core.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786
  1. /*
  2. * The NFC Controller Interface is the communication protocol between an
  3. * NFC Controller (NFCC) and a Device Host (DH).
  4. *
  5. * Copyright (C) 2011 Texas Instruments, Inc.
  6. *
  7. * Written by Ilan Elias <ilane@ti.com>
  8. *
  9. * Acknowledgements:
  10. * This file is based on hci_core.c, which was written
  11. * by Maxim Krasnyansky.
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License version 2
  15. * as published by the Free Software Foundation
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  25. *
  26. */
  27. #define pr_fmt(fmt) KBUILD_MODNAME ": %s: " fmt, __func__
  28. #include <linux/types.h>
  29. #include <linux/workqueue.h>
  30. #include <linux/completion.h>
  31. #include <linux/export.h>
  32. #include <linux/sched.h>
  33. #include <linux/bitops.h>
  34. #include <linux/skbuff.h>
  35. #include "../nfc.h"
  36. #include <net/nfc/nci.h>
  37. #include <net/nfc/nci_core.h>
  38. #include <linux/nfc.h>
  39. static void nci_cmd_work(struct work_struct *work);
  40. static void nci_rx_work(struct work_struct *work);
  41. static void nci_tx_work(struct work_struct *work);
  42. /* ---- NCI requests ---- */
  43. void nci_req_complete(struct nci_dev *ndev, int result)
  44. {
  45. if (ndev->req_status == NCI_REQ_PEND) {
  46. ndev->req_result = result;
  47. ndev->req_status = NCI_REQ_DONE;
  48. complete(&ndev->req_completion);
  49. }
  50. }
  51. static void nci_req_cancel(struct nci_dev *ndev, int err)
  52. {
  53. if (ndev->req_status == NCI_REQ_PEND) {
  54. ndev->req_result = err;
  55. ndev->req_status = NCI_REQ_CANCELED;
  56. complete(&ndev->req_completion);
  57. }
  58. }
  59. /* Execute request and wait for completion. */
  60. static int __nci_request(struct nci_dev *ndev,
  61. void (*req)(struct nci_dev *ndev, unsigned long opt),
  62. unsigned long opt,
  63. __u32 timeout)
  64. {
  65. int rc = 0;
  66. long completion_rc;
  67. ndev->req_status = NCI_REQ_PEND;
  68. init_completion(&ndev->req_completion);
  69. req(ndev, opt);
  70. completion_rc = wait_for_completion_interruptible_timeout(
  71. &ndev->req_completion,
  72. timeout);
  73. pr_debug("wait_for_completion return %ld\n", completion_rc);
  74. if (completion_rc > 0) {
  75. switch (ndev->req_status) {
  76. case NCI_REQ_DONE:
  77. rc = nci_to_errno(ndev->req_result);
  78. break;
  79. case NCI_REQ_CANCELED:
  80. rc = -ndev->req_result;
  81. break;
  82. default:
  83. rc = -ETIMEDOUT;
  84. break;
  85. }
  86. } else {
  87. pr_err("wait_for_completion_interruptible_timeout failed %ld\n",
  88. completion_rc);
  89. rc = ((completion_rc == 0) ? (-ETIMEDOUT) : (completion_rc));
  90. }
  91. ndev->req_status = ndev->req_result = 0;
  92. return rc;
  93. }
  94. static inline int nci_request(struct nci_dev *ndev,
  95. void (*req)(struct nci_dev *ndev, unsigned long opt),
  96. unsigned long opt, __u32 timeout)
  97. {
  98. int rc;
  99. if (!test_bit(NCI_UP, &ndev->flags))
  100. return -ENETDOWN;
  101. /* Serialize all requests */
  102. mutex_lock(&ndev->req_lock);
  103. rc = __nci_request(ndev, req, opt, timeout);
  104. mutex_unlock(&ndev->req_lock);
  105. return rc;
  106. }
  107. static void nci_reset_req(struct nci_dev *ndev, unsigned long opt)
  108. {
  109. struct nci_core_reset_cmd cmd;
  110. cmd.reset_type = NCI_RESET_TYPE_RESET_CONFIG;
  111. nci_send_cmd(ndev, NCI_OP_CORE_RESET_CMD, 1, &cmd);
  112. }
  113. static void nci_init_req(struct nci_dev *ndev, unsigned long opt)
  114. {
  115. nci_send_cmd(ndev, NCI_OP_CORE_INIT_CMD, 0, NULL);
  116. }
  117. static void nci_init_complete_req(struct nci_dev *ndev, unsigned long opt)
  118. {
  119. struct nci_rf_disc_map_cmd cmd;
  120. struct disc_map_config *cfg = cmd.mapping_configs;
  121. __u8 *num = &cmd.num_mapping_configs;
  122. int i;
  123. /* set rf mapping configurations */
  124. *num = 0;
  125. /* by default mapping is set to NCI_RF_INTERFACE_FRAME */
  126. for (i = 0; i < ndev->num_supported_rf_interfaces; i++) {
  127. if (ndev->supported_rf_interfaces[i] ==
  128. NCI_RF_INTERFACE_ISO_DEP) {
  129. cfg[*num].rf_protocol = NCI_RF_PROTOCOL_ISO_DEP;
  130. cfg[*num].mode = NCI_DISC_MAP_MODE_POLL |
  131. NCI_DISC_MAP_MODE_LISTEN;
  132. cfg[*num].rf_interface = NCI_RF_INTERFACE_ISO_DEP;
  133. (*num)++;
  134. } else if (ndev->supported_rf_interfaces[i] ==
  135. NCI_RF_INTERFACE_NFC_DEP) {
  136. cfg[*num].rf_protocol = NCI_RF_PROTOCOL_NFC_DEP;
  137. cfg[*num].mode = NCI_DISC_MAP_MODE_POLL |
  138. NCI_DISC_MAP_MODE_LISTEN;
  139. cfg[*num].rf_interface = NCI_RF_INTERFACE_NFC_DEP;
  140. (*num)++;
  141. }
  142. if (*num == NCI_MAX_NUM_MAPPING_CONFIGS)
  143. break;
  144. }
  145. nci_send_cmd(ndev, NCI_OP_RF_DISCOVER_MAP_CMD,
  146. (1 + ((*num)*sizeof(struct disc_map_config))),
  147. &cmd);
  148. }
  149. static void nci_rf_discover_req(struct nci_dev *ndev, unsigned long opt)
  150. {
  151. struct nci_rf_disc_cmd cmd;
  152. __u32 protocols = opt;
  153. cmd.num_disc_configs = 0;
  154. if ((cmd.num_disc_configs < NCI_MAX_NUM_RF_CONFIGS) &&
  155. (protocols & NFC_PROTO_JEWEL_MASK
  156. || protocols & NFC_PROTO_MIFARE_MASK
  157. || protocols & NFC_PROTO_ISO14443_MASK
  158. || protocols & NFC_PROTO_NFC_DEP_MASK)) {
  159. cmd.disc_configs[cmd.num_disc_configs].rf_tech_and_mode =
  160. NCI_NFC_A_PASSIVE_POLL_MODE;
  161. cmd.disc_configs[cmd.num_disc_configs].frequency = 1;
  162. cmd.num_disc_configs++;
  163. }
  164. if ((cmd.num_disc_configs < NCI_MAX_NUM_RF_CONFIGS) &&
  165. (protocols & NFC_PROTO_ISO14443_MASK)) {
  166. cmd.disc_configs[cmd.num_disc_configs].rf_tech_and_mode =
  167. NCI_NFC_B_PASSIVE_POLL_MODE;
  168. cmd.disc_configs[cmd.num_disc_configs].frequency = 1;
  169. cmd.num_disc_configs++;
  170. }
  171. if ((cmd.num_disc_configs < NCI_MAX_NUM_RF_CONFIGS) &&
  172. (protocols & NFC_PROTO_FELICA_MASK
  173. || protocols & NFC_PROTO_NFC_DEP_MASK)) {
  174. cmd.disc_configs[cmd.num_disc_configs].rf_tech_and_mode =
  175. NCI_NFC_F_PASSIVE_POLL_MODE;
  176. cmd.disc_configs[cmd.num_disc_configs].frequency = 1;
  177. cmd.num_disc_configs++;
  178. }
  179. nci_send_cmd(ndev, NCI_OP_RF_DISCOVER_CMD,
  180. (1 + (cmd.num_disc_configs*sizeof(struct disc_config))),
  181. &cmd);
  182. }
  183. static void nci_rf_deactivate_req(struct nci_dev *ndev, unsigned long opt)
  184. {
  185. struct nci_rf_deactivate_cmd cmd;
  186. cmd.type = NCI_DEACTIVATE_TYPE_IDLE_MODE;
  187. nci_send_cmd(ndev, NCI_OP_RF_DEACTIVATE_CMD,
  188. sizeof(struct nci_rf_deactivate_cmd),
  189. &cmd);
  190. }
  191. static int nci_open_device(struct nci_dev *ndev)
  192. {
  193. int rc = 0;
  194. mutex_lock(&ndev->req_lock);
  195. if (test_bit(NCI_UP, &ndev->flags)) {
  196. rc = -EALREADY;
  197. goto done;
  198. }
  199. if (ndev->ops->open(ndev)) {
  200. rc = -EIO;
  201. goto done;
  202. }
  203. atomic_set(&ndev->cmd_cnt, 1);
  204. set_bit(NCI_INIT, &ndev->flags);
  205. rc = __nci_request(ndev, nci_reset_req, 0,
  206. msecs_to_jiffies(NCI_RESET_TIMEOUT));
  207. if (!rc) {
  208. rc = __nci_request(ndev, nci_init_req, 0,
  209. msecs_to_jiffies(NCI_INIT_TIMEOUT));
  210. }
  211. if (!rc) {
  212. rc = __nci_request(ndev, nci_init_complete_req, 0,
  213. msecs_to_jiffies(NCI_INIT_TIMEOUT));
  214. }
  215. clear_bit(NCI_INIT, &ndev->flags);
  216. if (!rc) {
  217. set_bit(NCI_UP, &ndev->flags);
  218. } else {
  219. /* Init failed, cleanup */
  220. skb_queue_purge(&ndev->cmd_q);
  221. skb_queue_purge(&ndev->rx_q);
  222. skb_queue_purge(&ndev->tx_q);
  223. ndev->ops->close(ndev);
  224. ndev->flags = 0;
  225. }
  226. done:
  227. mutex_unlock(&ndev->req_lock);
  228. return rc;
  229. }
  230. static int nci_close_device(struct nci_dev *ndev)
  231. {
  232. nci_req_cancel(ndev, ENODEV);
  233. mutex_lock(&ndev->req_lock);
  234. if (!test_and_clear_bit(NCI_UP, &ndev->flags)) {
  235. del_timer_sync(&ndev->cmd_timer);
  236. mutex_unlock(&ndev->req_lock);
  237. return 0;
  238. }
  239. /* Drop RX and TX queues */
  240. skb_queue_purge(&ndev->rx_q);
  241. skb_queue_purge(&ndev->tx_q);
  242. /* Flush RX and TX wq */
  243. flush_workqueue(ndev->rx_wq);
  244. flush_workqueue(ndev->tx_wq);
  245. /* Reset device */
  246. skb_queue_purge(&ndev->cmd_q);
  247. atomic_set(&ndev->cmd_cnt, 1);
  248. set_bit(NCI_INIT, &ndev->flags);
  249. __nci_request(ndev, nci_reset_req, 0,
  250. msecs_to_jiffies(NCI_RESET_TIMEOUT));
  251. clear_bit(NCI_INIT, &ndev->flags);
  252. /* Flush cmd wq */
  253. flush_workqueue(ndev->cmd_wq);
  254. /* After this point our queues are empty
  255. * and no works are scheduled. */
  256. ndev->ops->close(ndev);
  257. /* Clear flags */
  258. ndev->flags = 0;
  259. mutex_unlock(&ndev->req_lock);
  260. return 0;
  261. }
  262. /* NCI command timer function */
  263. static void nci_cmd_timer(unsigned long arg)
  264. {
  265. struct nci_dev *ndev = (void *) arg;
  266. atomic_set(&ndev->cmd_cnt, 1);
  267. queue_work(ndev->cmd_wq, &ndev->cmd_work);
  268. }
  269. static int nci_dev_up(struct nfc_dev *nfc_dev)
  270. {
  271. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  272. return nci_open_device(ndev);
  273. }
  274. static int nci_dev_down(struct nfc_dev *nfc_dev)
  275. {
  276. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  277. return nci_close_device(ndev);
  278. }
  279. static int nci_start_poll(struct nfc_dev *nfc_dev, __u32 protocols)
  280. {
  281. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  282. int rc;
  283. if (test_bit(NCI_DISCOVERY, &ndev->flags)) {
  284. pr_err("unable to start poll, since poll is already active\n");
  285. return -EBUSY;
  286. }
  287. if (ndev->target_active_prot) {
  288. pr_err("there is an active target\n");
  289. return -EBUSY;
  290. }
  291. if (test_bit(NCI_POLL_ACTIVE, &ndev->flags)) {
  292. pr_debug("target is active, implicitly deactivate...\n");
  293. rc = nci_request(ndev, nci_rf_deactivate_req, 0,
  294. msecs_to_jiffies(NCI_RF_DEACTIVATE_TIMEOUT));
  295. if (rc)
  296. return -EBUSY;
  297. }
  298. rc = nci_request(ndev, nci_rf_discover_req, protocols,
  299. msecs_to_jiffies(NCI_RF_DISC_TIMEOUT));
  300. if (!rc)
  301. ndev->poll_prots = protocols;
  302. return rc;
  303. }
  304. static void nci_stop_poll(struct nfc_dev *nfc_dev)
  305. {
  306. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  307. if (!test_bit(NCI_DISCOVERY, &ndev->flags)) {
  308. pr_err("unable to stop poll, since poll is not active\n");
  309. return;
  310. }
  311. nci_request(ndev, nci_rf_deactivate_req, 0,
  312. msecs_to_jiffies(NCI_RF_DEACTIVATE_TIMEOUT));
  313. }
  314. static int nci_activate_target(struct nfc_dev *nfc_dev, __u32 target_idx,
  315. __u32 protocol)
  316. {
  317. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  318. pr_debug("target_idx %d, protocol 0x%x\n", target_idx, protocol);
  319. if (!test_bit(NCI_POLL_ACTIVE, &ndev->flags)) {
  320. pr_err("there is no available target to activate\n");
  321. return -EINVAL;
  322. }
  323. if (ndev->target_active_prot) {
  324. pr_err("there is already an active target\n");
  325. return -EBUSY;
  326. }
  327. if (!(ndev->target_available_prots & (1 << protocol))) {
  328. pr_err("target does not support the requested protocol 0x%x\n",
  329. protocol);
  330. return -EINVAL;
  331. }
  332. ndev->target_active_prot = protocol;
  333. ndev->target_available_prots = 0;
  334. return 0;
  335. }
  336. static void nci_deactivate_target(struct nfc_dev *nfc_dev, __u32 target_idx)
  337. {
  338. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  339. pr_debug("target_idx %d\n", target_idx);
  340. if (!ndev->target_active_prot) {
  341. pr_err("unable to deactivate target, no active target\n");
  342. return;
  343. }
  344. ndev->target_active_prot = 0;
  345. if (test_bit(NCI_POLL_ACTIVE, &ndev->flags)) {
  346. nci_request(ndev, nci_rf_deactivate_req, 0,
  347. msecs_to_jiffies(NCI_RF_DEACTIVATE_TIMEOUT));
  348. }
  349. }
  350. static int nci_data_exchange(struct nfc_dev *nfc_dev, __u32 target_idx,
  351. struct sk_buff *skb,
  352. data_exchange_cb_t cb,
  353. void *cb_context)
  354. {
  355. struct nci_dev *ndev = nfc_get_drvdata(nfc_dev);
  356. int rc;
  357. pr_debug("target_idx %d, len %d\n", target_idx, skb->len);
  358. if (!ndev->target_active_prot) {
  359. pr_err("unable to exchange data, no active target\n");
  360. return -EINVAL;
  361. }
  362. if (test_and_set_bit(NCI_DATA_EXCHANGE, &ndev->flags))
  363. return -EBUSY;
  364. /* store cb and context to be used on receiving data */
  365. ndev->data_exchange_cb = cb;
  366. ndev->data_exchange_cb_context = cb_context;
  367. rc = nci_send_data(ndev, NCI_STATIC_RF_CONN_ID, skb);
  368. if (rc)
  369. clear_bit(NCI_DATA_EXCHANGE, &ndev->flags);
  370. return rc;
  371. }
  372. static struct nfc_ops nci_nfc_ops = {
  373. .dev_up = nci_dev_up,
  374. .dev_down = nci_dev_down,
  375. .start_poll = nci_start_poll,
  376. .stop_poll = nci_stop_poll,
  377. .activate_target = nci_activate_target,
  378. .deactivate_target = nci_deactivate_target,
  379. .data_exchange = nci_data_exchange,
  380. };
  381. /* ---- Interface to NCI drivers ---- */
  382. /**
  383. * nci_allocate_device - allocate a new nci device
  384. *
  385. * @ops: device operations
  386. * @supported_protocols: NFC protocols supported by the device
  387. */
  388. struct nci_dev *nci_allocate_device(struct nci_ops *ops,
  389. __u32 supported_protocols,
  390. int tx_headroom,
  391. int tx_tailroom)
  392. {
  393. struct nci_dev *ndev;
  394. pr_debug("supported_protocols 0x%x\n", supported_protocols);
  395. if (!ops->open || !ops->close || !ops->send)
  396. return NULL;
  397. if (!supported_protocols)
  398. return NULL;
  399. ndev = kzalloc(sizeof(struct nci_dev), GFP_KERNEL);
  400. if (!ndev)
  401. return NULL;
  402. ndev->ops = ops;
  403. ndev->tx_headroom = tx_headroom;
  404. ndev->tx_tailroom = tx_tailroom;
  405. ndev->nfc_dev = nfc_allocate_device(&nci_nfc_ops,
  406. supported_protocols,
  407. tx_headroom + NCI_DATA_HDR_SIZE,
  408. tx_tailroom);
  409. if (!ndev->nfc_dev)
  410. goto free_exit;
  411. nfc_set_drvdata(ndev->nfc_dev, ndev);
  412. return ndev;
  413. free_exit:
  414. kfree(ndev);
  415. return NULL;
  416. }
  417. EXPORT_SYMBOL(nci_allocate_device);
  418. /**
  419. * nci_free_device - deallocate nci device
  420. *
  421. * @ndev: The nci device to deallocate
  422. */
  423. void nci_free_device(struct nci_dev *ndev)
  424. {
  425. nfc_free_device(ndev->nfc_dev);
  426. kfree(ndev);
  427. }
  428. EXPORT_SYMBOL(nci_free_device);
  429. /**
  430. * nci_register_device - register a nci device in the nfc subsystem
  431. *
  432. * @dev: The nci device to register
  433. */
  434. int nci_register_device(struct nci_dev *ndev)
  435. {
  436. int rc;
  437. struct device *dev = &ndev->nfc_dev->dev;
  438. char name[32];
  439. rc = nfc_register_device(ndev->nfc_dev);
  440. if (rc)
  441. goto exit;
  442. ndev->flags = 0;
  443. INIT_WORK(&ndev->cmd_work, nci_cmd_work);
  444. snprintf(name, sizeof(name), "%s_nci_cmd_wq", dev_name(dev));
  445. ndev->cmd_wq = create_singlethread_workqueue(name);
  446. if (!ndev->cmd_wq) {
  447. rc = -ENOMEM;
  448. goto unreg_exit;
  449. }
  450. INIT_WORK(&ndev->rx_work, nci_rx_work);
  451. snprintf(name, sizeof(name), "%s_nci_rx_wq", dev_name(dev));
  452. ndev->rx_wq = create_singlethread_workqueue(name);
  453. if (!ndev->rx_wq) {
  454. rc = -ENOMEM;
  455. goto destroy_cmd_wq_exit;
  456. }
  457. INIT_WORK(&ndev->tx_work, nci_tx_work);
  458. snprintf(name, sizeof(name), "%s_nci_tx_wq", dev_name(dev));
  459. ndev->tx_wq = create_singlethread_workqueue(name);
  460. if (!ndev->tx_wq) {
  461. rc = -ENOMEM;
  462. goto destroy_rx_wq_exit;
  463. }
  464. skb_queue_head_init(&ndev->cmd_q);
  465. skb_queue_head_init(&ndev->rx_q);
  466. skb_queue_head_init(&ndev->tx_q);
  467. setup_timer(&ndev->cmd_timer, nci_cmd_timer,
  468. (unsigned long) ndev);
  469. mutex_init(&ndev->req_lock);
  470. goto exit;
  471. destroy_rx_wq_exit:
  472. destroy_workqueue(ndev->rx_wq);
  473. destroy_cmd_wq_exit:
  474. destroy_workqueue(ndev->cmd_wq);
  475. unreg_exit:
  476. nfc_unregister_device(ndev->nfc_dev);
  477. exit:
  478. return rc;
  479. }
  480. EXPORT_SYMBOL(nci_register_device);
  481. /**
  482. * nci_unregister_device - unregister a nci device in the nfc subsystem
  483. *
  484. * @dev: The nci device to unregister
  485. */
  486. void nci_unregister_device(struct nci_dev *ndev)
  487. {
  488. nci_close_device(ndev);
  489. destroy_workqueue(ndev->cmd_wq);
  490. destroy_workqueue(ndev->rx_wq);
  491. destroy_workqueue(ndev->tx_wq);
  492. nfc_unregister_device(ndev->nfc_dev);
  493. }
  494. EXPORT_SYMBOL(nci_unregister_device);
  495. /**
  496. * nci_recv_frame - receive frame from NCI drivers
  497. *
  498. * @skb: The sk_buff to receive
  499. */
  500. int nci_recv_frame(struct sk_buff *skb)
  501. {
  502. struct nci_dev *ndev = (struct nci_dev *) skb->dev;
  503. pr_debug("len %d\n", skb->len);
  504. if (!ndev || (!test_bit(NCI_UP, &ndev->flags)
  505. && !test_bit(NCI_INIT, &ndev->flags))) {
  506. kfree_skb(skb);
  507. return -ENXIO;
  508. }
  509. /* Queue frame for rx worker thread */
  510. skb_queue_tail(&ndev->rx_q, skb);
  511. queue_work(ndev->rx_wq, &ndev->rx_work);
  512. return 0;
  513. }
  514. EXPORT_SYMBOL(nci_recv_frame);
  515. static int nci_send_frame(struct sk_buff *skb)
  516. {
  517. struct nci_dev *ndev = (struct nci_dev *) skb->dev;
  518. pr_debug("len %d\n", skb->len);
  519. if (!ndev) {
  520. kfree_skb(skb);
  521. return -ENODEV;
  522. }
  523. /* Get rid of skb owner, prior to sending to the driver. */
  524. skb_orphan(skb);
  525. return ndev->ops->send(skb);
  526. }
  527. /* Send NCI command */
  528. int nci_send_cmd(struct nci_dev *ndev, __u16 opcode, __u8 plen, void *payload)
  529. {
  530. struct nci_ctrl_hdr *hdr;
  531. struct sk_buff *skb;
  532. pr_debug("opcode 0x%x, plen %d\n", opcode, plen);
  533. skb = nci_skb_alloc(ndev, (NCI_CTRL_HDR_SIZE + plen), GFP_KERNEL);
  534. if (!skb) {
  535. pr_err("no memory for command\n");
  536. return -ENOMEM;
  537. }
  538. hdr = (struct nci_ctrl_hdr *) skb_put(skb, NCI_CTRL_HDR_SIZE);
  539. hdr->gid = nci_opcode_gid(opcode);
  540. hdr->oid = nci_opcode_oid(opcode);
  541. hdr->plen = plen;
  542. nci_mt_set((__u8 *)hdr, NCI_MT_CMD_PKT);
  543. nci_pbf_set((__u8 *)hdr, NCI_PBF_LAST);
  544. if (plen)
  545. memcpy(skb_put(skb, plen), payload, plen);
  546. skb->dev = (void *) ndev;
  547. skb_queue_tail(&ndev->cmd_q, skb);
  548. queue_work(ndev->cmd_wq, &ndev->cmd_work);
  549. return 0;
  550. }
  551. /* ---- NCI TX Data worker thread ---- */
  552. static void nci_tx_work(struct work_struct *work)
  553. {
  554. struct nci_dev *ndev = container_of(work, struct nci_dev, tx_work);
  555. struct sk_buff *skb;
  556. pr_debug("credits_cnt %d\n", atomic_read(&ndev->credits_cnt));
  557. /* Send queued tx data */
  558. while (atomic_read(&ndev->credits_cnt)) {
  559. skb = skb_dequeue(&ndev->tx_q);
  560. if (!skb)
  561. return;
  562. /* Check if data flow control is used */
  563. if (atomic_read(&ndev->credits_cnt) !=
  564. NCI_DATA_FLOW_CONTROL_NOT_USED)
  565. atomic_dec(&ndev->credits_cnt);
  566. pr_debug("NCI TX: MT=data, PBF=%d, conn_id=%d, plen=%d\n",
  567. nci_pbf(skb->data),
  568. nci_conn_id(skb->data),
  569. nci_plen(skb->data));
  570. nci_send_frame(skb);
  571. }
  572. }
  573. /* ----- NCI RX worker thread (data & control) ----- */
  574. static void nci_rx_work(struct work_struct *work)
  575. {
  576. struct nci_dev *ndev = container_of(work, struct nci_dev, rx_work);
  577. struct sk_buff *skb;
  578. while ((skb = skb_dequeue(&ndev->rx_q))) {
  579. /* Process frame */
  580. switch (nci_mt(skb->data)) {
  581. case NCI_MT_RSP_PKT:
  582. nci_rsp_packet(ndev, skb);
  583. break;
  584. case NCI_MT_NTF_PKT:
  585. nci_ntf_packet(ndev, skb);
  586. break;
  587. case NCI_MT_DATA_PKT:
  588. nci_rx_data_packet(ndev, skb);
  589. break;
  590. default:
  591. pr_err("unknown MT 0x%x\n", nci_mt(skb->data));
  592. kfree_skb(skb);
  593. break;
  594. }
  595. }
  596. }
  597. /* ----- NCI TX CMD worker thread ----- */
  598. static void nci_cmd_work(struct work_struct *work)
  599. {
  600. struct nci_dev *ndev = container_of(work, struct nci_dev, cmd_work);
  601. struct sk_buff *skb;
  602. pr_debug("cmd_cnt %d\n", atomic_read(&ndev->cmd_cnt));
  603. /* Send queued command */
  604. if (atomic_read(&ndev->cmd_cnt)) {
  605. skb = skb_dequeue(&ndev->cmd_q);
  606. if (!skb)
  607. return;
  608. atomic_dec(&ndev->cmd_cnt);
  609. pr_debug("NCI TX: MT=cmd, PBF=%d, GID=0x%x, OID=0x%x, plen=%d\n",
  610. nci_pbf(skb->data),
  611. nci_opcode_gid(nci_opcode(skb->data)),
  612. nci_opcode_oid(nci_opcode(skb->data)),
  613. nci_plen(skb->data));
  614. nci_send_frame(skb);
  615. mod_timer(&ndev->cmd_timer,
  616. jiffies + msecs_to_jiffies(NCI_CMD_TIMEOUT));
  617. }
  618. }