= 7)
  1992. return 768;
  1993. else
  1994. return 512;
  1995. }
  1996. /* Calculate the maximum primary/sprite plane watermark */
  1997. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1998. int level,
  1999. const struct intel_wm_config *config,
  2000. enum intel_ddb_partitioning ddb_partitioning,
  2001. bool is_sprite)
  2002. {
  2003. unsigned int fifo_size = ilk_display_fifo_size(dev);
  2004. unsigned int max;
  2005. /* if sprites aren't enabled, sprites get nothing */
  2006. if (is_sprite && !config->sprites_enabled)
  2007. return 0;
  2008. /* HSW allows LP1+ watermarks even with multiple pipes */
  2009. if (level == 0 || config->num_pipes_active > 1) {
  2010. fifo_size /= INTEL_INFO(dev)->num_pipes;
  2011. /*
  2012. * For some reason the non self refresh
  2013. * FIFO size is only half of the self
  2014. * refresh FIFO size on ILK/SNB.
  2015. */
  2016. if (INTEL_INFO(dev)->gen <= 6)
  2017. fifo_size /= 2;
  2018. }
  2019. if (config->sprites_enabled) {
  2020. /* level 0 is always calculated with 1:1 split */
  2021. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  2022. if (is_sprite)
  2023. fifo_size *= 5;
  2024. fifo_size /= 6;
  2025. } else {
  2026. fifo_size /= 2;
  2027. }
  2028. }
  2029. /* clamp to max that the registers can hold */
  2030. if (INTEL_INFO(dev)->gen >= 7)
  2031. /* IVB/HSW primary/sprite plane watermarks */
  2032. max = level == 0 ? 127 : 1023;
  2033. else if (!is_sprite)
  2034. /* ILK/SNB primary plane watermarks */
  2035. max = level == 0 ? 127 : 511;
  2036. else
  2037. /* ILK/SNB sprite plane watermarks */
  2038. max = level == 0 ? 63 : 255;
  2039. return min(fifo_size, max);
  2040. }
  2041. /* Calculate the maximum cursor plane watermark */
  2042. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  2043. int level,
  2044. const struct intel_wm_config *config)
  2045. {
  2046. /* HSW LP1+ watermarks w/ multiple pipes */
  2047. if (level > 0 && config->num_pipes_active > 1)
  2048. return 64;
  2049. /* otherwise just report max that registers can hold */
  2050. if (INTEL_INFO(dev)->gen >= 7)
  2051. return level == 0 ? 63 : 255;
  2052. else
  2053. return level == 0 ? 31 : 63;
  2054. }
  2055. /* Calculate the maximum FBC watermark */
  2056. static unsigned int ilk_fbc_wm_max(void)
  2057. {
  2058. /* max that registers can hold */
  2059. return 15;
  2060. }
  2061. static void ilk_wm_max(struct drm_device *dev,
  2062. int level,
  2063. const struct intel_wm_config *config,
  2064. enum intel_ddb_partitioning ddb_partitioning,
  2065. struct hsw_wm_maximums *max)
  2066. {
  2067. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  2068. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  2069. max->cur = ilk_cursor_wm_max(dev, level, config);
  2070. max->fbc = ilk_fbc_wm_max();
  2071. }
  2072. static bool ilk_check_wm(int level,
  2073. const struct hsw_wm_maximums *max,
  2074. struct intel_wm_level *result)
  2075. {
  2076. bool ret;
  2077. /* already determined to be invalid? */
  2078. if (!result->enable)
  2079. return false;
  2080. result->enable = result->pri_val <= max->pri &&
  2081. result->spr_val <= max->spr &&
  2082. result->cur_val <= max->cur;
  2083. ret = result->enable;
  2084. /*
  2085. * HACK until we can pre-compute everything,
  2086. * and thus fail gracefully if LP0 watermarks
  2087. * are exceeded...
  2088. */
  2089. if (level == 0 && !result->enable) {
  2090. if (result->pri_val > max->pri)
  2091. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  2092. level, result->pri_val, max->pri);
  2093. if (result->spr_val > max->spr)
  2094. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  2095. level, result->spr_val, max->spr);
  2096. if (result->cur_val > max->cur)
  2097. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  2098. level, result->cur_val, max->cur);
  2099. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  2100. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  2101. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  2102. result->enable = true;
  2103. }
  2104. DRM_DEBUG_KMS("WM%d: %sabled\n", level, result->enable ? "en" : "dis");
  2105. return ret;
  2106. }
  2107. static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
  2108. int level,
  2109. const struct hsw_pipe_wm_parameters *p,
  2110. struct intel_wm_level *result)
  2111. {
  2112. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  2113. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  2114. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  2115. /* WM1+ latency values stored in 0.5us units */
  2116. if (level > 0) {
  2117. pri_latency *= 5;
  2118. spr_latency *= 5;
  2119. cur_latency *= 5;
  2120. }
  2121. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  2122. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  2123. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  2124. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  2125. result->enable = true;
  2126. }
  2127. static bool hsw_compute_lp_wm(struct drm_i915_private *dev_priv,
  2128. int level, const struct hsw_wm_maximums *max,
  2129. const struct hsw_pipe_wm_parameters *params,
  2130. struct intel_wm_level *result)
  2131. {
  2132. enum pipe pipe;
  2133. struct intel_wm_level res[3];
  2134. for (pipe = PIPE_A; pipe <= PIPE_C; pipe++)
  2135. ilk_compute_wm_level(dev_priv, level, &params[pipe], &res[pipe]);
  2136. result->pri_val = max3(res[0].pri_val, res[1].pri_val, res[2].pri_val);
  2137. result->spr_val = max3(res[0].spr_val, res[1].spr_val, res[2].spr_val);
  2138. result->cur_val = max3(res[0].cur_val, res[1].cur_val, res[2].cur_val);
  2139. result->fbc_val = max3(res[0].fbc_val, res[1].fbc_val, res[2].fbc_val);
  2140. result->enable = true;
  2141. return ilk_check_wm(level, max, result);
  2142. }
  2143. static uint32_t hsw_compute_wm_pipe(struct drm_device *dev,
  2144. const struct hsw_pipe_wm_parameters *params)
  2145. {
  2146. struct drm_i915_private *dev_priv = dev->dev_private;
  2147. struct intel_wm_config config = {
  2148. .num_pipes_active = 1,
  2149. .sprites_enabled = params->spr.enabled,
  2150. .sprites_scaled = params->spr.scaled,
  2151. };
  2152. struct hsw_wm_maximums max;
  2153. struct intel_wm_level res;
  2154. if (!params->active)
  2155. return 0;
  2156. ilk_wm_max(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2157. ilk_compute_wm_level(dev_priv, 0, params, &res);
  2158. ilk_check_wm(0, &max, &res);
  2159. return (res.pri_val << WM0_PIPE_PLANE_SHIFT) |
  2160. (res.spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2161. res.cur_val;
  2162. }
  2163. static uint32_t
  2164. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  2165. {
  2166. struct drm_i915_private *dev_priv = dev->dev_private;
  2167. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2168. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  2169. u32 linetime, ips_linetime;
  2170. if (!intel_crtc_active(crtc))
  2171. return 0;
  2172. /* The WM are computed with base on how long it takes to fill a single
  2173. * row at the given clock rate, multiplied by 8.
  2174. * */
  2175. linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
  2176. ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
  2177. intel_ddi_get_cdclk_freq(dev_priv));
  2178. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  2179. PIPE_WM_LINETIME_TIME(linetime);
  2180. }
  2181. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2182. {
  2183. struct drm_i915_private *dev_priv = dev->dev_private;
  2184. if (IS_HASWELL(dev)) {
  2185. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  2186. wm[0] = (sskpd >> 56) & 0xFF;
  2187. if (wm[0] == 0)
  2188. wm[0] = sskpd & 0xF;
  2189. wm[1] = (sskpd >> 4) & 0xFF;
  2190. wm[2] = (sskpd >> 12) & 0xFF;
  2191. wm[3] = (sskpd >> 20) & 0x1FF;
  2192. wm[4] = (sskpd >> 32) & 0x1FF;
  2193. } else if (INTEL_INFO(dev)->gen >= 6) {
  2194. uint32_t sskpd = I915_READ(MCH_SSKPD);
  2195. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  2196. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  2197. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  2198. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  2199. } else if (INTEL_INFO(dev)->gen >= 5) {
  2200. uint32_t mltr = I915_READ(MLTR_ILK);
  2201. /* ILK primary LP0 latency is 700 ns */
  2202. wm[0] = 7;
  2203. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  2204. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  2205. }
  2206. }
  2207. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2208. {
  2209. /* ILK sprite LP0 latency is 1300 ns */
  2210. if (INTEL_INFO(dev)->gen == 5)
  2211. wm[0] = 13;
  2212. }
  2213. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2214. {
  2215. /* ILK cursor LP0 latency is 1300 ns */
  2216. if (INTEL_INFO(dev)->gen == 5)
  2217. wm[0] = 13;
  2218. /* WaDoubleCursorLP3Latency:ivb */
  2219. if (IS_IVYBRIDGE(dev))
  2220. wm[3] *= 2;
  2221. }
  2222. static int ilk_wm_max_level(const struct drm_device *dev)
  2223. {
  2224. /* how many WM levels are we expecting */
  2225. if (IS_HASWELL(dev))
  2226. return 4;
  2227. else if (INTEL_INFO(dev)->gen >= 6)
  2228. return 3;
  2229. else
  2230. return 2;
  2231. }
  2232. static void intel_print_wm_latency(struct drm_device *dev,
  2233. const char *name,
  2234. const uint16_t wm[5])
  2235. {
  2236. int level, max_level = ilk_wm_max_level(dev);
  2237. for (level = 0; level <= max_level; level++) {
  2238. unsigned int latency = wm[level];
  2239. if (latency == 0) {
  2240. DRM_ERROR("%s WM%d latency not provided\n",
  2241. name, level);
  2242. continue;
  2243. }
  2244. /* WM1+ latency values in 0.5us units */
  2245. if (level > 0)
  2246. latency *= 5;
  2247. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  2248. name, level, wm[level],
  2249. latency / 10, latency % 10);
  2250. }
  2251. }
  2252. static void intel_setup_wm_latency(struct drm_device *dev)
  2253. {
  2254. struct drm_i915_private *dev_priv = dev->dev_private;
  2255. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  2256. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2257. sizeof(dev_priv->wm.pri_latency));
  2258. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2259. sizeof(dev_priv->wm.pri_latency));
  2260. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  2261. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  2262. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2263. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2264. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2265. }
  2266. static void hsw_compute_wm_parameters(struct drm_device *dev,
  2267. struct hsw_pipe_wm_parameters *params,
  2268. struct hsw_wm_maximums *lp_max_1_2,
  2269. struct hsw_wm_maximums *lp_max_5_6)
  2270. {
  2271. struct drm_crtc *crtc;
  2272. struct drm_plane *plane;
  2273. enum pipe pipe;
  2274. struct intel_wm_config config = {};
  2275. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2276. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2277. struct hsw_pipe_wm_parameters *p;
  2278. pipe = intel_crtc->pipe;
  2279. p = &params[pipe];
  2280. p->active = intel_crtc_active(crtc);
  2281. if (!p->active)
  2282. continue;
  2283. config.num_pipes_active++;
  2284. p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
  2285. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  2286. p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
  2287. p->cur.bytes_per_pixel = 4;
  2288. p->pri.horiz_pixels =
  2289. intel_crtc->config.requested_mode.hdisplay;
  2290. p->cur.horiz_pixels = 64;
  2291. /* TODO: for now, assume primary and cursor planes are always enabled. */
  2292. p->pri.enabled = true;
  2293. p->cur.enabled = true;
  2294. }
  2295. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2296. struct intel_plane *intel_plane = to_intel_plane(plane);
  2297. struct hsw_pipe_wm_parameters *p;
  2298. pipe = intel_plane->pipe;
  2299. p = &params[pipe];
  2300. p->spr = intel_plane->wm;
  2301. config.sprites_enabled |= p->spr.enabled;
  2302. config.sprites_scaled |= p->spr.scaled;
  2303. }
  2304. ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_1_2, lp_max_1_2);
  2305. /* 5/6 split only in single pipe config on IVB+ */
  2306. if (INTEL_INFO(dev)->gen >= 7 && config.num_pipes_active <= 1)
  2307. ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_5_6, lp_max_5_6);
  2308. else
  2309. *lp_max_5_6 = *lp_max_1_2;
  2310. }
  2311. static void hsw_compute_wm_results(struct drm_device *dev,
  2312. const struct hsw_pipe_wm_parameters *params,
  2313. const struct hsw_wm_maximums *lp_maximums,
  2314. struct hsw_wm_values *results)
  2315. {
  2316. struct drm_i915_private *dev_priv = dev->dev_private;
  2317. struct drm_crtc *crtc;
  2318. struct intel_wm_level lp_results[4] = {};
  2319. enum pipe pipe;
  2320. int level, max_level, wm_lp;
  2321. for (level = 1; level <= 4; level++)
  2322. if (!hsw_compute_lp_wm(dev_priv, level,
  2323. lp_maximums, params,
  2324. &lp_results[level - 1]))
  2325. break;
  2326. max_level = level - 1;
  2327. memset(results, 0, sizeof(*results));
  2328. /* The spec says it is preferred to disable FBC WMs instead of disabling
  2329. * a WM level. */
  2330. results->enable_fbc_wm = true;
  2331. for (level = 1; level <= max_level; level++) {
  2332. if (lp_results[level - 1].fbc_val > lp_maximums->fbc) {
  2333. results->enable_fbc_wm = false;
  2334. lp_results[level - 1].fbc_val = 0;
  2335. }
  2336. }
  2337. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2338. const struct intel_wm_level *r;
  2339. level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
  2340. if (level > max_level)
  2341. break;
  2342. r = &lp_results[level - 1];
  2343. results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
  2344. r->fbc_val,
  2345. r->pri_val,
  2346. r->cur_val);
  2347. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2348. }
  2349. for_each_pipe(pipe)
  2350. results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev,
  2351. &params[pipe]);
  2352. for_each_pipe(pipe) {
  2353. crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  2354. results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
  2355. }
  2356. }
  2357. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2358. * case both are at the same level. Prefer r1 in case they're the same. */
  2359. static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
  2360. struct hsw_wm_values *r2)
  2361. {
  2362. int i, val_r1 = 0, val_r2 = 0;
  2363. for (i = 0; i < 3; i++) {
  2364. if (r1->wm_lp[i] & WM3_LP_EN)
  2365. val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
  2366. if (r2->wm_lp[i] & WM3_LP_EN)
  2367. val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
  2368. }
  2369. if (val_r1 == val_r2) {
  2370. if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
  2371. return r2;
  2372. else
  2373. return r1;
  2374. } else if (val_r1 > val_r2) {
  2375. return r1;
  2376. } else {
  2377. return r2;
  2378. }
  2379. }
  2380. /*
  2381. * The spec says we shouldn't write when we don't need, because every write
  2382. * causes WMs to be re-evaluated, expending some power.
  2383. */
  2384. static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
  2385. struct hsw_wm_values *results,
  2386. enum intel_ddb_partitioning partitioning)
  2387. {
  2388. struct hsw_wm_values previous;
  2389. uint32_t val;
  2390. enum intel_ddb_partitioning prev_partitioning;
  2391. bool prev_enable_fbc_wm;
  2392. previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
  2393. previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
  2394. previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
  2395. previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
  2396. previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
  2397. previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
  2398. previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2399. previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2400. previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2401. previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
  2402. previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
  2403. previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
  2404. prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2405. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2406. prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2407. if (memcmp(results->wm_pipe, previous.wm_pipe,
  2408. sizeof(results->wm_pipe)) == 0 &&
  2409. memcmp(results->wm_lp, previous.wm_lp,
  2410. sizeof(results->wm_lp)) == 0 &&
  2411. memcmp(results->wm_lp_spr, previous.wm_lp_spr,
  2412. sizeof(results->wm_lp_spr)) == 0 &&
  2413. memcmp(results->wm_linetime, previous.wm_linetime,
  2414. sizeof(results->wm_linetime)) == 0 &&
  2415. partitioning == prev_partitioning &&
  2416. results->enable_fbc_wm == prev_enable_fbc_wm)
  2417. return;
  2418. if (previous.wm_lp[2] != 0)
  2419. I915_WRITE(WM3_LP_ILK, 0);
  2420. if (previous.wm_lp[1] != 0)
  2421. I915_WRITE(WM2_LP_ILK, 0);
  2422. if (previous.wm_lp[0] != 0)
  2423. I915_WRITE(WM1_LP_ILK, 0);
  2424. if (previous.wm_pipe[0] != results->wm_pipe[0])
  2425. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2426. if (previous.wm_pipe[1] != results->wm_pipe[1])
  2427. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2428. if (previous.wm_pipe[2] != results->wm_pipe[2])
  2429. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2430. if (previous.wm_linetime[0] != results->wm_linetime[0])
  2431. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2432. if (previous.wm_linetime[1] != results->wm_linetime[1])
  2433. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2434. if (previous.wm_linetime[2] != results->wm_linetime[2])
  2435. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2436. if (prev_partitioning != partitioning) {
  2437. val = I915_READ(WM_MISC);
  2438. if (partitioning == INTEL_DDB_PART_1_2)
  2439. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2440. else
  2441. val |= WM_MISC_DATA_PARTITION_5_6;
  2442. I915_WRITE(WM_MISC, val);
  2443. }
  2444. if (prev_enable_fbc_wm != results->enable_fbc_wm) {
  2445. val = I915_READ(DISP_ARB_CTL);
  2446. if (results->enable_fbc_wm)
  2447. val &= ~DISP_FBC_WM_DIS;
  2448. else
  2449. val |= DISP_FBC_WM_DIS;
  2450. I915_WRITE(DISP_ARB_CTL, val);
  2451. }
  2452. if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
  2453. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2454. if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
  2455. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2456. if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
  2457. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2458. if (results->wm_lp[0] != 0)
  2459. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2460. if (results->wm_lp[1] != 0)
  2461. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2462. if (results->wm_lp[2] != 0)
  2463. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2464. }
  2465. static void haswell_update_wm(struct drm_crtc *crtc)
  2466. {
  2467. struct drm_device *dev = crtc->dev;
  2468. struct drm_i915_private *dev_priv = dev->dev_private;
  2469. struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
  2470. struct hsw_pipe_wm_parameters params[3];
  2471. struct hsw_wm_values results_1_2, results_5_6, *best_results;
  2472. enum intel_ddb_partitioning partitioning;
  2473. hsw_compute_wm_parameters(dev, params, &lp_max_1_2, &lp_max_5_6);
  2474. hsw_compute_wm_results(dev, params,
  2475. &lp_max_1_2, &results_1_2);
  2476. if (lp_max_1_2.pri != lp_max_5_6.pri) {
  2477. hsw_compute_wm_results(dev, params,
  2478. &lp_max_5_6, &results_5_6);
  2479. best_results = hsw_find_best_result(&results_1_2, &results_5_6);
  2480. } else {
  2481. best_results = &results_1_2;
  2482. }
  2483. partitioning = (best_results == &results_1_2) ?
  2484. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2485. hsw_write_wm_values(dev_priv, best_results, partitioning);
  2486. }
  2487. static void haswell_update_sprite_wm(struct drm_plane *plane,
  2488. struct drm_crtc *crtc,
  2489. uint32_t sprite_width, int pixel_size,
  2490. bool enabled, bool scaled)
  2491. {
  2492. struct intel_plane *intel_plane = to_intel_plane(plane);
  2493. intel_plane->wm.enabled = enabled;
  2494. intel_plane->wm.scaled = scaled;
  2495. intel_plane->wm.horiz_pixels = sprite_width;
  2496. intel_plane->wm.bytes_per_pixel = pixel_size;
  2497. haswell_update_wm(crtc);
  2498. }
  2499. static bool
  2500. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  2501. uint32_t sprite_width, int pixel_size,
  2502. const struct intel_watermark_params *display,
  2503. int display_latency_ns, int *sprite_wm)
  2504. {
  2505. struct drm_crtc *crtc;
  2506. int clock;
  2507. int entries, tlb_miss;
  2508. crtc = intel_get_crtc_for_plane(dev, plane);
  2509. if (!intel_crtc_active(crtc)) {
  2510. *sprite_wm = display->guard_size;
  2511. return false;
  2512. }
  2513. clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
  2514. /* Use the small buffer method to calculate the sprite watermark */
  2515. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  2516. tlb_miss = display->fifo_size*display->cacheline_size -
  2517. sprite_width * 8;
  2518. if (tlb_miss > 0)
  2519. entries += tlb_miss;
  2520. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  2521. *sprite_wm = entries + display->guard_size;
  2522. if (*sprite_wm > (int)display->max_wm)
  2523. *sprite_wm = display->max_wm;
  2524. return true;
  2525. }
  2526. static bool
  2527. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  2528. uint32_t sprite_width, int pixel_size,
  2529. const struct intel_watermark_params *display,
  2530. int latency_ns, int *sprite_wm)
  2531. {
  2532. struct drm_crtc *crtc;
  2533. unsigned long line_time_us;
  2534. int clock;
  2535. int line_count, line_size;
  2536. int small, large;
  2537. int entries;
  2538. if (!latency_ns) {
  2539. *sprite_wm = 0;
  2540. return false;
  2541. }
  2542. crtc = intel_get_crtc_for_plane(dev, plane);
  2543. clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
  2544. if (!clock) {
  2545. *sprite_wm = 0;
  2546. return false;
  2547. }
  2548. line_time_us = (sprite_width * 1000) / clock;
  2549. if (!line_time_us) {
  2550. *sprite_wm = 0;
  2551. return false;
  2552. }
  2553. line_count = (latency_ns / line_time_us + 1000) / 1000;
  2554. line_size = sprite_width * pixel_size;
  2555. /* Use the minimum of the small and large buffer method for primary */
  2556. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  2557. large = line_count * line_size;
  2558. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  2559. *sprite_wm = entries + display->guard_size;
  2560. return *sprite_wm > 0x3ff ? false : true;
  2561. }
  2562. static void sandybridge_update_sprite_wm(struct drm_plane *plane,
  2563. struct drm_crtc *crtc,
  2564. uint32_t sprite_width, int pixel_size,
  2565. bool enabled, bool scaled)
  2566. {
  2567. struct drm_device *dev = plane->dev;
  2568. struct drm_i915_private *dev_priv = dev->dev_private;
  2569. int pipe = to_intel_plane(plane)->pipe;
  2570. int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
  2571. u32 val;
  2572. int sprite_wm, reg;
  2573. int ret;
  2574. if (!enabled)
  2575. return;
  2576. switch (pipe) {
  2577. case 0:
  2578. reg = WM0_PIPEA_ILK;
  2579. break;
  2580. case 1:
  2581. reg = WM0_PIPEB_ILK;
  2582. break;
  2583. case 2:
  2584. reg = WM0_PIPEC_IVB;
  2585. break;
  2586. default:
  2587. return; /* bad pipe */
  2588. }
  2589. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  2590. &sandybridge_display_wm_info,
  2591. latency, &sprite_wm);
  2592. if (!ret) {
  2593. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
  2594. pipe_name(pipe));
  2595. return;
  2596. }
  2597. val = I915_READ(reg);
  2598. val &= ~WM0_PIPE_SPRITE_MASK;
  2599. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  2600. DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
  2601. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2602. pixel_size,
  2603. &sandybridge_display_srwm_info,
  2604. dev_priv->wm.spr_latency[1] * 500,
  2605. &sprite_wm);
  2606. if (!ret) {
  2607. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
  2608. pipe_name(pipe));
  2609. return;
  2610. }
  2611. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  2612. /* Only IVB has two more LP watermarks for sprite */
  2613. if (!IS_IVYBRIDGE(dev))
  2614. return;
  2615. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2616. pixel_size,
  2617. &sandybridge_display_srwm_info,
  2618. dev_priv->wm.spr_latency[2] * 500,
  2619. &sprite_wm);
  2620. if (!ret) {
  2621. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
  2622. pipe_name(pipe));
  2623. return;
  2624. }
  2625. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  2626. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2627. pixel_size,
  2628. &sandybridge_display_srwm_info,
  2629. dev_priv->wm.spr_latency[3] * 500,
  2630. &sprite_wm);
  2631. if (!ret) {
  2632. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
  2633. pipe_name(pipe));
  2634. return;
  2635. }
  2636. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  2637. }
  2638. /**
  2639. * intel_update_watermarks - update FIFO watermark values based on current modes
  2640. *
  2641. * Calculate watermark values for the various WM regs based on current mode
  2642. * and plane configuration.
  2643. *
  2644. * There are several cases to deal with here:
  2645. * - normal (i.e. non-self-refresh)
  2646. * - self-refresh (SR) mode
  2647. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2648. * - lines are small relative to FIFO size (buffer can hold more than 2
  2649. * lines), so need to account for TLB latency
  2650. *
  2651. * The normal calculation is:
  2652. * watermark = dotclock * bytes per pixel * latency
  2653. * where latency is platform & configuration dependent (we assume pessimal
  2654. * values here).
  2655. *
  2656. * The SR calculation is:
  2657. * watermark = (trunc(latency/line time)+1) * surface width *
  2658. * bytes per pixel
  2659. * where
  2660. * line time = htotal / dotclock
  2661. * surface width = hdisplay for normal plane and 64 for cursor
  2662. * and latency is assumed to be high, as above.
  2663. *
  2664. * The final value programmed to the register should always be rounded up,
  2665. * and include an extra 2 entries to account for clock crossings.
  2666. *
  2667. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2668. * to set the non-SR watermarks to 8.
  2669. */
  2670. void intel_update_watermarks(struct drm_crtc *crtc)
  2671. {
  2672. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2673. if (dev_priv->display.update_wm)
  2674. dev_priv->display.update_wm(crtc);
  2675. }
  2676. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2677. struct drm_crtc *crtc,
  2678. uint32_t sprite_width, int pixel_size,
  2679. bool enabled, bool scaled)
  2680. {
  2681. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2682. if (dev_priv->display.update_sprite_wm)
  2683. dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
  2684. pixel_size, enabled, scaled);
  2685. }
  2686. static struct drm_i915_gem_object *
  2687. intel_alloc_context_page(struct drm_device *dev)
  2688. {
  2689. struct drm_i915_gem_object *ctx;
  2690. int ret;
  2691. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2692. ctx = i915_gem_alloc_object(dev, 4096);
  2693. if (!ctx) {
  2694. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2695. return NULL;
  2696. }
  2697. ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
  2698. if (ret) {
  2699. DRM_ERROR("failed to pin power context: %d\n", ret);
  2700. goto err_unref;
  2701. }
  2702. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2703. if (ret) {
  2704. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2705. goto err_unpin;
  2706. }
  2707. return ctx;
  2708. err_unpin:
  2709. i915_gem_object_unpin(ctx);
  2710. err_unref:
  2711. drm_gem_object_unreference(&ctx->base);
  2712. return NULL;
  2713. }
  2714. /**
  2715. * Lock protecting IPS related data structures
  2716. */
  2717. DEFINE_SPINLOCK(mchdev_lock);
  2718. /* Global for IPS driver to get at the current i915 device. Protected by
  2719. * mchdev_lock. */
  2720. static struct drm_i915_private *i915_mch_dev;
  2721. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2722. {
  2723. struct drm_i915_private *dev_priv = dev->dev_private;
  2724. u16 rgvswctl;
  2725. assert_spin_locked(&mchdev_lock);
  2726. rgvswctl = I915_READ16(MEMSWCTL);
  2727. if (rgvswctl & MEMCTL_CMD_STS) {
  2728. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2729. return false; /* still busy with another command */
  2730. }
  2731. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2732. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2733. I915_WRITE16(MEMSWCTL, rgvswctl);
  2734. POSTING_READ16(MEMSWCTL);
  2735. rgvswctl |= MEMCTL_CMD_STS;
  2736. I915_WRITE16(MEMSWCTL, rgvswctl);
  2737. return true;
  2738. }
  2739. static void ironlake_enable_drps(struct drm_device *dev)
  2740. {
  2741. struct drm_i915_private *dev_priv = dev->dev_private;
  2742. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2743. u8 fmax, fmin, fstart, vstart;
  2744. spin_lock_irq(&mchdev_lock);
  2745. /* Enable temp reporting */
  2746. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2747. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2748. /* 100ms RC evaluation intervals */
  2749. I915_WRITE(RCUPEI, 100000);
  2750. I915_WRITE(RCDNEI, 100000);
  2751. /* Set max/min thresholds to 90ms and 80ms respectively */
  2752. I915_WRITE(RCBMAXAVG, 90000);
  2753. I915_WRITE(RCBMINAVG, 80000);
  2754. I915_WRITE(MEMIHYST, 1);
  2755. /* Set up min, max, and cur for interrupt handling */
  2756. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2757. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2758. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2759. MEMMODE_FSTART_SHIFT;
  2760. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2761. PXVFREQ_PX_SHIFT;
  2762. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2763. dev_priv->ips.fstart = fstart;
  2764. dev_priv->ips.max_delay = fstart;
  2765. dev_priv->ips.min_delay = fmin;
  2766. dev_priv->ips.cur_delay = fstart;
  2767. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2768. fmax, fmin, fstart);
  2769. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2770. /*
  2771. * Interrupts will be enabled in ironlake_irq_postinstall
  2772. */
  2773. I915_WRITE(VIDSTART, vstart);
  2774. POSTING_READ(VIDSTART);
  2775. rgvmodectl |= MEMMODE_SWMODE_EN;
  2776. I915_WRITE(MEMMODECTL, rgvmodectl);
  2777. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2778. DRM_ERROR("stuck trying to change perf mode\n");
  2779. mdelay(1);
  2780. ironlake_set_drps(dev, fstart);
  2781. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2782. I915_READ(0x112e0);
  2783. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2784. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2785. getrawmonotonic(&dev_priv->ips.last_time2);
  2786. spin_unlock_irq(&mchdev_lock);
  2787. }
  2788. static void ironlake_disable_drps(struct drm_device *dev)
  2789. {
  2790. struct drm_i915_private *dev_priv = dev->dev_private;
  2791. u16 rgvswctl;
  2792. spin_lock_irq(&mchdev_lock);
  2793. rgvswctl = I915_READ16(MEMSWCTL);
  2794. /* Ack interrupts, disable EFC interrupt */
  2795. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2796. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2797. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2798. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2799. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2800. /* Go back to the starting frequency */
  2801. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2802. mdelay(1);
  2803. rgvswctl |= MEMCTL_CMD_STS;
  2804. I915_WRITE(MEMSWCTL, rgvswctl);
  2805. mdelay(1);
  2806. spin_unlock_irq(&mchdev_lock);
  2807. }
  2808. /* There's a funny hw issue where the hw returns all 0 when reading from
  2809. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2810. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2811. * all limits and the gpu stuck at whatever frequency it is at atm).
  2812. */
  2813. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
  2814. {
  2815. u32 limits;
  2816. limits = 0;
  2817. if (*val >= dev_priv->rps.max_delay)
  2818. *val = dev_priv->rps.max_delay;
  2819. limits |= dev_priv->rps.max_delay << 24;
  2820. /* Only set the down limit when we've reached the lowest level to avoid
  2821. * getting more interrupts, otherwise leave this clear. This prevents a
  2822. * race in the hw when coming out of rc6: There's a tiny window where
  2823. * the hw runs at the minimal clock before selecting the desired
  2824. * frequency, if the down threshold expires in that window we will not
  2825. * receive a down interrupt. */
  2826. if (*val <= dev_priv->rps.min_delay) {
  2827. *val = dev_priv->rps.min_delay;
  2828. limits |= dev_priv->rps.min_delay << 16;
  2829. }
  2830. return limits;
  2831. }
  2832. void gen6_set_rps(struct drm_device *dev, u8 val)
  2833. {
  2834. struct drm_i915_private *dev_priv = dev->dev_private;
  2835. u32 limits = gen6_rps_limits(dev_priv, &val);
  2836. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2837. WARN_ON(val > dev_priv->rps.max_delay);
  2838. WARN_ON(val < dev_priv->rps.min_delay);
  2839. if (val == dev_priv->rps.cur_delay)
  2840. return;
  2841. if (IS_HASWELL(dev))
  2842. I915_WRITE(GEN6_RPNSWREQ,
  2843. HSW_FREQUENCY(val));
  2844. else
  2845. I915_WRITE(GEN6_RPNSWREQ,
  2846. GEN6_FREQUENCY(val) |
  2847. GEN6_OFFSET(0) |
  2848. GEN6_AGGRESSIVE_TURBO);
  2849. /* Make sure we continue to get interrupts
  2850. * until we hit the minimum or maximum frequencies.
  2851. */
  2852. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  2853. POSTING_READ(GEN6_RPNSWREQ);
  2854. dev_priv->rps.cur_delay = val;
  2855. trace_intel_gpu_freq_change(val * 50);
  2856. }
  2857. /*
  2858. * Wait until the previous freq change has completed,
  2859. * or the timeout elapsed, and then update our notion
  2860. * of the current GPU frequency.
  2861. */
  2862. static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
  2863. {
  2864. u32 pval;
  2865. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2866. if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
  2867. DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
  2868. pval >>= 8;
  2869. if (pval != dev_priv->rps.cur_delay)
  2870. DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
  2871. vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
  2872. dev_priv->rps.cur_delay,
  2873. vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
  2874. dev_priv->rps.cur_delay = pval;
  2875. }
  2876. void valleyview_set_rps(struct drm_device *dev, u8 val)
  2877. {
  2878. struct drm_i915_private *dev_priv = dev->dev_private;
  2879. gen6_rps_limits(dev_priv, &val);
  2880. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2881. WARN_ON(val > dev_priv->rps.max_delay);
  2882. WARN_ON(val < dev_priv->rps.min_delay);
  2883. vlv_update_rps_cur_delay(dev_priv);
  2884. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  2885. vlv_gpu_freq(dev_priv->mem_freq,
  2886. dev_priv->rps.cur_delay),
  2887. dev_priv->rps.cur_delay,
  2888. vlv_gpu_freq(dev_priv->mem_freq, val), val);
  2889. if (val == dev_priv->rps.cur_delay)
  2890. return;
  2891. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  2892. dev_priv->rps.cur_delay = val;
  2893. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
  2894. }
  2895. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  2896. {
  2897. struct drm_i915_private *dev_priv = dev->dev_private;
  2898. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2899. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
  2900. /* Complete PM interrupt masking here doesn't race with the rps work
  2901. * item again unmasking PM interrupts because that is using a different
  2902. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2903. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2904. spin_lock_irq(&dev_priv->irq_lock);
  2905. dev_priv->rps.pm_iir = 0;
  2906. spin_unlock_irq(&dev_priv->irq_lock);
  2907. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  2908. }
  2909. static void gen6_disable_rps(struct drm_device *dev)
  2910. {
  2911. struct drm_i915_private *dev_priv = dev->dev_private;
  2912. I915_WRITE(GEN6_RC_CONTROL, 0);
  2913. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  2914. gen6_disable_rps_interrupts(dev);
  2915. }
  2916. static void valleyview_disable_rps(struct drm_device *dev)
  2917. {
  2918. struct drm_i915_private *dev_priv = dev->dev_private;
  2919. I915_WRITE(GEN6_RC_CONTROL, 0);
  2920. gen6_disable_rps_interrupts(dev);
  2921. if (dev_priv->vlv_pctx) {
  2922. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  2923. dev_priv->vlv_pctx = NULL;
  2924. }
  2925. }
  2926. int intel_enable_rc6(const struct drm_device *dev)
  2927. {
  2928. /* No RC6 before Ironlake */
  2929. if (INTEL_INFO(dev)->gen < 5)
  2930. return 0;
  2931. /* Respect the kernel parameter if it is set */
  2932. if (i915_enable_rc6 >= 0)
  2933. return i915_enable_rc6;
  2934. /* Disable RC6 on Ironlake */
  2935. if (INTEL_INFO(dev)->gen == 5)
  2936. return 0;
  2937. if (IS_HASWELL(dev)) {
  2938. DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
  2939. return INTEL_RC6_ENABLE;
  2940. }
  2941. /* snb/ivb have more than one rc6 state. */
  2942. if (INTEL_INFO(dev)->gen == 6) {
  2943. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  2944. return INTEL_RC6_ENABLE;
  2945. }
  2946. DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
  2947. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  2948. }
  2949. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  2950. {
  2951. struct drm_i915_private *dev_priv = dev->dev_private;
  2952. u32 enabled_intrs;
  2953. spin_lock_irq(&dev_priv->irq_lock);
  2954. WARN_ON(dev_priv->rps.pm_iir);
  2955. snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
  2956. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  2957. spin_unlock_irq(&dev_priv->irq_lock);
  2958. /* only unmask PM interrupts we need. Mask all others. */
  2959. enabled_intrs = GEN6_PM_RPS_EVENTS;
  2960. /* IVB and SNB hard hangs on looping batchbuffer
  2961. * if GEN6_PM_UP_EI_EXPIRED is masked.
  2962. */
  2963. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  2964. enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
  2965. I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
  2966. }
  2967. static void gen6_enable_rps(struct drm_device *dev)
  2968. {
  2969. struct drm_i915_private *dev_priv = dev->dev_private;
  2970. struct intel_ring_buffer *ring;
  2971. u32 rp_state_cap;
  2972. u32 gt_perf_status;
  2973. u32 rc6vids, pcu_mbox, rc6_mask = 0;
  2974. u32 gtfifodbg;
  2975. int rc6_mode;
  2976. int i, ret;
  2977. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2978. /* Here begins a magic sequence of register writes to enable
  2979. * auto-downclocking.
  2980. *
  2981. * Perhaps there might be some value in exposing these to
  2982. * userspace...
  2983. */
  2984. I915_WRITE(GEN6_RC_STATE, 0);
  2985. /* Clear the DBG now so we don't confuse earlier errors */
  2986. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  2987. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  2988. I915_WRITE(GTFIFODBG, gtfifodbg);
  2989. }
  2990. gen6_gt_force_wake_get(dev_priv);
  2991. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  2992. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  2993. /* In units of 50MHz */
  2994. dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
  2995. dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
  2996. dev_priv->rps.cur_delay = 0;
  2997. /* disable the counters and set deterministic thresholds */
  2998. I915_WRITE(GEN6_RC_CONTROL, 0);
  2999. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3000. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3001. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3002. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3003. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3004. for_each_ring(ring, dev_priv, i)
  3005. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3006. I915_WRITE(GEN6_RC_SLEEP, 0);
  3007. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3008. if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
  3009. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3010. else
  3011. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3012. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3013. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3014. /* Check if we are enabling RC6 */
  3015. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3016. if (rc6_mode & INTEL_RC6_ENABLE)
  3017. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3018. /* We don't use those on Haswell */
  3019. if (!IS_HASWELL(dev)) {
  3020. if (rc6_mode & INTEL_RC6p_ENABLE)
  3021. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3022. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3023. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3024. }
  3025. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  3026. (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3027. (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3028. (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3029. I915_WRITE(GEN6_RC_CONTROL,
  3030. rc6_mask |
  3031. GEN6_RC_CTL_EI_MODE(1) |
  3032. GEN6_RC_CTL_HW_ENABLE);
  3033. if (IS_HASWELL(dev)) {
  3034. I915_WRITE(GEN6_RPNSWREQ,
  3035. HSW_FREQUENCY(10));
  3036. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3037. HSW_FREQUENCY(12));
  3038. } else {
  3039. I915_WRITE(GEN6_RPNSWREQ,
  3040. GEN6_FREQUENCY(10) |
  3041. GEN6_OFFSET(0) |
  3042. GEN6_AGGRESSIVE_TURBO);
  3043. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3044. GEN6_FREQUENCY(12));
  3045. }
  3046. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  3047. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  3048. dev_priv->rps.max_delay << 24 |
  3049. dev_priv->rps.min_delay << 16);
  3050. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3051. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3052. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3053. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3054. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3055. I915_WRITE(GEN6_RP_CONTROL,
  3056. GEN6_RP_MEDIA_TURBO |
  3057. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3058. GEN6_RP_MEDIA_IS_GFX |
  3059. GEN6_RP_ENABLE |
  3060. GEN6_RP_UP_BUSY_AVG |
  3061. (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
  3062. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3063. if (!ret) {
  3064. pcu_mbox = 0;
  3065. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3066. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3067. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3068. (dev_priv->rps.max_delay & 0xff) * 50,
  3069. (pcu_mbox & 0xff) * 50);
  3070. dev_priv->rps.hw_max = pcu_mbox & 0xff;
  3071. }
  3072. } else {
  3073. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3074. }
  3075. gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
  3076. gen6_enable_rps_interrupts(dev);
  3077. rc6vids = 0;
  3078. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3079. if (IS_GEN6(dev) && ret) {
  3080. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3081. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3082. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3083. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3084. rc6vids &= 0xffff00;
  3085. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3086. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3087. if (ret)
  3088. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3089. }
  3090. gen6_gt_force_wake_put(dev_priv);
  3091. }
  3092. void gen6_update_ring_freq(struct drm_device *dev)
  3093. {
  3094. struct drm_i915_private *dev_priv = dev->dev_private;
  3095. int min_freq = 15;
  3096. unsigned int gpu_freq;
  3097. unsigned int max_ia_freq, min_ring_freq;
  3098. int scaling_factor = 180;
  3099. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3100. max_ia_freq = cpufreq_quick_get_max(0);
  3101. /*
  3102. * Default to measured freq if none found, PCU will ensure we don't go
  3103. * over
  3104. */
  3105. if (!max_ia_freq)
  3106. max_ia_freq = tsc_khz;
  3107. /* Convert from kHz to MHz */
  3108. max_ia_freq /= 1000;
  3109. min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
  3110. /* convert DDR frequency from units of 133.3MHz to bandwidth */
  3111. min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
  3112. /*
  3113. * For each potential GPU frequency, load a ring frequency we'd like
  3114. * to use for memory access. We do this by specifying the IA frequency
  3115. * the PCU should use as a reference to determine the ring frequency.
  3116. */
  3117. for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
  3118. gpu_freq--) {
  3119. int diff = dev_priv->rps.max_delay - gpu_freq;
  3120. unsigned int ia_freq = 0, ring_freq = 0;
  3121. if (IS_HASWELL(dev)) {
  3122. ring_freq = (gpu_freq * 5 + 3) / 4;
  3123. ring_freq = max(min_ring_freq, ring_freq);
  3124. /* leave ia_freq as the default, chosen by cpufreq */
  3125. } else {
  3126. /* On older processors, there is no separate ring
  3127. * clock domain, so in order to boost the bandwidth
  3128. * of the ring, we need to upclock the CPU (ia_freq).
  3129. *
  3130. * For GPU frequencies less than 750MHz,
  3131. * just use the lowest ring freq.
  3132. */
  3133. if (gpu_freq < min_freq)
  3134. ia_freq = 800;
  3135. else
  3136. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3137. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3138. }
  3139. sandybridge_pcode_write(dev_priv,
  3140. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3141. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3142. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3143. gpu_freq);
  3144. }
  3145. }
  3146. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3147. {
  3148. u32 val, rp0;
  3149. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3150. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3151. /* Clamp to max */
  3152. rp0 = min_t(u32, rp0, 0xea);
  3153. return rp0;
  3154. }
  3155. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3156. {
  3157. u32 val, rpe;
  3158. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3159. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3160. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3161. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3162. return rpe;
  3163. }
  3164. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3165. {
  3166. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3167. }
  3168. static void vlv_rps_timer_work(struct work_struct *work)
  3169. {
  3170. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  3171. rps.vlv_work.work);
  3172. /*
  3173. * Timer fired, we must be idle. Drop to min voltage state.
  3174. * Note: we use RPe here since it should match the
  3175. * Vmin we were shooting for. That should give us better
  3176. * perf when we come back out of RC6 than if we used the
  3177. * min freq available.
  3178. */
  3179. mutex_lock(&dev_priv->rps.hw_lock);
  3180. if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
  3181. valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
  3182. mutex_unlock(&dev_priv->rps.hw_lock);
  3183. }
  3184. static void valleyview_setup_pctx(struct drm_device *dev)
  3185. {
  3186. struct drm_i915_private *dev_priv = dev->dev_private;
  3187. struct drm_i915_gem_object *pctx;
  3188. unsigned long pctx_paddr;
  3189. u32 pcbr;
  3190. int pctx_size = 24*1024;
  3191. pcbr = I915_READ(VLV_PCBR);
  3192. if (pcbr) {
  3193. /* BIOS set it up already, grab the pre-alloc'd space */
  3194. int pcbr_offset;
  3195. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3196. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3197. pcbr_offset,
  3198. I915_GTT_OFFSET_NONE,
  3199. pctx_size);
  3200. goto out;
  3201. }
  3202. /*
  3203. * From the Gunit register HAS:
  3204. * The Gfx driver is expected to program this register and ensure
  3205. * proper allocation within Gfx stolen memory. For example, this
  3206. * register should be programmed such than the PCBR range does not
  3207. * overlap with other ranges, such as the frame buffer, protected
  3208. * memory, or any other relevant ranges.
  3209. */
  3210. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3211. if (!pctx) {
  3212. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3213. return;
  3214. }
  3215. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3216. I915_WRITE(VLV_PCBR, pctx_paddr);
  3217. out:
  3218. dev_priv->vlv_pctx = pctx;
  3219. }
  3220. static void valleyview_enable_rps(struct drm_device *dev)
  3221. {
  3222. struct drm_i915_private *dev_priv = dev->dev_private;
  3223. struct intel_ring_buffer *ring;
  3224. u32 gtfifodbg, val;
  3225. int i;
  3226. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3227. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3228. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3229. I915_WRITE(GTFIFODBG, gtfifodbg);
  3230. }
  3231. valleyview_setup_pctx(dev);
  3232. gen6_gt_force_wake_get(dev_priv);
  3233. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3234. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3235. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3236. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3237. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3238. I915_WRITE(GEN6_RP_CONTROL,
  3239. GEN6_RP_MEDIA_TURBO |
  3240. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3241. GEN6_RP_MEDIA_IS_GFX |
  3242. GEN6_RP_ENABLE |
  3243. GEN6_RP_UP_BUSY_AVG |
  3244. GEN6_RP_DOWN_IDLE_CONT);
  3245. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3246. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3247. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3248. for_each_ring(ring, dev_priv, i)
  3249. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3250. I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
  3251. /* allows RC6 residency counter to work */
  3252. I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
  3253. I915_WRITE(GEN6_RC_CONTROL,
  3254. GEN7_RC_CTL_TO_MODE);
  3255. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3256. switch ((val >> 6) & 3) {
  3257. case 0:
  3258. case 1:
  3259. dev_priv->mem_freq = 800;
  3260. break;
  3261. case 2:
  3262. dev_priv->mem_freq = 1066;
  3263. break;
  3264. case 3:
  3265. dev_priv->mem_freq = 1333;
  3266. break;
  3267. }
  3268. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  3269. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3270. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3271. dev_priv->rps.cur_delay = (val >> 8) & 0xff;
  3272. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3273. vlv_gpu_freq(dev_priv->mem_freq,
  3274. dev_priv->rps.cur_delay),
  3275. dev_priv->rps.cur_delay);
  3276. dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
  3277. dev_priv->rps.hw_max = dev_priv->rps.max_delay;
  3278. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3279. vlv_gpu_freq(dev_priv->mem_freq,
  3280. dev_priv->rps.max_delay),
  3281. dev_priv->rps.max_delay);
  3282. dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
  3283. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3284. vlv_gpu_freq(dev_priv->mem_freq,
  3285. dev_priv->rps.rpe_delay),
  3286. dev_priv->rps.rpe_delay);
  3287. dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
  3288. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3289. vlv_gpu_freq(dev_priv->mem_freq,
  3290. dev_priv->rps.min_delay),
  3291. dev_priv->rps.min_delay);
  3292. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3293. vlv_gpu_freq(dev_priv->mem_freq,
  3294. dev_priv->rps.rpe_delay),
  3295. dev_priv->rps.rpe_delay);
  3296. INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
  3297. valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
  3298. gen6_enable_rps_interrupts(dev);
  3299. gen6_gt_force_wake_put(dev_priv);
  3300. }
  3301. void ironlake_teardown_rc6(struct drm_device *dev)
  3302. {
  3303. struct drm_i915_private *dev_priv = dev->dev_private;
  3304. if (dev_priv->ips.renderctx) {
  3305. i915_gem_object_unpin(dev_priv->ips.renderctx);
  3306. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3307. dev_priv->ips.renderctx = NULL;
  3308. }
  3309. if (dev_priv->ips.pwrctx) {
  3310. i915_gem_object_unpin(dev_priv->ips.pwrctx);
  3311. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3312. dev_priv->ips.pwrctx = NULL;
  3313. }
  3314. }
  3315. static void ironlake_disable_rc6(struct drm_device *dev)
  3316. {
  3317. struct drm_i915_private *dev_priv = dev->dev_private;
  3318. if (I915_READ(PWRCTXA)) {
  3319. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3320. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3321. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3322. 50);
  3323. I915_WRITE(PWRCTXA, 0);
  3324. POSTING_READ(PWRCTXA);
  3325. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3326. POSTING_READ(RSTDBYCTL);
  3327. }
  3328. }
  3329. static int ironlake_setup_rc6(struct drm_device *dev)
  3330. {
  3331. struct drm_i915_private *dev_priv = dev->dev_private;
  3332. if (dev_priv->ips.renderctx == NULL)
  3333. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3334. if (!dev_priv->ips.renderctx)
  3335. return -ENOMEM;
  3336. if (dev_priv->ips.pwrctx == NULL)
  3337. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3338. if (!dev_priv->ips.pwrctx) {
  3339. ironlake_teardown_rc6(dev);
  3340. return -ENOMEM;
  3341. }
  3342. return 0;
  3343. }
  3344. static void ironlake_enable_rc6(struct drm_device *dev)
  3345. {
  3346. struct drm_i915_private *dev_priv = dev->dev_private;
  3347. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  3348. bool was_interruptible;
  3349. int ret;
  3350. /* rc6 disabled by default due to repeated reports of hanging during
  3351. * boot and resume.
  3352. */
  3353. if (!intel_enable_rc6(dev))
  3354. return;
  3355. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3356. ret = ironlake_setup_rc6(dev);
  3357. if (ret)
  3358. return;
  3359. was_interruptible = dev_priv->mm.interruptible;
  3360. dev_priv->mm.interruptible = false;
  3361. /*
  3362. * GPU can automatically power down the render unit if given a page
  3363. * to save state.
  3364. */
  3365. ret = intel_ring_begin(ring, 6);
  3366. if (ret) {
  3367. ironlake_teardown_rc6(dev);
  3368. dev_priv->mm.interruptible = was_interruptible;
  3369. return;
  3370. }
  3371. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3372. intel_ring_emit(ring, MI_SET_CONTEXT);
  3373. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3374. MI_MM_SPACE_GTT |
  3375. MI_SAVE_EXT_STATE_EN |
  3376. MI_RESTORE_EXT_STATE_EN |
  3377. MI_RESTORE_INHIBIT);
  3378. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3379. intel_ring_emit(ring, MI_NOOP);
  3380. intel_ring_emit(ring, MI_FLUSH);
  3381. intel_ring_advance(ring);
  3382. /*
  3383. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3384. * does an implicit flush, combined with MI_FLUSH above, it should be
  3385. * safe to assume that renderctx is valid
  3386. */
  3387. ret = intel_ring_idle(ring);
  3388. dev_priv->mm.interruptible = was_interruptible;
  3389. if (ret) {
  3390. DRM_ERROR("failed to enable ironlake power savings\n");
  3391. ironlake_teardown_rc6(dev);
  3392. return;
  3393. }
  3394. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3395. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3396. }
  3397. static unsigned long intel_pxfreq(u32 vidfreq)
  3398. {
  3399. unsigned long freq;
  3400. int div = (vidfreq & 0x3f0000) >> 16;
  3401. int post = (vidfreq & 0x3000) >> 12;
  3402. int pre = (vidfreq & 0x7);
  3403. if (!pre)
  3404. return 0;
  3405. freq = ((div * 133333) / ((1<<post) * pre));
  3406. return freq;
  3407. }
  3408. static const struct cparams {
  3409. u16 i;
  3410. u16 t;
  3411. u16 m;
  3412. u16 c;
  3413. } cparams[] = {
  3414. { 1, 1333, 301, 28664 },
  3415. { 1, 1066, 294, 24460 },
  3416. { 1, 800, 294, 25192 },
  3417. { 0, 1333, 276, 27605 },
  3418. { 0, 1066, 276, 27605 },
  3419. { 0, 800, 231, 23784 },
  3420. };
  3421. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3422. {
  3423. u64 total_count, diff, ret;
  3424. u32 count1, count2, count3, m = 0, c = 0;
  3425. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3426. int i;
  3427. assert_spin_locked(&mchdev_lock);
  3428. diff1 = now - dev_priv->ips.last_time1;
  3429. /* Prevent division-by-zero if we are asking too fast.
  3430. * Also, we don't get interesting results if we are polling
  3431. * faster than once in 10ms, so just return the saved value
  3432. * in such cases.
  3433. */
  3434. if (diff1 <= 10)
  3435. return dev_priv->ips.chipset_power;
  3436. count1 = I915_READ(DMIEC);
  3437. count2 = I915_READ(DDREC);
  3438. count3 = I915_READ(CSIEC);
  3439. total_count = count1 + count2 + count3;
  3440. /* FIXME: handle per-counter overflow */
  3441. if (total_count < dev_priv->ips.last_count1) {
  3442. diff = ~0UL - dev_priv->ips.last_count1;
  3443. diff += total_count;
  3444. } else {
  3445. diff = total_count - dev_priv->ips.last_count1;
  3446. }
  3447. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3448. if (cparams[i].i == dev_priv->ips.c_m &&
  3449. cparams[i].t == dev_priv->ips.r_t) {
  3450. m = cparams[i].m;
  3451. c = cparams[i].c;
  3452. break;
  3453. }
  3454. }
  3455. diff = div_u64(diff, diff1);
  3456. ret = ((m * diff) + c);
  3457. ret = div_u64(ret, 10);
  3458. dev_priv->ips.last_count1 = total_count;
  3459. dev_priv->ips.last_time1 = now;
  3460. dev_priv->ips.chipset_power = ret;
  3461. return ret;
  3462. }
  3463. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3464. {
  3465. unsigned long val;
  3466. if (dev_priv->info->gen != 5)
  3467. return 0;
  3468. spin_lock_irq(&mchdev_lock);
  3469. val = __i915_chipset_val(dev_priv);
  3470. spin_unlock_irq(&mchdev_lock);
  3471. return val;
  3472. }
  3473. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3474. {
  3475. unsigned long m, x, b;
  3476. u32 tsfs;
  3477. tsfs = I915_READ(TSFS);
  3478. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3479. x = I915_READ8(TR1);
  3480. b = tsfs & TSFS_INTR_MASK;
  3481. return ((m * x) / 127) - b;
  3482. }
  3483. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3484. {
  3485. static const struct v_table {
  3486. u16 vd; /* in .1 mil */
  3487. u16 vm; /* in .1 mil */
  3488. } v_table[] = {
  3489. { 0, 0, },
  3490. { 375, 0, },
  3491. { 500, 0, },
  3492. { 625, 0, },
  3493. { 750, 0, },
  3494. { 875, 0, },
  3495. { 1000, 0, },
  3496. { 1125, 0, },
  3497. { 4125, 3000, },
  3498. { 4125, 3000, },
  3499. { 4125, 3000, },
  3500. { 4125, 3000, },
  3501. { 4125, 3000, },
  3502. { 4125, 3000, },
  3503. { 4125, 3000, },
  3504. { 4125, 3000, },
  3505. { 4125, 3000, },
  3506. { 4125, 3000, },
  3507. { 4125, 3000, },
  3508. { 4125, 3000, },
  3509. { 4125, 3000, },
  3510. { 4125, 3000, },
  3511. { 4125, 3000, },
  3512. { 4125, 3000, },
  3513. { 4125, 3000, },
  3514. { 4125, 3000, },
  3515. { 4125, 3000, },
  3516. { 4125, 3000, },
  3517. { 4125, 3000, },
  3518. { 4125, 3000, },
  3519. { 4125, 3000, },
  3520. { 4125, 3000, },
  3521. { 4250, 3125, },
  3522. { 4375, 3250, },
  3523. { 4500, 3375, },
  3524. { 4625, 3500, },
  3525. { 4750, 3625, },
  3526. { 4875, 3750, },
  3527. { 5000, 3875, },
  3528. { 5125, 4000, },
  3529. { 5250, 4125, },
  3530. { 5375, 4250, },
  3531. { 5500, 4375, },
  3532. { 5625, 4500, },
  3533. { 5750, 4625, },
  3534. { 5875, 4750, },
  3535. { 6000, 4875, },
  3536. { 6125, 5000, },
  3537. { 6250, 5125, },
  3538. { 6375, 5250, },
  3539. { 6500, 5375, },
  3540. { 6625, 5500, },
  3541. { 6750, 5625, },
  3542. { 6875, 5750, },
  3543. { 7000, 5875, },
  3544. { 7125, 6000, },
  3545. { 7250, 6125, },
  3546. { 7375, 6250, },
  3547. { 7500, 6375, },
  3548. { 7625, 6500, },
  3549. { 7750, 6625, },
  3550. { 7875, 6750, },
  3551. { 8000, 6875, },
  3552. { 8125, 7000, },
  3553. { 8250, 7125, },
  3554. { 8375, 7250, },
  3555. { 8500, 7375, },
  3556. { 8625, 7500, },
  3557. { 8750, 7625, },
  3558. { 8875, 7750, },
  3559. { 9000, 7875, },
  3560. { 9125, 8000, },
  3561. { 9250, 8125, },
  3562. { 9375, 8250, },
  3563. { 9500, 8375, },
  3564. { 9625, 8500, },
  3565. { 9750, 8625, },
  3566. { 9875, 8750, },
  3567. { 10000, 8875, },
  3568. { 10125, 9000, },
  3569. { 10250, 9125, },
  3570. { 10375, 9250, },
  3571. { 10500, 9375, },
  3572. { 10625, 9500, },
  3573. { 10750, 9625, },
  3574. { 10875, 9750, },
  3575. { 11000, 9875, },
  3576. { 11125, 10000, },
  3577. { 11250, 10125, },
  3578. { 11375, 10250, },
  3579. { 11500, 10375, },
  3580. { 11625, 10500, },
  3581. { 11750, 10625, },
  3582. { 11875, 10750, },
  3583. { 12000, 10875, },
  3584. { 12125, 11000, },
  3585. { 12250, 11125, },
  3586. { 12375, 11250, },
  3587. { 12500, 11375, },
  3588. { 12625, 11500, },
  3589. { 12750, 11625, },
  3590. { 12875, 11750, },
  3591. { 13000, 11875, },
  3592. { 13125, 12000, },
  3593. { 13250, 12125, },
  3594. { 13375, 12250, },
  3595. { 13500, 12375, },
  3596. { 13625, 12500, },
  3597. { 13750, 12625, },
  3598. { 13875, 12750, },
  3599. { 14000, 12875, },
  3600. { 14125, 13000, },
  3601. { 14250, 13125, },
  3602. { 14375, 13250, },
  3603. { 14500, 13375, },
  3604. { 14625, 13500, },
  3605. { 14750, 13625, },
  3606. { 14875, 13750, },
  3607. { 15000, 13875, },
  3608. { 15125, 14000, },
  3609. { 15250, 14125, },
  3610. { 15375, 14250, },
  3611. { 15500, 14375, },
  3612. { 15625, 14500, },
  3613. { 15750, 14625, },
  3614. { 15875, 14750, },
  3615. { 16000, 14875, },
  3616. { 16125, 15000, },
  3617. };
  3618. if (dev_priv->info->is_mobile)
  3619. return v_table[pxvid].vm;
  3620. else
  3621. return v_table[pxvid].vd;
  3622. }
  3623. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3624. {
  3625. struct timespec now, diff1;
  3626. u64 diff;
  3627. unsigned long diffms;
  3628. u32 count;
  3629. assert_spin_locked(&mchdev_lock);
  3630. getrawmonotonic(&now);
  3631. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  3632. /* Don't divide by 0 */
  3633. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  3634. if (!diffms)
  3635. return;
  3636. count = I915_READ(GFXEC);
  3637. if (count < dev_priv->ips.last_count2) {
  3638. diff = ~0UL - dev_priv->ips.last_count2;
  3639. diff += count;
  3640. } else {
  3641. diff = count - dev_priv->ips.last_count2;
  3642. }
  3643. dev_priv->ips.last_count2 = count;
  3644. dev_priv->ips.last_time2 = now;
  3645. /* More magic constants... */
  3646. diff = diff * 1181;
  3647. diff = div_u64(diff, diffms * 10);
  3648. dev_priv->ips.gfx_power = diff;
  3649. }
  3650. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3651. {
  3652. if (dev_priv->info->gen != 5)
  3653. return;
  3654. spin_lock_irq(&mchdev_lock);
  3655. __i915_update_gfx_val(dev_priv);
  3656. spin_unlock_irq(&mchdev_lock);
  3657. }
  3658. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  3659. {
  3660. unsigned long t, corr, state1, corr2, state2;
  3661. u32 pxvid, ext_v;
  3662. assert_spin_locked(&mchdev_lock);
  3663. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
  3664. pxvid = (pxvid >> 24) & 0x7f;
  3665. ext_v = pvid_to_extvid(dev_priv, pxvid);
  3666. state1 = ext_v;
  3667. t = i915_mch_val(dev_priv);
  3668. /* Revel in the empirically derived constants */
  3669. /* Correction factor in 1/100000 units */
  3670. if (t > 80)
  3671. corr = ((t * 2349) + 135940);
  3672. else if (t >= 50)
  3673. corr = ((t * 964) + 29317);
  3674. else /* < 50 */
  3675. corr = ((t * 301) + 1004);
  3676. corr = corr * ((150142 * state1) / 10000 - 78642);
  3677. corr /= 100000;
  3678. corr2 = (corr * dev_priv->ips.corr);
  3679. state2 = (corr2 * state1) / 10000;
  3680. state2 /= 100; /* convert to mW */
  3681. __i915_update_gfx_val(dev_priv);
  3682. return dev_priv->ips.gfx_power + state2;
  3683. }
  3684. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  3685. {
  3686. unsigned long val;
  3687. if (dev_priv->info->gen != 5)
  3688. return 0;
  3689. spin_lock_irq(&mchdev_lock);
  3690. val = __i915_gfx_val(dev_priv);
  3691. spin_unlock_irq(&mchdev_lock);
  3692. return val;
  3693. }
  3694. /**
  3695. * i915_read_mch_val - return value for IPS use
  3696. *
  3697. * Calculate and return a value for the IPS driver to use when deciding whether
  3698. * we have thermal and power headroom to increase CPU or GPU power budget.
  3699. */
  3700. unsigned long i915_read_mch_val(void)
  3701. {
  3702. struct drm_i915_private *dev_priv;
  3703. unsigned long chipset_val, graphics_val, ret = 0;
  3704. spin_lock_irq(&mchdev_lock);
  3705. if (!i915_mch_dev)
  3706. goto out_unlock;
  3707. dev_priv = i915_mch_dev;
  3708. chipset_val = __i915_chipset_val(dev_priv);
  3709. graphics_val = __i915_gfx_val(dev_priv);
  3710. ret = chipset_val + graphics_val;
  3711. out_unlock:
  3712. spin_unlock_irq(&mchdev_lock);
  3713. return ret;
  3714. }
  3715. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  3716. /**
  3717. * i915_gpu_raise - raise GPU frequency limit
  3718. *
  3719. * Raise the limit; IPS indicates we have thermal headroom.
  3720. */
  3721. bool i915_gpu_raise(void)
  3722. {
  3723. struct drm_i915_private *dev_priv;
  3724. bool ret = true;
  3725. spin_lock_irq(&mchdev_lock);
  3726. if (!i915_mch_dev) {
  3727. ret = false;
  3728. goto out_unlock;
  3729. }
  3730. dev_priv = i915_mch_dev;
  3731. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  3732. dev_priv->ips.max_delay--;
  3733. out_unlock:
  3734. spin_unlock_irq(&mchdev_lock);
  3735. return ret;
  3736. }
  3737. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  3738. /**
  3739. * i915_gpu_lower - lower GPU frequency limit
  3740. *
  3741. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  3742. * frequency maximum.
  3743. */
  3744. bool i915_gpu_lower(void)
  3745. {
  3746. struct drm_i915_private *dev_priv;
  3747. bool ret = true;
  3748. spin_lock_irq(&mchdev_lock);
  3749. if (!i915_mch_dev) {
  3750. ret = false;
  3751. goto out_unlock;
  3752. }
  3753. dev_priv = i915_mch_dev;
  3754. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  3755. dev_priv->ips.max_delay++;
  3756. out_unlock:
  3757. spin_unlock_irq(&mchdev_lock);
  3758. return ret;
  3759. }
  3760. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  3761. /**
  3762. * i915_gpu_busy - indicate GPU business to IPS
  3763. *
  3764. * Tell the IPS driver whether or not the GPU is busy.
  3765. */
  3766. bool i915_gpu_busy(void)
  3767. {
  3768. struct drm_i915_private *dev_priv;
  3769. struct intel_ring_buffer *ring;
  3770. bool ret = false;
  3771. int i;
  3772. spin_lock_irq(&mchdev_lock);
  3773. if (!i915_mch_dev)
  3774. goto out_unlock;
  3775. dev_priv = i915_mch_dev;
  3776. for_each_ring(ring, dev_priv, i)
  3777. ret |= !list_empty(&ring->request_list);
  3778. out_unlock:
  3779. spin_unlock_irq(&mchdev_lock);
  3780. return ret;
  3781. }
  3782. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  3783. /**
  3784. * i915_gpu_turbo_disable - disable graphics turbo
  3785. *
  3786. * Disable graphics turbo by resetting the max frequency and setting the
  3787. * current frequency to the default.
  3788. */
  3789. bool i915_gpu_turbo_disable(void)
  3790. {
  3791. struct drm_i915_private *dev_priv;
  3792. bool ret = true;
  3793. spin_lock_irq(&mchdev_lock);
  3794. if (!i915_mch_dev) {
  3795. ret = false;
  3796. goto out_unlock;
  3797. }
  3798. dev_priv = i915_mch_dev;
  3799. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  3800. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  3801. ret = false;
  3802. out_unlock:
  3803. spin_unlock_irq(&mchdev_lock);
  3804. return ret;
  3805. }
  3806. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  3807. /**
  3808. * Tells the intel_ips driver that the i915 driver is now loaded, if
  3809. * IPS got loaded first.
  3810. *
  3811. * This awkward dance is so that neither module has to depend on the
  3812. * other in order for IPS to do the appropriate communication of
  3813. * GPU turbo limits to i915.
  3814. */
  3815. static void
  3816. ips_ping_for_i915_load(void)
  3817. {
  3818. void (*link)(void);
  3819. link = symbol_get(ips_link_to_i915_driver);
  3820. if (link) {
  3821. link();
  3822. symbol_put(ips_link_to_i915_driver);
  3823. }
  3824. }
  3825. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  3826. {
  3827. /* We only register the i915 ips part with intel-ips once everything is
  3828. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  3829. spin_lock_irq(&mchdev_lock);
  3830. i915_mch_dev = dev_priv;
  3831. spin_unlock_irq(&mchdev_lock);
  3832. ips_ping_for_i915_load();
  3833. }
  3834. void intel_gpu_ips_teardown(void)
  3835. {
  3836. spin_lock_irq(&mchdev_lock);
  3837. i915_mch_dev = NULL;
  3838. spin_unlock_irq(&mchdev_lock);
  3839. }
  3840. static void intel_init_emon(struct drm_device *dev)
  3841. {
  3842. struct drm_i915_private *dev_priv = dev->dev_private;
  3843. u32 lcfuse;
  3844. u8 pxw[16];
  3845. int i;
  3846. /* Disable to program */
  3847. I915_WRITE(ECR, 0);
  3848. POSTING_READ(ECR);
  3849. /* Program energy weights for various events */
  3850. I915_WRITE(SDEW, 0x15040d00);
  3851. I915_WRITE(CSIEW0, 0x007f0000);
  3852. I915_WRITE(CSIEW1, 0x1e220004);
  3853. I915_WRITE(CSIEW2, 0x04000004);
  3854. for (i = 0; i < 5; i++)
  3855. I915_WRITE(PEW + (i * 4), 0);
  3856. for (i = 0; i < 3; i++)
  3857. I915_WRITE(DEW + (i * 4), 0);
  3858. /* Program P-state weights to account for frequency power adjustment */
  3859. for (i = 0; i < 16; i++) {
  3860. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  3861. unsigned long freq = intel_pxfreq(pxvidfreq);
  3862. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  3863. PXVFREQ_PX_SHIFT;
  3864. unsigned long val;
  3865. val = vid * vid;
  3866. val *= (freq / 1000);
  3867. val *= 255;
  3868. val /= (127*127*900);
  3869. if (val > 0xff)
  3870. DRM_ERROR("bad pxval: %ld\n", val);
  3871. pxw[i] = val;
  3872. }
  3873. /* Render standby states get 0 weight */
  3874. pxw[14] = 0;
  3875. pxw[15] = 0;
  3876. for (i = 0; i < 4; i++) {
  3877. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  3878. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  3879. I915_WRITE(PXW + (i * 4), val);
  3880. }
  3881. /* Adjust magic regs to magic values (more experimental results) */
  3882. I915_WRITE(OGW0, 0);
  3883. I915_WRITE(OGW1, 0);
  3884. I915_WRITE(EG0, 0x00007f00);
  3885. I915_WRITE(EG1, 0x0000000e);
  3886. I915_WRITE(EG2, 0x000e0000);
  3887. I915_WRITE(EG3, 0x68000300);
  3888. I915_WRITE(EG4, 0x42000000);
  3889. I915_WRITE(EG5, 0x00140031);
  3890. I915_WRITE(EG6, 0);
  3891. I915_WRITE(EG7, 0);
  3892. for (i = 0; i < 8; i++)
  3893. I915_WRITE(PXWL + (i * 4), 0);
  3894. /* Enable PMON + select events */
  3895. I915_WRITE(ECR, 0x80000019);
  3896. lcfuse = I915_READ(LCFUSE02);
  3897. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  3898. }
  3899. void intel_disable_gt_powersave(struct drm_device *dev)
  3900. {
  3901. struct drm_i915_private *dev_priv = dev->dev_private;
  3902. /* Interrupts should be disabled already to avoid re-arming. */
  3903. WARN_ON(dev->irq_enabled);
  3904. if (IS_IRONLAKE_M(dev)) {
  3905. ironlake_disable_drps(dev);
  3906. ironlake_disable_rc6(dev);
  3907. } else if (INTEL_INFO(dev)->gen >= 6) {
  3908. cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
  3909. cancel_work_sync(&dev_priv->rps.work);
  3910. if (IS_VALLEYVIEW(dev))
  3911. cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
  3912. mutex_lock(&dev_priv->rps.hw_lock);
  3913. if (IS_VALLEYVIEW(dev))
  3914. valleyview_disable_rps(dev);
  3915. else
  3916. gen6_disable_rps(dev);
  3917. mutex_unlock(&dev_priv->rps.hw_lock);
  3918. }
  3919. }
  3920. static void intel_gen6_powersave_work(struct work_struct *work)
  3921. {
  3922. struct drm_i915_private *dev_priv =
  3923. container_of(work, struct drm_i915_private,
  3924. rps.delayed_resume_work.work);
  3925. struct drm_device *dev = dev_priv->dev;
  3926. mutex_lock(&dev_priv->rps.hw_lock);
  3927. if (IS_VALLEYVIEW(dev)) {
  3928. valleyview_enable_rps(dev);
  3929. } else {
  3930. gen6_enable_rps(dev);
  3931. gen6_update_ring_freq(dev);
  3932. }
  3933. mutex_unlock(&dev_priv->rps.hw_lock);
  3934. }
  3935. void intel_enable_gt_powersave(struct drm_device *dev)
  3936. {
  3937. struct drm_i915_private *dev_priv = dev->dev_private;
  3938. if (IS_IRONLAKE_M(dev)) {
  3939. ironlake_enable_drps(dev);
  3940. ironlake_enable_rc6(dev);
  3941. intel_init_emon(dev);
  3942. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  3943. /*
  3944. * PCU communication is slow and this doesn't need to be
  3945. * done at any specific time, so do this out of our fast path
  3946. * to make resume and init faster.
  3947. */
  3948. schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  3949. round_jiffies_up_relative(HZ));
  3950. }
  3951. }
  3952. static void ibx_init_clock_gating(struct drm_device *dev)
  3953. {
  3954. struct drm_i915_private *dev_priv = dev->dev_private;
  3955. /*
  3956. * On Ibex Peak and Cougar Point, we need to disable clock
  3957. * gating for the panel power sequencer or it will fail to
  3958. * start up when no ports are active.
  3959. */
  3960. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  3961. }
  3962. static void g4x_disable_trickle_feed(struct drm_device *dev)
  3963. {
  3964. struct drm_i915_private *dev_priv = dev->dev_private;
  3965. int pipe;
  3966. for_each_pipe(pipe) {
  3967. I915_WRITE(DSPCNTR(pipe),
  3968. I915_READ(DSPCNTR(pipe)) |
  3969. DISPPLANE_TRICKLE_FEED_DISABLE);
  3970. intel_flush_display_plane(dev_priv, pipe);
  3971. }
  3972. }
  3973. static void ironlake_init_clock_gating(struct drm_device *dev)
  3974. {
  3975. struct drm_i915_private *dev_priv = dev->dev_private;
  3976. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  3977. /*
  3978. * Required for FBC
  3979. * WaFbcDisableDpfcClockGating:ilk
  3980. */
  3981. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  3982. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  3983. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  3984. I915_WRITE(PCH_3DCGDIS0,
  3985. MARIUNIT_CLOCK_GATE_DISABLE |
  3986. SVSMUNIT_CLOCK_GATE_DISABLE);
  3987. I915_WRITE(PCH_3DCGDIS1,
  3988. VFMUNIT_CLOCK_GATE_DISABLE);
  3989. /*
  3990. * According to the spec the following bits should be set in
  3991. * order to enable memory self-refresh
  3992. * The bit 22/21 of 0x42004
  3993. * The bit 5 of 0x42020
  3994. * The bit 15 of 0x45000
  3995. */
  3996. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3997. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  3998. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  3999. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4000. I915_WRITE(DISP_ARB_CTL,
  4001. (I915_READ(DISP_ARB_CTL) |
  4002. DISP_FBC_WM_DIS));
  4003. I915_WRITE(WM3_LP_ILK, 0);
  4004. I915_WRITE(WM2_LP_ILK, 0);
  4005. I915_WRITE(WM1_LP_ILK, 0);
  4006. /*
  4007. * Based on the document from hardware guys the following bits
  4008. * should be set unconditionally in order to enable FBC.
  4009. * The bit 22 of 0x42000
  4010. * The bit 22 of 0x42004
  4011. * The bit 7,8,9 of 0x42020.
  4012. */
  4013. if (IS_IRONLAKE_M(dev)) {
  4014. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4015. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4016. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4017. ILK_FBCQ_DIS);
  4018. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4019. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4020. ILK_DPARB_GATE);
  4021. }
  4022. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4023. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4024. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4025. ILK_ELPIN_409_SELECT);
  4026. I915_WRITE(_3D_CHICKEN2,
  4027. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4028. _3D_CHICKEN2_WM_READ_PIPELINED);
  4029. /* WaDisableRenderCachePipelinedFlush:ilk */
  4030. I915_WRITE(CACHE_MODE_0,
  4031. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4032. g4x_disable_trickle_feed(dev);
  4033. ibx_init_clock_gating(dev);
  4034. }
  4035. static void cpt_init_clock_gating(struct drm_device *dev)
  4036. {
  4037. struct drm_i915_private *dev_priv = dev->dev_private;
  4038. int pipe;
  4039. uint32_t val;
  4040. /*
  4041. * On Ibex Peak and Cougar Point, we need to disable clock
  4042. * gating for the panel power sequencer or it will fail to
  4043. * start up when no ports are active.
  4044. */
  4045. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4046. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4047. DPLS_EDP_PPS_FIX_DIS);
  4048. /* The below fixes the weird display corruption, a few pixels shifted
  4049. * downward, on (only) LVDS of some HP laptops with IVY.
  4050. */
  4051. for_each_pipe(pipe) {
  4052. val = I915_READ(TRANS_CHICKEN2(pipe));
  4053. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4054. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4055. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4056. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4057. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4058. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4059. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4060. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4061. }
  4062. /* WADP0ClockGatingDisable */
  4063. for_each_pipe(pipe) {
  4064. I915_WRITE(TRANS_CHICKEN1(pipe),
  4065. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4066. }
  4067. }
  4068. static void gen6_check_mch_setup(struct drm_device *dev)
  4069. {
  4070. struct drm_i915_private *dev_priv = dev->dev_private;
  4071. uint32_t tmp;
  4072. tmp = I915_READ(MCH_SSKPD);
  4073. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  4074. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  4075. DRM_INFO("This can cause pipe underruns and display issues.\n");
  4076. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  4077. }
  4078. }
  4079. static void gen6_init_clock_gating(struct drm_device *dev)
  4080. {
  4081. struct drm_i915_private *dev_priv = dev->dev_private;
  4082. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4083. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4084. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4085. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4086. ILK_ELPIN_409_SELECT);
  4087. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4088. I915_WRITE(_3D_CHICKEN,
  4089. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4090. /* WaSetupGtModeTdRowDispatch:snb */
  4091. if (IS_SNB_GT1(dev))
  4092. I915_WRITE(GEN6_GT_MODE,
  4093. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4094. I915_WRITE(WM3_LP_ILK, 0);
  4095. I915_WRITE(WM2_LP_ILK, 0);
  4096. I915_WRITE(WM1_LP_ILK, 0);
  4097. I915_WRITE(CACHE_MODE_0,
  4098. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4099. I915_WRITE(GEN6_UCGCTL1,
  4100. I915_READ(GEN6_UCGCTL1) |
  4101. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4102. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4103. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4104. * gating disable must be set. Failure to set it results in
  4105. * flickering pixels due to Z write ordering failures after
  4106. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4107. * Sanctuary and Tropics, and apparently anything else with
  4108. * alpha test or pixel discard.
  4109. *
  4110. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4111. * but we didn't debug actual testcases to find it out.
  4112. *
  4113. * Also apply WaDisableVDSUnitClockGating:snb and
  4114. * WaDisableRCPBUnitClockGating:snb.
  4115. */
  4116. I915_WRITE(GEN6_UCGCTL2,
  4117. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4118. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4119. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4120. /* Bspec says we need to always set all mask bits. */
  4121. I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
  4122. _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
  4123. /*
  4124. * According to the spec the following bits should be
  4125. * set in order to enable memory self-refresh and fbc:
  4126. * The bit21 and bit22 of 0x42000
  4127. * The bit21 and bit22 of 0x42004
  4128. * The bit5 and bit7 of 0x42020
  4129. * The bit14 of 0x70180
  4130. * The bit14 of 0x71180
  4131. *
  4132. * WaFbcAsynchFlipDisableFbcQueue:snb
  4133. */
  4134. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4135. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4136. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4137. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4138. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4139. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4140. I915_WRITE(ILK_DSPCLK_GATE_D,
  4141. I915_READ(ILK_DSPCLK_GATE_D) |
  4142. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4143. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4144. g4x_disable_trickle_feed(dev);
  4145. /* The default value should be 0x200 according to docs, but the two
  4146. * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
  4147. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
  4148. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
  4149. cpt_init_clock_gating(dev);
  4150. gen6_check_mch_setup(dev);
  4151. }
  4152. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4153. {
  4154. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4155. reg &= ~GEN7_FF_SCHED_MASK;
  4156. reg |= GEN7_FF_TS_SCHED_HW;
  4157. reg |= GEN7_FF_VS_SCHED_HW;
  4158. reg |= GEN7_FF_DS_SCHED_HW;
  4159. if (IS_HASWELL(dev_priv->dev))
  4160. reg &= ~GEN7_FF_VS_REF_CNT_FFME;
  4161. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4162. }
  4163. static void lpt_init_clock_gating(struct drm_device *dev)
  4164. {
  4165. struct drm_i915_private *dev_priv = dev->dev_private;
  4166. /*
  4167. * TODO: this bit should only be enabled when really needed, then
  4168. * disabled when not needed anymore in order to save power.
  4169. */
  4170. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4171. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4172. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4173. PCH_LP_PARTITION_LEVEL_DISABLE);
  4174. /* WADPOClockGatingDisable:hsw */
  4175. I915_WRITE(_TRANSA_CHICKEN1,
  4176. I915_READ(_TRANSA_CHICKEN1) |
  4177. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4178. }
  4179. static void lpt_suspend_hw(struct drm_device *dev)
  4180. {
  4181. struct drm_i915_private *dev_priv = dev->dev_private;
  4182. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4183. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4184. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4185. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4186. }
  4187. }
  4188. static void haswell_init_clock_gating(struct drm_device *dev)
  4189. {
  4190. struct drm_i915_private *dev_priv = dev->dev_private;
  4191. I915_WRITE(WM3_LP_ILK, 0);
  4192. I915_WRITE(WM2_LP_ILK, 0);
  4193. I915_WRITE(WM1_LP_ILK, 0);
  4194. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4195. * This implements the WaDisableRCZUnitClockGating:hsw workaround.
  4196. */
  4197. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4198. /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
  4199. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4200. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4201. /* WaApplyL3ControlAndL3ChickenMode:hsw */
  4202. I915_WRITE(GEN7_L3CNTLREG1,
  4203. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4204. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4205. GEN7_WA_L3_CHICKEN_MODE);
  4206. /* This is required by WaCatErrorRejectionIssue:hsw */
  4207. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4208. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4209. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4210. /* WaVSRefCountFullforceMissDisable:hsw */
  4211. gen7_setup_fixed_func_scheduler(dev_priv);
  4212. /* WaDisable4x2SubspanOptimization:hsw */
  4213. I915_WRITE(CACHE_MODE_1,
  4214. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4215. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4216. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4217. /* WaRsPkgCStateDisplayPMReq:hsw */
  4218. I915_WRITE(CHICKEN_PAR1_1,
  4219. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4220. lpt_init_clock_gating(dev);
  4221. }
  4222. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4223. {
  4224. struct drm_i915_private *dev_priv = dev->dev_private;
  4225. uint32_t snpcr;
  4226. I915_WRITE(WM3_LP_ILK, 0);
  4227. I915_WRITE(WM2_LP_ILK, 0);
  4228. I915_WRITE(WM1_LP_ILK, 0);
  4229. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4230. /* WaDisableEarlyCull:ivb */
  4231. I915_WRITE(_3D_CHICKEN3,
  4232. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4233. /* WaDisableBackToBackFlipFix:ivb */
  4234. I915_WRITE(IVB_CHICKEN3,
  4235. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4236. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4237. /* WaDisablePSDDualDispatchEnable:ivb */
  4238. if (IS_IVB_GT1(dev))
  4239. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4240. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4241. else
  4242. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
  4243. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4244. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4245. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4246. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4247. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4248. I915_WRITE(GEN7_L3CNTLREG1,
  4249. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4250. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4251. GEN7_WA_L3_CHICKEN_MODE);
  4252. if (IS_IVB_GT1(dev))
  4253. I915_WRITE(GEN7_ROW_CHICKEN2,
  4254. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4255. else
  4256. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4257. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4258. /* WaForceL3Serialization:ivb */
  4259. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4260. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4261. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4262. * gating disable must be set. Failure to set it results in
  4263. * flickering pixels due to Z write ordering failures after
  4264. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4265. * Sanctuary and Tropics, and apparently anything else with
  4266. * alpha test or pixel discard.
  4267. *
  4268. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4269. * but we didn't debug actual testcases to find it out.
  4270. *
  4271. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4272. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4273. */
  4274. I915_WRITE(GEN6_UCGCTL2,
  4275. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4276. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4277. /* This is required by WaCatErrorRejectionIssue:ivb */
  4278. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4279. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4280. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4281. g4x_disable_trickle_feed(dev);
  4282. /* WaVSRefCountFullforceMissDisable:ivb */
  4283. gen7_setup_fixed_func_scheduler(dev_priv);
  4284. /* WaDisable4x2SubspanOptimization:ivb */
  4285. I915_WRITE(CACHE_MODE_1,
  4286. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4287. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4288. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4289. snpcr |= GEN6_MBC_SNPCR_MED;
  4290. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4291. if (!HAS_PCH_NOP(dev))
  4292. cpt_init_clock_gating(dev);
  4293. gen6_check_mch_setup(dev);
  4294. }
  4295. static void valleyview_init_clock_gating(struct drm_device *dev)
  4296. {
  4297. struct drm_i915_private *dev_priv = dev->dev_private;
  4298. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4299. /* WaDisableEarlyCull:vlv */
  4300. I915_WRITE(_3D_CHICKEN3,
  4301. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4302. /* WaDisableBackToBackFlipFix:vlv */
  4303. I915_WRITE(IVB_CHICKEN3,
  4304. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4305. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4306. /* WaDisablePSDDualDispatchEnable:vlv */
  4307. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4308. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4309. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4310. /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
  4311. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4312. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4313. /* WaApplyL3ControlAndL3ChickenMode:vlv */
  4314. I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
  4315. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  4316. /* WaForceL3Serialization:vlv */
  4317. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4318. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4319. /* WaDisableDopClockGating:vlv */
  4320. I915_WRITE(GEN7_ROW_CHICKEN2,
  4321. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4322. /* This is required by WaCatErrorRejectionIssue:vlv */
  4323. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4324. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4325. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4326. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4327. * gating disable must be set. Failure to set it results in
  4328. * flickering pixels due to Z write ordering failures after
  4329. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4330. * Sanctuary and Tropics, and apparently anything else with
  4331. * alpha test or pixel discard.
  4332. *
  4333. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4334. * but we didn't debug actual testcases to find it out.
  4335. *
  4336. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4337. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4338. *
  4339. * Also apply WaDisableVDSUnitClockGating:vlv and
  4340. * WaDisableRCPBUnitClockGating:vlv.
  4341. */
  4342. I915_WRITE(GEN6_UCGCTL2,
  4343. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4344. GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
  4345. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4346. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4347. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4348. I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4349. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4350. I915_WRITE(CACHE_MODE_1,
  4351. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4352. /*
  4353. * WaDisableVLVClockGating_VBIIssue:vlv
  4354. * Disable clock gating on th GCFG unit to prevent a delay
  4355. * in the reporting of vblank events.
  4356. */
  4357. I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
  4358. /* Conservative clock gating settings for now */
  4359. I915_WRITE(0x9400, 0xffffffff);
  4360. I915_WRITE(0x9404, 0xffffffff);
  4361. I915_WRITE(0x9408, 0xffffffff);
  4362. I915_WRITE(0x940c, 0xffffffff);
  4363. I915_WRITE(0x9410, 0xffffffff);
  4364. I915_WRITE(0x9414, 0xffffffff);
  4365. I915_WRITE(0x9418, 0xffffffff);
  4366. }
  4367. static void g4x_init_clock_gating(struct drm_device *dev)
  4368. {
  4369. struct drm_i915_private *dev_priv = dev->dev_private;
  4370. uint32_t dspclk_gate;
  4371. I915_WRITE(RENCLK_GATE_D1, 0);
  4372. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4373. GS_UNIT_CLOCK_GATE_DISABLE |
  4374. CL_UNIT_CLOCK_GATE_DISABLE);
  4375. I915_WRITE(RAMCLK_GATE_D, 0);
  4376. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4377. OVRUNIT_CLOCK_GATE_DISABLE |
  4378. OVCUNIT_CLOCK_GATE_DISABLE;
  4379. if (IS_GM45(dev))
  4380. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4381. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4382. /* WaDisableRenderCachePipelinedFlush */
  4383. I915_WRITE(CACHE_MODE_0,
  4384. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4385. g4x_disable_trickle_feed(dev);
  4386. }
  4387. static void crestline_init_clock_gating(struct drm_device *dev)
  4388. {
  4389. struct drm_i915_private *dev_priv = dev->dev_private;
  4390. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4391. I915_WRITE(RENCLK_GATE_D2, 0);
  4392. I915_WRITE(DSPCLK_GATE_D, 0);
  4393. I915_WRITE(RAMCLK_GATE_D, 0);
  4394. I915_WRITE16(DEUC, 0);
  4395. I915_WRITE(MI_ARB_STATE,
  4396. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4397. }
  4398. static void broadwater_init_clock_gating(struct drm_device *dev)
  4399. {
  4400. struct drm_i915_private *dev_priv = dev->dev_private;
  4401. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4402. I965_RCC_CLOCK_GATE_DISABLE |
  4403. I965_RCPB_CLOCK_GATE_DISABLE |
  4404. I965_ISC_CLOCK_GATE_DISABLE |
  4405. I965_FBC_CLOCK_GATE_DISABLE);
  4406. I915_WRITE(RENCLK_GATE_D2, 0);
  4407. I915_WRITE(MI_ARB_STATE,
  4408. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4409. }
  4410. static void gen3_init_clock_gating(struct drm_device *dev)
  4411. {
  4412. struct drm_i915_private *dev_priv = dev->dev_private;
  4413. u32 dstate = I915_READ(D_STATE);
  4414. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4415. DSTATE_DOT_CLOCK_GATING;
  4416. I915_WRITE(D_STATE, dstate);
  4417. if (IS_PINEVIEW(dev))
  4418. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  4419. /* IIR "flip pending" means done if this bit is set */
  4420. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  4421. }
  4422. static void i85x_init_clock_gating(struct drm_device *dev)
  4423. {
  4424. struct drm_i915_private *dev_priv = dev->dev_private;
  4425. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4426. }
  4427. static void i830_init_clock_gating(struct drm_device *dev)
  4428. {
  4429. struct drm_i915_private *dev_priv = dev->dev_private;
  4430. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4431. }
  4432. void intel_init_clock_gating(struct drm_device *dev)
  4433. {
  4434. struct drm_i915_private *dev_priv = dev->dev_private;
  4435. dev_priv->display.init_clock_gating(dev);
  4436. }
  4437. void intel_suspend_hw(struct drm_device *dev)
  4438. {
  4439. if (HAS_PCH_LPT(dev))
  4440. lpt_suspend_hw(dev);
  4441. }
  4442. /**
  4443. * We should only use the power well if we explicitly asked the hardware to
  4444. * enable it, so check if it's enabled and also check if we've requested it to
  4445. * be enabled.
  4446. */
  4447. bool intel_display_power_enabled(struct drm_device *dev,
  4448. enum intel_display_power_domain domain)
  4449. {
  4450. struct drm_i915_private *dev_priv = dev->dev_private;
  4451. if (!HAS_POWER_WELL(dev))
  4452. return true;
  4453. switch (domain) {
  4454. case POWER_DOMAIN_PIPE_A:
  4455. case POWER_DOMAIN_TRANSCODER_EDP:
  4456. return true;
  4457. case POWER_DOMAIN_PIPE_B:
  4458. case POWER_DOMAIN_PIPE_C:
  4459. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  4460. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  4461. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  4462. case POWER_DOMAIN_TRANSCODER_A:
  4463. case POWER_DOMAIN_TRANSCODER_B:
  4464. case POWER_DOMAIN_TRANSCODER_C:
  4465. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  4466. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  4467. default:
  4468. BUG();
  4469. }
  4470. }
  4471. static void __intel_set_power_well(struct drm_device *dev, bool enable)
  4472. {
  4473. struct drm_i915_private *dev_priv = dev->dev_private;
  4474. bool is_enabled, enable_requested;
  4475. uint32_t tmp;
  4476. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  4477. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  4478. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  4479. if (enable) {
  4480. if (!enable_requested)
  4481. I915_WRITE(HSW_PWR_WELL_DRIVER,
  4482. HSW_PWR_WELL_ENABLE_REQUEST);
  4483. if (!is_enabled) {
  4484. DRM_DEBUG_KMS("Enabling power well\n");
  4485. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  4486. HSW_PWR_WELL_STATE_ENABLED), 20))
  4487. DRM_ERROR("Timeout enabling power well\n");
  4488. }
  4489. } else {
  4490. if (enable_requested) {
  4491. unsigned long irqflags;
  4492. enum pipe p;
  4493. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  4494. POSTING_READ(HSW_PWR_WELL_DRIVER);
  4495. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  4496. /*
  4497. * After this, the registers on the pipes that are part
  4498. * of the power well will become zero, so we have to
  4499. * adjust our counters according to that.
  4500. *
  4501. * FIXME: Should we do this in general in
  4502. * drm_vblank_post_modeset?
  4503. */
  4504. spin_lock_irqsave(&dev->vbl_lock, irqflags);
  4505. for_each_pipe(p)
  4506. if (p != PIPE_A)
  4507. dev->last_vblank[p] = 0;
  4508. spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
  4509. }
  4510. }
  4511. }
  4512. static struct i915_power_well *hsw_pwr;
  4513. /* Display audio driver power well request */
  4514. void i915_request_power_well(void)
  4515. {
  4516. if (WARN_ON(!hsw_pwr))
  4517. return;
  4518. spin_lock_irq(&hsw_pwr->lock);
  4519. if (!hsw_pwr->count++ &&
  4520. !hsw_pwr->i915_request)
  4521. __intel_set_power_well(hsw_pwr->device, true);
  4522. spin_unlock_irq(&hsw_pwr->lock);
  4523. }
  4524. EXPORT_SYMBOL_GPL(i915_request_power_well);
  4525. /* Display audio driver power well release */
  4526. void i915_release_power_well(void)
  4527. {
  4528. if (WARN_ON(!hsw_pwr))
  4529. return;
  4530. spin_lock_irq(&hsw_pwr->lock);
  4531. WARN_ON(!hsw_pwr->count);
  4532. if (!--hsw_pwr->count &&
  4533. !hsw_pwr->i915_request)
  4534. __intel_set_power_well(hsw_pwr->device, false);
  4535. spin_unlock_irq(&hsw_pwr->lock);
  4536. }
  4537. EXPORT_SYMBOL_GPL(i915_release_power_well);
  4538. int i915_init_power_well(struct drm_device *dev)
  4539. {
  4540. struct drm_i915_private *dev_priv = dev->dev_private;
  4541. hsw_pwr = &dev_priv->power_well;
  4542. hsw_pwr->device = dev;
  4543. spin_lock_init(&hsw_pwr->lock);
  4544. hsw_pwr->count = 0;
  4545. return 0;
  4546. }
  4547. void i915_remove_power_well(struct drm_device *dev)
  4548. {
  4549. hsw_pwr = NULL;
  4550. }
  4551. void intel_set_power_well(struct drm_device *dev, bool enable)
  4552. {
  4553. struct drm_i915_private *dev_priv = dev->dev_private;
  4554. struct i915_power_well *power_well = &dev_priv->power_well;
  4555. if (!HAS_POWER_WELL(dev))
  4556. return;
  4557. if (!i915_disable_power_well && !enable)
  4558. return;
  4559. spin_lock_irq(&power_well->lock);
  4560. power_well->i915_request = enable;
  4561. /* only reject "disable" power well request */
  4562. if (power_well->count && !enable) {
  4563. spin_unlock_irq(&power_well->lock);
  4564. return;
  4565. }
  4566. __intel_set_power_well(dev, enable);
  4567. spin_unlock_irq(&power_well->lock);
  4568. }
  4569. /*
  4570. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  4571. * when not needed anymore. We have 4 registers that can request the power well
  4572. * to be enabled, and it will only be disabled if none of the registers is
  4573. * requesting it to be enabled.
  4574. */
  4575. void intel_init_power_well(struct drm_device *dev)
  4576. {
  4577. struct drm_i915_private *dev_priv = dev->dev_private;
  4578. if (!HAS_POWER_WELL(dev))
  4579. return;
  4580. /* For now, we need the power well to be always enabled. */
  4581. intel_set_power_well(dev, true);
  4582. /* We're taking over the BIOS, so clear any requests made by it since
  4583. * the driver is in charge now. */
  4584. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  4585. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  4586. }
  4587. /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
  4588. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  4589. {
  4590. hsw_disable_package_c8(dev_priv);
  4591. }
  4592. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  4593. {
  4594. hsw_enable_package_c8(dev_priv);
  4595. }
  4596. /* Set up chip specific power management-related functions */
  4597. void intel_init_pm(struct drm_device *dev)
  4598. {
  4599. struct drm_i915_private *dev_priv = dev->dev_private;
  4600. if (I915_HAS_FBC(dev)) {
  4601. if (HAS_PCH_SPLIT(dev)) {
  4602. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  4603. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  4604. dev_priv->display.enable_fbc =
  4605. gen7_enable_fbc;
  4606. else
  4607. dev_priv->display.enable_fbc =
  4608. ironlake_enable_fbc;
  4609. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  4610. } else if (IS_GM45(dev)) {
  4611. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  4612. dev_priv->display.enable_fbc = g4x_enable_fbc;
  4613. dev_priv->display.disable_fbc = g4x_disable_fbc;
  4614. } else if (IS_CRESTLINE(dev)) {
  4615. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  4616. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  4617. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  4618. }
  4619. /* 855GM needs testing */
  4620. }
  4621. /* For cxsr */
  4622. if (IS_PINEVIEW(dev))
  4623. i915_pineview_get_mem_freq(dev);
  4624. else if (IS_GEN5(dev))
  4625. i915_ironlake_get_mem_freq(dev);
  4626. /* For FIFO watermark updates */
  4627. if (HAS_PCH_SPLIT(dev)) {
  4628. intel_setup_wm_latency(dev);
  4629. if (IS_GEN5(dev)) {
  4630. if (dev_priv->wm.pri_latency[1] &&
  4631. dev_priv->wm.spr_latency[1] &&
  4632. dev_priv->wm.cur_latency[1])
  4633. dev_priv->display.update_wm = ironlake_update_wm;
  4634. else {
  4635. DRM_DEBUG_KMS("Failed to get proper latency. "
  4636. "Disable CxSR\n");
  4637. dev_priv->display.update_wm = NULL;
  4638. }
  4639. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  4640. } else if (IS_GEN6(dev)) {
  4641. if (dev_priv->wm.pri_latency[0] &&
  4642. dev_priv->wm.spr_latency[0] &&
  4643. dev_priv->wm.cur_latency[0]) {
  4644. dev_priv->display.update_wm = sandybridge_update_wm;
  4645. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  4646. } else {
  4647. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4648. "Disable CxSR\n");
  4649. dev_priv->display.update_wm = NULL;
  4650. }
  4651. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  4652. } else if (IS_IVYBRIDGE(dev)) {
  4653. if (dev_priv->wm.pri_latency[0] &&
  4654. dev_priv->wm.spr_latency[0] &&
  4655. dev_priv->wm.cur_latency[0]) {
  4656. dev_priv->display.update_wm = ivybridge_update_wm;
  4657. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  4658. } else {
  4659. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4660. "Disable CxSR\n");
  4661. dev_priv->display.update_wm = NULL;
  4662. }
  4663. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  4664. } else if (IS_HASWELL(dev)) {
  4665. if (dev_priv->wm.pri_latency[0] &&
  4666. dev_priv->wm.spr_latency[0] &&
  4667. dev_priv->wm.cur_latency[0]) {
  4668. dev_priv->display.update_wm = haswell_update_wm;
  4669. dev_priv->display.update_sprite_wm =
  4670. haswell_update_sprite_wm;
  4671. } else {
  4672. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4673. "Disable CxSR\n");
  4674. dev_priv->display.update_wm = NULL;
  4675. }
  4676. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  4677. } else
  4678. dev_priv->display.update_wm = NULL;
  4679. } else if (IS_VALLEYVIEW(dev)) {
  4680. dev_priv->display.update_wm = valleyview_update_wm;
  4681. dev_priv->display.init_clock_gating =
  4682. valleyview_init_clock_gating;
  4683. } else if (IS_PINEVIEW(dev)) {
  4684. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  4685. dev_priv->is_ddr3,
  4686. dev_priv->fsb_freq,
  4687. dev_priv->mem_freq)) {
  4688. DRM_INFO("failed to find known CxSR latency "
  4689. "(found ddr%s fsb freq %d, mem freq %d), "
  4690. "disabling CxSR\n",
  4691. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  4692. dev_priv->fsb_freq, dev_priv->mem_freq);
  4693. /* Disable CxSR and never update its watermark again */
  4694. pineview_disable_cxsr(dev);
  4695. dev_priv->display.update_wm = NULL;
  4696. } else
  4697. dev_priv->display.update_wm = pineview_update_wm;
  4698. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  4699. } else if (IS_G4X(dev)) {
  4700. dev_priv->display.update_wm = g4x_update_wm;
  4701. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  4702. } else if (IS_GEN4(dev)) {
  4703. dev_priv->display.update_wm = i965_update_wm;
  4704. if (IS_CRESTLINE(dev))
  4705. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  4706. else if (IS_BROADWATER(dev))
  4707. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  4708. } else if (IS_GEN3(dev)) {
  4709. dev_priv->display.update_wm = i9xx_update_wm;
  4710. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  4711. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  4712. } else if (IS_I865G(dev)) {
  4713. dev_priv->display.update_wm = i830_update_wm;
  4714. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  4715. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4716. } else if (IS_I85X(dev)) {
  4717. dev_priv->display.update_wm = i9xx_update_wm;
  4718. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  4719. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  4720. } else {
  4721. dev_priv->display.update_wm = i830_update_wm;
  4722. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  4723. if (IS_845G(dev))
  4724. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  4725. else
  4726. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4727. }
  4728. }
  4729. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  4730. {
  4731. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4732. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4733. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  4734. return -EAGAIN;
  4735. }
  4736. I915_WRITE(GEN6_PCODE_DATA, *val);
  4737. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4738. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4739. 500)) {
  4740. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  4741. return -ETIMEDOUT;
  4742. }
  4743. *val = I915_READ(GEN6_PCODE_DATA);
  4744. I915_WRITE(GEN6_PCODE_DATA, 0);
  4745. return 0;
  4746. }
  4747. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  4748. {
  4749. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4750. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4751. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  4752. return -EAGAIN;
  4753. }
  4754. I915_WRITE(GEN6_PCODE_DATA, val);
  4755. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4756. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4757. 500)) {
  4758. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  4759. return -ETIMEDOUT;
  4760. }
  4761. I915_WRITE(GEN6_PCODE_DATA, 0);
  4762. return 0;
  4763. }
  4764. int vlv_gpu_freq(int ddr_freq, int val)
  4765. {
  4766. int mult, base;
  4767. switch (ddr_freq) {
  4768. case 800:
  4769. mult = 20;
  4770. base = 120;
  4771. break;
  4772. case 1066:
  4773. mult = 22;
  4774. base = 133;
  4775. break;
  4776. case 1333:
  4777. mult = 21;
  4778. base = 125;
  4779. break;
  4780. default:
  4781. return -1;
  4782. }
  4783. return ((val - 0xbd) * mult) + base;
  4784. }
  4785. int vlv_freq_opcode(int ddr_freq, int val)
  4786. {
  4787. int mult, base;
  4788. switch (ddr_freq) {
  4789. case 800:
  4790. mult = 20;
  4791. base = 120;
  4792. break;
  4793. case 1066:
  4794. mult = 22;
  4795. base = 133;
  4796. break;
  4797. case 1333:
  4798. mult = 21;
  4799. base = 125;
  4800. break;
  4801. default:
  4802. return -1;
  4803. }
  4804. val /= mult;
  4805. val -= base / mult;
  4806. val += 0xbd;
  4807. if (val > 0xea)
  4808. val = 0xea;
  4809. return val;
  4810. }
  4811. void intel_pm_init(struct drm_device *dev)
  4812. {
  4813. struct drm_i915_private *dev_priv = dev->dev_private;
  4814. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  4815. intel_gen6_powersave_work);
  4816. }