af_iucv.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <net/sock.h>
  24. #include <asm/ebcdic.h>
  25. #include <asm/cpcmd.h>
  26. #include <linux/kmod.h>
  27. #include <net/iucv/af_iucv.h>
  28. #define VERSION "1.2"
  29. static char iucv_userid[80];
  30. static const struct proto_ops iucv_sock_ops;
  31. static struct proto iucv_proto = {
  32. .name = "AF_IUCV",
  33. .owner = THIS_MODULE,
  34. .obj_size = sizeof(struct iucv_sock),
  35. };
  36. static struct iucv_interface *pr_iucv;
  37. /* special AF_IUCV IPRM messages */
  38. static const u8 iprm_shutdown[8] =
  39. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  40. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  41. /* macros to set/get socket control buffer at correct offset */
  42. #define CB_TAG(skb) ((skb)->cb) /* iucv message tag */
  43. #define CB_TAG_LEN (sizeof(((struct iucv_message *) 0)->tag))
  44. #define CB_TRGCLS(skb) ((skb)->cb + CB_TAG_LEN) /* iucv msg target class */
  45. #define CB_TRGCLS_LEN (TRGCLS_SIZE)
  46. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  47. do { \
  48. DEFINE_WAIT(__wait); \
  49. long __timeo = timeo; \
  50. ret = 0; \
  51. prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
  52. while (!(condition)) { \
  53. if (!__timeo) { \
  54. ret = -EAGAIN; \
  55. break; \
  56. } \
  57. if (signal_pending(current)) { \
  58. ret = sock_intr_errno(__timeo); \
  59. break; \
  60. } \
  61. release_sock(sk); \
  62. __timeo = schedule_timeout(__timeo); \
  63. lock_sock(sk); \
  64. ret = sock_error(sk); \
  65. if (ret) \
  66. break; \
  67. } \
  68. finish_wait(sk_sleep(sk), &__wait); \
  69. } while (0)
  70. #define iucv_sock_wait(sk, condition, timeo) \
  71. ({ \
  72. int __ret = 0; \
  73. if (!(condition)) \
  74. __iucv_sock_wait(sk, condition, timeo, __ret); \
  75. __ret; \
  76. })
  77. static void iucv_sock_kill(struct sock *sk);
  78. static void iucv_sock_close(struct sock *sk);
  79. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  80. struct packet_type *pt, struct net_device *orig_dev);
  81. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  82. struct sk_buff *skb, u8 flags);
  83. static void afiucv_hs_callback_txnotify(struct sk_buff *, enum iucv_tx_notify);
  84. /* Call Back functions */
  85. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  86. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  87. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  88. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  89. u8 ipuser[16]);
  90. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  91. static void iucv_callback_shutdown(struct iucv_path *, u8 ipuser[16]);
  92. static struct iucv_sock_list iucv_sk_list = {
  93. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  94. .autobind_name = ATOMIC_INIT(0)
  95. };
  96. static struct iucv_handler af_iucv_handler = {
  97. .path_pending = iucv_callback_connreq,
  98. .path_complete = iucv_callback_connack,
  99. .path_severed = iucv_callback_connrej,
  100. .message_pending = iucv_callback_rx,
  101. .message_complete = iucv_callback_txdone,
  102. .path_quiesced = iucv_callback_shutdown,
  103. };
  104. static inline void high_nmcpy(unsigned char *dst, char *src)
  105. {
  106. memcpy(dst, src, 8);
  107. }
  108. static inline void low_nmcpy(unsigned char *dst, char *src)
  109. {
  110. memcpy(&dst[8], src, 8);
  111. }
  112. static void iucv_skb_queue_purge(struct sk_buff_head *list)
  113. {
  114. struct sk_buff *skb;
  115. while ((skb = skb_dequeue(list)) != NULL) {
  116. if (skb->dev)
  117. dev_put(skb->dev);
  118. kfree_skb(skb);
  119. }
  120. }
  121. static int afiucv_pm_prepare(struct device *dev)
  122. {
  123. #ifdef CONFIG_PM_DEBUG
  124. printk(KERN_WARNING "afiucv_pm_prepare\n");
  125. #endif
  126. return 0;
  127. }
  128. static void afiucv_pm_complete(struct device *dev)
  129. {
  130. #ifdef CONFIG_PM_DEBUG
  131. printk(KERN_WARNING "afiucv_pm_complete\n");
  132. #endif
  133. }
  134. /**
  135. * afiucv_pm_freeze() - Freeze PM callback
  136. * @dev: AFIUCV dummy device
  137. *
  138. * Sever all established IUCV communication pathes
  139. */
  140. static int afiucv_pm_freeze(struct device *dev)
  141. {
  142. struct iucv_sock *iucv;
  143. struct sock *sk;
  144. struct hlist_node *node;
  145. int err = 0;
  146. #ifdef CONFIG_PM_DEBUG
  147. printk(KERN_WARNING "afiucv_pm_freeze\n");
  148. #endif
  149. read_lock(&iucv_sk_list.lock);
  150. sk_for_each(sk, node, &iucv_sk_list.head) {
  151. iucv = iucv_sk(sk);
  152. iucv_skb_queue_purge(&iucv->send_skb_q);
  153. skb_queue_purge(&iucv->backlog_skb_q);
  154. switch (sk->sk_state) {
  155. case IUCV_DISCONN:
  156. case IUCV_CLOSING:
  157. case IUCV_CONNECTED:
  158. if (iucv->path) {
  159. err = pr_iucv->path_sever(iucv->path, NULL);
  160. iucv_path_free(iucv->path);
  161. iucv->path = NULL;
  162. }
  163. break;
  164. case IUCV_OPEN:
  165. case IUCV_BOUND:
  166. case IUCV_LISTEN:
  167. case IUCV_CLOSED:
  168. default:
  169. break;
  170. }
  171. }
  172. read_unlock(&iucv_sk_list.lock);
  173. return err;
  174. }
  175. /**
  176. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  177. * @dev: AFIUCV dummy device
  178. *
  179. * socket clean up after freeze
  180. */
  181. static int afiucv_pm_restore_thaw(struct device *dev)
  182. {
  183. struct sock *sk;
  184. struct hlist_node *node;
  185. #ifdef CONFIG_PM_DEBUG
  186. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  187. #endif
  188. read_lock(&iucv_sk_list.lock);
  189. sk_for_each(sk, node, &iucv_sk_list.head) {
  190. switch (sk->sk_state) {
  191. case IUCV_CONNECTED:
  192. sk->sk_err = EPIPE;
  193. sk->sk_state = IUCV_DISCONN;
  194. sk->sk_state_change(sk);
  195. break;
  196. case IUCV_DISCONN:
  197. case IUCV_CLOSING:
  198. case IUCV_LISTEN:
  199. case IUCV_BOUND:
  200. case IUCV_OPEN:
  201. default:
  202. break;
  203. }
  204. }
  205. read_unlock(&iucv_sk_list.lock);
  206. return 0;
  207. }
  208. static const struct dev_pm_ops afiucv_pm_ops = {
  209. .prepare = afiucv_pm_prepare,
  210. .complete = afiucv_pm_complete,
  211. .freeze = afiucv_pm_freeze,
  212. .thaw = afiucv_pm_restore_thaw,
  213. .restore = afiucv_pm_restore_thaw,
  214. };
  215. static struct device_driver af_iucv_driver = {
  216. .owner = THIS_MODULE,
  217. .name = "afiucv",
  218. .bus = NULL,
  219. .pm = &afiucv_pm_ops,
  220. };
  221. /* dummy device used as trigger for PM functions */
  222. static struct device *af_iucv_dev;
  223. /**
  224. * iucv_msg_length() - Returns the length of an iucv message.
  225. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  226. *
  227. * The function returns the length of the specified iucv message @msg of data
  228. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  229. *
  230. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  231. * data:
  232. * PRMDATA[0..6] socket data (max 7 bytes);
  233. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  234. *
  235. * The socket data length is computed by subtracting the socket data length
  236. * value from 0xFF.
  237. * If the socket data len is greater 7, then PRMDATA can be used for special
  238. * notifications (see iucv_sock_shutdown); and further,
  239. * if the socket data len is > 7, the function returns 8.
  240. *
  241. * Use this function to allocate socket buffers to store iucv message data.
  242. */
  243. static inline size_t iucv_msg_length(struct iucv_message *msg)
  244. {
  245. size_t datalen;
  246. if (msg->flags & IUCV_IPRMDATA) {
  247. datalen = 0xff - msg->rmmsg[7];
  248. return (datalen < 8) ? datalen : 8;
  249. }
  250. return msg->length;
  251. }
  252. /**
  253. * iucv_sock_in_state() - check for specific states
  254. * @sk: sock structure
  255. * @state: first iucv sk state
  256. * @state: second iucv sk state
  257. *
  258. * Returns true if the socket in either in the first or second state.
  259. */
  260. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  261. {
  262. return (sk->sk_state == state || sk->sk_state == state2);
  263. }
  264. /**
  265. * iucv_below_msglim() - function to check if messages can be sent
  266. * @sk: sock structure
  267. *
  268. * Returns true if the send queue length is lower than the message limit.
  269. * Always returns true if the socket is not connected (no iucv path for
  270. * checking the message limit).
  271. */
  272. static inline int iucv_below_msglim(struct sock *sk)
  273. {
  274. struct iucv_sock *iucv = iucv_sk(sk);
  275. if (sk->sk_state != IUCV_CONNECTED)
  276. return 1;
  277. if (iucv->transport == AF_IUCV_TRANS_IUCV)
  278. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  279. else
  280. return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) &&
  281. (atomic_read(&iucv->pendings) <= 0));
  282. }
  283. /**
  284. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  285. */
  286. static void iucv_sock_wake_msglim(struct sock *sk)
  287. {
  288. struct socket_wq *wq;
  289. rcu_read_lock();
  290. wq = rcu_dereference(sk->sk_wq);
  291. if (wq_has_sleeper(wq))
  292. wake_up_interruptible_all(&wq->wait);
  293. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  294. rcu_read_unlock();
  295. }
  296. /**
  297. * afiucv_hs_send() - send a message through HiperSockets transport
  298. */
  299. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  300. struct sk_buff *skb, u8 flags)
  301. {
  302. struct net *net = sock_net(sock);
  303. struct iucv_sock *iucv = iucv_sk(sock);
  304. struct af_iucv_trans_hdr *phs_hdr;
  305. struct sk_buff *nskb;
  306. int err, confirm_recv = 0;
  307. memset(skb->head, 0, ETH_HLEN);
  308. phs_hdr = (struct af_iucv_trans_hdr *)skb_push(skb,
  309. sizeof(struct af_iucv_trans_hdr));
  310. skb_reset_mac_header(skb);
  311. skb_reset_network_header(skb);
  312. skb_push(skb, ETH_HLEN);
  313. skb_reset_mac_header(skb);
  314. memset(phs_hdr, 0, sizeof(struct af_iucv_trans_hdr));
  315. phs_hdr->magic = ETH_P_AF_IUCV;
  316. phs_hdr->version = 1;
  317. phs_hdr->flags = flags;
  318. if (flags == AF_IUCV_FLAG_SYN)
  319. phs_hdr->window = iucv->msglimit;
  320. else if ((flags == AF_IUCV_FLAG_WIN) || !flags) {
  321. confirm_recv = atomic_read(&iucv->msg_recv);
  322. phs_hdr->window = confirm_recv;
  323. if (confirm_recv)
  324. phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN;
  325. }
  326. memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8);
  327. memcpy(phs_hdr->destAppName, iucv->dst_name, 8);
  328. memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8);
  329. memcpy(phs_hdr->srcAppName, iucv->src_name, 8);
  330. ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID));
  331. ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName));
  332. ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID));
  333. ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName));
  334. if (imsg)
  335. memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message));
  336. skb->dev = dev_get_by_index(net, sock->sk_bound_dev_if);
  337. if (!skb->dev)
  338. return -ENODEV;
  339. if (!(skb->dev->flags & IFF_UP))
  340. return -ENETDOWN;
  341. if (skb->len > skb->dev->mtu) {
  342. if (sock->sk_type == SOCK_SEQPACKET)
  343. return -EMSGSIZE;
  344. else
  345. skb_trim(skb, skb->dev->mtu);
  346. }
  347. skb->protocol = ETH_P_AF_IUCV;
  348. skb_shinfo(skb)->tx_flags |= SKBTX_DRV_NEEDS_SK_REF;
  349. nskb = skb_clone(skb, GFP_ATOMIC);
  350. if (!nskb)
  351. return -ENOMEM;
  352. skb_queue_tail(&iucv->send_skb_q, nskb);
  353. err = dev_queue_xmit(skb);
  354. if (err) {
  355. skb_unlink(nskb, &iucv->send_skb_q);
  356. dev_put(nskb->dev);
  357. kfree_skb(nskb);
  358. } else {
  359. atomic_sub(confirm_recv, &iucv->msg_recv);
  360. WARN_ON(atomic_read(&iucv->msg_recv) < 0);
  361. }
  362. return err;
  363. }
  364. static struct sock *__iucv_get_sock_by_name(char *nm)
  365. {
  366. struct sock *sk;
  367. struct hlist_node *node;
  368. sk_for_each(sk, node, &iucv_sk_list.head)
  369. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  370. return sk;
  371. return NULL;
  372. }
  373. static void iucv_sock_destruct(struct sock *sk)
  374. {
  375. skb_queue_purge(&sk->sk_receive_queue);
  376. skb_queue_purge(&sk->sk_write_queue);
  377. }
  378. /* Cleanup Listen */
  379. static void iucv_sock_cleanup_listen(struct sock *parent)
  380. {
  381. struct sock *sk;
  382. /* Close non-accepted connections */
  383. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  384. iucv_sock_close(sk);
  385. iucv_sock_kill(sk);
  386. }
  387. parent->sk_state = IUCV_CLOSED;
  388. }
  389. /* Kill socket (only if zapped and orphaned) */
  390. static void iucv_sock_kill(struct sock *sk)
  391. {
  392. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  393. return;
  394. iucv_sock_unlink(&iucv_sk_list, sk);
  395. sock_set_flag(sk, SOCK_DEAD);
  396. sock_put(sk);
  397. }
  398. /* Close an IUCV socket */
  399. static void iucv_sock_close(struct sock *sk)
  400. {
  401. unsigned char user_data[16];
  402. struct iucv_sock *iucv = iucv_sk(sk);
  403. unsigned long timeo;
  404. int err, blen;
  405. struct sk_buff *skb;
  406. lock_sock(sk);
  407. switch (sk->sk_state) {
  408. case IUCV_LISTEN:
  409. iucv_sock_cleanup_listen(sk);
  410. break;
  411. case IUCV_CONNECTED:
  412. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  413. /* send fin */
  414. blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  415. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  416. if (skb) {
  417. skb_reserve(skb, blen);
  418. err = afiucv_hs_send(NULL, sk, skb,
  419. AF_IUCV_FLAG_FIN);
  420. }
  421. sk->sk_state = IUCV_DISCONN;
  422. sk->sk_state_change(sk);
  423. }
  424. case IUCV_DISCONN: /* fall through */
  425. sk->sk_state = IUCV_CLOSING;
  426. sk->sk_state_change(sk);
  427. if (!skb_queue_empty(&iucv->send_skb_q)) {
  428. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  429. timeo = sk->sk_lingertime;
  430. else
  431. timeo = IUCV_DISCONN_TIMEOUT;
  432. iucv_sock_wait(sk,
  433. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  434. timeo);
  435. }
  436. case IUCV_CLOSING: /* fall through */
  437. sk->sk_state = IUCV_CLOSED;
  438. sk->sk_state_change(sk);
  439. if (iucv->path) {
  440. low_nmcpy(user_data, iucv->src_name);
  441. high_nmcpy(user_data, iucv->dst_name);
  442. ASCEBC(user_data, sizeof(user_data));
  443. pr_iucv->path_sever(iucv->path, user_data);
  444. iucv_path_free(iucv->path);
  445. iucv->path = NULL;
  446. }
  447. sk->sk_err = ECONNRESET;
  448. sk->sk_state_change(sk);
  449. iucv_skb_queue_purge(&iucv->send_skb_q);
  450. skb_queue_purge(&iucv->backlog_skb_q);
  451. break;
  452. default:
  453. /* nothing to do here */
  454. break;
  455. }
  456. /* mark socket for deletion by iucv_sock_kill() */
  457. sock_set_flag(sk, SOCK_ZAPPED);
  458. release_sock(sk);
  459. }
  460. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  461. {
  462. if (parent)
  463. sk->sk_type = parent->sk_type;
  464. }
  465. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  466. {
  467. struct sock *sk;
  468. struct iucv_sock *iucv;
  469. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto);
  470. if (!sk)
  471. return NULL;
  472. iucv = iucv_sk(sk);
  473. sock_init_data(sock, sk);
  474. INIT_LIST_HEAD(&iucv->accept_q);
  475. spin_lock_init(&iucv->accept_q_lock);
  476. skb_queue_head_init(&iucv->send_skb_q);
  477. INIT_LIST_HEAD(&iucv->message_q.list);
  478. spin_lock_init(&iucv->message_q.lock);
  479. skb_queue_head_init(&iucv->backlog_skb_q);
  480. iucv->send_tag = 0;
  481. atomic_set(&iucv->pendings, 0);
  482. iucv->flags = 0;
  483. iucv->msglimit = 0;
  484. atomic_set(&iucv->msg_sent, 0);
  485. atomic_set(&iucv->msg_recv, 0);
  486. iucv->path = NULL;
  487. iucv->sk_txnotify = afiucv_hs_callback_txnotify;
  488. memset(&iucv->src_user_id , 0, 32);
  489. if (pr_iucv)
  490. iucv->transport = AF_IUCV_TRANS_IUCV;
  491. else
  492. iucv->transport = AF_IUCV_TRANS_HIPER;
  493. sk->sk_destruct = iucv_sock_destruct;
  494. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  495. sk->sk_allocation = GFP_DMA;
  496. sock_reset_flag(sk, SOCK_ZAPPED);
  497. sk->sk_protocol = proto;
  498. sk->sk_state = IUCV_OPEN;
  499. iucv_sock_link(&iucv_sk_list, sk);
  500. return sk;
  501. }
  502. /* Create an IUCV socket */
  503. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
  504. int kern)
  505. {
  506. struct sock *sk;
  507. if (protocol && protocol != PF_IUCV)
  508. return -EPROTONOSUPPORT;
  509. sock->state = SS_UNCONNECTED;
  510. switch (sock->type) {
  511. case SOCK_STREAM:
  512. sock->ops = &iucv_sock_ops;
  513. break;
  514. case SOCK_SEQPACKET:
  515. /* currently, proto ops can handle both sk types */
  516. sock->ops = &iucv_sock_ops;
  517. break;
  518. default:
  519. return -ESOCKTNOSUPPORT;
  520. }
  521. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  522. if (!sk)
  523. return -ENOMEM;
  524. iucv_sock_init(sk, NULL);
  525. return 0;
  526. }
  527. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  528. {
  529. write_lock_bh(&l->lock);
  530. sk_add_node(sk, &l->head);
  531. write_unlock_bh(&l->lock);
  532. }
  533. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  534. {
  535. write_lock_bh(&l->lock);
  536. sk_del_node_init(sk);
  537. write_unlock_bh(&l->lock);
  538. }
  539. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  540. {
  541. unsigned long flags;
  542. struct iucv_sock *par = iucv_sk(parent);
  543. sock_hold(sk);
  544. spin_lock_irqsave(&par->accept_q_lock, flags);
  545. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  546. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  547. iucv_sk(sk)->parent = parent;
  548. sk_acceptq_added(parent);
  549. }
  550. void iucv_accept_unlink(struct sock *sk)
  551. {
  552. unsigned long flags;
  553. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  554. spin_lock_irqsave(&par->accept_q_lock, flags);
  555. list_del_init(&iucv_sk(sk)->accept_q);
  556. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  557. sk_acceptq_removed(iucv_sk(sk)->parent);
  558. iucv_sk(sk)->parent = NULL;
  559. sock_put(sk);
  560. }
  561. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  562. {
  563. struct iucv_sock *isk, *n;
  564. struct sock *sk;
  565. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  566. sk = (struct sock *) isk;
  567. lock_sock(sk);
  568. if (sk->sk_state == IUCV_CLOSED) {
  569. iucv_accept_unlink(sk);
  570. release_sock(sk);
  571. continue;
  572. }
  573. if (sk->sk_state == IUCV_CONNECTED ||
  574. sk->sk_state == IUCV_DISCONN ||
  575. !newsock) {
  576. iucv_accept_unlink(sk);
  577. if (newsock)
  578. sock_graft(sk, newsock);
  579. release_sock(sk);
  580. return sk;
  581. }
  582. release_sock(sk);
  583. }
  584. return NULL;
  585. }
  586. /* Bind an unbound socket */
  587. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  588. int addr_len)
  589. {
  590. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  591. struct sock *sk = sock->sk;
  592. struct iucv_sock *iucv;
  593. int err = 0;
  594. struct net_device *dev;
  595. char uid[9];
  596. /* Verify the input sockaddr */
  597. if (!addr || addr->sa_family != AF_IUCV)
  598. return -EINVAL;
  599. lock_sock(sk);
  600. if (sk->sk_state != IUCV_OPEN) {
  601. err = -EBADFD;
  602. goto done;
  603. }
  604. write_lock_bh(&iucv_sk_list.lock);
  605. iucv = iucv_sk(sk);
  606. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  607. err = -EADDRINUSE;
  608. goto done_unlock;
  609. }
  610. if (iucv->path)
  611. goto done_unlock;
  612. /* Bind the socket */
  613. if (pr_iucv)
  614. if (!memcmp(sa->siucv_user_id, iucv_userid, 8))
  615. goto vm_bind; /* VM IUCV transport */
  616. /* try hiper transport */
  617. memcpy(uid, sa->siucv_user_id, sizeof(uid));
  618. ASCEBC(uid, 8);
  619. rcu_read_lock();
  620. for_each_netdev_rcu(&init_net, dev) {
  621. if (!memcmp(dev->perm_addr, uid, 8)) {
  622. memcpy(iucv->src_name, sa->siucv_name, 8);
  623. memcpy(iucv->src_user_id, sa->siucv_user_id, 8);
  624. sk->sk_bound_dev_if = dev->ifindex;
  625. sk->sk_state = IUCV_BOUND;
  626. iucv->transport = AF_IUCV_TRANS_HIPER;
  627. if (!iucv->msglimit)
  628. iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT;
  629. rcu_read_unlock();
  630. goto done_unlock;
  631. }
  632. }
  633. rcu_read_unlock();
  634. vm_bind:
  635. if (pr_iucv) {
  636. /* use local userid for backward compat */
  637. memcpy(iucv->src_name, sa->siucv_name, 8);
  638. memcpy(iucv->src_user_id, iucv_userid, 8);
  639. sk->sk_state = IUCV_BOUND;
  640. iucv->transport = AF_IUCV_TRANS_IUCV;
  641. if (!iucv->msglimit)
  642. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  643. goto done_unlock;
  644. }
  645. /* found no dev to bind */
  646. err = -ENODEV;
  647. done_unlock:
  648. /* Release the socket list lock */
  649. write_unlock_bh(&iucv_sk_list.lock);
  650. done:
  651. release_sock(sk);
  652. return err;
  653. }
  654. /* Automatically bind an unbound socket */
  655. static int iucv_sock_autobind(struct sock *sk)
  656. {
  657. struct iucv_sock *iucv = iucv_sk(sk);
  658. char name[12];
  659. int err = 0;
  660. if (unlikely(!pr_iucv))
  661. return -EPROTO;
  662. memcpy(iucv->src_user_id, iucv_userid, 8);
  663. write_lock_bh(&iucv_sk_list.lock);
  664. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  665. while (__iucv_get_sock_by_name(name)) {
  666. sprintf(name, "%08x",
  667. atomic_inc_return(&iucv_sk_list.autobind_name));
  668. }
  669. write_unlock_bh(&iucv_sk_list.lock);
  670. memcpy(&iucv->src_name, name, 8);
  671. if (!iucv->msglimit)
  672. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  673. return err;
  674. }
  675. static int afiucv_hs_connect(struct socket *sock)
  676. {
  677. struct sock *sk = sock->sk;
  678. struct sk_buff *skb;
  679. int blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  680. int err = 0;
  681. /* send syn */
  682. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  683. if (!skb) {
  684. err = -ENOMEM;
  685. goto done;
  686. }
  687. skb->dev = NULL;
  688. skb_reserve(skb, blen);
  689. err = afiucv_hs_send(NULL, sk, skb, AF_IUCV_FLAG_SYN);
  690. done:
  691. return err;
  692. }
  693. static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr)
  694. {
  695. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  696. struct sock *sk = sock->sk;
  697. struct iucv_sock *iucv = iucv_sk(sk);
  698. unsigned char user_data[16];
  699. int err;
  700. high_nmcpy(user_data, sa->siucv_name);
  701. low_nmcpy(user_data, iucv->src_name);
  702. ASCEBC(user_data, sizeof(user_data));
  703. /* Create path. */
  704. iucv->path = iucv_path_alloc(iucv->msglimit,
  705. IUCV_IPRMDATA, GFP_KERNEL);
  706. if (!iucv->path) {
  707. err = -ENOMEM;
  708. goto done;
  709. }
  710. err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
  711. sa->siucv_user_id, NULL, user_data,
  712. sk);
  713. if (err) {
  714. iucv_path_free(iucv->path);
  715. iucv->path = NULL;
  716. switch (err) {
  717. case 0x0b: /* Target communicator is not logged on */
  718. err = -ENETUNREACH;
  719. break;
  720. case 0x0d: /* Max connections for this guest exceeded */
  721. case 0x0e: /* Max connections for target guest exceeded */
  722. err = -EAGAIN;
  723. break;
  724. case 0x0f: /* Missing IUCV authorization */
  725. err = -EACCES;
  726. break;
  727. default:
  728. err = -ECONNREFUSED;
  729. break;
  730. }
  731. }
  732. done:
  733. return err;
  734. }
  735. /* Connect an unconnected socket */
  736. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  737. int alen, int flags)
  738. {
  739. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  740. struct sock *sk = sock->sk;
  741. struct iucv_sock *iucv = iucv_sk(sk);
  742. int err;
  743. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  744. return -EINVAL;
  745. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  746. return -EBADFD;
  747. if (sk->sk_state == IUCV_OPEN &&
  748. iucv->transport == AF_IUCV_TRANS_HIPER)
  749. return -EBADFD; /* explicit bind required */
  750. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  751. return -EINVAL;
  752. if (sk->sk_state == IUCV_OPEN) {
  753. err = iucv_sock_autobind(sk);
  754. if (unlikely(err))
  755. return err;
  756. }
  757. lock_sock(sk);
  758. /* Set the destination information */
  759. memcpy(iucv->dst_user_id, sa->siucv_user_id, 8);
  760. memcpy(iucv->dst_name, sa->siucv_name, 8);
  761. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  762. err = afiucv_hs_connect(sock);
  763. else
  764. err = afiucv_path_connect(sock, addr);
  765. if (err)
  766. goto done;
  767. if (sk->sk_state != IUCV_CONNECTED)
  768. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  769. IUCV_DISCONN),
  770. sock_sndtimeo(sk, flags & O_NONBLOCK));
  771. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED)
  772. err = -ECONNREFUSED;
  773. if (err && iucv->transport == AF_IUCV_TRANS_IUCV) {
  774. pr_iucv->path_sever(iucv->path, NULL);
  775. iucv_path_free(iucv->path);
  776. iucv->path = NULL;
  777. }
  778. done:
  779. release_sock(sk);
  780. return err;
  781. }
  782. /* Move a socket into listening state. */
  783. static int iucv_sock_listen(struct socket *sock, int backlog)
  784. {
  785. struct sock *sk = sock->sk;
  786. int err;
  787. lock_sock(sk);
  788. err = -EINVAL;
  789. if (sk->sk_state != IUCV_BOUND)
  790. goto done;
  791. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  792. goto done;
  793. sk->sk_max_ack_backlog = backlog;
  794. sk->sk_ack_backlog = 0;
  795. sk->sk_state = IUCV_LISTEN;
  796. err = 0;
  797. done:
  798. release_sock(sk);
  799. return err;
  800. }
  801. /* Accept a pending connection */
  802. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  803. int flags)
  804. {
  805. DECLARE_WAITQUEUE(wait, current);
  806. struct sock *sk = sock->sk, *nsk;
  807. long timeo;
  808. int err = 0;
  809. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  810. if (sk->sk_state != IUCV_LISTEN) {
  811. err = -EBADFD;
  812. goto done;
  813. }
  814. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  815. /* Wait for an incoming connection */
  816. add_wait_queue_exclusive(sk_sleep(sk), &wait);
  817. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  818. set_current_state(TASK_INTERRUPTIBLE);
  819. if (!timeo) {
  820. err = -EAGAIN;
  821. break;
  822. }
  823. release_sock(sk);
  824. timeo = schedule_timeout(timeo);
  825. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  826. if (sk->sk_state != IUCV_LISTEN) {
  827. err = -EBADFD;
  828. break;
  829. }
  830. if (signal_pending(current)) {
  831. err = sock_intr_errno(timeo);
  832. break;
  833. }
  834. }
  835. set_current_state(TASK_RUNNING);
  836. remove_wait_queue(sk_sleep(sk), &wait);
  837. if (err)
  838. goto done;
  839. newsock->state = SS_CONNECTED;
  840. done:
  841. release_sock(sk);
  842. return err;
  843. }
  844. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  845. int *len, int peer)
  846. {
  847. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  848. struct sock *sk = sock->sk;
  849. struct iucv_sock *iucv = iucv_sk(sk);
  850. addr->sa_family = AF_IUCV;
  851. *len = sizeof(struct sockaddr_iucv);
  852. if (peer) {
  853. memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8);
  854. memcpy(siucv->siucv_name, iucv->dst_name, 8);
  855. } else {
  856. memcpy(siucv->siucv_user_id, iucv->src_user_id, 8);
  857. memcpy(siucv->siucv_name, iucv->src_name, 8);
  858. }
  859. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  860. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  861. memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  862. return 0;
  863. }
  864. /**
  865. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  866. * @path: IUCV path
  867. * @msg: Pointer to a struct iucv_message
  868. * @skb: The socket data to send, skb->len MUST BE <= 7
  869. *
  870. * Send the socket data in the parameter list in the iucv message
  871. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  872. * list and the socket data len at index 7 (last byte).
  873. * See also iucv_msg_length().
  874. *
  875. * Returns the error code from the iucv_message_send() call.
  876. */
  877. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  878. struct sk_buff *skb)
  879. {
  880. u8 prmdata[8];
  881. memcpy(prmdata, (void *) skb->data, skb->len);
  882. prmdata[7] = 0xff - (u8) skb->len;
  883. return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
  884. (void *) prmdata, 8);
  885. }
  886. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  887. struct msghdr *msg, size_t len)
  888. {
  889. struct sock *sk = sock->sk;
  890. struct iucv_sock *iucv = iucv_sk(sk);
  891. struct sk_buff *skb;
  892. struct iucv_message txmsg;
  893. struct cmsghdr *cmsg;
  894. int cmsg_done;
  895. long timeo;
  896. char user_id[9];
  897. char appl_id[9];
  898. int err;
  899. int noblock = msg->msg_flags & MSG_DONTWAIT;
  900. err = sock_error(sk);
  901. if (err)
  902. return err;
  903. if (msg->msg_flags & MSG_OOB)
  904. return -EOPNOTSUPP;
  905. /* SOCK_SEQPACKET: we do not support segmented records */
  906. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  907. return -EOPNOTSUPP;
  908. lock_sock(sk);
  909. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  910. err = -EPIPE;
  911. goto out;
  912. }
  913. /* Return if the socket is not in connected state */
  914. if (sk->sk_state != IUCV_CONNECTED) {
  915. err = -ENOTCONN;
  916. goto out;
  917. }
  918. /* initialize defaults */
  919. cmsg_done = 0; /* check for duplicate headers */
  920. txmsg.class = 0;
  921. /* iterate over control messages */
  922. for (cmsg = CMSG_FIRSTHDR(msg); cmsg;
  923. cmsg = CMSG_NXTHDR(msg, cmsg)) {
  924. if (!CMSG_OK(msg, cmsg)) {
  925. err = -EINVAL;
  926. goto out;
  927. }
  928. if (cmsg->cmsg_level != SOL_IUCV)
  929. continue;
  930. if (cmsg->cmsg_type & cmsg_done) {
  931. err = -EINVAL;
  932. goto out;
  933. }
  934. cmsg_done |= cmsg->cmsg_type;
  935. switch (cmsg->cmsg_type) {
  936. case SCM_IUCV_TRGCLS:
  937. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  938. err = -EINVAL;
  939. goto out;
  940. }
  941. /* set iucv message target class */
  942. memcpy(&txmsg.class,
  943. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  944. break;
  945. default:
  946. err = -EINVAL;
  947. goto out;
  948. break;
  949. }
  950. }
  951. /* allocate one skb for each iucv message:
  952. * this is fine for SOCK_SEQPACKET (unless we want to support
  953. * segmented records using the MSG_EOR flag), but
  954. * for SOCK_STREAM we might want to improve it in future */
  955. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  956. skb = sock_alloc_send_skb(sk,
  957. len + sizeof(struct af_iucv_trans_hdr) + ETH_HLEN,
  958. noblock, &err);
  959. else
  960. skb = sock_alloc_send_skb(sk, len, noblock, &err);
  961. if (!skb)
  962. goto out;
  963. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  964. skb_reserve(skb, sizeof(struct af_iucv_trans_hdr) + ETH_HLEN);
  965. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  966. err = -EFAULT;
  967. goto fail;
  968. }
  969. /* wait if outstanding messages for iucv path has reached */
  970. timeo = sock_sndtimeo(sk, noblock);
  971. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  972. if (err)
  973. goto fail;
  974. /* return -ECONNRESET if the socket is no longer connected */
  975. if (sk->sk_state != IUCV_CONNECTED) {
  976. err = -ECONNRESET;
  977. goto fail;
  978. }
  979. /* increment and save iucv message tag for msg_completion cbk */
  980. txmsg.tag = iucv->send_tag++;
  981. memcpy(CB_TAG(skb), &txmsg.tag, CB_TAG_LEN);
  982. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  983. atomic_inc(&iucv->msg_sent);
  984. err = afiucv_hs_send(&txmsg, sk, skb, 0);
  985. if (err) {
  986. atomic_dec(&iucv->msg_sent);
  987. goto fail;
  988. }
  989. goto release;
  990. }
  991. skb_queue_tail(&iucv->send_skb_q, skb);
  992. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
  993. && skb->len <= 7) {
  994. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  995. /* on success: there is no message_complete callback
  996. * for an IPRMDATA msg; remove skb from send queue */
  997. if (err == 0) {
  998. skb_unlink(skb, &iucv->send_skb_q);
  999. kfree_skb(skb);
  1000. }
  1001. /* this error should never happen since the
  1002. * IUCV_IPRMDATA path flag is set... sever path */
  1003. if (err == 0x15) {
  1004. pr_iucv->path_sever(iucv->path, NULL);
  1005. skb_unlink(skb, &iucv->send_skb_q);
  1006. err = -EPIPE;
  1007. goto fail;
  1008. }
  1009. } else
  1010. err = pr_iucv->message_send(iucv->path, &txmsg, 0, 0,
  1011. (void *) skb->data, skb->len);
  1012. if (err) {
  1013. if (err == 3) {
  1014. user_id[8] = 0;
  1015. memcpy(user_id, iucv->dst_user_id, 8);
  1016. appl_id[8] = 0;
  1017. memcpy(appl_id, iucv->dst_name, 8);
  1018. pr_err("Application %s on z/VM guest %s"
  1019. " exceeds message limit\n",
  1020. appl_id, user_id);
  1021. err = -EAGAIN;
  1022. } else
  1023. err = -EPIPE;
  1024. skb_unlink(skb, &iucv->send_skb_q);
  1025. goto fail;
  1026. }
  1027. release:
  1028. release_sock(sk);
  1029. return len;
  1030. fail:
  1031. if (skb->dev)
  1032. dev_put(skb->dev);
  1033. kfree_skb(skb);
  1034. out:
  1035. release_sock(sk);
  1036. return err;
  1037. }
  1038. /* iucv_fragment_skb() - Fragment a single IUCV message into multiple skb's
  1039. *
  1040. * Locking: must be called with message_q.lock held
  1041. */
  1042. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
  1043. {
  1044. int dataleft, size, copied = 0;
  1045. struct sk_buff *nskb;
  1046. dataleft = len;
  1047. while (dataleft) {
  1048. if (dataleft >= sk->sk_rcvbuf / 4)
  1049. size = sk->sk_rcvbuf / 4;
  1050. else
  1051. size = dataleft;
  1052. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  1053. if (!nskb)
  1054. return -ENOMEM;
  1055. /* copy target class to control buffer of new skb */
  1056. memcpy(CB_TRGCLS(nskb), CB_TRGCLS(skb), CB_TRGCLS_LEN);
  1057. /* copy data fragment */
  1058. memcpy(nskb->data, skb->data + copied, size);
  1059. copied += size;
  1060. dataleft -= size;
  1061. skb_reset_transport_header(nskb);
  1062. skb_reset_network_header(nskb);
  1063. nskb->len = size;
  1064. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
  1065. }
  1066. return 0;
  1067. }
  1068. /* iucv_process_message() - Receive a single outstanding IUCV message
  1069. *
  1070. * Locking: must be called with message_q.lock held
  1071. */
  1072. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  1073. struct iucv_path *path,
  1074. struct iucv_message *msg)
  1075. {
  1076. int rc;
  1077. unsigned int len;
  1078. len = iucv_msg_length(msg);
  1079. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  1080. /* Note: the first 4 bytes are reserved for msg tag */
  1081. memcpy(CB_TRGCLS(skb), &msg->class, CB_TRGCLS_LEN);
  1082. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  1083. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  1084. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  1085. skb->data = NULL;
  1086. skb->len = 0;
  1087. }
  1088. } else {
  1089. rc = pr_iucv->message_receive(path, msg,
  1090. msg->flags & IUCV_IPRMDATA,
  1091. skb->data, len, NULL);
  1092. if (rc) {
  1093. kfree_skb(skb);
  1094. return;
  1095. }
  1096. /* we need to fragment iucv messages for SOCK_STREAM only;
  1097. * for SOCK_SEQPACKET, it is only relevant if we support
  1098. * record segmentation using MSG_EOR (see also recvmsg()) */
  1099. if (sk->sk_type == SOCK_STREAM &&
  1100. skb->truesize >= sk->sk_rcvbuf / 4) {
  1101. rc = iucv_fragment_skb(sk, skb, len);
  1102. kfree_skb(skb);
  1103. skb = NULL;
  1104. if (rc) {
  1105. pr_iucv->path_sever(path, NULL);
  1106. return;
  1107. }
  1108. skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  1109. } else {
  1110. skb_reset_transport_header(skb);
  1111. skb_reset_network_header(skb);
  1112. skb->len = len;
  1113. }
  1114. }
  1115. if (sock_queue_rcv_skb(sk, skb))
  1116. skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
  1117. }
  1118. /* iucv_process_message_q() - Process outstanding IUCV messages
  1119. *
  1120. * Locking: must be called with message_q.lock held
  1121. */
  1122. static void iucv_process_message_q(struct sock *sk)
  1123. {
  1124. struct iucv_sock *iucv = iucv_sk(sk);
  1125. struct sk_buff *skb;
  1126. struct sock_msg_q *p, *n;
  1127. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  1128. skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
  1129. if (!skb)
  1130. break;
  1131. iucv_process_message(sk, skb, p->path, &p->msg);
  1132. list_del(&p->list);
  1133. kfree(p);
  1134. if (!skb_queue_empty(&iucv->backlog_skb_q))
  1135. break;
  1136. }
  1137. }
  1138. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  1139. struct msghdr *msg, size_t len, int flags)
  1140. {
  1141. int noblock = flags & MSG_DONTWAIT;
  1142. struct sock *sk = sock->sk;
  1143. struct iucv_sock *iucv = iucv_sk(sk);
  1144. unsigned int copied, rlen;
  1145. struct sk_buff *skb, *rskb, *cskb, *sskb;
  1146. int blen;
  1147. int err = 0;
  1148. if ((sk->sk_state == IUCV_DISCONN) &&
  1149. skb_queue_empty(&iucv->backlog_skb_q) &&
  1150. skb_queue_empty(&sk->sk_receive_queue) &&
  1151. list_empty(&iucv->message_q.list))
  1152. return 0;
  1153. if (flags & (MSG_OOB))
  1154. return -EOPNOTSUPP;
  1155. /* receive/dequeue next skb:
  1156. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  1157. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1158. if (!skb) {
  1159. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1160. return 0;
  1161. return err;
  1162. }
  1163. rlen = skb->len; /* real length of skb */
  1164. copied = min_t(unsigned int, rlen, len);
  1165. cskb = skb;
  1166. if (skb_copy_datagram_iovec(cskb, 0, msg->msg_iov, copied)) {
  1167. if (!(flags & MSG_PEEK))
  1168. skb_queue_head(&sk->sk_receive_queue, skb);
  1169. return -EFAULT;
  1170. }
  1171. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1172. if (sk->sk_type == SOCK_SEQPACKET) {
  1173. if (copied < rlen)
  1174. msg->msg_flags |= MSG_TRUNC;
  1175. /* each iucv message contains a complete record */
  1176. msg->msg_flags |= MSG_EOR;
  1177. }
  1178. /* create control message to store iucv msg target class:
  1179. * get the trgcls from the control buffer of the skb due to
  1180. * fragmentation of original iucv message. */
  1181. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1182. CB_TRGCLS_LEN, CB_TRGCLS(skb));
  1183. if (err) {
  1184. if (!(flags & MSG_PEEK))
  1185. skb_queue_head(&sk->sk_receive_queue, skb);
  1186. return err;
  1187. }
  1188. /* Mark read part of skb as used */
  1189. if (!(flags & MSG_PEEK)) {
  1190. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1191. if (sk->sk_type == SOCK_STREAM) {
  1192. skb_pull(skb, copied);
  1193. if (skb->len) {
  1194. skb_queue_head(&sk->sk_receive_queue, skb);
  1195. goto done;
  1196. }
  1197. }
  1198. kfree_skb(skb);
  1199. atomic_inc(&iucv->msg_recv);
  1200. /* Queue backlog skbs */
  1201. spin_lock_bh(&iucv->message_q.lock);
  1202. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1203. while (rskb) {
  1204. if (sock_queue_rcv_skb(sk, rskb)) {
  1205. skb_queue_head(&iucv->backlog_skb_q,
  1206. rskb);
  1207. break;
  1208. } else {
  1209. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1210. }
  1211. }
  1212. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1213. if (!list_empty(&iucv->message_q.list))
  1214. iucv_process_message_q(sk);
  1215. if (atomic_read(&iucv->msg_recv) >=
  1216. iucv->msglimit / 2) {
  1217. /* send WIN to peer */
  1218. blen = sizeof(struct af_iucv_trans_hdr) +
  1219. ETH_HLEN;
  1220. sskb = sock_alloc_send_skb(sk, blen, 1, &err);
  1221. if (sskb) {
  1222. skb_reserve(sskb, blen);
  1223. err = afiucv_hs_send(NULL, sk, sskb,
  1224. AF_IUCV_FLAG_WIN);
  1225. }
  1226. if (err) {
  1227. sk->sk_state = IUCV_DISCONN;
  1228. sk->sk_state_change(sk);
  1229. }
  1230. }
  1231. }
  1232. spin_unlock_bh(&iucv->message_q.lock);
  1233. }
  1234. done:
  1235. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1236. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1237. copied = rlen;
  1238. return copied;
  1239. }
  1240. static inline unsigned int iucv_accept_poll(struct sock *parent)
  1241. {
  1242. struct iucv_sock *isk, *n;
  1243. struct sock *sk;
  1244. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1245. sk = (struct sock *) isk;
  1246. if (sk->sk_state == IUCV_CONNECTED)
  1247. return POLLIN | POLLRDNORM;
  1248. }
  1249. return 0;
  1250. }
  1251. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  1252. poll_table *wait)
  1253. {
  1254. struct sock *sk = sock->sk;
  1255. unsigned int mask = 0;
  1256. sock_poll_wait(file, sk_sleep(sk), wait);
  1257. if (sk->sk_state == IUCV_LISTEN)
  1258. return iucv_accept_poll(sk);
  1259. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1260. mask |= POLLERR;
  1261. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1262. mask |= POLLRDHUP;
  1263. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1264. mask |= POLLHUP;
  1265. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1266. (sk->sk_shutdown & RCV_SHUTDOWN))
  1267. mask |= POLLIN | POLLRDNORM;
  1268. if (sk->sk_state == IUCV_CLOSED)
  1269. mask |= POLLHUP;
  1270. if (sk->sk_state == IUCV_DISCONN)
  1271. mask |= POLLIN;
  1272. if (sock_writeable(sk))
  1273. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  1274. else
  1275. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1276. return mask;
  1277. }
  1278. static int iucv_sock_shutdown(struct socket *sock, int how)
  1279. {
  1280. struct sock *sk = sock->sk;
  1281. struct iucv_sock *iucv = iucv_sk(sk);
  1282. struct iucv_message txmsg;
  1283. int err = 0;
  1284. how++;
  1285. if ((how & ~SHUTDOWN_MASK) || !how)
  1286. return -EINVAL;
  1287. lock_sock(sk);
  1288. switch (sk->sk_state) {
  1289. case IUCV_DISCONN:
  1290. case IUCV_CLOSING:
  1291. case IUCV_CLOSED:
  1292. err = -ENOTCONN;
  1293. goto fail;
  1294. default:
  1295. sk->sk_shutdown |= how;
  1296. break;
  1297. }
  1298. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1299. txmsg.class = 0;
  1300. txmsg.tag = 0;
  1301. err = pr_iucv->message_send(iucv->path, &txmsg, IUCV_IPRMDATA,
  1302. 0, (void *) iprm_shutdown, 8);
  1303. if (err) {
  1304. switch (err) {
  1305. case 1:
  1306. err = -ENOTCONN;
  1307. break;
  1308. case 2:
  1309. err = -ECONNRESET;
  1310. break;
  1311. default:
  1312. err = -ENOTCONN;
  1313. break;
  1314. }
  1315. }
  1316. }
  1317. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1318. err = pr_iucv->path_quiesce(iucv->path, NULL);
  1319. if (err)
  1320. err = -ENOTCONN;
  1321. skb_queue_purge(&sk->sk_receive_queue);
  1322. }
  1323. /* Wake up anyone sleeping in poll */
  1324. sk->sk_state_change(sk);
  1325. fail:
  1326. release_sock(sk);
  1327. return err;
  1328. }
  1329. static int iucv_sock_release(struct socket *sock)
  1330. {
  1331. struct sock *sk = sock->sk;
  1332. int err = 0;
  1333. if (!sk)
  1334. return 0;
  1335. iucv_sock_close(sk);
  1336. /* Unregister with IUCV base support */
  1337. if (iucv_sk(sk)->path) {
  1338. pr_iucv->path_sever(iucv_sk(sk)->path, NULL);
  1339. iucv_path_free(iucv_sk(sk)->path);
  1340. iucv_sk(sk)->path = NULL;
  1341. }
  1342. sock_orphan(sk);
  1343. iucv_sock_kill(sk);
  1344. return err;
  1345. }
  1346. /* getsockopt and setsockopt */
  1347. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1348. char __user *optval, unsigned int optlen)
  1349. {
  1350. struct sock *sk = sock->sk;
  1351. struct iucv_sock *iucv = iucv_sk(sk);
  1352. int val;
  1353. int rc;
  1354. if (level != SOL_IUCV)
  1355. return -ENOPROTOOPT;
  1356. if (optlen < sizeof(int))
  1357. return -EINVAL;
  1358. if (get_user(val, (int __user *) optval))
  1359. return -EFAULT;
  1360. rc = 0;
  1361. lock_sock(sk);
  1362. switch (optname) {
  1363. case SO_IPRMDATA_MSG:
  1364. if (val)
  1365. iucv->flags |= IUCV_IPRMDATA;
  1366. else
  1367. iucv->flags &= ~IUCV_IPRMDATA;
  1368. break;
  1369. case SO_MSGLIMIT:
  1370. switch (sk->sk_state) {
  1371. case IUCV_OPEN:
  1372. case IUCV_BOUND:
  1373. if (val < 1 || val > (u16)(~0))
  1374. rc = -EINVAL;
  1375. else
  1376. iucv->msglimit = val;
  1377. break;
  1378. default:
  1379. rc = -EINVAL;
  1380. break;
  1381. }
  1382. break;
  1383. default:
  1384. rc = -ENOPROTOOPT;
  1385. break;
  1386. }
  1387. release_sock(sk);
  1388. return rc;
  1389. }
  1390. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1391. char __user *optval, int __user *optlen)
  1392. {
  1393. struct sock *sk = sock->sk;
  1394. struct iucv_sock *iucv = iucv_sk(sk);
  1395. int val, len;
  1396. if (level != SOL_IUCV)
  1397. return -ENOPROTOOPT;
  1398. if (get_user(len, optlen))
  1399. return -EFAULT;
  1400. if (len < 0)
  1401. return -EINVAL;
  1402. len = min_t(unsigned int, len, sizeof(int));
  1403. switch (optname) {
  1404. case SO_IPRMDATA_MSG:
  1405. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1406. break;
  1407. case SO_MSGLIMIT:
  1408. lock_sock(sk);
  1409. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1410. : iucv->msglimit; /* default */
  1411. release_sock(sk);
  1412. break;
  1413. default:
  1414. return -ENOPROTOOPT;
  1415. }
  1416. if (put_user(len, optlen))
  1417. return -EFAULT;
  1418. if (copy_to_user(optval, &val, len))
  1419. return -EFAULT;
  1420. return 0;
  1421. }
  1422. /* Callback wrappers - called from iucv base support */
  1423. static int iucv_callback_connreq(struct iucv_path *path,
  1424. u8 ipvmid[8], u8 ipuser[16])
  1425. {
  1426. unsigned char user_data[16];
  1427. unsigned char nuser_data[16];
  1428. unsigned char src_name[8];
  1429. struct hlist_node *node;
  1430. struct sock *sk, *nsk;
  1431. struct iucv_sock *iucv, *niucv;
  1432. int err;
  1433. memcpy(src_name, ipuser, 8);
  1434. EBCASC(src_name, 8);
  1435. /* Find out if this path belongs to af_iucv. */
  1436. read_lock(&iucv_sk_list.lock);
  1437. iucv = NULL;
  1438. sk = NULL;
  1439. sk_for_each(sk, node, &iucv_sk_list.head)
  1440. if (sk->sk_state == IUCV_LISTEN &&
  1441. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1442. /*
  1443. * Found a listening socket with
  1444. * src_name == ipuser[0-7].
  1445. */
  1446. iucv = iucv_sk(sk);
  1447. break;
  1448. }
  1449. read_unlock(&iucv_sk_list.lock);
  1450. if (!iucv)
  1451. /* No socket found, not one of our paths. */
  1452. return -EINVAL;
  1453. bh_lock_sock(sk);
  1454. /* Check if parent socket is listening */
  1455. low_nmcpy(user_data, iucv->src_name);
  1456. high_nmcpy(user_data, iucv->dst_name);
  1457. ASCEBC(user_data, sizeof(user_data));
  1458. if (sk->sk_state != IUCV_LISTEN) {
  1459. err = pr_iucv->path_sever(path, user_data);
  1460. iucv_path_free(path);
  1461. goto fail;
  1462. }
  1463. /* Check for backlog size */
  1464. if (sk_acceptq_is_full(sk)) {
  1465. err = pr_iucv->path_sever(path, user_data);
  1466. iucv_path_free(path);
  1467. goto fail;
  1468. }
  1469. /* Create the new socket */
  1470. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1471. if (!nsk) {
  1472. err = pr_iucv->path_sever(path, user_data);
  1473. iucv_path_free(path);
  1474. goto fail;
  1475. }
  1476. niucv = iucv_sk(nsk);
  1477. iucv_sock_init(nsk, sk);
  1478. /* Set the new iucv_sock */
  1479. memcpy(niucv->dst_name, ipuser + 8, 8);
  1480. EBCASC(niucv->dst_name, 8);
  1481. memcpy(niucv->dst_user_id, ipvmid, 8);
  1482. memcpy(niucv->src_name, iucv->src_name, 8);
  1483. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1484. niucv->path = path;
  1485. /* Call iucv_accept */
  1486. high_nmcpy(nuser_data, ipuser + 8);
  1487. memcpy(nuser_data + 8, niucv->src_name, 8);
  1488. ASCEBC(nuser_data + 8, 8);
  1489. /* set message limit for path based on msglimit of accepting socket */
  1490. niucv->msglimit = iucv->msglimit;
  1491. path->msglim = iucv->msglimit;
  1492. err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1493. if (err) {
  1494. err = pr_iucv->path_sever(path, user_data);
  1495. iucv_path_free(path);
  1496. iucv_sock_kill(nsk);
  1497. goto fail;
  1498. }
  1499. iucv_accept_enqueue(sk, nsk);
  1500. /* Wake up accept */
  1501. nsk->sk_state = IUCV_CONNECTED;
  1502. sk->sk_data_ready(sk, 1);
  1503. err = 0;
  1504. fail:
  1505. bh_unlock_sock(sk);
  1506. return 0;
  1507. }
  1508. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1509. {
  1510. struct sock *sk = path->private;
  1511. sk->sk_state = IUCV_CONNECTED;
  1512. sk->sk_state_change(sk);
  1513. }
  1514. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1515. {
  1516. struct sock *sk = path->private;
  1517. struct iucv_sock *iucv = iucv_sk(sk);
  1518. struct sk_buff *skb;
  1519. struct sock_msg_q *save_msg;
  1520. int len;
  1521. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1522. pr_iucv->message_reject(path, msg);
  1523. return;
  1524. }
  1525. spin_lock(&iucv->message_q.lock);
  1526. if (!list_empty(&iucv->message_q.list) ||
  1527. !skb_queue_empty(&iucv->backlog_skb_q))
  1528. goto save_message;
  1529. len = atomic_read(&sk->sk_rmem_alloc);
  1530. len += SKB_TRUESIZE(iucv_msg_length(msg));
  1531. if (len > sk->sk_rcvbuf)
  1532. goto save_message;
  1533. skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
  1534. if (!skb)
  1535. goto save_message;
  1536. iucv_process_message(sk, skb, path, msg);
  1537. goto out_unlock;
  1538. save_message:
  1539. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1540. if (!save_msg)
  1541. goto out_unlock;
  1542. save_msg->path = path;
  1543. save_msg->msg = *msg;
  1544. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1545. out_unlock:
  1546. spin_unlock(&iucv->message_q.lock);
  1547. }
  1548. static void iucv_callback_txdone(struct iucv_path *path,
  1549. struct iucv_message *msg)
  1550. {
  1551. struct sock *sk = path->private;
  1552. struct sk_buff *this = NULL;
  1553. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1554. struct sk_buff *list_skb = list->next;
  1555. unsigned long flags;
  1556. if (!skb_queue_empty(list)) {
  1557. spin_lock_irqsave(&list->lock, flags);
  1558. while (list_skb != (struct sk_buff *)list) {
  1559. if (!memcmp(&msg->tag, CB_TAG(list_skb), CB_TAG_LEN)) {
  1560. this = list_skb;
  1561. break;
  1562. }
  1563. list_skb = list_skb->next;
  1564. }
  1565. if (this)
  1566. __skb_unlink(this, list);
  1567. spin_unlock_irqrestore(&list->lock, flags);
  1568. if (this) {
  1569. kfree_skb(this);
  1570. /* wake up any process waiting for sending */
  1571. iucv_sock_wake_msglim(sk);
  1572. }
  1573. }
  1574. BUG_ON(!this);
  1575. if (sk->sk_state == IUCV_CLOSING) {
  1576. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1577. sk->sk_state = IUCV_CLOSED;
  1578. sk->sk_state_change(sk);
  1579. }
  1580. }
  1581. }
  1582. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1583. {
  1584. struct sock *sk = path->private;
  1585. sk->sk_state = IUCV_DISCONN;
  1586. sk->sk_state_change(sk);
  1587. }
  1588. /* called if the other communication side shuts down its RECV direction;
  1589. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1590. */
  1591. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1592. {
  1593. struct sock *sk = path->private;
  1594. bh_lock_sock(sk);
  1595. if (sk->sk_state != IUCV_CLOSED) {
  1596. sk->sk_shutdown |= SEND_SHUTDOWN;
  1597. sk->sk_state_change(sk);
  1598. }
  1599. bh_unlock_sock(sk);
  1600. }
  1601. /***************** HiperSockets transport callbacks ********************/
  1602. static void afiucv_swap_src_dest(struct sk_buff *skb)
  1603. {
  1604. struct af_iucv_trans_hdr *trans_hdr =
  1605. (struct af_iucv_trans_hdr *)skb->data;
  1606. char tmpID[8];
  1607. char tmpName[8];
  1608. ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1609. ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1610. ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1611. ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1612. memcpy(tmpID, trans_hdr->srcUserID, 8);
  1613. memcpy(tmpName, trans_hdr->srcAppName, 8);
  1614. memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8);
  1615. memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8);
  1616. memcpy(trans_hdr->destUserID, tmpID, 8);
  1617. memcpy(trans_hdr->destAppName, tmpName, 8);
  1618. skb_push(skb, ETH_HLEN);
  1619. memset(skb->data, 0, ETH_HLEN);
  1620. }
  1621. /**
  1622. * afiucv_hs_callback_syn - react on received SYN
  1623. **/
  1624. static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb)
  1625. {
  1626. struct sock *nsk;
  1627. struct iucv_sock *iucv, *niucv;
  1628. struct af_iucv_trans_hdr *trans_hdr;
  1629. int err;
  1630. iucv = iucv_sk(sk);
  1631. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1632. if (!iucv) {
  1633. /* no sock - connection refused */
  1634. afiucv_swap_src_dest(skb);
  1635. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1636. err = dev_queue_xmit(skb);
  1637. goto out;
  1638. }
  1639. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1640. bh_lock_sock(sk);
  1641. if ((sk->sk_state != IUCV_LISTEN) ||
  1642. sk_acceptq_is_full(sk) ||
  1643. !nsk) {
  1644. /* error on server socket - connection refused */
  1645. if (nsk)
  1646. sk_free(nsk);
  1647. afiucv_swap_src_dest(skb);
  1648. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1649. err = dev_queue_xmit(skb);
  1650. bh_unlock_sock(sk);
  1651. goto out;
  1652. }
  1653. niucv = iucv_sk(nsk);
  1654. iucv_sock_init(nsk, sk);
  1655. niucv->transport = AF_IUCV_TRANS_HIPER;
  1656. niucv->msglimit = iucv->msglimit;
  1657. if (!trans_hdr->window)
  1658. niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT;
  1659. else
  1660. niucv->msglimit_peer = trans_hdr->window;
  1661. memcpy(niucv->dst_name, trans_hdr->srcAppName, 8);
  1662. memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8);
  1663. memcpy(niucv->src_name, iucv->src_name, 8);
  1664. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1665. nsk->sk_bound_dev_if = sk->sk_bound_dev_if;
  1666. afiucv_swap_src_dest(skb);
  1667. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK;
  1668. trans_hdr->window = niucv->msglimit;
  1669. /* if receiver acks the xmit connection is established */
  1670. err = dev_queue_xmit(skb);
  1671. if (!err) {
  1672. iucv_accept_enqueue(sk, nsk);
  1673. nsk->sk_state = IUCV_CONNECTED;
  1674. sk->sk_data_ready(sk, 1);
  1675. } else
  1676. iucv_sock_kill(nsk);
  1677. bh_unlock_sock(sk);
  1678. out:
  1679. return NET_RX_SUCCESS;
  1680. }
  1681. /**
  1682. * afiucv_hs_callback_synack() - react on received SYN-ACK
  1683. **/
  1684. static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb)
  1685. {
  1686. struct iucv_sock *iucv = iucv_sk(sk);
  1687. struct af_iucv_trans_hdr *trans_hdr =
  1688. (struct af_iucv_trans_hdr *)skb->data;
  1689. if (!iucv)
  1690. goto out;
  1691. if (sk->sk_state != IUCV_BOUND)
  1692. goto out;
  1693. bh_lock_sock(sk);
  1694. iucv->msglimit_peer = trans_hdr->window;
  1695. sk->sk_state = IUCV_CONNECTED;
  1696. sk->sk_state_change(sk);
  1697. bh_unlock_sock(sk);
  1698. out:
  1699. kfree_skb(skb);
  1700. return NET_RX_SUCCESS;
  1701. }
  1702. /**
  1703. * afiucv_hs_callback_synfin() - react on received SYN_FIN
  1704. **/
  1705. static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb)
  1706. {
  1707. struct iucv_sock *iucv = iucv_sk(sk);
  1708. if (!iucv)
  1709. goto out;
  1710. if (sk->sk_state != IUCV_BOUND)
  1711. goto out;
  1712. bh_lock_sock(sk);
  1713. sk->sk_state = IUCV_DISCONN;
  1714. sk->sk_state_change(sk);
  1715. bh_unlock_sock(sk);
  1716. out:
  1717. kfree_skb(skb);
  1718. return NET_RX_SUCCESS;
  1719. }
  1720. /**
  1721. * afiucv_hs_callback_fin() - react on received FIN
  1722. **/
  1723. static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb)
  1724. {
  1725. struct iucv_sock *iucv = iucv_sk(sk);
  1726. /* other end of connection closed */
  1727. if (iucv) {
  1728. bh_lock_sock(sk);
  1729. sk->sk_state = IUCV_DISCONN;
  1730. sk->sk_state_change(sk);
  1731. bh_unlock_sock(sk);
  1732. }
  1733. kfree_skb(skb);
  1734. return NET_RX_SUCCESS;
  1735. }
  1736. /**
  1737. * afiucv_hs_callback_win() - react on received WIN
  1738. **/
  1739. static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb)
  1740. {
  1741. struct iucv_sock *iucv = iucv_sk(sk);
  1742. struct af_iucv_trans_hdr *trans_hdr =
  1743. (struct af_iucv_trans_hdr *)skb->data;
  1744. if (!iucv)
  1745. return NET_RX_SUCCESS;
  1746. if (sk->sk_state != IUCV_CONNECTED)
  1747. return NET_RX_SUCCESS;
  1748. atomic_sub(trans_hdr->window, &iucv->msg_sent);
  1749. iucv_sock_wake_msglim(sk);
  1750. return NET_RX_SUCCESS;
  1751. }
  1752. /**
  1753. * afiucv_hs_callback_rx() - react on received data
  1754. **/
  1755. static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb)
  1756. {
  1757. struct iucv_sock *iucv = iucv_sk(sk);
  1758. if (!iucv) {
  1759. kfree_skb(skb);
  1760. return NET_RX_SUCCESS;
  1761. }
  1762. if (sk->sk_state != IUCV_CONNECTED) {
  1763. kfree_skb(skb);
  1764. return NET_RX_SUCCESS;
  1765. }
  1766. /* write stuff from iucv_msg to skb cb */
  1767. if (skb->len <= sizeof(struct af_iucv_trans_hdr)) {
  1768. kfree_skb(skb);
  1769. return NET_RX_SUCCESS;
  1770. }
  1771. skb_pull(skb, sizeof(struct af_iucv_trans_hdr));
  1772. skb_reset_transport_header(skb);
  1773. skb_reset_network_header(skb);
  1774. spin_lock(&iucv->message_q.lock);
  1775. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1776. if (sock_queue_rcv_skb(sk, skb)) {
  1777. /* handle rcv queue full */
  1778. skb_queue_tail(&iucv->backlog_skb_q, skb);
  1779. }
  1780. } else
  1781. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1782. spin_unlock(&iucv->message_q.lock);
  1783. return NET_RX_SUCCESS;
  1784. }
  1785. /**
  1786. * afiucv_hs_rcv() - base function for arriving data through HiperSockets
  1787. * transport
  1788. * called from netif RX softirq
  1789. **/
  1790. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  1791. struct packet_type *pt, struct net_device *orig_dev)
  1792. {
  1793. struct hlist_node *node;
  1794. struct sock *sk;
  1795. struct iucv_sock *iucv;
  1796. struct af_iucv_trans_hdr *trans_hdr;
  1797. char nullstring[8];
  1798. int err = 0;
  1799. skb_pull(skb, ETH_HLEN);
  1800. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1801. EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1802. EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1803. EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1804. EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1805. memset(nullstring, 0, sizeof(nullstring));
  1806. iucv = NULL;
  1807. sk = NULL;
  1808. read_lock(&iucv_sk_list.lock);
  1809. sk_for_each(sk, node, &iucv_sk_list.head) {
  1810. if (trans_hdr->flags == AF_IUCV_FLAG_SYN) {
  1811. if ((!memcmp(&iucv_sk(sk)->src_name,
  1812. trans_hdr->destAppName, 8)) &&
  1813. (!memcmp(&iucv_sk(sk)->src_user_id,
  1814. trans_hdr->destUserID, 8)) &&
  1815. (!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) &&
  1816. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1817. nullstring, 8))) {
  1818. iucv = iucv_sk(sk);
  1819. break;
  1820. }
  1821. } else {
  1822. if ((!memcmp(&iucv_sk(sk)->src_name,
  1823. trans_hdr->destAppName, 8)) &&
  1824. (!memcmp(&iucv_sk(sk)->src_user_id,
  1825. trans_hdr->destUserID, 8)) &&
  1826. (!memcmp(&iucv_sk(sk)->dst_name,
  1827. trans_hdr->srcAppName, 8)) &&
  1828. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1829. trans_hdr->srcUserID, 8))) {
  1830. iucv = iucv_sk(sk);
  1831. break;
  1832. }
  1833. }
  1834. }
  1835. read_unlock(&iucv_sk_list.lock);
  1836. if (!iucv)
  1837. sk = NULL;
  1838. /* no sock
  1839. how should we send with no sock
  1840. 1) send without sock no send rc checking?
  1841. 2) introduce default sock to handle this cases
  1842. SYN -> send SYN|ACK in good case, send SYN|FIN in bad case
  1843. data -> send FIN
  1844. SYN|ACK, SYN|FIN, FIN -> no action? */
  1845. switch (trans_hdr->flags) {
  1846. case AF_IUCV_FLAG_SYN:
  1847. /* connect request */
  1848. err = afiucv_hs_callback_syn(sk, skb);
  1849. break;
  1850. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK):
  1851. /* connect request confirmed */
  1852. err = afiucv_hs_callback_synack(sk, skb);
  1853. break;
  1854. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN):
  1855. /* connect request refused */
  1856. err = afiucv_hs_callback_synfin(sk, skb);
  1857. break;
  1858. case (AF_IUCV_FLAG_FIN):
  1859. /* close request */
  1860. err = afiucv_hs_callback_fin(sk, skb);
  1861. break;
  1862. case (AF_IUCV_FLAG_WIN):
  1863. err = afiucv_hs_callback_win(sk, skb);
  1864. if (skb->len > sizeof(struct af_iucv_trans_hdr))
  1865. err = afiucv_hs_callback_rx(sk, skb);
  1866. else
  1867. kfree(skb);
  1868. break;
  1869. case 0:
  1870. /* plain data frame */
  1871. memcpy(CB_TRGCLS(skb), &trans_hdr->iucv_hdr.class,
  1872. CB_TRGCLS_LEN);
  1873. err = afiucv_hs_callback_rx(sk, skb);
  1874. break;
  1875. default:
  1876. ;
  1877. }
  1878. return err;
  1879. }
  1880. /**
  1881. * afiucv_hs_callback_txnotify() - handle send notifcations from HiperSockets
  1882. * transport
  1883. **/
  1884. static void afiucv_hs_callback_txnotify(struct sk_buff *skb,
  1885. enum iucv_tx_notify n)
  1886. {
  1887. struct sock *isk = skb->sk;
  1888. struct sock *sk = NULL;
  1889. struct iucv_sock *iucv = NULL;
  1890. struct sk_buff_head *list;
  1891. struct sk_buff *list_skb;
  1892. struct sk_buff *this = NULL;
  1893. unsigned long flags;
  1894. struct hlist_node *node;
  1895. read_lock(&iucv_sk_list.lock);
  1896. sk_for_each(sk, node, &iucv_sk_list.head)
  1897. if (sk == isk) {
  1898. iucv = iucv_sk(sk);
  1899. break;
  1900. }
  1901. read_unlock(&iucv_sk_list.lock);
  1902. if (!iucv)
  1903. return;
  1904. bh_lock_sock(sk);
  1905. list = &iucv->send_skb_q;
  1906. list_skb = list->next;
  1907. if (skb_queue_empty(list))
  1908. goto out_unlock;
  1909. spin_lock_irqsave(&list->lock, flags);
  1910. while (list_skb != (struct sk_buff *)list) {
  1911. if (skb_shinfo(list_skb) == skb_shinfo(skb)) {
  1912. this = list_skb;
  1913. switch (n) {
  1914. case TX_NOTIFY_OK:
  1915. __skb_unlink(this, list);
  1916. iucv_sock_wake_msglim(sk);
  1917. dev_put(this->dev);
  1918. kfree_skb(this);
  1919. break;
  1920. case TX_NOTIFY_PENDING:
  1921. atomic_inc(&iucv->pendings);
  1922. break;
  1923. case TX_NOTIFY_DELAYED_OK:
  1924. __skb_unlink(this, list);
  1925. atomic_dec(&iucv->pendings);
  1926. if (atomic_read(&iucv->pendings) <= 0)
  1927. iucv_sock_wake_msglim(sk);
  1928. dev_put(this->dev);
  1929. kfree_skb(this);
  1930. break;
  1931. case TX_NOTIFY_UNREACHABLE:
  1932. case TX_NOTIFY_DELAYED_UNREACHABLE:
  1933. case TX_NOTIFY_TPQFULL: /* not yet used */
  1934. case TX_NOTIFY_GENERALERROR:
  1935. case TX_NOTIFY_DELAYED_GENERALERROR:
  1936. __skb_unlink(this, list);
  1937. dev_put(this->dev);
  1938. kfree_skb(this);
  1939. sk->sk_state = IUCV_DISCONN;
  1940. sk->sk_state_change(sk);
  1941. break;
  1942. }
  1943. break;
  1944. }
  1945. list_skb = list_skb->next;
  1946. }
  1947. spin_unlock_irqrestore(&list->lock, flags);
  1948. if (sk->sk_state == IUCV_CLOSING) {
  1949. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1950. sk->sk_state = IUCV_CLOSED;
  1951. sk->sk_state_change(sk);
  1952. }
  1953. }
  1954. out_unlock:
  1955. bh_unlock_sock(sk);
  1956. }
  1957. static const struct proto_ops iucv_sock_ops = {
  1958. .family = PF_IUCV,
  1959. .owner = THIS_MODULE,
  1960. .release = iucv_sock_release,
  1961. .bind = iucv_sock_bind,
  1962. .connect = iucv_sock_connect,
  1963. .listen = iucv_sock_listen,
  1964. .accept = iucv_sock_accept,
  1965. .getname = iucv_sock_getname,
  1966. .sendmsg = iucv_sock_sendmsg,
  1967. .recvmsg = iucv_sock_recvmsg,
  1968. .poll = iucv_sock_poll,
  1969. .ioctl = sock_no_ioctl,
  1970. .mmap = sock_no_mmap,
  1971. .socketpair = sock_no_socketpair,
  1972. .shutdown = iucv_sock_shutdown,
  1973. .setsockopt = iucv_sock_setsockopt,
  1974. .getsockopt = iucv_sock_getsockopt,
  1975. };
  1976. static const struct net_proto_family iucv_sock_family_ops = {
  1977. .family = AF_IUCV,
  1978. .owner = THIS_MODULE,
  1979. .create = iucv_sock_create,
  1980. };
  1981. static struct packet_type iucv_packet_type = {
  1982. .type = cpu_to_be16(ETH_P_AF_IUCV),
  1983. .func = afiucv_hs_rcv,
  1984. };
  1985. static int afiucv_iucv_init(void)
  1986. {
  1987. int err;
  1988. err = pr_iucv->iucv_register(&af_iucv_handler, 0);
  1989. if (err)
  1990. goto out;
  1991. /* establish dummy device */
  1992. af_iucv_driver.bus = pr_iucv->bus;
  1993. err = driver_register(&af_iucv_driver);
  1994. if (err)
  1995. goto out_iucv;
  1996. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  1997. if (!af_iucv_dev) {
  1998. err = -ENOMEM;
  1999. goto out_driver;
  2000. }
  2001. dev_set_name(af_iucv_dev, "af_iucv");
  2002. af_iucv_dev->bus = pr_iucv->bus;
  2003. af_iucv_dev->parent = pr_iucv->root;
  2004. af_iucv_dev->release = (void (*)(struct device *))kfree;
  2005. af_iucv_dev->driver = &af_iucv_driver;
  2006. err = device_register(af_iucv_dev);
  2007. if (err)
  2008. goto out_driver;
  2009. return 0;
  2010. out_driver:
  2011. driver_unregister(&af_iucv_driver);
  2012. out_iucv:
  2013. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2014. out:
  2015. return err;
  2016. }
  2017. static int __init afiucv_init(void)
  2018. {
  2019. int err;
  2020. if (MACHINE_IS_VM) {
  2021. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  2022. if (unlikely(err)) {
  2023. WARN_ON(err);
  2024. err = -EPROTONOSUPPORT;
  2025. goto out;
  2026. }
  2027. pr_iucv = try_then_request_module(symbol_get(iucv_if), "iucv");
  2028. if (!pr_iucv) {
  2029. printk(KERN_WARNING "iucv_if lookup failed\n");
  2030. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2031. }
  2032. } else {
  2033. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2034. pr_iucv = NULL;
  2035. }
  2036. err = proto_register(&iucv_proto, 0);
  2037. if (err)
  2038. goto out;
  2039. err = sock_register(&iucv_sock_family_ops);
  2040. if (err)
  2041. goto out_proto;
  2042. if (pr_iucv) {
  2043. err = afiucv_iucv_init();
  2044. if (err)
  2045. goto out_sock;
  2046. }
  2047. dev_add_pack(&iucv_packet_type);
  2048. return 0;
  2049. out_sock:
  2050. sock_unregister(PF_IUCV);
  2051. out_proto:
  2052. proto_unregister(&iucv_proto);
  2053. out:
  2054. if (pr_iucv)
  2055. symbol_put(iucv_if);
  2056. return err;
  2057. }
  2058. static void __exit afiucv_exit(void)
  2059. {
  2060. if (pr_iucv) {
  2061. device_unregister(af_iucv_dev);
  2062. driver_unregister(&af_iucv_driver);
  2063. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2064. symbol_put(iucv_if);
  2065. }
  2066. dev_remove_pack(&iucv_packet_type);
  2067. sock_unregister(PF_IUCV);
  2068. proto_unregister(&iucv_proto);
  2069. }
  2070. module_init(afiucv_init);
  2071. module_exit(afiucv_exit);
  2072. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  2073. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  2074. MODULE_VERSION(VERSION);
  2075. MODULE_LICENSE("GPL");
  2076. MODULE_ALIAS_NETPROTO(PF_IUCV);