setup.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1999,2001-2005 Silicon Graphics, Inc. All rights reserved.
  7. */
  8. #include <linux/config.h>
  9. #include <linux/module.h>
  10. #include <linux/init.h>
  11. #include <linux/delay.h>
  12. #include <linux/kernel.h>
  13. #include <linux/kdev_t.h>
  14. #include <linux/string.h>
  15. #include <linux/tty.h>
  16. #include <linux/console.h>
  17. #include <linux/timex.h>
  18. #include <linux/sched.h>
  19. #include <linux/ioport.h>
  20. #include <linux/mm.h>
  21. #include <linux/serial.h>
  22. #include <linux/irq.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/mmzone.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/acpi.h>
  27. #include <linux/compiler.h>
  28. #include <linux/sched.h>
  29. #include <linux/root_dev.h>
  30. #include <linux/nodemask.h>
  31. #include <linux/pm.h>
  32. #include <linux/efi.h>
  33. #include <asm/io.h>
  34. #include <asm/sal.h>
  35. #include <asm/machvec.h>
  36. #include <asm/system.h>
  37. #include <asm/processor.h>
  38. #include <asm/vga.h>
  39. #include <asm/sn/arch.h>
  40. #include <asm/sn/addrs.h>
  41. #include <asm/sn/pda.h>
  42. #include <asm/sn/nodepda.h>
  43. #include <asm/sn/sn_cpuid.h>
  44. #include <asm/sn/simulator.h>
  45. #include <asm/sn/leds.h>
  46. #include <asm/sn/bte.h>
  47. #include <asm/sn/shub_mmr.h>
  48. #include <asm/sn/clksupport.h>
  49. #include <asm/sn/sn_sal.h>
  50. #include <asm/sn/geo.h>
  51. #include <asm/sn/sn_feature_sets.h>
  52. #include "xtalk/xwidgetdev.h"
  53. #include "xtalk/hubdev.h"
  54. #include <asm/sn/klconfig.h>
  55. DEFINE_PER_CPU(struct pda_s, pda_percpu);
  56. #define MAX_PHYS_MEMORY (1UL << IA64_MAX_PHYS_BITS) /* Max physical address supported */
  57. extern void bte_init_node(nodepda_t *, cnodeid_t);
  58. extern void sn_timer_init(void);
  59. extern unsigned long last_time_offset;
  60. extern void (*ia64_mark_idle) (int);
  61. extern void snidle(int);
  62. extern unsigned char acpi_kbd_controller_present;
  63. unsigned long sn_rtc_cycles_per_second;
  64. EXPORT_SYMBOL(sn_rtc_cycles_per_second);
  65. DEFINE_PER_CPU(struct sn_hub_info_s, __sn_hub_info);
  66. EXPORT_PER_CPU_SYMBOL(__sn_hub_info);
  67. DEFINE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_NUMNODES]);
  68. EXPORT_PER_CPU_SYMBOL(__sn_cnodeid_to_nasid);
  69. DEFINE_PER_CPU(struct nodepda_s *, __sn_nodepda);
  70. EXPORT_PER_CPU_SYMBOL(__sn_nodepda);
  71. char sn_system_serial_number_string[128];
  72. EXPORT_SYMBOL(sn_system_serial_number_string);
  73. u64 sn_partition_serial_number;
  74. EXPORT_SYMBOL(sn_partition_serial_number);
  75. u8 sn_partition_id;
  76. EXPORT_SYMBOL(sn_partition_id);
  77. u8 sn_system_size;
  78. EXPORT_SYMBOL(sn_system_size);
  79. u8 sn_sharing_domain_size;
  80. EXPORT_SYMBOL(sn_sharing_domain_size);
  81. u8 sn_coherency_id;
  82. EXPORT_SYMBOL(sn_coherency_id);
  83. u8 sn_region_size;
  84. EXPORT_SYMBOL(sn_region_size);
  85. int sn_prom_type; /* 0=hardware, 1=medusa/realprom, 2=medusa/fakeprom */
  86. short physical_node_map[MAX_NUMALINK_NODES];
  87. static unsigned long sn_prom_features[MAX_PROM_FEATURE_SETS];
  88. EXPORT_SYMBOL(physical_node_map);
  89. int num_cnodes;
  90. static void sn_init_pdas(char **);
  91. static void build_cnode_tables(void);
  92. static nodepda_t *nodepdaindr[MAX_COMPACT_NODES];
  93. /*
  94. * The format of "screen_info" is strange, and due to early i386-setup
  95. * code. This is just enough to make the console code think we're on a
  96. * VGA color display.
  97. */
  98. struct screen_info sn_screen_info = {
  99. .orig_x = 0,
  100. .orig_y = 0,
  101. .orig_video_mode = 3,
  102. .orig_video_cols = 80,
  103. .orig_video_ega_bx = 3,
  104. .orig_video_lines = 25,
  105. .orig_video_isVGA = 1,
  106. .orig_video_points = 16
  107. };
  108. /*
  109. * This routine can only be used during init, since
  110. * smp_boot_data is an init data structure.
  111. * We have to use smp_boot_data.cpu_phys_id to find
  112. * the physical id of the processor because the normal
  113. * cpu_physical_id() relies on data structures that
  114. * may not be initialized yet.
  115. */
  116. static int __init pxm_to_nasid(int pxm)
  117. {
  118. int i;
  119. int nid;
  120. nid = pxm_to_nid_map[pxm];
  121. for (i = 0; i < num_node_memblks; i++) {
  122. if (node_memblk[i].nid == nid) {
  123. return NASID_GET(node_memblk[i].start_paddr);
  124. }
  125. }
  126. return -1;
  127. }
  128. /**
  129. * early_sn_setup - early setup routine for SN platforms
  130. *
  131. * Sets up an initial console to aid debugging. Intended primarily
  132. * for bringup. See start_kernel() in init/main.c.
  133. */
  134. void __init early_sn_setup(void)
  135. {
  136. efi_system_table_t *efi_systab;
  137. efi_config_table_t *config_tables;
  138. struct ia64_sal_systab *sal_systab;
  139. struct ia64_sal_desc_entry_point *ep;
  140. char *p;
  141. int i, j;
  142. /*
  143. * Parse enough of the SAL tables to locate the SAL entry point. Since, console
  144. * IO on SN2 is done via SAL calls, early_printk won't work without this.
  145. *
  146. * This code duplicates some of the ACPI table parsing that is in efi.c & sal.c.
  147. * Any changes to those file may have to be made hereas well.
  148. */
  149. efi_systab = (efi_system_table_t *) __va(ia64_boot_param->efi_systab);
  150. config_tables = __va(efi_systab->tables);
  151. for (i = 0; i < efi_systab->nr_tables; i++) {
  152. if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) ==
  153. 0) {
  154. sal_systab = __va(config_tables[i].table);
  155. p = (char *)(sal_systab + 1);
  156. for (j = 0; j < sal_systab->entry_count; j++) {
  157. if (*p == SAL_DESC_ENTRY_POINT) {
  158. ep = (struct ia64_sal_desc_entry_point
  159. *)p;
  160. ia64_sal_handler_init(__va
  161. (ep->sal_proc),
  162. __va(ep->gp));
  163. return;
  164. }
  165. p += SAL_DESC_SIZE(*p);
  166. }
  167. }
  168. }
  169. /* Uh-oh, SAL not available?? */
  170. printk(KERN_ERR "failed to find SAL entry point\n");
  171. }
  172. extern int platform_intr_list[];
  173. static int __initdata shub_1_1_found;
  174. /*
  175. * sn_check_for_wars
  176. *
  177. * Set flag for enabling shub specific wars
  178. */
  179. static inline int __init is_shub_1_1(int nasid)
  180. {
  181. unsigned long id;
  182. int rev;
  183. if (is_shub2())
  184. return 0;
  185. id = REMOTE_HUB_L(nasid, SH1_SHUB_ID);
  186. rev = (id & SH1_SHUB_ID_REVISION_MASK) >> SH1_SHUB_ID_REVISION_SHFT;
  187. return rev <= 2;
  188. }
  189. static void __init sn_check_for_wars(void)
  190. {
  191. int cnode;
  192. if (is_shub2()) {
  193. /* none yet */
  194. } else {
  195. for_each_online_node(cnode) {
  196. if (is_shub_1_1(cnodeid_to_nasid(cnode)))
  197. shub_1_1_found = 1;
  198. }
  199. }
  200. }
  201. /*
  202. * Scan the EFI PCDP table (if it exists) for an acceptable VGA console
  203. * output device. If one exists, pick it and set sn_legacy_{io,mem} to
  204. * reflect the bus offsets needed to address it.
  205. *
  206. * Since pcdp support in SN is not supported in the 2.4 kernel (or at least
  207. * the one lbs is based on) just declare the needed structs here.
  208. *
  209. * Reference spec http://www.dig64.org/specifications/DIG64_PCDPv20.pdf
  210. *
  211. * Returns 0 if no acceptable vga is found, !0 otherwise.
  212. *
  213. * Note: This stuff is duped here because Altix requires the PCDP to
  214. * locate a usable VGA device due to lack of proper ACPI support. Structures
  215. * could be used from drivers/firmware/pcdp.h, but it was decided that moving
  216. * this file to a more public location just for Altix use was undesireable.
  217. */
  218. struct hcdp_uart_desc {
  219. u8 pad[45];
  220. };
  221. struct pcdp {
  222. u8 signature[4]; /* should be 'HCDP' */
  223. u32 length;
  224. u8 rev; /* should be >=3 for pcdp, <3 for hcdp */
  225. u8 sum;
  226. u8 oem_id[6];
  227. u64 oem_tableid;
  228. u32 oem_rev;
  229. u32 creator_id;
  230. u32 creator_rev;
  231. u32 num_type0;
  232. struct hcdp_uart_desc uart[0]; /* num_type0 of these */
  233. /* pcdp descriptors follow */
  234. } __attribute__((packed));
  235. struct pcdp_device_desc {
  236. u8 type;
  237. u8 primary;
  238. u16 length;
  239. u16 index;
  240. /* interconnect specific structure follows */
  241. /* device specific structure follows that */
  242. } __attribute__((packed));
  243. struct pcdp_interface_pci {
  244. u8 type; /* 1 == pci */
  245. u8 reserved;
  246. u16 length;
  247. u8 segment;
  248. u8 bus;
  249. u8 dev;
  250. u8 fun;
  251. u16 devid;
  252. u16 vendid;
  253. u32 acpi_interrupt;
  254. u64 mmio_tra;
  255. u64 ioport_tra;
  256. u8 flags;
  257. u8 translation;
  258. } __attribute__((packed));
  259. struct pcdp_vga_device {
  260. u8 num_eas_desc;
  261. /* ACPI Extended Address Space Desc follows */
  262. } __attribute__((packed));
  263. /* from pcdp_device_desc.primary */
  264. #define PCDP_PRIMARY_CONSOLE 0x01
  265. /* from pcdp_device_desc.type */
  266. #define PCDP_CONSOLE_INOUT 0x0
  267. #define PCDP_CONSOLE_DEBUG 0x1
  268. #define PCDP_CONSOLE_OUT 0x2
  269. #define PCDP_CONSOLE_IN 0x3
  270. #define PCDP_CONSOLE_TYPE_VGA 0x8
  271. #define PCDP_CONSOLE_VGA (PCDP_CONSOLE_TYPE_VGA | PCDP_CONSOLE_OUT)
  272. /* from pcdp_interface_pci.type */
  273. #define PCDP_IF_PCI 1
  274. /* from pcdp_interface_pci.translation */
  275. #define PCDP_PCI_TRANS_IOPORT 0x02
  276. #define PCDP_PCI_TRANS_MMIO 0x01
  277. static void
  278. sn_scan_pcdp(void)
  279. {
  280. u8 *bp;
  281. struct pcdp *pcdp;
  282. struct pcdp_device_desc device;
  283. struct pcdp_interface_pci if_pci;
  284. extern struct efi efi;
  285. pcdp = efi.hcdp;
  286. if (! pcdp)
  287. return; /* no hcdp/pcdp table */
  288. if (pcdp->rev < 3)
  289. return; /* only support PCDP (rev >= 3) */
  290. for (bp = (u8 *)&pcdp->uart[pcdp->num_type0];
  291. bp < (u8 *)pcdp + pcdp->length;
  292. bp += device.length) {
  293. memcpy(&device, bp, sizeof(device));
  294. if (! (device.primary & PCDP_PRIMARY_CONSOLE))
  295. continue; /* not primary console */
  296. if (device.type != PCDP_CONSOLE_VGA)
  297. continue; /* not VGA descriptor */
  298. memcpy(&if_pci, bp+sizeof(device), sizeof(if_pci));
  299. if (if_pci.type != PCDP_IF_PCI)
  300. continue; /* not PCI interconnect */
  301. if (if_pci.translation & PCDP_PCI_TRANS_IOPORT)
  302. vga_console_iobase =
  303. if_pci.ioport_tra | __IA64_UNCACHED_OFFSET;
  304. if (if_pci.translation & PCDP_PCI_TRANS_MMIO)
  305. vga_console_membase =
  306. if_pci.mmio_tra | __IA64_UNCACHED_OFFSET;
  307. break; /* once we find the primary, we're done */
  308. }
  309. }
  310. /**
  311. * sn_setup - SN platform setup routine
  312. * @cmdline_p: kernel command line
  313. *
  314. * Handles platform setup for SN machines. This includes determining
  315. * the RTC frequency (via a SAL call), initializing secondary CPUs, and
  316. * setting up per-node data areas. The console is also initialized here.
  317. */
  318. void __init sn_setup(char **cmdline_p)
  319. {
  320. long status, ticks_per_sec, drift;
  321. u32 version = sn_sal_rev();
  322. extern void sn_cpu_init(void);
  323. ia64_sn_plat_set_error_handling_features(); // obsolete
  324. ia64_sn_set_os_feature(OSF_MCA_SLV_TO_OS_INIT_SLV);
  325. ia64_sn_set_os_feature(OSF_FEAT_LOG_SBES);
  326. #if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
  327. /*
  328. * Handle SN vga console.
  329. *
  330. * SN systems do not have enough ACPI table information
  331. * being passed from prom to identify VGA adapters and the legacy
  332. * addresses to access them. Until that is done, SN systems rely
  333. * on the PCDP table to identify the primary VGA console if one
  334. * exists.
  335. *
  336. * However, kernel PCDP support is optional, and even if it is built
  337. * into the kernel, it will not be used if the boot cmdline contains
  338. * console= directives.
  339. *
  340. * So, to work around this mess, we duplicate some of the PCDP code
  341. * here so that the primary VGA console (as defined by PCDP) will
  342. * work on SN systems even if a different console (e.g. serial) is
  343. * selected on the boot line (or CONFIG_EFI_PCDP is off).
  344. */
  345. if (! vga_console_membase)
  346. sn_scan_pcdp();
  347. if (vga_console_membase) {
  348. /* usable vga ... make tty0 the preferred default console */
  349. if (!strstr(*cmdline_p, "console="))
  350. add_preferred_console("tty", 0, NULL);
  351. } else {
  352. printk(KERN_DEBUG "SGI: Disabling VGA console\n");
  353. if (!strstr(*cmdline_p, "console="))
  354. add_preferred_console("ttySG", 0, NULL);
  355. #ifdef CONFIG_DUMMY_CONSOLE
  356. conswitchp = &dummy_con;
  357. #else
  358. conswitchp = NULL;
  359. #endif /* CONFIG_DUMMY_CONSOLE */
  360. }
  361. #endif /* def(CONFIG_VT) && def(CONFIG_VGA_CONSOLE) */
  362. MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY;
  363. /*
  364. * Build the tables for managing cnodes.
  365. */
  366. build_cnode_tables();
  367. /*
  368. * Old PROMs do not provide an ACPI FADT. Disable legacy keyboard
  369. * support here so we don't have to listen to failed keyboard probe
  370. * messages.
  371. */
  372. if (version <= 0x0209 && acpi_kbd_controller_present) {
  373. printk(KERN_INFO "Disabling legacy keyboard support as prom "
  374. "is too old and doesn't provide FADT\n");
  375. acpi_kbd_controller_present = 0;
  376. }
  377. printk("SGI SAL version %x.%02x\n", version >> 8, version & 0x00FF);
  378. status =
  379. ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec,
  380. &drift);
  381. if (status != 0 || ticks_per_sec < 100000) {
  382. printk(KERN_WARNING
  383. "unable to determine platform RTC clock frequency, guessing.\n");
  384. /* PROM gives wrong value for clock freq. so guess */
  385. sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
  386. } else
  387. sn_rtc_cycles_per_second = ticks_per_sec;
  388. platform_intr_list[ACPI_INTERRUPT_CPEI] = IA64_CPE_VECTOR;
  389. /*
  390. * we set the default root device to /dev/hda
  391. * to make simulation easy
  392. */
  393. ROOT_DEV = Root_HDA1;
  394. /*
  395. * Create the PDAs and NODEPDAs for all the cpus.
  396. */
  397. sn_init_pdas(cmdline_p);
  398. ia64_mark_idle = &snidle;
  399. /*
  400. * For the bootcpu, we do this here. All other cpus will make the
  401. * call as part of cpu_init in slave cpu initialization.
  402. */
  403. sn_cpu_init();
  404. #ifdef CONFIG_SMP
  405. init_smp_config();
  406. #endif
  407. screen_info = sn_screen_info;
  408. sn_timer_init();
  409. /*
  410. * set pm_power_off to a SAL call to allow
  411. * sn machines to power off. The SAL call can be replaced
  412. * by an ACPI interface call when ACPI is fully implemented
  413. * for sn.
  414. */
  415. pm_power_off = ia64_sn_power_down;
  416. }
  417. /**
  418. * sn_init_pdas - setup node data areas
  419. *
  420. * One time setup for Node Data Area. Called by sn_setup().
  421. */
  422. static void __init sn_init_pdas(char **cmdline_p)
  423. {
  424. cnodeid_t cnode;
  425. /*
  426. * Allocate & initalize the nodepda for each node.
  427. */
  428. for_each_online_node(cnode) {
  429. nodepdaindr[cnode] =
  430. alloc_bootmem_node(NODE_DATA(cnode), sizeof(nodepda_t));
  431. memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
  432. memset(nodepdaindr[cnode]->phys_cpuid, -1,
  433. sizeof(nodepdaindr[cnode]->phys_cpuid));
  434. spin_lock_init(&nodepdaindr[cnode]->ptc_lock);
  435. }
  436. /*
  437. * Allocate & initialize nodepda for TIOs. For now, put them on node 0.
  438. */
  439. for (cnode = num_online_nodes(); cnode < num_cnodes; cnode++) {
  440. nodepdaindr[cnode] =
  441. alloc_bootmem_node(NODE_DATA(0), sizeof(nodepda_t));
  442. memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
  443. }
  444. /*
  445. * Now copy the array of nodepda pointers to each nodepda.
  446. */
  447. for (cnode = 0; cnode < num_cnodes; cnode++)
  448. memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr,
  449. sizeof(nodepdaindr));
  450. /*
  451. * Set up IO related platform-dependent nodepda fields.
  452. * The following routine actually sets up the hubinfo struct
  453. * in nodepda.
  454. */
  455. for_each_online_node(cnode) {
  456. bte_init_node(nodepdaindr[cnode], cnode);
  457. }
  458. /*
  459. * Initialize the per node hubdev. This includes IO Nodes and
  460. * headless/memless nodes.
  461. */
  462. for (cnode = 0; cnode < num_cnodes; cnode++) {
  463. hubdev_init_node(nodepdaindr[cnode], cnode);
  464. }
  465. }
  466. /**
  467. * sn_cpu_init - initialize per-cpu data areas
  468. * @cpuid: cpuid of the caller
  469. *
  470. * Called during cpu initialization on each cpu as it starts.
  471. * Currently, initializes the per-cpu data area for SNIA.
  472. * Also sets up a few fields in the nodepda. Also known as
  473. * platform_cpu_init() by the ia64 machvec code.
  474. */
  475. void __init sn_cpu_init(void)
  476. {
  477. int cpuid;
  478. int cpuphyid;
  479. int nasid;
  480. int subnode;
  481. int slice;
  482. int cnode;
  483. int i;
  484. static int wars_have_been_checked;
  485. if (smp_processor_id() == 0 && IS_MEDUSA()) {
  486. if (ia64_sn_is_fake_prom())
  487. sn_prom_type = 2;
  488. else
  489. sn_prom_type = 1;
  490. printk(KERN_INFO "Running on medusa with %s PROM\n",
  491. (sn_prom_type == 1) ? "real" : "fake");
  492. }
  493. memset(pda, 0, sizeof(pda));
  494. if (ia64_sn_get_sn_info(0, &sn_hub_info->shub2,
  495. &sn_hub_info->nasid_bitmask,
  496. &sn_hub_info->nasid_shift,
  497. &sn_system_size, &sn_sharing_domain_size,
  498. &sn_partition_id, &sn_coherency_id,
  499. &sn_region_size))
  500. BUG();
  501. sn_hub_info->as_shift = sn_hub_info->nasid_shift - 2;
  502. /*
  503. * The boot cpu makes this call again after platform initialization is
  504. * complete.
  505. */
  506. if (nodepdaindr[0] == NULL)
  507. return;
  508. for (i = 0; i < MAX_PROM_FEATURE_SETS; i++)
  509. if (ia64_sn_get_prom_feature_set(i, &sn_prom_features[i]) != 0)
  510. break;
  511. cpuid = smp_processor_id();
  512. cpuphyid = get_sapicid();
  513. if (ia64_sn_get_sapic_info(cpuphyid, &nasid, &subnode, &slice))
  514. BUG();
  515. for (i=0; i < MAX_NUMNODES; i++) {
  516. if (nodepdaindr[i]) {
  517. nodepdaindr[i]->phys_cpuid[cpuid].nasid = nasid;
  518. nodepdaindr[i]->phys_cpuid[cpuid].slice = slice;
  519. nodepdaindr[i]->phys_cpuid[cpuid].subnode = subnode;
  520. }
  521. }
  522. cnode = nasid_to_cnodeid(nasid);
  523. sn_nodepda = nodepdaindr[cnode];
  524. pda->led_address =
  525. (typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT));
  526. pda->led_state = LED_ALWAYS_SET;
  527. pda->hb_count = HZ / 2;
  528. pda->hb_state = 0;
  529. pda->idle_flag = 0;
  530. if (cpuid != 0) {
  531. /* copy cpu 0's sn_cnodeid_to_nasid table to this cpu's */
  532. memcpy(sn_cnodeid_to_nasid,
  533. (&per_cpu(__sn_cnodeid_to_nasid, 0)),
  534. sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
  535. }
  536. /*
  537. * Check for WARs.
  538. * Only needs to be done once, on BSP.
  539. * Has to be done after loop above, because it uses this cpu's
  540. * sn_cnodeid_to_nasid table which was just initialized if this
  541. * isn't cpu 0.
  542. * Has to be done before assignment below.
  543. */
  544. if (!wars_have_been_checked) {
  545. sn_check_for_wars();
  546. wars_have_been_checked = 1;
  547. }
  548. sn_hub_info->shub_1_1_found = shub_1_1_found;
  549. /*
  550. * Set up addresses of PIO/MEM write status registers.
  551. */
  552. {
  553. u64 pio1[] = {SH1_PIO_WRITE_STATUS_0, 0, SH1_PIO_WRITE_STATUS_1, 0};
  554. u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_2,
  555. SH2_PIO_WRITE_STATUS_1, SH2_PIO_WRITE_STATUS_3};
  556. u64 *pio;
  557. pio = is_shub1() ? pio1 : pio2;
  558. pda->pio_write_status_addr = (volatile unsigned long *) LOCAL_MMR_ADDR(pio[slice]);
  559. pda->pio_write_status_val = is_shub1() ? SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK : 0;
  560. }
  561. /*
  562. * WAR addresses for SHUB 1.x.
  563. */
  564. if (local_node_data->active_cpu_count++ == 0 && is_shub1()) {
  565. int buddy_nasid;
  566. buddy_nasid =
  567. cnodeid_to_nasid(numa_node_id() ==
  568. num_online_nodes() - 1 ? 0 : numa_node_id() + 1);
  569. pda->pio_shub_war_cam_addr =
  570. (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid,
  571. SH1_PI_CAM_CONTROL);
  572. }
  573. }
  574. /*
  575. * Build tables for converting between NASIDs and cnodes.
  576. */
  577. static inline int __init board_needs_cnode(int type)
  578. {
  579. return (type == KLTYPE_SNIA || type == KLTYPE_TIO);
  580. }
  581. void __init build_cnode_tables(void)
  582. {
  583. int nasid;
  584. int node;
  585. lboard_t *brd;
  586. memset(physical_node_map, -1, sizeof(physical_node_map));
  587. memset(sn_cnodeid_to_nasid, -1,
  588. sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
  589. /*
  590. * First populate the tables with C/M bricks. This ensures that
  591. * cnode == node for all C & M bricks.
  592. */
  593. for_each_online_node(node) {
  594. nasid = pxm_to_nasid(nid_to_pxm_map[node]);
  595. sn_cnodeid_to_nasid[node] = nasid;
  596. physical_node_map[nasid] = node;
  597. }
  598. /*
  599. * num_cnodes is total number of C/M/TIO bricks. Because of the 256 node
  600. * limit on the number of nodes, we can't use the generic node numbers
  601. * for this. Note that num_cnodes is incremented below as TIOs or
  602. * headless/memoryless nodes are discovered.
  603. */
  604. num_cnodes = num_online_nodes();
  605. /* fakeprom does not support klgraph */
  606. if (IS_RUNNING_ON_FAKE_PROM())
  607. return;
  608. /* Find TIOs & headless/memoryless nodes and add them to the tables */
  609. for_each_online_node(node) {
  610. kl_config_hdr_t *klgraph_header;
  611. nasid = cnodeid_to_nasid(node);
  612. klgraph_header = ia64_sn_get_klconfig_addr(nasid);
  613. if (klgraph_header == NULL)
  614. BUG();
  615. brd = NODE_OFFSET_TO_LBOARD(nasid, klgraph_header->ch_board_info);
  616. while (brd) {
  617. if (board_needs_cnode(brd->brd_type) && physical_node_map[brd->brd_nasid] < 0) {
  618. sn_cnodeid_to_nasid[num_cnodes] = brd->brd_nasid;
  619. physical_node_map[brd->brd_nasid] = num_cnodes++;
  620. }
  621. brd = find_lboard_next(brd);
  622. }
  623. }
  624. }
  625. int
  626. nasid_slice_to_cpuid(int nasid, int slice)
  627. {
  628. long cpu;
  629. for (cpu = 0; cpu < NR_CPUS; cpu++)
  630. if (cpuid_to_nasid(cpu) == nasid &&
  631. cpuid_to_slice(cpu) == slice)
  632. return cpu;
  633. return -1;
  634. }
  635. int sn_prom_feature_available(int id)
  636. {
  637. if (id >= BITS_PER_LONG * MAX_PROM_FEATURE_SETS)
  638. return 0;
  639. return test_bit(id, sn_prom_features);
  640. }
  641. EXPORT_SYMBOL(sn_prom_feature_available);