exit.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/iocontext.h>
  15. #include <linux/key.h>
  16. #include <linux/security.h>
  17. #include <linux/cpu.h>
  18. #include <linux/acct.h>
  19. #include <linux/tsacct_kern.h>
  20. #include <linux/file.h>
  21. #include <linux/fdtable.h>
  22. #include <linux/binfmts.h>
  23. #include <linux/nsproxy.h>
  24. #include <linux/pid_namespace.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/profile.h>
  27. #include <linux/mount.h>
  28. #include <linux/proc_fs.h>
  29. #include <linux/kthread.h>
  30. #include <linux/mempolicy.h>
  31. #include <linux/taskstats_kern.h>
  32. #include <linux/delayacct.h>
  33. #include <linux/freezer.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/signal.h>
  37. #include <linux/posix-timers.h>
  38. #include <linux/cn_proc.h>
  39. #include <linux/mutex.h>
  40. #include <linux/futex.h>
  41. #include <linux/pipe_fs_i.h>
  42. #include <linux/audit.h> /* for audit_free() */
  43. #include <linux/resource.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/task_io_accounting_ops.h>
  46. #include <linux/tracehook.h>
  47. #include <linux/fs_struct.h>
  48. #include <linux/init_task.h>
  49. #include <linux/perf_event.h>
  50. #include <trace/events/sched.h>
  51. #include <linux/hw_breakpoint.h>
  52. #include <linux/oom.h>
  53. #include <linux/writeback.h>
  54. #include <linux/shm.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/unistd.h>
  57. #include <asm/pgtable.h>
  58. #include <asm/mmu_context.h>
  59. static void exit_mm(struct task_struct * tsk);
  60. static void __unhash_process(struct task_struct *p, bool group_dead)
  61. {
  62. nr_threads--;
  63. detach_pid(p, PIDTYPE_PID);
  64. if (group_dead) {
  65. detach_pid(p, PIDTYPE_PGID);
  66. detach_pid(p, PIDTYPE_SID);
  67. list_del_rcu(&p->tasks);
  68. list_del_init(&p->sibling);
  69. __this_cpu_dec(process_counts);
  70. }
  71. list_del_rcu(&p->thread_group);
  72. }
  73. /*
  74. * This function expects the tasklist_lock write-locked.
  75. */
  76. static void __exit_signal(struct task_struct *tsk)
  77. {
  78. struct signal_struct *sig = tsk->signal;
  79. bool group_dead = thread_group_leader(tsk);
  80. struct sighand_struct *sighand;
  81. struct tty_struct *uninitialized_var(tty);
  82. sighand = rcu_dereference_check(tsk->sighand,
  83. lockdep_tasklist_lock_is_held());
  84. spin_lock(&sighand->siglock);
  85. posix_cpu_timers_exit(tsk);
  86. if (group_dead) {
  87. posix_cpu_timers_exit_group(tsk);
  88. tty = sig->tty;
  89. sig->tty = NULL;
  90. } else {
  91. /*
  92. * This can only happen if the caller is de_thread().
  93. * FIXME: this is the temporary hack, we should teach
  94. * posix-cpu-timers to handle this case correctly.
  95. */
  96. if (unlikely(has_group_leader_pid(tsk)))
  97. posix_cpu_timers_exit_group(tsk);
  98. /*
  99. * If there is any task waiting for the group exit
  100. * then notify it:
  101. */
  102. if (sig->notify_count > 0 && !--sig->notify_count)
  103. wake_up_process(sig->group_exit_task);
  104. if (tsk == sig->curr_target)
  105. sig->curr_target = next_thread(tsk);
  106. /*
  107. * Accumulate here the counters for all threads but the
  108. * group leader as they die, so they can be added into
  109. * the process-wide totals when those are taken.
  110. * The group leader stays around as a zombie as long
  111. * as there are other threads. When it gets reaped,
  112. * the exit.c code will add its counts into these totals.
  113. * We won't ever get here for the group leader, since it
  114. * will have been the last reference on the signal_struct.
  115. */
  116. sig->utime += tsk->utime;
  117. sig->stime += tsk->stime;
  118. sig->gtime += tsk->gtime;
  119. sig->min_flt += tsk->min_flt;
  120. sig->maj_flt += tsk->maj_flt;
  121. sig->nvcsw += tsk->nvcsw;
  122. sig->nivcsw += tsk->nivcsw;
  123. sig->inblock += task_io_get_inblock(tsk);
  124. sig->oublock += task_io_get_oublock(tsk);
  125. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  126. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  127. }
  128. sig->nr_threads--;
  129. __unhash_process(tsk, group_dead);
  130. /*
  131. * Do this under ->siglock, we can race with another thread
  132. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  133. */
  134. flush_sigqueue(&tsk->pending);
  135. tsk->sighand = NULL;
  136. spin_unlock(&sighand->siglock);
  137. __cleanup_sighand(sighand);
  138. clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
  139. if (group_dead) {
  140. flush_sigqueue(&sig->shared_pending);
  141. tty_kref_put(tty);
  142. }
  143. }
  144. static void delayed_put_task_struct(struct rcu_head *rhp)
  145. {
  146. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  147. perf_event_delayed_put(tsk);
  148. trace_sched_process_free(tsk);
  149. put_task_struct(tsk);
  150. }
  151. void release_task(struct task_struct * p)
  152. {
  153. struct task_struct *leader;
  154. int zap_leader;
  155. repeat:
  156. /* don't need to get the RCU readlock here - the process is dead and
  157. * can't be modifying its own credentials. But shut RCU-lockdep up */
  158. rcu_read_lock();
  159. atomic_dec(&__task_cred(p)->user->processes);
  160. rcu_read_unlock();
  161. proc_flush_task(p);
  162. write_lock_irq(&tasklist_lock);
  163. ptrace_release_task(p);
  164. __exit_signal(p);
  165. /*
  166. * If we are the last non-leader member of the thread
  167. * group, and the leader is zombie, then notify the
  168. * group leader's parent process. (if it wants notification.)
  169. */
  170. zap_leader = 0;
  171. leader = p->group_leader;
  172. if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
  173. /*
  174. * If we were the last child thread and the leader has
  175. * exited already, and the leader's parent ignores SIGCHLD,
  176. * then we are the one who should release the leader.
  177. */
  178. zap_leader = do_notify_parent(leader, leader->exit_signal);
  179. if (zap_leader)
  180. leader->exit_state = EXIT_DEAD;
  181. }
  182. write_unlock_irq(&tasklist_lock);
  183. release_thread(p);
  184. call_rcu(&p->rcu, delayed_put_task_struct);
  185. p = leader;
  186. if (unlikely(zap_leader))
  187. goto repeat;
  188. }
  189. /*
  190. * This checks not only the pgrp, but falls back on the pid if no
  191. * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
  192. * without this...
  193. *
  194. * The caller must hold rcu lock or the tasklist lock.
  195. */
  196. struct pid *session_of_pgrp(struct pid *pgrp)
  197. {
  198. struct task_struct *p;
  199. struct pid *sid = NULL;
  200. p = pid_task(pgrp, PIDTYPE_PGID);
  201. if (p == NULL)
  202. p = pid_task(pgrp, PIDTYPE_PID);
  203. if (p != NULL)
  204. sid = task_session(p);
  205. return sid;
  206. }
  207. /*
  208. * Determine if a process group is "orphaned", according to the POSIX
  209. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  210. * by terminal-generated stop signals. Newly orphaned process groups are
  211. * to receive a SIGHUP and a SIGCONT.
  212. *
  213. * "I ask you, have you ever known what it is to be an orphan?"
  214. */
  215. static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
  216. {
  217. struct task_struct *p;
  218. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  219. if ((p == ignored_task) ||
  220. (p->exit_state && thread_group_empty(p)) ||
  221. is_global_init(p->real_parent))
  222. continue;
  223. if (task_pgrp(p->real_parent) != pgrp &&
  224. task_session(p->real_parent) == task_session(p))
  225. return 0;
  226. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  227. return 1;
  228. }
  229. int is_current_pgrp_orphaned(void)
  230. {
  231. int retval;
  232. read_lock(&tasklist_lock);
  233. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  234. read_unlock(&tasklist_lock);
  235. return retval;
  236. }
  237. static bool has_stopped_jobs(struct pid *pgrp)
  238. {
  239. struct task_struct *p;
  240. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  241. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  242. return true;
  243. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  244. return false;
  245. }
  246. /*
  247. * Check to see if any process groups have become orphaned as
  248. * a result of our exiting, and if they have any stopped jobs,
  249. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  250. */
  251. static void
  252. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  253. {
  254. struct pid *pgrp = task_pgrp(tsk);
  255. struct task_struct *ignored_task = tsk;
  256. if (!parent)
  257. /* exit: our father is in a different pgrp than
  258. * we are and we were the only connection outside.
  259. */
  260. parent = tsk->real_parent;
  261. else
  262. /* reparent: our child is in a different pgrp than
  263. * we are, and it was the only connection outside.
  264. */
  265. ignored_task = NULL;
  266. if (task_pgrp(parent) != pgrp &&
  267. task_session(parent) == task_session(tsk) &&
  268. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  269. has_stopped_jobs(pgrp)) {
  270. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  271. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  272. }
  273. }
  274. /**
  275. * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
  276. *
  277. * If a kernel thread is launched as a result of a system call, or if
  278. * it ever exits, it should generally reparent itself to kthreadd so it
  279. * isn't in the way of other processes and is correctly cleaned up on exit.
  280. *
  281. * The various task state such as scheduling policy and priority may have
  282. * been inherited from a user process, so we reset them to sane values here.
  283. *
  284. * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
  285. */
  286. static void reparent_to_kthreadd(void)
  287. {
  288. write_lock_irq(&tasklist_lock);
  289. ptrace_unlink(current);
  290. /* Reparent to init */
  291. current->real_parent = current->parent = kthreadd_task;
  292. list_move_tail(&current->sibling, &current->real_parent->children);
  293. /* Set the exit signal to SIGCHLD so we signal init on exit */
  294. current->exit_signal = SIGCHLD;
  295. if (task_nice(current) < 0)
  296. set_user_nice(current, 0);
  297. /* cpus_allowed? */
  298. /* rt_priority? */
  299. /* signals? */
  300. memcpy(current->signal->rlim, init_task.signal->rlim,
  301. sizeof(current->signal->rlim));
  302. atomic_inc(&init_cred.usage);
  303. commit_creds(&init_cred);
  304. write_unlock_irq(&tasklist_lock);
  305. }
  306. void __set_special_pids(struct pid *pid)
  307. {
  308. struct task_struct *curr = current->group_leader;
  309. if (task_session(curr) != pid)
  310. change_pid(curr, PIDTYPE_SID, pid);
  311. if (task_pgrp(curr) != pid)
  312. change_pid(curr, PIDTYPE_PGID, pid);
  313. }
  314. static void set_special_pids(struct pid *pid)
  315. {
  316. write_lock_irq(&tasklist_lock);
  317. __set_special_pids(pid);
  318. write_unlock_irq(&tasklist_lock);
  319. }
  320. /*
  321. * Let kernel threads use this to say that they allow a certain signal.
  322. * Must not be used if kthread was cloned with CLONE_SIGHAND.
  323. */
  324. int allow_signal(int sig)
  325. {
  326. if (!valid_signal(sig) || sig < 1)
  327. return -EINVAL;
  328. spin_lock_irq(&current->sighand->siglock);
  329. /* This is only needed for daemonize()'ed kthreads */
  330. sigdelset(&current->blocked, sig);
  331. /*
  332. * Kernel threads handle their own signals. Let the signal code
  333. * know it'll be handled, so that they don't get converted to
  334. * SIGKILL or just silently dropped.
  335. */
  336. current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
  337. recalc_sigpending();
  338. spin_unlock_irq(&current->sighand->siglock);
  339. return 0;
  340. }
  341. EXPORT_SYMBOL(allow_signal);
  342. int disallow_signal(int sig)
  343. {
  344. if (!valid_signal(sig) || sig < 1)
  345. return -EINVAL;
  346. spin_lock_irq(&current->sighand->siglock);
  347. current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
  348. recalc_sigpending();
  349. spin_unlock_irq(&current->sighand->siglock);
  350. return 0;
  351. }
  352. EXPORT_SYMBOL(disallow_signal);
  353. /*
  354. * Put all the gunge required to become a kernel thread without
  355. * attached user resources in one place where it belongs.
  356. */
  357. void daemonize(const char *name, ...)
  358. {
  359. va_list args;
  360. sigset_t blocked;
  361. va_start(args, name);
  362. vsnprintf(current->comm, sizeof(current->comm), name, args);
  363. va_end(args);
  364. /*
  365. * If we were started as result of loading a module, close all of the
  366. * user space pages. We don't need them, and if we didn't close them
  367. * they would be locked into memory.
  368. */
  369. exit_mm(current);
  370. /*
  371. * We don't want to get frozen, in case system-wide hibernation
  372. * or suspend transition begins right now.
  373. */
  374. current->flags |= (PF_NOFREEZE | PF_KTHREAD);
  375. if (current->nsproxy != &init_nsproxy) {
  376. get_nsproxy(&init_nsproxy);
  377. switch_task_namespaces(current, &init_nsproxy);
  378. }
  379. set_special_pids(&init_struct_pid);
  380. proc_clear_tty(current);
  381. /* Block and flush all signals */
  382. sigfillset(&blocked);
  383. sigprocmask(SIG_BLOCK, &blocked, NULL);
  384. flush_signals(current);
  385. /* Become as one with the init task */
  386. daemonize_fs_struct();
  387. exit_files(current);
  388. current->files = init_task.files;
  389. atomic_inc(&current->files->count);
  390. reparent_to_kthreadd();
  391. }
  392. EXPORT_SYMBOL(daemonize);
  393. static void close_files(struct files_struct * files)
  394. {
  395. int i, j;
  396. struct fdtable *fdt;
  397. j = 0;
  398. /*
  399. * It is safe to dereference the fd table without RCU or
  400. * ->file_lock because this is the last reference to the
  401. * files structure. But use RCU to shut RCU-lockdep up.
  402. */
  403. rcu_read_lock();
  404. fdt = files_fdtable(files);
  405. rcu_read_unlock();
  406. for (;;) {
  407. unsigned long set;
  408. i = j * __NFDBITS;
  409. if (i >= fdt->max_fds)
  410. break;
  411. set = fdt->open_fds[j++];
  412. while (set) {
  413. if (set & 1) {
  414. struct file * file = xchg(&fdt->fd[i], NULL);
  415. if (file) {
  416. filp_close(file, files);
  417. cond_resched();
  418. }
  419. }
  420. i++;
  421. set >>= 1;
  422. }
  423. }
  424. }
  425. struct files_struct *get_files_struct(struct task_struct *task)
  426. {
  427. struct files_struct *files;
  428. task_lock(task);
  429. files = task->files;
  430. if (files)
  431. atomic_inc(&files->count);
  432. task_unlock(task);
  433. return files;
  434. }
  435. void put_files_struct(struct files_struct *files)
  436. {
  437. struct fdtable *fdt;
  438. if (atomic_dec_and_test(&files->count)) {
  439. close_files(files);
  440. /*
  441. * Free the fd and fdset arrays if we expanded them.
  442. * If the fdtable was embedded, pass files for freeing
  443. * at the end of the RCU grace period. Otherwise,
  444. * you can free files immediately.
  445. */
  446. rcu_read_lock();
  447. fdt = files_fdtable(files);
  448. if (fdt != &files->fdtab)
  449. kmem_cache_free(files_cachep, files);
  450. free_fdtable(fdt);
  451. rcu_read_unlock();
  452. }
  453. }
  454. void reset_files_struct(struct files_struct *files)
  455. {
  456. struct task_struct *tsk = current;
  457. struct files_struct *old;
  458. old = tsk->files;
  459. task_lock(tsk);
  460. tsk->files = files;
  461. task_unlock(tsk);
  462. put_files_struct(old);
  463. }
  464. void exit_files(struct task_struct *tsk)
  465. {
  466. struct files_struct * files = tsk->files;
  467. if (files) {
  468. task_lock(tsk);
  469. tsk->files = NULL;
  470. task_unlock(tsk);
  471. put_files_struct(files);
  472. }
  473. }
  474. #ifdef CONFIG_MM_OWNER
  475. /*
  476. * A task is exiting. If it owned this mm, find a new owner for the mm.
  477. */
  478. void mm_update_next_owner(struct mm_struct *mm)
  479. {
  480. struct task_struct *c, *g, *p = current;
  481. retry:
  482. /*
  483. * If the exiting or execing task is not the owner, it's
  484. * someone else's problem.
  485. */
  486. if (mm->owner != p)
  487. return;
  488. /*
  489. * The current owner is exiting/execing and there are no other
  490. * candidates. Do not leave the mm pointing to a possibly
  491. * freed task structure.
  492. */
  493. if (atomic_read(&mm->mm_users) <= 1) {
  494. mm->owner = NULL;
  495. return;
  496. }
  497. read_lock(&tasklist_lock);
  498. /*
  499. * Search in the children
  500. */
  501. list_for_each_entry(c, &p->children, sibling) {
  502. if (c->mm == mm)
  503. goto assign_new_owner;
  504. }
  505. /*
  506. * Search in the siblings
  507. */
  508. list_for_each_entry(c, &p->real_parent->children, sibling) {
  509. if (c->mm == mm)
  510. goto assign_new_owner;
  511. }
  512. /*
  513. * Search through everything else. We should not get
  514. * here often
  515. */
  516. do_each_thread(g, c) {
  517. if (c->mm == mm)
  518. goto assign_new_owner;
  519. } while_each_thread(g, c);
  520. read_unlock(&tasklist_lock);
  521. /*
  522. * We found no owner yet mm_users > 1: this implies that we are
  523. * most likely racing with swapoff (try_to_unuse()) or /proc or
  524. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  525. */
  526. mm->owner = NULL;
  527. return;
  528. assign_new_owner:
  529. BUG_ON(c == p);
  530. get_task_struct(c);
  531. /*
  532. * The task_lock protects c->mm from changing.
  533. * We always want mm->owner->mm == mm
  534. */
  535. task_lock(c);
  536. /*
  537. * Delay read_unlock() till we have the task_lock()
  538. * to ensure that c does not slip away underneath us
  539. */
  540. read_unlock(&tasklist_lock);
  541. if (c->mm != mm) {
  542. task_unlock(c);
  543. put_task_struct(c);
  544. goto retry;
  545. }
  546. mm->owner = c;
  547. task_unlock(c);
  548. put_task_struct(c);
  549. }
  550. #endif /* CONFIG_MM_OWNER */
  551. /*
  552. * Turn us into a lazy TLB process if we
  553. * aren't already..
  554. */
  555. static void exit_mm(struct task_struct * tsk)
  556. {
  557. struct mm_struct *mm = tsk->mm;
  558. struct core_state *core_state;
  559. mm_release(tsk, mm);
  560. if (!mm)
  561. return;
  562. sync_mm_rss(mm);
  563. /*
  564. * Serialize with any possible pending coredump.
  565. * We must hold mmap_sem around checking core_state
  566. * and clearing tsk->mm. The core-inducing thread
  567. * will increment ->nr_threads for each thread in the
  568. * group with ->mm != NULL.
  569. */
  570. down_read(&mm->mmap_sem);
  571. core_state = mm->core_state;
  572. if (core_state) {
  573. struct core_thread self;
  574. up_read(&mm->mmap_sem);
  575. self.task = tsk;
  576. self.next = xchg(&core_state->dumper.next, &self);
  577. /*
  578. * Implies mb(), the result of xchg() must be visible
  579. * to core_state->dumper.
  580. */
  581. if (atomic_dec_and_test(&core_state->nr_threads))
  582. complete(&core_state->startup);
  583. for (;;) {
  584. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  585. if (!self.task) /* see coredump_finish() */
  586. break;
  587. schedule();
  588. }
  589. __set_task_state(tsk, TASK_RUNNING);
  590. down_read(&mm->mmap_sem);
  591. }
  592. atomic_inc(&mm->mm_count);
  593. BUG_ON(mm != tsk->active_mm);
  594. /* more a memory barrier than a real lock */
  595. task_lock(tsk);
  596. tsk->mm = NULL;
  597. up_read(&mm->mmap_sem);
  598. enter_lazy_tlb(mm, current);
  599. task_unlock(tsk);
  600. mm_update_next_owner(mm);
  601. mmput(mm);
  602. }
  603. /*
  604. * When we die, we re-parent all our children, and try to:
  605. * 1. give them to another thread in our thread group, if such a member exists
  606. * 2. give it to the first ancestor process which prctl'd itself as a
  607. * child_subreaper for its children (like a service manager)
  608. * 3. give it to the init process (PID 1) in our pid namespace
  609. */
  610. static struct task_struct *find_new_reaper(struct task_struct *father)
  611. __releases(&tasklist_lock)
  612. __acquires(&tasklist_lock)
  613. {
  614. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  615. struct task_struct *thread;
  616. thread = father;
  617. while_each_thread(father, thread) {
  618. if (thread->flags & PF_EXITING)
  619. continue;
  620. if (unlikely(pid_ns->child_reaper == father))
  621. pid_ns->child_reaper = thread;
  622. return thread;
  623. }
  624. if (unlikely(pid_ns->child_reaper == father)) {
  625. write_unlock_irq(&tasklist_lock);
  626. if (unlikely(pid_ns == &init_pid_ns)) {
  627. panic("Attempted to kill init! exitcode=0x%08x\n",
  628. father->signal->group_exit_code ?:
  629. father->exit_code);
  630. }
  631. zap_pid_ns_processes(pid_ns);
  632. write_lock_irq(&tasklist_lock);
  633. /*
  634. * We can not clear ->child_reaper or leave it alone.
  635. * There may by stealth EXIT_DEAD tasks on ->children,
  636. * forget_original_parent() must move them somewhere.
  637. */
  638. pid_ns->child_reaper = init_pid_ns.child_reaper;
  639. } else if (father->signal->has_child_subreaper) {
  640. struct task_struct *reaper;
  641. /*
  642. * Find the first ancestor marked as child_subreaper.
  643. * Note that the code below checks same_thread_group(reaper,
  644. * pid_ns->child_reaper). This is what we need to DTRT in a
  645. * PID namespace. However we still need the check above, see
  646. * http://marc.info/?l=linux-kernel&m=131385460420380
  647. */
  648. for (reaper = father->real_parent;
  649. reaper != &init_task;
  650. reaper = reaper->real_parent) {
  651. if (same_thread_group(reaper, pid_ns->child_reaper))
  652. break;
  653. if (!reaper->signal->is_child_subreaper)
  654. continue;
  655. thread = reaper;
  656. do {
  657. if (!(thread->flags & PF_EXITING))
  658. return reaper;
  659. } while_each_thread(reaper, thread);
  660. }
  661. }
  662. return pid_ns->child_reaper;
  663. }
  664. /*
  665. * Any that need to be release_task'd are put on the @dead list.
  666. */
  667. static void reparent_leader(struct task_struct *father, struct task_struct *p,
  668. struct list_head *dead)
  669. {
  670. list_move_tail(&p->sibling, &p->real_parent->children);
  671. if (p->exit_state == EXIT_DEAD)
  672. return;
  673. /*
  674. * If this is a threaded reparent there is no need to
  675. * notify anyone anything has happened.
  676. */
  677. if (same_thread_group(p->real_parent, father))
  678. return;
  679. /* We don't want people slaying init. */
  680. p->exit_signal = SIGCHLD;
  681. /* If it has exited notify the new parent about this child's death. */
  682. if (!p->ptrace &&
  683. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  684. if (do_notify_parent(p, p->exit_signal)) {
  685. p->exit_state = EXIT_DEAD;
  686. list_move_tail(&p->sibling, dead);
  687. }
  688. }
  689. kill_orphaned_pgrp(p, father);
  690. }
  691. static void forget_original_parent(struct task_struct *father)
  692. {
  693. struct task_struct *p, *n, *reaper;
  694. LIST_HEAD(dead_children);
  695. write_lock_irq(&tasklist_lock);
  696. /*
  697. * Note that exit_ptrace() and find_new_reaper() might
  698. * drop tasklist_lock and reacquire it.
  699. */
  700. exit_ptrace(father);
  701. reaper = find_new_reaper(father);
  702. list_for_each_entry_safe(p, n, &father->children, sibling) {
  703. struct task_struct *t = p;
  704. do {
  705. t->real_parent = reaper;
  706. if (t->parent == father) {
  707. BUG_ON(t->ptrace);
  708. t->parent = t->real_parent;
  709. }
  710. if (t->pdeath_signal)
  711. group_send_sig_info(t->pdeath_signal,
  712. SEND_SIG_NOINFO, t);
  713. } while_each_thread(p, t);
  714. reparent_leader(father, p, &dead_children);
  715. }
  716. write_unlock_irq(&tasklist_lock);
  717. BUG_ON(!list_empty(&father->children));
  718. list_for_each_entry_safe(p, n, &dead_children, sibling) {
  719. list_del_init(&p->sibling);
  720. release_task(p);
  721. }
  722. }
  723. /*
  724. * Send signals to all our closest relatives so that they know
  725. * to properly mourn us..
  726. */
  727. static void exit_notify(struct task_struct *tsk, int group_dead)
  728. {
  729. bool autoreap;
  730. /*
  731. * This does two things:
  732. *
  733. * A. Make init inherit all the child processes
  734. * B. Check to see if any process groups have become orphaned
  735. * as a result of our exiting, and if they have any stopped
  736. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  737. */
  738. forget_original_parent(tsk);
  739. exit_task_namespaces(tsk);
  740. write_lock_irq(&tasklist_lock);
  741. if (group_dead)
  742. kill_orphaned_pgrp(tsk->group_leader, NULL);
  743. if (unlikely(tsk->ptrace)) {
  744. int sig = thread_group_leader(tsk) &&
  745. thread_group_empty(tsk) &&
  746. !ptrace_reparented(tsk) ?
  747. tsk->exit_signal : SIGCHLD;
  748. autoreap = do_notify_parent(tsk, sig);
  749. } else if (thread_group_leader(tsk)) {
  750. autoreap = thread_group_empty(tsk) &&
  751. do_notify_parent(tsk, tsk->exit_signal);
  752. } else {
  753. autoreap = true;
  754. }
  755. tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
  756. /* mt-exec, de_thread() is waiting for group leader */
  757. if (unlikely(tsk->signal->notify_count < 0))
  758. wake_up_process(tsk->signal->group_exit_task);
  759. write_unlock_irq(&tasklist_lock);
  760. /* If the process is dead, release it - nobody will wait for it */
  761. if (autoreap)
  762. release_task(tsk);
  763. }
  764. #ifdef CONFIG_DEBUG_STACK_USAGE
  765. static void check_stack_usage(void)
  766. {
  767. static DEFINE_SPINLOCK(low_water_lock);
  768. static int lowest_to_date = THREAD_SIZE;
  769. unsigned long free;
  770. free = stack_not_used(current);
  771. if (free >= lowest_to_date)
  772. return;
  773. spin_lock(&low_water_lock);
  774. if (free < lowest_to_date) {
  775. printk(KERN_WARNING "%s (%d) used greatest stack depth: "
  776. "%lu bytes left\n",
  777. current->comm, task_pid_nr(current), free);
  778. lowest_to_date = free;
  779. }
  780. spin_unlock(&low_water_lock);
  781. }
  782. #else
  783. static inline void check_stack_usage(void) {}
  784. #endif
  785. void do_exit(long code)
  786. {
  787. struct task_struct *tsk = current;
  788. int group_dead;
  789. profile_task_exit(tsk);
  790. WARN_ON(blk_needs_flush_plug(tsk));
  791. if (unlikely(in_interrupt()))
  792. panic("Aiee, killing interrupt handler!");
  793. if (unlikely(!tsk->pid))
  794. panic("Attempted to kill the idle task!");
  795. /*
  796. * If do_exit is called because this processes oopsed, it's possible
  797. * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
  798. * continuing. Amongst other possible reasons, this is to prevent
  799. * mm_release()->clear_child_tid() from writing to a user-controlled
  800. * kernel address.
  801. */
  802. set_fs(USER_DS);
  803. ptrace_event(PTRACE_EVENT_EXIT, code);
  804. validate_creds_for_do_exit(tsk);
  805. /*
  806. * We're taking recursive faults here in do_exit. Safest is to just
  807. * leave this task alone and wait for reboot.
  808. */
  809. if (unlikely(tsk->flags & PF_EXITING)) {
  810. printk(KERN_ALERT
  811. "Fixing recursive fault but reboot is needed!\n");
  812. /*
  813. * We can do this unlocked here. The futex code uses
  814. * this flag just to verify whether the pi state
  815. * cleanup has been done or not. In the worst case it
  816. * loops once more. We pretend that the cleanup was
  817. * done as there is no way to return. Either the
  818. * OWNER_DIED bit is set by now or we push the blocked
  819. * task into the wait for ever nirwana as well.
  820. */
  821. tsk->flags |= PF_EXITPIDONE;
  822. set_current_state(TASK_UNINTERRUPTIBLE);
  823. schedule();
  824. }
  825. exit_signals(tsk); /* sets PF_EXITING */
  826. /*
  827. * tsk->flags are checked in the futex code to protect against
  828. * an exiting task cleaning up the robust pi futexes, and in
  829. * task_work_add() to avoid the race with exit_task_work().
  830. */
  831. smp_mb();
  832. raw_spin_unlock_wait(&tsk->pi_lock);
  833. exit_task_work(tsk);
  834. if (unlikely(in_atomic()))
  835. printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
  836. current->comm, task_pid_nr(current),
  837. preempt_count());
  838. acct_update_integrals(tsk);
  839. /* sync mm's RSS info before statistics gathering */
  840. if (tsk->mm)
  841. sync_mm_rss(tsk->mm);
  842. group_dead = atomic_dec_and_test(&tsk->signal->live);
  843. if (group_dead) {
  844. hrtimer_cancel(&tsk->signal->real_timer);
  845. exit_itimers(tsk->signal);
  846. if (tsk->mm)
  847. setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
  848. }
  849. acct_collect(code, group_dead);
  850. if (group_dead)
  851. tty_audit_exit();
  852. audit_free(tsk);
  853. tsk->exit_code = code;
  854. taskstats_exit(tsk, group_dead);
  855. exit_mm(tsk);
  856. if (group_dead)
  857. acct_process();
  858. trace_sched_process_exit(tsk);
  859. exit_sem(tsk);
  860. exit_shm(tsk);
  861. exit_files(tsk);
  862. exit_fs(tsk);
  863. check_stack_usage();
  864. exit_thread();
  865. /*
  866. * Flush inherited counters to the parent - before the parent
  867. * gets woken up by child-exit notifications.
  868. *
  869. * because of cgroup mode, must be called before cgroup_exit()
  870. */
  871. perf_event_exit_task(tsk);
  872. cgroup_exit(tsk, 1);
  873. if (group_dead)
  874. disassociate_ctty(1);
  875. module_put(task_thread_info(tsk)->exec_domain->module);
  876. proc_exit_connector(tsk);
  877. /*
  878. * FIXME: do that only when needed, using sched_exit tracepoint
  879. */
  880. ptrace_put_breakpoints(tsk);
  881. exit_notify(tsk, group_dead);
  882. #ifdef CONFIG_NUMA
  883. task_lock(tsk);
  884. mpol_put(tsk->mempolicy);
  885. tsk->mempolicy = NULL;
  886. task_unlock(tsk);
  887. #endif
  888. #ifdef CONFIG_FUTEX
  889. if (unlikely(current->pi_state_cache))
  890. kfree(current->pi_state_cache);
  891. #endif
  892. /*
  893. * Make sure we are holding no locks:
  894. */
  895. debug_check_no_locks_held(tsk);
  896. /*
  897. * We can do this unlocked here. The futex code uses this flag
  898. * just to verify whether the pi state cleanup has been done
  899. * or not. In the worst case it loops once more.
  900. */
  901. tsk->flags |= PF_EXITPIDONE;
  902. if (tsk->io_context)
  903. exit_io_context(tsk);
  904. if (tsk->splice_pipe)
  905. __free_pipe_info(tsk->splice_pipe);
  906. validate_creds_for_do_exit(tsk);
  907. preempt_disable();
  908. if (tsk->nr_dirtied)
  909. __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
  910. exit_rcu();
  911. /*
  912. * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
  913. * when the following two conditions become true.
  914. * - There is race condition of mmap_sem (It is acquired by
  915. * exit_mm()), and
  916. * - SMI occurs before setting TASK_RUNINNG.
  917. * (or hypervisor of virtual machine switches to other guest)
  918. * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
  919. *
  920. * To avoid it, we have to wait for releasing tsk->pi_lock which
  921. * is held by try_to_wake_up()
  922. */
  923. smp_mb();
  924. raw_spin_unlock_wait(&tsk->pi_lock);
  925. /* causes final put_task_struct in finish_task_switch(). */
  926. tsk->state = TASK_DEAD;
  927. tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
  928. schedule();
  929. BUG();
  930. /* Avoid "noreturn function does return". */
  931. for (;;)
  932. cpu_relax(); /* For when BUG is null */
  933. }
  934. EXPORT_SYMBOL_GPL(do_exit);
  935. void complete_and_exit(struct completion *comp, long code)
  936. {
  937. if (comp)
  938. complete(comp);
  939. do_exit(code);
  940. }
  941. EXPORT_SYMBOL(complete_and_exit);
  942. SYSCALL_DEFINE1(exit, int, error_code)
  943. {
  944. do_exit((error_code&0xff)<<8);
  945. }
  946. /*
  947. * Take down every thread in the group. This is called by fatal signals
  948. * as well as by sys_exit_group (below).
  949. */
  950. void
  951. do_group_exit(int exit_code)
  952. {
  953. struct signal_struct *sig = current->signal;
  954. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  955. if (signal_group_exit(sig))
  956. exit_code = sig->group_exit_code;
  957. else if (!thread_group_empty(current)) {
  958. struct sighand_struct *const sighand = current->sighand;
  959. spin_lock_irq(&sighand->siglock);
  960. if (signal_group_exit(sig))
  961. /* Another thread got here before we took the lock. */
  962. exit_code = sig->group_exit_code;
  963. else {
  964. sig->group_exit_code = exit_code;
  965. sig->flags = SIGNAL_GROUP_EXIT;
  966. zap_other_threads(current);
  967. }
  968. spin_unlock_irq(&sighand->siglock);
  969. }
  970. do_exit(exit_code);
  971. /* NOTREACHED */
  972. }
  973. /*
  974. * this kills every thread in the thread group. Note that any externally
  975. * wait4()-ing process will get the correct exit code - even if this
  976. * thread is not the thread group leader.
  977. */
  978. SYSCALL_DEFINE1(exit_group, int, error_code)
  979. {
  980. do_group_exit((error_code & 0xff) << 8);
  981. /* NOTREACHED */
  982. return 0;
  983. }
  984. struct wait_opts {
  985. enum pid_type wo_type;
  986. int wo_flags;
  987. struct pid *wo_pid;
  988. struct siginfo __user *wo_info;
  989. int __user *wo_stat;
  990. struct rusage __user *wo_rusage;
  991. wait_queue_t child_wait;
  992. int notask_error;
  993. };
  994. static inline
  995. struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  996. {
  997. if (type != PIDTYPE_PID)
  998. task = task->group_leader;
  999. return task->pids[type].pid;
  1000. }
  1001. static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
  1002. {
  1003. return wo->wo_type == PIDTYPE_MAX ||
  1004. task_pid_type(p, wo->wo_type) == wo->wo_pid;
  1005. }
  1006. static int eligible_child(struct wait_opts *wo, struct task_struct *p)
  1007. {
  1008. if (!eligible_pid(wo, p))
  1009. return 0;
  1010. /* Wait for all children (clone and not) if __WALL is set;
  1011. * otherwise, wait for clone children *only* if __WCLONE is
  1012. * set; otherwise, wait for non-clone children *only*. (Note:
  1013. * A "clone" child here is one that reports to its parent
  1014. * using a signal other than SIGCHLD.) */
  1015. if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
  1016. && !(wo->wo_flags & __WALL))
  1017. return 0;
  1018. return 1;
  1019. }
  1020. static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
  1021. pid_t pid, uid_t uid, int why, int status)
  1022. {
  1023. struct siginfo __user *infop;
  1024. int retval = wo->wo_rusage
  1025. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1026. put_task_struct(p);
  1027. infop = wo->wo_info;
  1028. if (infop) {
  1029. if (!retval)
  1030. retval = put_user(SIGCHLD, &infop->si_signo);
  1031. if (!retval)
  1032. retval = put_user(0, &infop->si_errno);
  1033. if (!retval)
  1034. retval = put_user((short)why, &infop->si_code);
  1035. if (!retval)
  1036. retval = put_user(pid, &infop->si_pid);
  1037. if (!retval)
  1038. retval = put_user(uid, &infop->si_uid);
  1039. if (!retval)
  1040. retval = put_user(status, &infop->si_status);
  1041. }
  1042. if (!retval)
  1043. retval = pid;
  1044. return retval;
  1045. }
  1046. /*
  1047. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  1048. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1049. * the lock and this task is uninteresting. If we return nonzero, we have
  1050. * released the lock and the system call should return.
  1051. */
  1052. static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
  1053. {
  1054. unsigned long state;
  1055. int retval, status, traced;
  1056. pid_t pid = task_pid_vnr(p);
  1057. uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1058. struct siginfo __user *infop;
  1059. if (!likely(wo->wo_flags & WEXITED))
  1060. return 0;
  1061. if (unlikely(wo->wo_flags & WNOWAIT)) {
  1062. int exit_code = p->exit_code;
  1063. int why;
  1064. get_task_struct(p);
  1065. read_unlock(&tasklist_lock);
  1066. if ((exit_code & 0x7f) == 0) {
  1067. why = CLD_EXITED;
  1068. status = exit_code >> 8;
  1069. } else {
  1070. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1071. status = exit_code & 0x7f;
  1072. }
  1073. return wait_noreap_copyout(wo, p, pid, uid, why, status);
  1074. }
  1075. /*
  1076. * Try to move the task's state to DEAD
  1077. * only one thread is allowed to do this:
  1078. */
  1079. state = xchg(&p->exit_state, EXIT_DEAD);
  1080. if (state != EXIT_ZOMBIE) {
  1081. BUG_ON(state != EXIT_DEAD);
  1082. return 0;
  1083. }
  1084. traced = ptrace_reparented(p);
  1085. /*
  1086. * It can be ptraced but not reparented, check
  1087. * thread_group_leader() to filter out sub-threads.
  1088. */
  1089. if (likely(!traced) && thread_group_leader(p)) {
  1090. struct signal_struct *psig;
  1091. struct signal_struct *sig;
  1092. unsigned long maxrss;
  1093. cputime_t tgutime, tgstime;
  1094. /*
  1095. * The resource counters for the group leader are in its
  1096. * own task_struct. Those for dead threads in the group
  1097. * are in its signal_struct, as are those for the child
  1098. * processes it has previously reaped. All these
  1099. * accumulate in the parent's signal_struct c* fields.
  1100. *
  1101. * We don't bother to take a lock here to protect these
  1102. * p->signal fields, because they are only touched by
  1103. * __exit_signal, which runs with tasklist_lock
  1104. * write-locked anyway, and so is excluded here. We do
  1105. * need to protect the access to parent->signal fields,
  1106. * as other threads in the parent group can be right
  1107. * here reaping other children at the same time.
  1108. *
  1109. * We use thread_group_times() to get times for the thread
  1110. * group, which consolidates times for all threads in the
  1111. * group including the group leader.
  1112. */
  1113. thread_group_times(p, &tgutime, &tgstime);
  1114. spin_lock_irq(&p->real_parent->sighand->siglock);
  1115. psig = p->real_parent->signal;
  1116. sig = p->signal;
  1117. psig->cutime += tgutime + sig->cutime;
  1118. psig->cstime += tgstime + sig->cstime;
  1119. psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
  1120. psig->cmin_flt +=
  1121. p->min_flt + sig->min_flt + sig->cmin_flt;
  1122. psig->cmaj_flt +=
  1123. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  1124. psig->cnvcsw +=
  1125. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  1126. psig->cnivcsw +=
  1127. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  1128. psig->cinblock +=
  1129. task_io_get_inblock(p) +
  1130. sig->inblock + sig->cinblock;
  1131. psig->coublock +=
  1132. task_io_get_oublock(p) +
  1133. sig->oublock + sig->coublock;
  1134. maxrss = max(sig->maxrss, sig->cmaxrss);
  1135. if (psig->cmaxrss < maxrss)
  1136. psig->cmaxrss = maxrss;
  1137. task_io_accounting_add(&psig->ioac, &p->ioac);
  1138. task_io_accounting_add(&psig->ioac, &sig->ioac);
  1139. spin_unlock_irq(&p->real_parent->sighand->siglock);
  1140. }
  1141. /*
  1142. * Now we are sure this task is interesting, and no other
  1143. * thread can reap it because we set its state to EXIT_DEAD.
  1144. */
  1145. read_unlock(&tasklist_lock);
  1146. retval = wo->wo_rusage
  1147. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1148. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  1149. ? p->signal->group_exit_code : p->exit_code;
  1150. if (!retval && wo->wo_stat)
  1151. retval = put_user(status, wo->wo_stat);
  1152. infop = wo->wo_info;
  1153. if (!retval && infop)
  1154. retval = put_user(SIGCHLD, &infop->si_signo);
  1155. if (!retval && infop)
  1156. retval = put_user(0, &infop->si_errno);
  1157. if (!retval && infop) {
  1158. int why;
  1159. if ((status & 0x7f) == 0) {
  1160. why = CLD_EXITED;
  1161. status >>= 8;
  1162. } else {
  1163. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1164. status &= 0x7f;
  1165. }
  1166. retval = put_user((short)why, &infop->si_code);
  1167. if (!retval)
  1168. retval = put_user(status, &infop->si_status);
  1169. }
  1170. if (!retval && infop)
  1171. retval = put_user(pid, &infop->si_pid);
  1172. if (!retval && infop)
  1173. retval = put_user(uid, &infop->si_uid);
  1174. if (!retval)
  1175. retval = pid;
  1176. if (traced) {
  1177. write_lock_irq(&tasklist_lock);
  1178. /* We dropped tasklist, ptracer could die and untrace */
  1179. ptrace_unlink(p);
  1180. /*
  1181. * If this is not a sub-thread, notify the parent.
  1182. * If parent wants a zombie, don't release it now.
  1183. */
  1184. if (thread_group_leader(p) &&
  1185. !do_notify_parent(p, p->exit_signal)) {
  1186. p->exit_state = EXIT_ZOMBIE;
  1187. p = NULL;
  1188. }
  1189. write_unlock_irq(&tasklist_lock);
  1190. }
  1191. if (p != NULL)
  1192. release_task(p);
  1193. return retval;
  1194. }
  1195. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  1196. {
  1197. if (ptrace) {
  1198. if (task_is_stopped_or_traced(p) &&
  1199. !(p->jobctl & JOBCTL_LISTENING))
  1200. return &p->exit_code;
  1201. } else {
  1202. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  1203. return &p->signal->group_exit_code;
  1204. }
  1205. return NULL;
  1206. }
  1207. /**
  1208. * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
  1209. * @wo: wait options
  1210. * @ptrace: is the wait for ptrace
  1211. * @p: task to wait for
  1212. *
  1213. * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
  1214. *
  1215. * CONTEXT:
  1216. * read_lock(&tasklist_lock), which is released if return value is
  1217. * non-zero. Also, grabs and releases @p->sighand->siglock.
  1218. *
  1219. * RETURNS:
  1220. * 0 if wait condition didn't exist and search for other wait conditions
  1221. * should continue. Non-zero return, -errno on failure and @p's pid on
  1222. * success, implies that tasklist_lock is released and wait condition
  1223. * search should terminate.
  1224. */
  1225. static int wait_task_stopped(struct wait_opts *wo,
  1226. int ptrace, struct task_struct *p)
  1227. {
  1228. struct siginfo __user *infop;
  1229. int retval, exit_code, *p_code, why;
  1230. uid_t uid = 0; /* unneeded, required by compiler */
  1231. pid_t pid;
  1232. /*
  1233. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1234. */
  1235. if (!ptrace && !(wo->wo_flags & WUNTRACED))
  1236. return 0;
  1237. if (!task_stopped_code(p, ptrace))
  1238. return 0;
  1239. exit_code = 0;
  1240. spin_lock_irq(&p->sighand->siglock);
  1241. p_code = task_stopped_code(p, ptrace);
  1242. if (unlikely(!p_code))
  1243. goto unlock_sig;
  1244. exit_code = *p_code;
  1245. if (!exit_code)
  1246. goto unlock_sig;
  1247. if (!unlikely(wo->wo_flags & WNOWAIT))
  1248. *p_code = 0;
  1249. uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1250. unlock_sig:
  1251. spin_unlock_irq(&p->sighand->siglock);
  1252. if (!exit_code)
  1253. return 0;
  1254. /*
  1255. * Now we are pretty sure this task is interesting.
  1256. * Make sure it doesn't get reaped out from under us while we
  1257. * give up the lock and then examine it below. We don't want to
  1258. * keep holding onto the tasklist_lock while we call getrusage and
  1259. * possibly take page faults for user memory.
  1260. */
  1261. get_task_struct(p);
  1262. pid = task_pid_vnr(p);
  1263. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1264. read_unlock(&tasklist_lock);
  1265. if (unlikely(wo->wo_flags & WNOWAIT))
  1266. return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
  1267. retval = wo->wo_rusage
  1268. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1269. if (!retval && wo->wo_stat)
  1270. retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
  1271. infop = wo->wo_info;
  1272. if (!retval && infop)
  1273. retval = put_user(SIGCHLD, &infop->si_signo);
  1274. if (!retval && infop)
  1275. retval = put_user(0, &infop->si_errno);
  1276. if (!retval && infop)
  1277. retval = put_user((short)why, &infop->si_code);
  1278. if (!retval && infop)
  1279. retval = put_user(exit_code, &infop->si_status);
  1280. if (!retval && infop)
  1281. retval = put_user(pid, &infop->si_pid);
  1282. if (!retval && infop)
  1283. retval = put_user(uid, &infop->si_uid);
  1284. if (!retval)
  1285. retval = pid;
  1286. put_task_struct(p);
  1287. BUG_ON(!retval);
  1288. return retval;
  1289. }
  1290. /*
  1291. * Handle do_wait work for one task in a live, non-stopped state.
  1292. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1293. * the lock and this task is uninteresting. If we return nonzero, we have
  1294. * released the lock and the system call should return.
  1295. */
  1296. static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
  1297. {
  1298. int retval;
  1299. pid_t pid;
  1300. uid_t uid;
  1301. if (!unlikely(wo->wo_flags & WCONTINUED))
  1302. return 0;
  1303. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1304. return 0;
  1305. spin_lock_irq(&p->sighand->siglock);
  1306. /* Re-check with the lock held. */
  1307. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1308. spin_unlock_irq(&p->sighand->siglock);
  1309. return 0;
  1310. }
  1311. if (!unlikely(wo->wo_flags & WNOWAIT))
  1312. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1313. uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1314. spin_unlock_irq(&p->sighand->siglock);
  1315. pid = task_pid_vnr(p);
  1316. get_task_struct(p);
  1317. read_unlock(&tasklist_lock);
  1318. if (!wo->wo_info) {
  1319. retval = wo->wo_rusage
  1320. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1321. put_task_struct(p);
  1322. if (!retval && wo->wo_stat)
  1323. retval = put_user(0xffff, wo->wo_stat);
  1324. if (!retval)
  1325. retval = pid;
  1326. } else {
  1327. retval = wait_noreap_copyout(wo, p, pid, uid,
  1328. CLD_CONTINUED, SIGCONT);
  1329. BUG_ON(retval == 0);
  1330. }
  1331. return retval;
  1332. }
  1333. /*
  1334. * Consider @p for a wait by @parent.
  1335. *
  1336. * -ECHILD should be in ->notask_error before the first call.
  1337. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1338. * Returns zero if the search for a child should continue;
  1339. * then ->notask_error is 0 if @p is an eligible child,
  1340. * or another error from security_task_wait(), or still -ECHILD.
  1341. */
  1342. static int wait_consider_task(struct wait_opts *wo, int ptrace,
  1343. struct task_struct *p)
  1344. {
  1345. int ret = eligible_child(wo, p);
  1346. if (!ret)
  1347. return ret;
  1348. ret = security_task_wait(p);
  1349. if (unlikely(ret < 0)) {
  1350. /*
  1351. * If we have not yet seen any eligible child,
  1352. * then let this error code replace -ECHILD.
  1353. * A permission error will give the user a clue
  1354. * to look for security policy problems, rather
  1355. * than for mysterious wait bugs.
  1356. */
  1357. if (wo->notask_error)
  1358. wo->notask_error = ret;
  1359. return 0;
  1360. }
  1361. /* dead body doesn't have much to contribute */
  1362. if (unlikely(p->exit_state == EXIT_DEAD)) {
  1363. /*
  1364. * But do not ignore this task until the tracer does
  1365. * wait_task_zombie()->do_notify_parent().
  1366. */
  1367. if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
  1368. wo->notask_error = 0;
  1369. return 0;
  1370. }
  1371. /* slay zombie? */
  1372. if (p->exit_state == EXIT_ZOMBIE) {
  1373. /*
  1374. * A zombie ptracee is only visible to its ptracer.
  1375. * Notification and reaping will be cascaded to the real
  1376. * parent when the ptracer detaches.
  1377. */
  1378. if (likely(!ptrace) && unlikely(p->ptrace)) {
  1379. /* it will become visible, clear notask_error */
  1380. wo->notask_error = 0;
  1381. return 0;
  1382. }
  1383. /* we don't reap group leaders with subthreads */
  1384. if (!delay_group_leader(p))
  1385. return wait_task_zombie(wo, p);
  1386. /*
  1387. * Allow access to stopped/continued state via zombie by
  1388. * falling through. Clearing of notask_error is complex.
  1389. *
  1390. * When !@ptrace:
  1391. *
  1392. * If WEXITED is set, notask_error should naturally be
  1393. * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
  1394. * so, if there are live subthreads, there are events to
  1395. * wait for. If all subthreads are dead, it's still safe
  1396. * to clear - this function will be called again in finite
  1397. * amount time once all the subthreads are released and
  1398. * will then return without clearing.
  1399. *
  1400. * When @ptrace:
  1401. *
  1402. * Stopped state is per-task and thus can't change once the
  1403. * target task dies. Only continued and exited can happen.
  1404. * Clear notask_error if WCONTINUED | WEXITED.
  1405. */
  1406. if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
  1407. wo->notask_error = 0;
  1408. } else {
  1409. /*
  1410. * If @p is ptraced by a task in its real parent's group,
  1411. * hide group stop/continued state when looking at @p as
  1412. * the real parent; otherwise, a single stop can be
  1413. * reported twice as group and ptrace stops.
  1414. *
  1415. * If a ptracer wants to distinguish the two events for its
  1416. * own children, it should create a separate process which
  1417. * takes the role of real parent.
  1418. */
  1419. if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
  1420. return 0;
  1421. /*
  1422. * @p is alive and it's gonna stop, continue or exit, so
  1423. * there always is something to wait for.
  1424. */
  1425. wo->notask_error = 0;
  1426. }
  1427. /*
  1428. * Wait for stopped. Depending on @ptrace, different stopped state
  1429. * is used and the two don't interact with each other.
  1430. */
  1431. ret = wait_task_stopped(wo, ptrace, p);
  1432. if (ret)
  1433. return ret;
  1434. /*
  1435. * Wait for continued. There's only one continued state and the
  1436. * ptracer can consume it which can confuse the real parent. Don't
  1437. * use WCONTINUED from ptracer. You don't need or want it.
  1438. */
  1439. return wait_task_continued(wo, p);
  1440. }
  1441. /*
  1442. * Do the work of do_wait() for one thread in the group, @tsk.
  1443. *
  1444. * -ECHILD should be in ->notask_error before the first call.
  1445. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1446. * Returns zero if the search for a child should continue; then
  1447. * ->notask_error is 0 if there were any eligible children,
  1448. * or another error from security_task_wait(), or still -ECHILD.
  1449. */
  1450. static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
  1451. {
  1452. struct task_struct *p;
  1453. list_for_each_entry(p, &tsk->children, sibling) {
  1454. int ret = wait_consider_task(wo, 0, p);
  1455. if (ret)
  1456. return ret;
  1457. }
  1458. return 0;
  1459. }
  1460. static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
  1461. {
  1462. struct task_struct *p;
  1463. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1464. int ret = wait_consider_task(wo, 1, p);
  1465. if (ret)
  1466. return ret;
  1467. }
  1468. return 0;
  1469. }
  1470. static int child_wait_callback(wait_queue_t *wait, unsigned mode,
  1471. int sync, void *key)
  1472. {
  1473. struct wait_opts *wo = container_of(wait, struct wait_opts,
  1474. child_wait);
  1475. struct task_struct *p = key;
  1476. if (!eligible_pid(wo, p))
  1477. return 0;
  1478. if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
  1479. return 0;
  1480. return default_wake_function(wait, mode, sync, key);
  1481. }
  1482. void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
  1483. {
  1484. __wake_up_sync_key(&parent->signal->wait_chldexit,
  1485. TASK_INTERRUPTIBLE, 1, p);
  1486. }
  1487. static long do_wait(struct wait_opts *wo)
  1488. {
  1489. struct task_struct *tsk;
  1490. int retval;
  1491. trace_sched_process_wait(wo->wo_pid);
  1492. init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
  1493. wo->child_wait.private = current;
  1494. add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1495. repeat:
  1496. /*
  1497. * If there is nothing that can match our critiera just get out.
  1498. * We will clear ->notask_error to zero if we see any child that
  1499. * might later match our criteria, even if we are not able to reap
  1500. * it yet.
  1501. */
  1502. wo->notask_error = -ECHILD;
  1503. if ((wo->wo_type < PIDTYPE_MAX) &&
  1504. (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
  1505. goto notask;
  1506. set_current_state(TASK_INTERRUPTIBLE);
  1507. read_lock(&tasklist_lock);
  1508. tsk = current;
  1509. do {
  1510. retval = do_wait_thread(wo, tsk);
  1511. if (retval)
  1512. goto end;
  1513. retval = ptrace_do_wait(wo, tsk);
  1514. if (retval)
  1515. goto end;
  1516. if (wo->wo_flags & __WNOTHREAD)
  1517. break;
  1518. } while_each_thread(current, tsk);
  1519. read_unlock(&tasklist_lock);
  1520. notask:
  1521. retval = wo->notask_error;
  1522. if (!retval && !(wo->wo_flags & WNOHANG)) {
  1523. retval = -ERESTARTSYS;
  1524. if (!signal_pending(current)) {
  1525. schedule();
  1526. goto repeat;
  1527. }
  1528. }
  1529. end:
  1530. __set_current_state(TASK_RUNNING);
  1531. remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1532. return retval;
  1533. }
  1534. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1535. infop, int, options, struct rusage __user *, ru)
  1536. {
  1537. struct wait_opts wo;
  1538. struct pid *pid = NULL;
  1539. enum pid_type type;
  1540. long ret;
  1541. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
  1542. return -EINVAL;
  1543. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1544. return -EINVAL;
  1545. switch (which) {
  1546. case P_ALL:
  1547. type = PIDTYPE_MAX;
  1548. break;
  1549. case P_PID:
  1550. type = PIDTYPE_PID;
  1551. if (upid <= 0)
  1552. return -EINVAL;
  1553. break;
  1554. case P_PGID:
  1555. type = PIDTYPE_PGID;
  1556. if (upid <= 0)
  1557. return -EINVAL;
  1558. break;
  1559. default:
  1560. return -EINVAL;
  1561. }
  1562. if (type < PIDTYPE_MAX)
  1563. pid = find_get_pid(upid);
  1564. wo.wo_type = type;
  1565. wo.wo_pid = pid;
  1566. wo.wo_flags = options;
  1567. wo.wo_info = infop;
  1568. wo.wo_stat = NULL;
  1569. wo.wo_rusage = ru;
  1570. ret = do_wait(&wo);
  1571. if (ret > 0) {
  1572. ret = 0;
  1573. } else if (infop) {
  1574. /*
  1575. * For a WNOHANG return, clear out all the fields
  1576. * we would set so the user can easily tell the
  1577. * difference.
  1578. */
  1579. if (!ret)
  1580. ret = put_user(0, &infop->si_signo);
  1581. if (!ret)
  1582. ret = put_user(0, &infop->si_errno);
  1583. if (!ret)
  1584. ret = put_user(0, &infop->si_code);
  1585. if (!ret)
  1586. ret = put_user(0, &infop->si_pid);
  1587. if (!ret)
  1588. ret = put_user(0, &infop->si_uid);
  1589. if (!ret)
  1590. ret = put_user(0, &infop->si_status);
  1591. }
  1592. put_pid(pid);
  1593. /* avoid REGPARM breakage on x86: */
  1594. asmlinkage_protect(5, ret, which, upid, infop, options, ru);
  1595. return ret;
  1596. }
  1597. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1598. int, options, struct rusage __user *, ru)
  1599. {
  1600. struct wait_opts wo;
  1601. struct pid *pid = NULL;
  1602. enum pid_type type;
  1603. long ret;
  1604. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1605. __WNOTHREAD|__WCLONE|__WALL))
  1606. return -EINVAL;
  1607. if (upid == -1)
  1608. type = PIDTYPE_MAX;
  1609. else if (upid < 0) {
  1610. type = PIDTYPE_PGID;
  1611. pid = find_get_pid(-upid);
  1612. } else if (upid == 0) {
  1613. type = PIDTYPE_PGID;
  1614. pid = get_task_pid(current, PIDTYPE_PGID);
  1615. } else /* upid > 0 */ {
  1616. type = PIDTYPE_PID;
  1617. pid = find_get_pid(upid);
  1618. }
  1619. wo.wo_type = type;
  1620. wo.wo_pid = pid;
  1621. wo.wo_flags = options | WEXITED;
  1622. wo.wo_info = NULL;
  1623. wo.wo_stat = stat_addr;
  1624. wo.wo_rusage = ru;
  1625. ret = do_wait(&wo);
  1626. put_pid(pid);
  1627. /* avoid REGPARM breakage on x86: */
  1628. asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
  1629. return ret;
  1630. }
  1631. #ifdef __ARCH_WANT_SYS_WAITPID
  1632. /*
  1633. * sys_waitpid() remains for compatibility. waitpid() should be
  1634. * implemented by calling sys_wait4() from libc.a.
  1635. */
  1636. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1637. {
  1638. return sys_wait4(pid, stat_addr, options, NULL);
  1639. }
  1640. #endif