smp_64.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542
  1. /* smp.c: Sparc64 SMP support.
  2. *
  3. * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/kernel.h>
  7. #include <linux/sched.h>
  8. #include <linux/mm.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/delay.h>
  15. #include <linux/init.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/cache.h>
  20. #include <linux/jiffies.h>
  21. #include <linux/profile.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/cpu.h>
  25. #include <asm/head.h>
  26. #include <asm/ptrace.h>
  27. #include <asm/atomic.h>
  28. #include <asm/tlbflush.h>
  29. #include <asm/mmu_context.h>
  30. #include <asm/cpudata.h>
  31. #include <asm/hvtramp.h>
  32. #include <asm/io.h>
  33. #include <asm/timer.h>
  34. #include <asm/irq.h>
  35. #include <asm/irq_regs.h>
  36. #include <asm/page.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/oplib.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/starfire.h>
  41. #include <asm/tlb.h>
  42. #include <asm/sections.h>
  43. #include <asm/prom.h>
  44. #include <asm/mdesc.h>
  45. #include <asm/ldc.h>
  46. #include <asm/hypervisor.h>
  47. int sparc64_multi_core __read_mostly;
  48. DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  49. cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  50. { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  51. EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  52. EXPORT_SYMBOL(cpu_core_map);
  53. static cpumask_t smp_commenced_mask;
  54. void smp_info(struct seq_file *m)
  55. {
  56. int i;
  57. seq_printf(m, "State:\n");
  58. for_each_online_cpu(i)
  59. seq_printf(m, "CPU%d:\t\tonline\n", i);
  60. }
  61. void smp_bogo(struct seq_file *m)
  62. {
  63. int i;
  64. for_each_online_cpu(i)
  65. seq_printf(m,
  66. "Cpu%dClkTck\t: %016lx\n",
  67. i, cpu_data(i).clock_tick);
  68. }
  69. extern void setup_sparc64_timer(void);
  70. static volatile unsigned long callin_flag = 0;
  71. void __cpuinit smp_callin(void)
  72. {
  73. int cpuid = hard_smp_processor_id();
  74. __local_per_cpu_offset = __per_cpu_offset(cpuid);
  75. if (tlb_type == hypervisor)
  76. sun4v_ktsb_register();
  77. __flush_tlb_all();
  78. setup_sparc64_timer();
  79. if (cheetah_pcache_forced_on)
  80. cheetah_enable_pcache();
  81. local_irq_enable();
  82. callin_flag = 1;
  83. __asm__ __volatile__("membar #Sync\n\t"
  84. "flush %%g6" : : : "memory");
  85. /* Clear this or we will die instantly when we
  86. * schedule back to this idler...
  87. */
  88. current_thread_info()->new_child = 0;
  89. /* Attach to the address space of init_task. */
  90. atomic_inc(&init_mm.mm_count);
  91. current->active_mm = &init_mm;
  92. /* inform the notifiers about the new cpu */
  93. notify_cpu_starting(cpuid);
  94. while (!cpu_isset(cpuid, smp_commenced_mask))
  95. rmb();
  96. ipi_call_lock_irq();
  97. cpu_set(cpuid, cpu_online_map);
  98. ipi_call_unlock_irq();
  99. /* idle thread is expected to have preempt disabled */
  100. preempt_disable();
  101. }
  102. void cpu_panic(void)
  103. {
  104. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  105. panic("SMP bolixed\n");
  106. }
  107. /* This tick register synchronization scheme is taken entirely from
  108. * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
  109. *
  110. * The only change I've made is to rework it so that the master
  111. * initiates the synchonization instead of the slave. -DaveM
  112. */
  113. #define MASTER 0
  114. #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
  115. #define NUM_ROUNDS 64 /* magic value */
  116. #define NUM_ITERS 5 /* likewise */
  117. static DEFINE_SPINLOCK(itc_sync_lock);
  118. static unsigned long go[SLAVE + 1];
  119. #define DEBUG_TICK_SYNC 0
  120. static inline long get_delta (long *rt, long *master)
  121. {
  122. unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
  123. unsigned long tcenter, t0, t1, tm;
  124. unsigned long i;
  125. for (i = 0; i < NUM_ITERS; i++) {
  126. t0 = tick_ops->get_tick();
  127. go[MASTER] = 1;
  128. membar_safe("#StoreLoad");
  129. while (!(tm = go[SLAVE]))
  130. rmb();
  131. go[SLAVE] = 0;
  132. wmb();
  133. t1 = tick_ops->get_tick();
  134. if (t1 - t0 < best_t1 - best_t0)
  135. best_t0 = t0, best_t1 = t1, best_tm = tm;
  136. }
  137. *rt = best_t1 - best_t0;
  138. *master = best_tm - best_t0;
  139. /* average best_t0 and best_t1 without overflow: */
  140. tcenter = (best_t0/2 + best_t1/2);
  141. if (best_t0 % 2 + best_t1 % 2 == 2)
  142. tcenter++;
  143. return tcenter - best_tm;
  144. }
  145. void smp_synchronize_tick_client(void)
  146. {
  147. long i, delta, adj, adjust_latency = 0, done = 0;
  148. unsigned long flags, rt, master_time_stamp, bound;
  149. #if DEBUG_TICK_SYNC
  150. struct {
  151. long rt; /* roundtrip time */
  152. long master; /* master's timestamp */
  153. long diff; /* difference between midpoint and master's timestamp */
  154. long lat; /* estimate of itc adjustment latency */
  155. } t[NUM_ROUNDS];
  156. #endif
  157. go[MASTER] = 1;
  158. while (go[MASTER])
  159. rmb();
  160. local_irq_save(flags);
  161. {
  162. for (i = 0; i < NUM_ROUNDS; i++) {
  163. delta = get_delta(&rt, &master_time_stamp);
  164. if (delta == 0) {
  165. done = 1; /* let's lock on to this... */
  166. bound = rt;
  167. }
  168. if (!done) {
  169. if (i > 0) {
  170. adjust_latency += -delta;
  171. adj = -delta + adjust_latency/4;
  172. } else
  173. adj = -delta;
  174. tick_ops->add_tick(adj);
  175. }
  176. #if DEBUG_TICK_SYNC
  177. t[i].rt = rt;
  178. t[i].master = master_time_stamp;
  179. t[i].diff = delta;
  180. t[i].lat = adjust_latency/4;
  181. #endif
  182. }
  183. }
  184. local_irq_restore(flags);
  185. #if DEBUG_TICK_SYNC
  186. for (i = 0; i < NUM_ROUNDS; i++)
  187. printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
  188. t[i].rt, t[i].master, t[i].diff, t[i].lat);
  189. #endif
  190. printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
  191. "(last diff %ld cycles, maxerr %lu cycles)\n",
  192. smp_processor_id(), delta, rt);
  193. }
  194. static void smp_start_sync_tick_client(int cpu);
  195. static void smp_synchronize_one_tick(int cpu)
  196. {
  197. unsigned long flags, i;
  198. go[MASTER] = 0;
  199. smp_start_sync_tick_client(cpu);
  200. /* wait for client to be ready */
  201. while (!go[MASTER])
  202. rmb();
  203. /* now let the client proceed into his loop */
  204. go[MASTER] = 0;
  205. membar_safe("#StoreLoad");
  206. spin_lock_irqsave(&itc_sync_lock, flags);
  207. {
  208. for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
  209. while (!go[MASTER])
  210. rmb();
  211. go[MASTER] = 0;
  212. wmb();
  213. go[SLAVE] = tick_ops->get_tick();
  214. membar_safe("#StoreLoad");
  215. }
  216. }
  217. spin_unlock_irqrestore(&itc_sync_lock, flags);
  218. }
  219. #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
  220. /* XXX Put this in some common place. XXX */
  221. static unsigned long kimage_addr_to_ra(void *p)
  222. {
  223. unsigned long val = (unsigned long) p;
  224. return kern_base + (val - KERNBASE);
  225. }
  226. static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
  227. {
  228. extern unsigned long sparc64_ttable_tl0;
  229. extern unsigned long kern_locked_tte_data;
  230. struct hvtramp_descr *hdesc;
  231. unsigned long trampoline_ra;
  232. struct trap_per_cpu *tb;
  233. u64 tte_vaddr, tte_data;
  234. unsigned long hv_err;
  235. int i;
  236. hdesc = kzalloc(sizeof(*hdesc) +
  237. (sizeof(struct hvtramp_mapping) *
  238. num_kernel_image_mappings - 1),
  239. GFP_KERNEL);
  240. if (!hdesc) {
  241. printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
  242. "hvtramp_descr.\n");
  243. return;
  244. }
  245. *descrp = hdesc;
  246. hdesc->cpu = cpu;
  247. hdesc->num_mappings = num_kernel_image_mappings;
  248. tb = &trap_block[cpu];
  249. hdesc->fault_info_va = (unsigned long) &tb->fault_info;
  250. hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
  251. hdesc->thread_reg = thread_reg;
  252. tte_vaddr = (unsigned long) KERNBASE;
  253. tte_data = kern_locked_tte_data;
  254. for (i = 0; i < hdesc->num_mappings; i++) {
  255. hdesc->maps[i].vaddr = tte_vaddr;
  256. hdesc->maps[i].tte = tte_data;
  257. tte_vaddr += 0x400000;
  258. tte_data += 0x400000;
  259. }
  260. trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
  261. hv_err = sun4v_cpu_start(cpu, trampoline_ra,
  262. kimage_addr_to_ra(&sparc64_ttable_tl0),
  263. __pa(hdesc));
  264. if (hv_err)
  265. printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
  266. "gives error %lu\n", hv_err);
  267. }
  268. #endif
  269. extern unsigned long sparc64_cpu_startup;
  270. /* The OBP cpu startup callback truncates the 3rd arg cookie to
  271. * 32-bits (I think) so to be safe we have it read the pointer
  272. * contained here so we work on >4GB machines. -DaveM
  273. */
  274. static struct thread_info *cpu_new_thread = NULL;
  275. static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
  276. {
  277. unsigned long entry =
  278. (unsigned long)(&sparc64_cpu_startup);
  279. unsigned long cookie =
  280. (unsigned long)(&cpu_new_thread);
  281. struct task_struct *p;
  282. void *descr = NULL;
  283. int timeout, ret;
  284. p = fork_idle(cpu);
  285. if (IS_ERR(p))
  286. return PTR_ERR(p);
  287. callin_flag = 0;
  288. cpu_new_thread = task_thread_info(p);
  289. if (tlb_type == hypervisor) {
  290. #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
  291. if (ldom_domaining_enabled)
  292. ldom_startcpu_cpuid(cpu,
  293. (unsigned long) cpu_new_thread,
  294. &descr);
  295. else
  296. #endif
  297. prom_startcpu_cpuid(cpu, entry, cookie);
  298. } else {
  299. struct device_node *dp = of_find_node_by_cpuid(cpu);
  300. prom_startcpu(dp->node, entry, cookie);
  301. }
  302. for (timeout = 0; timeout < 50000; timeout++) {
  303. if (callin_flag)
  304. break;
  305. udelay(100);
  306. }
  307. if (callin_flag) {
  308. ret = 0;
  309. } else {
  310. printk("Processor %d is stuck.\n", cpu);
  311. ret = -ENODEV;
  312. }
  313. cpu_new_thread = NULL;
  314. kfree(descr);
  315. return ret;
  316. }
  317. static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
  318. {
  319. u64 result, target;
  320. int stuck, tmp;
  321. if (this_is_starfire) {
  322. /* map to real upaid */
  323. cpu = (((cpu & 0x3c) << 1) |
  324. ((cpu & 0x40) >> 4) |
  325. (cpu & 0x3));
  326. }
  327. target = (cpu << 14) | 0x70;
  328. again:
  329. /* Ok, this is the real Spitfire Errata #54.
  330. * One must read back from a UDB internal register
  331. * after writes to the UDB interrupt dispatch, but
  332. * before the membar Sync for that write.
  333. * So we use the high UDB control register (ASI 0x7f,
  334. * ADDR 0x20) for the dummy read. -DaveM
  335. */
  336. tmp = 0x40;
  337. __asm__ __volatile__(
  338. "wrpr %1, %2, %%pstate\n\t"
  339. "stxa %4, [%0] %3\n\t"
  340. "stxa %5, [%0+%8] %3\n\t"
  341. "add %0, %8, %0\n\t"
  342. "stxa %6, [%0+%8] %3\n\t"
  343. "membar #Sync\n\t"
  344. "stxa %%g0, [%7] %3\n\t"
  345. "membar #Sync\n\t"
  346. "mov 0x20, %%g1\n\t"
  347. "ldxa [%%g1] 0x7f, %%g0\n\t"
  348. "membar #Sync"
  349. : "=r" (tmp)
  350. : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
  351. "r" (data0), "r" (data1), "r" (data2), "r" (target),
  352. "r" (0x10), "0" (tmp)
  353. : "g1");
  354. /* NOTE: PSTATE_IE is still clear. */
  355. stuck = 100000;
  356. do {
  357. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  358. : "=r" (result)
  359. : "i" (ASI_INTR_DISPATCH_STAT));
  360. if (result == 0) {
  361. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  362. : : "r" (pstate));
  363. return;
  364. }
  365. stuck -= 1;
  366. if (stuck == 0)
  367. break;
  368. } while (result & 0x1);
  369. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  370. : : "r" (pstate));
  371. if (stuck == 0) {
  372. printk("CPU[%d]: mondo stuckage result[%016llx]\n",
  373. smp_processor_id(), result);
  374. } else {
  375. udelay(2);
  376. goto again;
  377. }
  378. }
  379. static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
  380. {
  381. u64 *mondo, data0, data1, data2;
  382. u16 *cpu_list;
  383. u64 pstate;
  384. int i;
  385. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  386. cpu_list = __va(tb->cpu_list_pa);
  387. mondo = __va(tb->cpu_mondo_block_pa);
  388. data0 = mondo[0];
  389. data1 = mondo[1];
  390. data2 = mondo[2];
  391. for (i = 0; i < cnt; i++)
  392. spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
  393. }
  394. /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
  395. * packet, but we have no use for that. However we do take advantage of
  396. * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
  397. */
  398. static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
  399. {
  400. int nack_busy_id, is_jbus, need_more;
  401. u64 *mondo, pstate, ver, busy_mask;
  402. u16 *cpu_list;
  403. cpu_list = __va(tb->cpu_list_pa);
  404. mondo = __va(tb->cpu_mondo_block_pa);
  405. /* Unfortunately, someone at Sun had the brilliant idea to make the
  406. * busy/nack fields hard-coded by ITID number for this Ultra-III
  407. * derivative processor.
  408. */
  409. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  410. is_jbus = ((ver >> 32) == __JALAPENO_ID ||
  411. (ver >> 32) == __SERRANO_ID);
  412. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  413. retry:
  414. need_more = 0;
  415. __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
  416. : : "r" (pstate), "i" (PSTATE_IE));
  417. /* Setup the dispatch data registers. */
  418. __asm__ __volatile__("stxa %0, [%3] %6\n\t"
  419. "stxa %1, [%4] %6\n\t"
  420. "stxa %2, [%5] %6\n\t"
  421. "membar #Sync\n\t"
  422. : /* no outputs */
  423. : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
  424. "r" (0x40), "r" (0x50), "r" (0x60),
  425. "i" (ASI_INTR_W));
  426. nack_busy_id = 0;
  427. busy_mask = 0;
  428. {
  429. int i;
  430. for (i = 0; i < cnt; i++) {
  431. u64 target, nr;
  432. nr = cpu_list[i];
  433. if (nr == 0xffff)
  434. continue;
  435. target = (nr << 14) | 0x70;
  436. if (is_jbus) {
  437. busy_mask |= (0x1UL << (nr * 2));
  438. } else {
  439. target |= (nack_busy_id << 24);
  440. busy_mask |= (0x1UL <<
  441. (nack_busy_id * 2));
  442. }
  443. __asm__ __volatile__(
  444. "stxa %%g0, [%0] %1\n\t"
  445. "membar #Sync\n\t"
  446. : /* no outputs */
  447. : "r" (target), "i" (ASI_INTR_W));
  448. nack_busy_id++;
  449. if (nack_busy_id == 32) {
  450. need_more = 1;
  451. break;
  452. }
  453. }
  454. }
  455. /* Now, poll for completion. */
  456. {
  457. u64 dispatch_stat, nack_mask;
  458. long stuck;
  459. stuck = 100000 * nack_busy_id;
  460. nack_mask = busy_mask << 1;
  461. do {
  462. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  463. : "=r" (dispatch_stat)
  464. : "i" (ASI_INTR_DISPATCH_STAT));
  465. if (!(dispatch_stat & (busy_mask | nack_mask))) {
  466. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  467. : : "r" (pstate));
  468. if (unlikely(need_more)) {
  469. int i, this_cnt = 0;
  470. for (i = 0; i < cnt; i++) {
  471. if (cpu_list[i] == 0xffff)
  472. continue;
  473. cpu_list[i] = 0xffff;
  474. this_cnt++;
  475. if (this_cnt == 32)
  476. break;
  477. }
  478. goto retry;
  479. }
  480. return;
  481. }
  482. if (!--stuck)
  483. break;
  484. } while (dispatch_stat & busy_mask);
  485. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  486. : : "r" (pstate));
  487. if (dispatch_stat & busy_mask) {
  488. /* Busy bits will not clear, continue instead
  489. * of freezing up on this cpu.
  490. */
  491. printk("CPU[%d]: mondo stuckage result[%016llx]\n",
  492. smp_processor_id(), dispatch_stat);
  493. } else {
  494. int i, this_busy_nack = 0;
  495. /* Delay some random time with interrupts enabled
  496. * to prevent deadlock.
  497. */
  498. udelay(2 * nack_busy_id);
  499. /* Clear out the mask bits for cpus which did not
  500. * NACK us.
  501. */
  502. for (i = 0; i < cnt; i++) {
  503. u64 check_mask, nr;
  504. nr = cpu_list[i];
  505. if (nr == 0xffff)
  506. continue;
  507. if (is_jbus)
  508. check_mask = (0x2UL << (2*nr));
  509. else
  510. check_mask = (0x2UL <<
  511. this_busy_nack);
  512. if ((dispatch_stat & check_mask) == 0)
  513. cpu_list[i] = 0xffff;
  514. this_busy_nack += 2;
  515. if (this_busy_nack == 64)
  516. break;
  517. }
  518. goto retry;
  519. }
  520. }
  521. }
  522. /* Multi-cpu list version. */
  523. static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
  524. {
  525. int retries, this_cpu, prev_sent, i, saw_cpu_error;
  526. unsigned long status;
  527. u16 *cpu_list;
  528. this_cpu = smp_processor_id();
  529. cpu_list = __va(tb->cpu_list_pa);
  530. saw_cpu_error = 0;
  531. retries = 0;
  532. prev_sent = 0;
  533. do {
  534. int forward_progress, n_sent;
  535. status = sun4v_cpu_mondo_send(cnt,
  536. tb->cpu_list_pa,
  537. tb->cpu_mondo_block_pa);
  538. /* HV_EOK means all cpus received the xcall, we're done. */
  539. if (likely(status == HV_EOK))
  540. break;
  541. /* First, see if we made any forward progress.
  542. *
  543. * The hypervisor indicates successful sends by setting
  544. * cpu list entries to the value 0xffff.
  545. */
  546. n_sent = 0;
  547. for (i = 0; i < cnt; i++) {
  548. if (likely(cpu_list[i] == 0xffff))
  549. n_sent++;
  550. }
  551. forward_progress = 0;
  552. if (n_sent > prev_sent)
  553. forward_progress = 1;
  554. prev_sent = n_sent;
  555. /* If we get a HV_ECPUERROR, then one or more of the cpus
  556. * in the list are in error state. Use the cpu_state()
  557. * hypervisor call to find out which cpus are in error state.
  558. */
  559. if (unlikely(status == HV_ECPUERROR)) {
  560. for (i = 0; i < cnt; i++) {
  561. long err;
  562. u16 cpu;
  563. cpu = cpu_list[i];
  564. if (cpu == 0xffff)
  565. continue;
  566. err = sun4v_cpu_state(cpu);
  567. if (err == HV_CPU_STATE_ERROR) {
  568. saw_cpu_error = (cpu + 1);
  569. cpu_list[i] = 0xffff;
  570. }
  571. }
  572. } else if (unlikely(status != HV_EWOULDBLOCK))
  573. goto fatal_mondo_error;
  574. /* Don't bother rewriting the CPU list, just leave the
  575. * 0xffff and non-0xffff entries in there and the
  576. * hypervisor will do the right thing.
  577. *
  578. * Only advance timeout state if we didn't make any
  579. * forward progress.
  580. */
  581. if (unlikely(!forward_progress)) {
  582. if (unlikely(++retries > 10000))
  583. goto fatal_mondo_timeout;
  584. /* Delay a little bit to let other cpus catch up
  585. * on their cpu mondo queue work.
  586. */
  587. udelay(2 * cnt);
  588. }
  589. } while (1);
  590. if (unlikely(saw_cpu_error))
  591. goto fatal_mondo_cpu_error;
  592. return;
  593. fatal_mondo_cpu_error:
  594. printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
  595. "(including %d) were in error state\n",
  596. this_cpu, saw_cpu_error - 1);
  597. return;
  598. fatal_mondo_timeout:
  599. printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
  600. " progress after %d retries.\n",
  601. this_cpu, retries);
  602. goto dump_cpu_list_and_out;
  603. fatal_mondo_error:
  604. printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
  605. this_cpu, status);
  606. printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
  607. "mondo_block_pa(%lx)\n",
  608. this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
  609. dump_cpu_list_and_out:
  610. printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
  611. for (i = 0; i < cnt; i++)
  612. printk("%u ", cpu_list[i]);
  613. printk("]\n");
  614. }
  615. static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
  616. static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
  617. {
  618. struct trap_per_cpu *tb;
  619. int this_cpu, i, cnt;
  620. unsigned long flags;
  621. u16 *cpu_list;
  622. u64 *mondo;
  623. /* We have to do this whole thing with interrupts fully disabled.
  624. * Otherwise if we send an xcall from interrupt context it will
  625. * corrupt both our mondo block and cpu list state.
  626. *
  627. * One consequence of this is that we cannot use timeout mechanisms
  628. * that depend upon interrupts being delivered locally. So, for
  629. * example, we cannot sample jiffies and expect it to advance.
  630. *
  631. * Fortunately, udelay() uses %stick/%tick so we can use that.
  632. */
  633. local_irq_save(flags);
  634. this_cpu = smp_processor_id();
  635. tb = &trap_block[this_cpu];
  636. mondo = __va(tb->cpu_mondo_block_pa);
  637. mondo[0] = data0;
  638. mondo[1] = data1;
  639. mondo[2] = data2;
  640. wmb();
  641. cpu_list = __va(tb->cpu_list_pa);
  642. /* Setup the initial cpu list. */
  643. cnt = 0;
  644. for_each_cpu(i, mask) {
  645. if (i == this_cpu || !cpu_online(i))
  646. continue;
  647. cpu_list[cnt++] = i;
  648. }
  649. if (cnt)
  650. xcall_deliver_impl(tb, cnt);
  651. local_irq_restore(flags);
  652. }
  653. /* Send cross call to all processors mentioned in MASK_P
  654. * except self. Really, there are only two cases currently,
  655. * "&cpu_online_map" and "&mm->cpu_vm_mask".
  656. */
  657. static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
  658. {
  659. u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
  660. xcall_deliver(data0, data1, data2, mask);
  661. }
  662. /* Send cross call to all processors except self. */
  663. static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
  664. {
  665. smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
  666. }
  667. extern unsigned long xcall_sync_tick;
  668. static void smp_start_sync_tick_client(int cpu)
  669. {
  670. xcall_deliver((u64) &xcall_sync_tick, 0, 0,
  671. &cpumask_of_cpu(cpu));
  672. }
  673. extern unsigned long xcall_call_function;
  674. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  675. {
  676. xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
  677. }
  678. extern unsigned long xcall_call_function_single;
  679. void arch_send_call_function_single_ipi(int cpu)
  680. {
  681. xcall_deliver((u64) &xcall_call_function_single, 0, 0,
  682. &cpumask_of_cpu(cpu));
  683. }
  684. void smp_call_function_client(int irq, struct pt_regs *regs)
  685. {
  686. clear_softint(1 << irq);
  687. generic_smp_call_function_interrupt();
  688. }
  689. void smp_call_function_single_client(int irq, struct pt_regs *regs)
  690. {
  691. clear_softint(1 << irq);
  692. generic_smp_call_function_single_interrupt();
  693. }
  694. static void tsb_sync(void *info)
  695. {
  696. struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
  697. struct mm_struct *mm = info;
  698. /* It is not valid to test "currrent->active_mm == mm" here.
  699. *
  700. * The value of "current" is not changed atomically with
  701. * switch_mm(). But that's OK, we just need to check the
  702. * current cpu's trap block PGD physical address.
  703. */
  704. if (tp->pgd_paddr == __pa(mm->pgd))
  705. tsb_context_switch(mm);
  706. }
  707. void smp_tsb_sync(struct mm_struct *mm)
  708. {
  709. smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
  710. }
  711. extern unsigned long xcall_flush_tlb_mm;
  712. extern unsigned long xcall_flush_tlb_pending;
  713. extern unsigned long xcall_flush_tlb_kernel_range;
  714. extern unsigned long xcall_fetch_glob_regs;
  715. extern unsigned long xcall_receive_signal;
  716. extern unsigned long xcall_new_mmu_context_version;
  717. #ifdef CONFIG_KGDB
  718. extern unsigned long xcall_kgdb_capture;
  719. #endif
  720. #ifdef DCACHE_ALIASING_POSSIBLE
  721. extern unsigned long xcall_flush_dcache_page_cheetah;
  722. #endif
  723. extern unsigned long xcall_flush_dcache_page_spitfire;
  724. #ifdef CONFIG_DEBUG_DCFLUSH
  725. extern atomic_t dcpage_flushes;
  726. extern atomic_t dcpage_flushes_xcall;
  727. #endif
  728. static inline void __local_flush_dcache_page(struct page *page)
  729. {
  730. #ifdef DCACHE_ALIASING_POSSIBLE
  731. __flush_dcache_page(page_address(page),
  732. ((tlb_type == spitfire) &&
  733. page_mapping(page) != NULL));
  734. #else
  735. if (page_mapping(page) != NULL &&
  736. tlb_type == spitfire)
  737. __flush_icache_page(__pa(page_address(page)));
  738. #endif
  739. }
  740. void smp_flush_dcache_page_impl(struct page *page, int cpu)
  741. {
  742. int this_cpu;
  743. if (tlb_type == hypervisor)
  744. return;
  745. #ifdef CONFIG_DEBUG_DCFLUSH
  746. atomic_inc(&dcpage_flushes);
  747. #endif
  748. this_cpu = get_cpu();
  749. if (cpu == this_cpu) {
  750. __local_flush_dcache_page(page);
  751. } else if (cpu_online(cpu)) {
  752. void *pg_addr = page_address(page);
  753. u64 data0 = 0;
  754. if (tlb_type == spitfire) {
  755. data0 = ((u64)&xcall_flush_dcache_page_spitfire);
  756. if (page_mapping(page) != NULL)
  757. data0 |= ((u64)1 << 32);
  758. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  759. #ifdef DCACHE_ALIASING_POSSIBLE
  760. data0 = ((u64)&xcall_flush_dcache_page_cheetah);
  761. #endif
  762. }
  763. if (data0) {
  764. xcall_deliver(data0, __pa(pg_addr),
  765. (u64) pg_addr, &cpumask_of_cpu(cpu));
  766. #ifdef CONFIG_DEBUG_DCFLUSH
  767. atomic_inc(&dcpage_flushes_xcall);
  768. #endif
  769. }
  770. }
  771. put_cpu();
  772. }
  773. void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
  774. {
  775. void *pg_addr;
  776. int this_cpu;
  777. u64 data0;
  778. if (tlb_type == hypervisor)
  779. return;
  780. this_cpu = get_cpu();
  781. #ifdef CONFIG_DEBUG_DCFLUSH
  782. atomic_inc(&dcpage_flushes);
  783. #endif
  784. data0 = 0;
  785. pg_addr = page_address(page);
  786. if (tlb_type == spitfire) {
  787. data0 = ((u64)&xcall_flush_dcache_page_spitfire);
  788. if (page_mapping(page) != NULL)
  789. data0 |= ((u64)1 << 32);
  790. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  791. #ifdef DCACHE_ALIASING_POSSIBLE
  792. data0 = ((u64)&xcall_flush_dcache_page_cheetah);
  793. #endif
  794. }
  795. if (data0) {
  796. xcall_deliver(data0, __pa(pg_addr),
  797. (u64) pg_addr, &cpu_online_map);
  798. #ifdef CONFIG_DEBUG_DCFLUSH
  799. atomic_inc(&dcpage_flushes_xcall);
  800. #endif
  801. }
  802. __local_flush_dcache_page(page);
  803. put_cpu();
  804. }
  805. void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
  806. {
  807. struct mm_struct *mm;
  808. unsigned long flags;
  809. clear_softint(1 << irq);
  810. /* See if we need to allocate a new TLB context because
  811. * the version of the one we are using is now out of date.
  812. */
  813. mm = current->active_mm;
  814. if (unlikely(!mm || (mm == &init_mm)))
  815. return;
  816. spin_lock_irqsave(&mm->context.lock, flags);
  817. if (unlikely(!CTX_VALID(mm->context)))
  818. get_new_mmu_context(mm);
  819. spin_unlock_irqrestore(&mm->context.lock, flags);
  820. load_secondary_context(mm);
  821. __flush_tlb_mm(CTX_HWBITS(mm->context),
  822. SECONDARY_CONTEXT);
  823. }
  824. void smp_new_mmu_context_version(void)
  825. {
  826. smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
  827. }
  828. #ifdef CONFIG_KGDB
  829. void kgdb_roundup_cpus(unsigned long flags)
  830. {
  831. smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
  832. }
  833. #endif
  834. void smp_fetch_global_regs(void)
  835. {
  836. smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
  837. }
  838. /* We know that the window frames of the user have been flushed
  839. * to the stack before we get here because all callers of us
  840. * are flush_tlb_*() routines, and these run after flush_cache_*()
  841. * which performs the flushw.
  842. *
  843. * The SMP TLB coherency scheme we use works as follows:
  844. *
  845. * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
  846. * space has (potentially) executed on, this is the heuristic
  847. * we use to avoid doing cross calls.
  848. *
  849. * Also, for flushing from kswapd and also for clones, we
  850. * use cpu_vm_mask as the list of cpus to make run the TLB.
  851. *
  852. * 2) TLB context numbers are shared globally across all processors
  853. * in the system, this allows us to play several games to avoid
  854. * cross calls.
  855. *
  856. * One invariant is that when a cpu switches to a process, and
  857. * that processes tsk->active_mm->cpu_vm_mask does not have the
  858. * current cpu's bit set, that tlb context is flushed locally.
  859. *
  860. * If the address space is non-shared (ie. mm->count == 1) we avoid
  861. * cross calls when we want to flush the currently running process's
  862. * tlb state. This is done by clearing all cpu bits except the current
  863. * processor's in current->mm->cpu_vm_mask and performing the
  864. * flush locally only. This will force any subsequent cpus which run
  865. * this task to flush the context from the local tlb if the process
  866. * migrates to another cpu (again).
  867. *
  868. * 3) For shared address spaces (threads) and swapping we bite the
  869. * bullet for most cases and perform the cross call (but only to
  870. * the cpus listed in cpu_vm_mask).
  871. *
  872. * The performance gain from "optimizing" away the cross call for threads is
  873. * questionable (in theory the big win for threads is the massive sharing of
  874. * address space state across processors).
  875. */
  876. /* This currently is only used by the hugetlb arch pre-fault
  877. * hook on UltraSPARC-III+ and later when changing the pagesize
  878. * bits of the context register for an address space.
  879. */
  880. void smp_flush_tlb_mm(struct mm_struct *mm)
  881. {
  882. u32 ctx = CTX_HWBITS(mm->context);
  883. int cpu = get_cpu();
  884. if (atomic_read(&mm->mm_users) == 1) {
  885. cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
  886. goto local_flush_and_out;
  887. }
  888. smp_cross_call_masked(&xcall_flush_tlb_mm,
  889. ctx, 0, 0,
  890. mm_cpumask(mm));
  891. local_flush_and_out:
  892. __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
  893. put_cpu();
  894. }
  895. void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
  896. {
  897. u32 ctx = CTX_HWBITS(mm->context);
  898. int cpu = get_cpu();
  899. if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
  900. cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
  901. else
  902. smp_cross_call_masked(&xcall_flush_tlb_pending,
  903. ctx, nr, (unsigned long) vaddrs,
  904. mm_cpumask(mm));
  905. __flush_tlb_pending(ctx, nr, vaddrs);
  906. put_cpu();
  907. }
  908. void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
  909. {
  910. start &= PAGE_MASK;
  911. end = PAGE_ALIGN(end);
  912. if (start != end) {
  913. smp_cross_call(&xcall_flush_tlb_kernel_range,
  914. 0, start, end);
  915. __flush_tlb_kernel_range(start, end);
  916. }
  917. }
  918. /* CPU capture. */
  919. /* #define CAPTURE_DEBUG */
  920. extern unsigned long xcall_capture;
  921. static atomic_t smp_capture_depth = ATOMIC_INIT(0);
  922. static atomic_t smp_capture_registry = ATOMIC_INIT(0);
  923. static unsigned long penguins_are_doing_time;
  924. void smp_capture(void)
  925. {
  926. int result = atomic_add_ret(1, &smp_capture_depth);
  927. if (result == 1) {
  928. int ncpus = num_online_cpus();
  929. #ifdef CAPTURE_DEBUG
  930. printk("CPU[%d]: Sending penguins to jail...",
  931. smp_processor_id());
  932. #endif
  933. penguins_are_doing_time = 1;
  934. atomic_inc(&smp_capture_registry);
  935. smp_cross_call(&xcall_capture, 0, 0, 0);
  936. while (atomic_read(&smp_capture_registry) != ncpus)
  937. rmb();
  938. #ifdef CAPTURE_DEBUG
  939. printk("done\n");
  940. #endif
  941. }
  942. }
  943. void smp_release(void)
  944. {
  945. if (atomic_dec_and_test(&smp_capture_depth)) {
  946. #ifdef CAPTURE_DEBUG
  947. printk("CPU[%d]: Giving pardon to "
  948. "imprisoned penguins\n",
  949. smp_processor_id());
  950. #endif
  951. penguins_are_doing_time = 0;
  952. membar_safe("#StoreLoad");
  953. atomic_dec(&smp_capture_registry);
  954. }
  955. }
  956. /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
  957. * set, so they can service tlb flush xcalls...
  958. */
  959. extern void prom_world(int);
  960. void smp_penguin_jailcell(int irq, struct pt_regs *regs)
  961. {
  962. clear_softint(1 << irq);
  963. preempt_disable();
  964. __asm__ __volatile__("flushw");
  965. prom_world(1);
  966. atomic_inc(&smp_capture_registry);
  967. membar_safe("#StoreLoad");
  968. while (penguins_are_doing_time)
  969. rmb();
  970. atomic_dec(&smp_capture_registry);
  971. prom_world(0);
  972. preempt_enable();
  973. }
  974. /* /proc/profile writes can call this, don't __init it please. */
  975. int setup_profiling_timer(unsigned int multiplier)
  976. {
  977. return -EINVAL;
  978. }
  979. void __init smp_prepare_cpus(unsigned int max_cpus)
  980. {
  981. }
  982. void __devinit smp_prepare_boot_cpu(void)
  983. {
  984. }
  985. void __init smp_setup_processor_id(void)
  986. {
  987. if (tlb_type == spitfire)
  988. xcall_deliver_impl = spitfire_xcall_deliver;
  989. else if (tlb_type == cheetah || tlb_type == cheetah_plus)
  990. xcall_deliver_impl = cheetah_xcall_deliver;
  991. else
  992. xcall_deliver_impl = hypervisor_xcall_deliver;
  993. }
  994. void __devinit smp_fill_in_sib_core_maps(void)
  995. {
  996. unsigned int i;
  997. for_each_present_cpu(i) {
  998. unsigned int j;
  999. cpus_clear(cpu_core_map[i]);
  1000. if (cpu_data(i).core_id == 0) {
  1001. cpu_set(i, cpu_core_map[i]);
  1002. continue;
  1003. }
  1004. for_each_present_cpu(j) {
  1005. if (cpu_data(i).core_id ==
  1006. cpu_data(j).core_id)
  1007. cpu_set(j, cpu_core_map[i]);
  1008. }
  1009. }
  1010. for_each_present_cpu(i) {
  1011. unsigned int j;
  1012. cpus_clear(per_cpu(cpu_sibling_map, i));
  1013. if (cpu_data(i).proc_id == -1) {
  1014. cpu_set(i, per_cpu(cpu_sibling_map, i));
  1015. continue;
  1016. }
  1017. for_each_present_cpu(j) {
  1018. if (cpu_data(i).proc_id ==
  1019. cpu_data(j).proc_id)
  1020. cpu_set(j, per_cpu(cpu_sibling_map, i));
  1021. }
  1022. }
  1023. }
  1024. int __cpuinit __cpu_up(unsigned int cpu)
  1025. {
  1026. int ret = smp_boot_one_cpu(cpu);
  1027. if (!ret) {
  1028. cpu_set(cpu, smp_commenced_mask);
  1029. while (!cpu_isset(cpu, cpu_online_map))
  1030. mb();
  1031. if (!cpu_isset(cpu, cpu_online_map)) {
  1032. ret = -ENODEV;
  1033. } else {
  1034. /* On SUN4V, writes to %tick and %stick are
  1035. * not allowed.
  1036. */
  1037. if (tlb_type != hypervisor)
  1038. smp_synchronize_one_tick(cpu);
  1039. }
  1040. }
  1041. return ret;
  1042. }
  1043. #ifdef CONFIG_HOTPLUG_CPU
  1044. void cpu_play_dead(void)
  1045. {
  1046. int cpu = smp_processor_id();
  1047. unsigned long pstate;
  1048. idle_task_exit();
  1049. if (tlb_type == hypervisor) {
  1050. struct trap_per_cpu *tb = &trap_block[cpu];
  1051. sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
  1052. tb->cpu_mondo_pa, 0);
  1053. sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
  1054. tb->dev_mondo_pa, 0);
  1055. sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
  1056. tb->resum_mondo_pa, 0);
  1057. sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
  1058. tb->nonresum_mondo_pa, 0);
  1059. }
  1060. cpu_clear(cpu, smp_commenced_mask);
  1061. membar_safe("#Sync");
  1062. local_irq_disable();
  1063. __asm__ __volatile__(
  1064. "rdpr %%pstate, %0\n\t"
  1065. "wrpr %0, %1, %%pstate"
  1066. : "=r" (pstate)
  1067. : "i" (PSTATE_IE));
  1068. while (1)
  1069. barrier();
  1070. }
  1071. int __cpu_disable(void)
  1072. {
  1073. int cpu = smp_processor_id();
  1074. cpuinfo_sparc *c;
  1075. int i;
  1076. for_each_cpu_mask(i, cpu_core_map[cpu])
  1077. cpu_clear(cpu, cpu_core_map[i]);
  1078. cpus_clear(cpu_core_map[cpu]);
  1079. for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
  1080. cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
  1081. cpus_clear(per_cpu(cpu_sibling_map, cpu));
  1082. c = &cpu_data(cpu);
  1083. c->core_id = 0;
  1084. c->proc_id = -1;
  1085. smp_wmb();
  1086. /* Make sure no interrupts point to this cpu. */
  1087. fixup_irqs();
  1088. local_irq_enable();
  1089. mdelay(1);
  1090. local_irq_disable();
  1091. ipi_call_lock();
  1092. cpu_clear(cpu, cpu_online_map);
  1093. ipi_call_unlock();
  1094. return 0;
  1095. }
  1096. void __cpu_die(unsigned int cpu)
  1097. {
  1098. int i;
  1099. for (i = 0; i < 100; i++) {
  1100. smp_rmb();
  1101. if (!cpu_isset(cpu, smp_commenced_mask))
  1102. break;
  1103. msleep(100);
  1104. }
  1105. if (cpu_isset(cpu, smp_commenced_mask)) {
  1106. printk(KERN_ERR "CPU %u didn't die...\n", cpu);
  1107. } else {
  1108. #if defined(CONFIG_SUN_LDOMS)
  1109. unsigned long hv_err;
  1110. int limit = 100;
  1111. do {
  1112. hv_err = sun4v_cpu_stop(cpu);
  1113. if (hv_err == HV_EOK) {
  1114. cpu_clear(cpu, cpu_present_map);
  1115. break;
  1116. }
  1117. } while (--limit > 0);
  1118. if (limit <= 0) {
  1119. printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
  1120. hv_err);
  1121. }
  1122. #endif
  1123. }
  1124. }
  1125. #endif
  1126. void __init smp_cpus_done(unsigned int max_cpus)
  1127. {
  1128. }
  1129. void smp_send_reschedule(int cpu)
  1130. {
  1131. xcall_deliver((u64) &xcall_receive_signal, 0, 0,
  1132. &cpumask_of_cpu(cpu));
  1133. }
  1134. void smp_receive_signal_client(int irq, struct pt_regs *regs)
  1135. {
  1136. clear_softint(1 << irq);
  1137. }
  1138. /* This is a nop because we capture all other cpus
  1139. * anyways when making the PROM active.
  1140. */
  1141. void smp_send_stop(void)
  1142. {
  1143. }
  1144. /**
  1145. * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
  1146. * @cpu: cpu to allocate for
  1147. * @size: size allocation in bytes
  1148. * @align: alignment
  1149. *
  1150. * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
  1151. * does the right thing for NUMA regardless of the current
  1152. * configuration.
  1153. *
  1154. * RETURNS:
  1155. * Pointer to the allocated area on success, NULL on failure.
  1156. */
  1157. static void * __init pcpu_alloc_bootmem(unsigned int cpu, unsigned long size,
  1158. unsigned long align)
  1159. {
  1160. const unsigned long goal = __pa(MAX_DMA_ADDRESS);
  1161. #ifdef CONFIG_NEED_MULTIPLE_NODES
  1162. int node = cpu_to_node(cpu);
  1163. void *ptr;
  1164. if (!node_online(node) || !NODE_DATA(node)) {
  1165. ptr = __alloc_bootmem(size, align, goal);
  1166. pr_info("cpu %d has no node %d or node-local memory\n",
  1167. cpu, node);
  1168. pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
  1169. cpu, size, __pa(ptr));
  1170. } else {
  1171. ptr = __alloc_bootmem_node(NODE_DATA(node),
  1172. size, align, goal);
  1173. pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
  1174. "%016lx\n", cpu, size, node, __pa(ptr));
  1175. }
  1176. return ptr;
  1177. #else
  1178. return __alloc_bootmem(size, align, goal);
  1179. #endif
  1180. }
  1181. static size_t pcpur_size __initdata;
  1182. static void **pcpur_ptrs __initdata;
  1183. static struct page * __init pcpur_get_page(unsigned int cpu, int pageno)
  1184. {
  1185. size_t off = (size_t)pageno << PAGE_SHIFT;
  1186. if (off >= pcpur_size)
  1187. return NULL;
  1188. return virt_to_page(pcpur_ptrs[cpu] + off);
  1189. }
  1190. #define PCPU_CHUNK_SIZE (4UL * 1024UL * 1024UL)
  1191. static void __init pcpu_map_range(unsigned long start, unsigned long end,
  1192. struct page *page)
  1193. {
  1194. unsigned long pfn = page_to_pfn(page);
  1195. unsigned long pte_base;
  1196. BUG_ON((pfn<<PAGE_SHIFT)&(PCPU_CHUNK_SIZE - 1UL));
  1197. pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
  1198. _PAGE_CP_4U | _PAGE_CV_4U |
  1199. _PAGE_P_4U | _PAGE_W_4U);
  1200. if (tlb_type == hypervisor)
  1201. pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
  1202. _PAGE_CP_4V | _PAGE_CV_4V |
  1203. _PAGE_P_4V | _PAGE_W_4V);
  1204. while (start < end) {
  1205. pgd_t *pgd = pgd_offset_k(start);
  1206. unsigned long this_end;
  1207. pud_t *pud;
  1208. pmd_t *pmd;
  1209. pte_t *pte;
  1210. pud = pud_offset(pgd, start);
  1211. if (pud_none(*pud)) {
  1212. pmd_t *new;
  1213. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1214. pud_populate(&init_mm, pud, new);
  1215. }
  1216. pmd = pmd_offset(pud, start);
  1217. if (!pmd_present(*pmd)) {
  1218. pte_t *new;
  1219. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1220. pmd_populate_kernel(&init_mm, pmd, new);
  1221. }
  1222. pte = pte_offset_kernel(pmd, start);
  1223. this_end = (start + PMD_SIZE) & PMD_MASK;
  1224. if (this_end > end)
  1225. this_end = end;
  1226. while (start < this_end) {
  1227. unsigned long paddr = pfn << PAGE_SHIFT;
  1228. pte_val(*pte) = (paddr | pte_base);
  1229. start += PAGE_SIZE;
  1230. pte++;
  1231. pfn++;
  1232. }
  1233. }
  1234. }
  1235. void __init setup_per_cpu_areas(void)
  1236. {
  1237. size_t dyn_size, static_size = __per_cpu_end - __per_cpu_start;
  1238. static struct vm_struct vm;
  1239. unsigned long delta, cpu;
  1240. size_t pcpu_unit_size;
  1241. size_t ptrs_size;
  1242. pcpur_size = PFN_ALIGN(static_size + PERCPU_MODULE_RESERVE +
  1243. PERCPU_DYNAMIC_RESERVE);
  1244. dyn_size = pcpur_size - static_size - PERCPU_MODULE_RESERVE;
  1245. ptrs_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpur_ptrs[0]));
  1246. pcpur_ptrs = alloc_bootmem(ptrs_size);
  1247. for_each_possible_cpu(cpu) {
  1248. pcpur_ptrs[cpu] = pcpu_alloc_bootmem(cpu, PCPU_CHUNK_SIZE,
  1249. PCPU_CHUNK_SIZE);
  1250. free_bootmem(__pa(pcpur_ptrs[cpu] + pcpur_size),
  1251. PCPU_CHUNK_SIZE - pcpur_size);
  1252. memcpy(pcpur_ptrs[cpu], __per_cpu_load, static_size);
  1253. }
  1254. /* allocate address and map */
  1255. vm.flags = VM_ALLOC;
  1256. vm.size = num_possible_cpus() * PCPU_CHUNK_SIZE;
  1257. vm_area_register_early(&vm, PCPU_CHUNK_SIZE);
  1258. for_each_possible_cpu(cpu) {
  1259. unsigned long start = (unsigned long) vm.addr;
  1260. unsigned long end;
  1261. start += cpu * PCPU_CHUNK_SIZE;
  1262. end = start + PCPU_CHUNK_SIZE;
  1263. pcpu_map_range(start, end, virt_to_page(pcpur_ptrs[cpu]));
  1264. }
  1265. pcpu_unit_size = pcpu_setup_first_chunk(pcpur_get_page, static_size,
  1266. PERCPU_MODULE_RESERVE, dyn_size,
  1267. PCPU_CHUNK_SIZE, vm.addr, NULL);
  1268. free_bootmem(__pa(pcpur_ptrs), ptrs_size);
  1269. delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
  1270. for_each_possible_cpu(cpu) {
  1271. __per_cpu_offset(cpu) = delta + cpu * pcpu_unit_size;
  1272. }
  1273. /* Setup %g5 for the boot cpu. */
  1274. __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
  1275. of_fill_in_cpu_data();
  1276. if (tlb_type == hypervisor)
  1277. mdesc_fill_in_cpu_data(CPU_MASK_ALL_PTR);
  1278. }