slub.c 128 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/mempolicy.h>
  24. #include <linux/ctype.h>
  25. #include <linux/debugobjects.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/memory.h>
  28. #include <linux/math64.h>
  29. #include <linux/fault-inject.h>
  30. #include <linux/stacktrace.h>
  31. #include <trace/events/kmem.h>
  32. /*
  33. * Lock order:
  34. * 1. slub_lock (Global Semaphore)
  35. * 2. node->list_lock
  36. * 3. slab_lock(page) (Only on some arches and for debugging)
  37. *
  38. * slub_lock
  39. *
  40. * The role of the slub_lock is to protect the list of all the slabs
  41. * and to synchronize major metadata changes to slab cache structures.
  42. *
  43. * The slab_lock is only used for debugging and on arches that do not
  44. * have the ability to do a cmpxchg_double. It only protects the second
  45. * double word in the page struct. Meaning
  46. * A. page->freelist -> List of object free in a page
  47. * B. page->counters -> Counters of objects
  48. * C. page->frozen -> frozen state
  49. *
  50. * If a slab is frozen then it is exempt from list management. It is not
  51. * on any list. The processor that froze the slab is the one who can
  52. * perform list operations on the page. Other processors may put objects
  53. * onto the freelist but the processor that froze the slab is the only
  54. * one that can retrieve the objects from the page's freelist.
  55. *
  56. * The list_lock protects the partial and full list on each node and
  57. * the partial slab counter. If taken then no new slabs may be added or
  58. * removed from the lists nor make the number of partial slabs be modified.
  59. * (Note that the total number of slabs is an atomic value that may be
  60. * modified without taking the list lock).
  61. *
  62. * The list_lock is a centralized lock and thus we avoid taking it as
  63. * much as possible. As long as SLUB does not have to handle partial
  64. * slabs, operations can continue without any centralized lock. F.e.
  65. * allocating a long series of objects that fill up slabs does not require
  66. * the list lock.
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  108. SLAB_TRACE | SLAB_DEBUG_FREE)
  109. static inline int kmem_cache_debug(struct kmem_cache *s)
  110. {
  111. #ifdef CONFIG_SLUB_DEBUG
  112. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  113. #else
  114. return 0;
  115. #endif
  116. }
  117. /*
  118. * Issues still to be resolved:
  119. *
  120. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  121. *
  122. * - Variable sizing of the per node arrays
  123. */
  124. /* Enable to test recovery from slab corruption on boot */
  125. #undef SLUB_RESILIENCY_TEST
  126. /* Enable to log cmpxchg failures */
  127. #undef SLUB_DEBUG_CMPXCHG
  128. /*
  129. * Mininum number of partial slabs. These will be left on the partial
  130. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  131. */
  132. #define MIN_PARTIAL 5
  133. /*
  134. * Maximum number of desirable partial slabs.
  135. * The existence of more partial slabs makes kmem_cache_shrink
  136. * sort the partial list by the number of objects in the.
  137. */
  138. #define MAX_PARTIAL 10
  139. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  140. SLAB_POISON | SLAB_STORE_USER)
  141. /*
  142. * Debugging flags that require metadata to be stored in the slab. These get
  143. * disabled when slub_debug=O is used and a cache's min order increases with
  144. * metadata.
  145. */
  146. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  147. /*
  148. * Set of flags that will prevent slab merging
  149. */
  150. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  151. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  152. SLAB_FAILSLAB)
  153. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  154. SLAB_CACHE_DMA | SLAB_NOTRACK)
  155. #define OO_SHIFT 16
  156. #define OO_MASK ((1 << OO_SHIFT) - 1)
  157. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  158. /* Internal SLUB flags */
  159. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  160. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  161. static int kmem_size = sizeof(struct kmem_cache);
  162. #ifdef CONFIG_SMP
  163. static struct notifier_block slab_notifier;
  164. #endif
  165. static enum {
  166. DOWN, /* No slab functionality available */
  167. PARTIAL, /* Kmem_cache_node works */
  168. UP, /* Everything works but does not show up in sysfs */
  169. SYSFS /* Sysfs up */
  170. } slab_state = DOWN;
  171. /* A list of all slab caches on the system */
  172. static DECLARE_RWSEM(slub_lock);
  173. static LIST_HEAD(slab_caches);
  174. /*
  175. * Tracking user of a slab.
  176. */
  177. #define TRACK_ADDRS_COUNT 16
  178. struct track {
  179. unsigned long addr; /* Called from address */
  180. #ifdef CONFIG_STACKTRACE
  181. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  182. #endif
  183. int cpu; /* Was running on cpu */
  184. int pid; /* Pid context */
  185. unsigned long when; /* When did the operation occur */
  186. };
  187. enum track_item { TRACK_ALLOC, TRACK_FREE };
  188. #ifdef CONFIG_SYSFS
  189. static int sysfs_slab_add(struct kmem_cache *);
  190. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  191. static void sysfs_slab_remove(struct kmem_cache *);
  192. #else
  193. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  194. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  195. { return 0; }
  196. static inline void sysfs_slab_remove(struct kmem_cache *s)
  197. {
  198. kfree(s->name);
  199. kfree(s);
  200. }
  201. #endif
  202. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  203. {
  204. #ifdef CONFIG_SLUB_STATS
  205. __this_cpu_inc(s->cpu_slab->stat[si]);
  206. #endif
  207. }
  208. /********************************************************************
  209. * Core slab cache functions
  210. *******************************************************************/
  211. int slab_is_available(void)
  212. {
  213. return slab_state >= UP;
  214. }
  215. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  216. {
  217. return s->node[node];
  218. }
  219. /* Verify that a pointer has an address that is valid within a slab page */
  220. static inline int check_valid_pointer(struct kmem_cache *s,
  221. struct page *page, const void *object)
  222. {
  223. void *base;
  224. if (!object)
  225. return 1;
  226. base = page_address(page);
  227. if (object < base || object >= base + page->objects * s->size ||
  228. (object - base) % s->size) {
  229. return 0;
  230. }
  231. return 1;
  232. }
  233. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  234. {
  235. return *(void **)(object + s->offset);
  236. }
  237. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  238. {
  239. void *p;
  240. #ifdef CONFIG_DEBUG_PAGEALLOC
  241. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  242. #else
  243. p = get_freepointer(s, object);
  244. #endif
  245. return p;
  246. }
  247. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  248. {
  249. *(void **)(object + s->offset) = fp;
  250. }
  251. /* Loop over all objects in a slab */
  252. #define for_each_object(__p, __s, __addr, __objects) \
  253. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  254. __p += (__s)->size)
  255. /* Determine object index from a given position */
  256. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  257. {
  258. return (p - addr) / s->size;
  259. }
  260. static inline size_t slab_ksize(const struct kmem_cache *s)
  261. {
  262. #ifdef CONFIG_SLUB_DEBUG
  263. /*
  264. * Debugging requires use of the padding between object
  265. * and whatever may come after it.
  266. */
  267. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  268. return s->objsize;
  269. #endif
  270. /*
  271. * If we have the need to store the freelist pointer
  272. * back there or track user information then we can
  273. * only use the space before that information.
  274. */
  275. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  276. return s->inuse;
  277. /*
  278. * Else we can use all the padding etc for the allocation
  279. */
  280. return s->size;
  281. }
  282. static inline int order_objects(int order, unsigned long size, int reserved)
  283. {
  284. return ((PAGE_SIZE << order) - reserved) / size;
  285. }
  286. static inline struct kmem_cache_order_objects oo_make(int order,
  287. unsigned long size, int reserved)
  288. {
  289. struct kmem_cache_order_objects x = {
  290. (order << OO_SHIFT) + order_objects(order, size, reserved)
  291. };
  292. return x;
  293. }
  294. static inline int oo_order(struct kmem_cache_order_objects x)
  295. {
  296. return x.x >> OO_SHIFT;
  297. }
  298. static inline int oo_objects(struct kmem_cache_order_objects x)
  299. {
  300. return x.x & OO_MASK;
  301. }
  302. /*
  303. * Per slab locking using the pagelock
  304. */
  305. static __always_inline void slab_lock(struct page *page)
  306. {
  307. bit_spin_lock(PG_locked, &page->flags);
  308. }
  309. static __always_inline void slab_unlock(struct page *page)
  310. {
  311. __bit_spin_unlock(PG_locked, &page->flags);
  312. }
  313. /* Interrupts must be disabled (for the fallback code to work right) */
  314. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  315. void *freelist_old, unsigned long counters_old,
  316. void *freelist_new, unsigned long counters_new,
  317. const char *n)
  318. {
  319. VM_BUG_ON(!irqs_disabled());
  320. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  321. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  322. if (s->flags & __CMPXCHG_DOUBLE) {
  323. if (cmpxchg_double(&page->freelist, &page->counters,
  324. freelist_old, counters_old,
  325. freelist_new, counters_new))
  326. return 1;
  327. } else
  328. #endif
  329. {
  330. slab_lock(page);
  331. if (page->freelist == freelist_old && page->counters == counters_old) {
  332. page->freelist = freelist_new;
  333. page->counters = counters_new;
  334. slab_unlock(page);
  335. return 1;
  336. }
  337. slab_unlock(page);
  338. }
  339. cpu_relax();
  340. stat(s, CMPXCHG_DOUBLE_FAIL);
  341. #ifdef SLUB_DEBUG_CMPXCHG
  342. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  343. #endif
  344. return 0;
  345. }
  346. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  347. void *freelist_old, unsigned long counters_old,
  348. void *freelist_new, unsigned long counters_new,
  349. const char *n)
  350. {
  351. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  352. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  353. if (s->flags & __CMPXCHG_DOUBLE) {
  354. if (cmpxchg_double(&page->freelist, &page->counters,
  355. freelist_old, counters_old,
  356. freelist_new, counters_new))
  357. return 1;
  358. } else
  359. #endif
  360. {
  361. unsigned long flags;
  362. local_irq_save(flags);
  363. slab_lock(page);
  364. if (page->freelist == freelist_old && page->counters == counters_old) {
  365. page->freelist = freelist_new;
  366. page->counters = counters_new;
  367. slab_unlock(page);
  368. local_irq_restore(flags);
  369. return 1;
  370. }
  371. slab_unlock(page);
  372. local_irq_restore(flags);
  373. }
  374. cpu_relax();
  375. stat(s, CMPXCHG_DOUBLE_FAIL);
  376. #ifdef SLUB_DEBUG_CMPXCHG
  377. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  378. #endif
  379. return 0;
  380. }
  381. #ifdef CONFIG_SLUB_DEBUG
  382. /*
  383. * Determine a map of object in use on a page.
  384. *
  385. * Node listlock must be held to guarantee that the page does
  386. * not vanish from under us.
  387. */
  388. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  389. {
  390. void *p;
  391. void *addr = page_address(page);
  392. for (p = page->freelist; p; p = get_freepointer(s, p))
  393. set_bit(slab_index(p, s, addr), map);
  394. }
  395. /*
  396. * Debug settings:
  397. */
  398. #ifdef CONFIG_SLUB_DEBUG_ON
  399. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  400. #else
  401. static int slub_debug;
  402. #endif
  403. static char *slub_debug_slabs;
  404. static int disable_higher_order_debug;
  405. /*
  406. * Object debugging
  407. */
  408. static void print_section(char *text, u8 *addr, unsigned int length)
  409. {
  410. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  411. length, 1);
  412. }
  413. static struct track *get_track(struct kmem_cache *s, void *object,
  414. enum track_item alloc)
  415. {
  416. struct track *p;
  417. if (s->offset)
  418. p = object + s->offset + sizeof(void *);
  419. else
  420. p = object + s->inuse;
  421. return p + alloc;
  422. }
  423. static void set_track(struct kmem_cache *s, void *object,
  424. enum track_item alloc, unsigned long addr)
  425. {
  426. struct track *p = get_track(s, object, alloc);
  427. if (addr) {
  428. #ifdef CONFIG_STACKTRACE
  429. struct stack_trace trace;
  430. int i;
  431. trace.nr_entries = 0;
  432. trace.max_entries = TRACK_ADDRS_COUNT;
  433. trace.entries = p->addrs;
  434. trace.skip = 3;
  435. save_stack_trace(&trace);
  436. /* See rant in lockdep.c */
  437. if (trace.nr_entries != 0 &&
  438. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  439. trace.nr_entries--;
  440. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  441. p->addrs[i] = 0;
  442. #endif
  443. p->addr = addr;
  444. p->cpu = smp_processor_id();
  445. p->pid = current->pid;
  446. p->when = jiffies;
  447. } else
  448. memset(p, 0, sizeof(struct track));
  449. }
  450. static void init_tracking(struct kmem_cache *s, void *object)
  451. {
  452. if (!(s->flags & SLAB_STORE_USER))
  453. return;
  454. set_track(s, object, TRACK_FREE, 0UL);
  455. set_track(s, object, TRACK_ALLOC, 0UL);
  456. }
  457. static void print_track(const char *s, struct track *t)
  458. {
  459. if (!t->addr)
  460. return;
  461. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  462. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  463. #ifdef CONFIG_STACKTRACE
  464. {
  465. int i;
  466. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  467. if (t->addrs[i])
  468. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  469. else
  470. break;
  471. }
  472. #endif
  473. }
  474. static void print_tracking(struct kmem_cache *s, void *object)
  475. {
  476. if (!(s->flags & SLAB_STORE_USER))
  477. return;
  478. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  479. print_track("Freed", get_track(s, object, TRACK_FREE));
  480. }
  481. static void print_page_info(struct page *page)
  482. {
  483. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  484. page, page->objects, page->inuse, page->freelist, page->flags);
  485. }
  486. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  487. {
  488. va_list args;
  489. char buf[100];
  490. va_start(args, fmt);
  491. vsnprintf(buf, sizeof(buf), fmt, args);
  492. va_end(args);
  493. printk(KERN_ERR "========================================"
  494. "=====================================\n");
  495. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  496. printk(KERN_ERR "----------------------------------------"
  497. "-------------------------------------\n\n");
  498. }
  499. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  500. {
  501. va_list args;
  502. char buf[100];
  503. va_start(args, fmt);
  504. vsnprintf(buf, sizeof(buf), fmt, args);
  505. va_end(args);
  506. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  507. }
  508. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  509. {
  510. unsigned int off; /* Offset of last byte */
  511. u8 *addr = page_address(page);
  512. print_tracking(s, p);
  513. print_page_info(page);
  514. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  515. p, p - addr, get_freepointer(s, p));
  516. if (p > addr + 16)
  517. print_section("Bytes b4 ", p - 16, 16);
  518. print_section("Object ", p, min_t(unsigned long, s->objsize,
  519. PAGE_SIZE));
  520. if (s->flags & SLAB_RED_ZONE)
  521. print_section("Redzone ", p + s->objsize,
  522. s->inuse - s->objsize);
  523. if (s->offset)
  524. off = s->offset + sizeof(void *);
  525. else
  526. off = s->inuse;
  527. if (s->flags & SLAB_STORE_USER)
  528. off += 2 * sizeof(struct track);
  529. if (off != s->size)
  530. /* Beginning of the filler is the free pointer */
  531. print_section("Padding ", p + off, s->size - off);
  532. dump_stack();
  533. }
  534. static void object_err(struct kmem_cache *s, struct page *page,
  535. u8 *object, char *reason)
  536. {
  537. slab_bug(s, "%s", reason);
  538. print_trailer(s, page, object);
  539. }
  540. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  541. {
  542. va_list args;
  543. char buf[100];
  544. va_start(args, fmt);
  545. vsnprintf(buf, sizeof(buf), fmt, args);
  546. va_end(args);
  547. slab_bug(s, "%s", buf);
  548. print_page_info(page);
  549. dump_stack();
  550. }
  551. static void init_object(struct kmem_cache *s, void *object, u8 val)
  552. {
  553. u8 *p = object;
  554. if (s->flags & __OBJECT_POISON) {
  555. memset(p, POISON_FREE, s->objsize - 1);
  556. p[s->objsize - 1] = POISON_END;
  557. }
  558. if (s->flags & SLAB_RED_ZONE)
  559. memset(p + s->objsize, val, s->inuse - s->objsize);
  560. }
  561. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  562. void *from, void *to)
  563. {
  564. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  565. memset(from, data, to - from);
  566. }
  567. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  568. u8 *object, char *what,
  569. u8 *start, unsigned int value, unsigned int bytes)
  570. {
  571. u8 *fault;
  572. u8 *end;
  573. fault = memchr_inv(start, value, bytes);
  574. if (!fault)
  575. return 1;
  576. end = start + bytes;
  577. while (end > fault && end[-1] == value)
  578. end--;
  579. slab_bug(s, "%s overwritten", what);
  580. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  581. fault, end - 1, fault[0], value);
  582. print_trailer(s, page, object);
  583. restore_bytes(s, what, value, fault, end);
  584. return 0;
  585. }
  586. /*
  587. * Object layout:
  588. *
  589. * object address
  590. * Bytes of the object to be managed.
  591. * If the freepointer may overlay the object then the free
  592. * pointer is the first word of the object.
  593. *
  594. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  595. * 0xa5 (POISON_END)
  596. *
  597. * object + s->objsize
  598. * Padding to reach word boundary. This is also used for Redzoning.
  599. * Padding is extended by another word if Redzoning is enabled and
  600. * objsize == inuse.
  601. *
  602. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  603. * 0xcc (RED_ACTIVE) for objects in use.
  604. *
  605. * object + s->inuse
  606. * Meta data starts here.
  607. *
  608. * A. Free pointer (if we cannot overwrite object on free)
  609. * B. Tracking data for SLAB_STORE_USER
  610. * C. Padding to reach required alignment boundary or at mininum
  611. * one word if debugging is on to be able to detect writes
  612. * before the word boundary.
  613. *
  614. * Padding is done using 0x5a (POISON_INUSE)
  615. *
  616. * object + s->size
  617. * Nothing is used beyond s->size.
  618. *
  619. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  620. * ignored. And therefore no slab options that rely on these boundaries
  621. * may be used with merged slabcaches.
  622. */
  623. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  624. {
  625. unsigned long off = s->inuse; /* The end of info */
  626. if (s->offset)
  627. /* Freepointer is placed after the object. */
  628. off += sizeof(void *);
  629. if (s->flags & SLAB_STORE_USER)
  630. /* We also have user information there */
  631. off += 2 * sizeof(struct track);
  632. if (s->size == off)
  633. return 1;
  634. return check_bytes_and_report(s, page, p, "Object padding",
  635. p + off, POISON_INUSE, s->size - off);
  636. }
  637. /* Check the pad bytes at the end of a slab page */
  638. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  639. {
  640. u8 *start;
  641. u8 *fault;
  642. u8 *end;
  643. int length;
  644. int remainder;
  645. if (!(s->flags & SLAB_POISON))
  646. return 1;
  647. start = page_address(page);
  648. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  649. end = start + length;
  650. remainder = length % s->size;
  651. if (!remainder)
  652. return 1;
  653. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  654. if (!fault)
  655. return 1;
  656. while (end > fault && end[-1] == POISON_INUSE)
  657. end--;
  658. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  659. print_section("Padding ", end - remainder, remainder);
  660. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  661. return 0;
  662. }
  663. static int check_object(struct kmem_cache *s, struct page *page,
  664. void *object, u8 val)
  665. {
  666. u8 *p = object;
  667. u8 *endobject = object + s->objsize;
  668. if (s->flags & SLAB_RED_ZONE) {
  669. if (!check_bytes_and_report(s, page, object, "Redzone",
  670. endobject, val, s->inuse - s->objsize))
  671. return 0;
  672. } else {
  673. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  674. check_bytes_and_report(s, page, p, "Alignment padding",
  675. endobject, POISON_INUSE, s->inuse - s->objsize);
  676. }
  677. }
  678. if (s->flags & SLAB_POISON) {
  679. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  680. (!check_bytes_and_report(s, page, p, "Poison", p,
  681. POISON_FREE, s->objsize - 1) ||
  682. !check_bytes_and_report(s, page, p, "Poison",
  683. p + s->objsize - 1, POISON_END, 1)))
  684. return 0;
  685. /*
  686. * check_pad_bytes cleans up on its own.
  687. */
  688. check_pad_bytes(s, page, p);
  689. }
  690. if (!s->offset && val == SLUB_RED_ACTIVE)
  691. /*
  692. * Object and freepointer overlap. Cannot check
  693. * freepointer while object is allocated.
  694. */
  695. return 1;
  696. /* Check free pointer validity */
  697. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  698. object_err(s, page, p, "Freepointer corrupt");
  699. /*
  700. * No choice but to zap it and thus lose the remainder
  701. * of the free objects in this slab. May cause
  702. * another error because the object count is now wrong.
  703. */
  704. set_freepointer(s, p, NULL);
  705. return 0;
  706. }
  707. return 1;
  708. }
  709. static int check_slab(struct kmem_cache *s, struct page *page)
  710. {
  711. int maxobj;
  712. VM_BUG_ON(!irqs_disabled());
  713. if (!PageSlab(page)) {
  714. slab_err(s, page, "Not a valid slab page");
  715. return 0;
  716. }
  717. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  718. if (page->objects > maxobj) {
  719. slab_err(s, page, "objects %u > max %u",
  720. s->name, page->objects, maxobj);
  721. return 0;
  722. }
  723. if (page->inuse > page->objects) {
  724. slab_err(s, page, "inuse %u > max %u",
  725. s->name, page->inuse, page->objects);
  726. return 0;
  727. }
  728. /* Slab_pad_check fixes things up after itself */
  729. slab_pad_check(s, page);
  730. return 1;
  731. }
  732. /*
  733. * Determine if a certain object on a page is on the freelist. Must hold the
  734. * slab lock to guarantee that the chains are in a consistent state.
  735. */
  736. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  737. {
  738. int nr = 0;
  739. void *fp;
  740. void *object = NULL;
  741. unsigned long max_objects;
  742. fp = page->freelist;
  743. while (fp && nr <= page->objects) {
  744. if (fp == search)
  745. return 1;
  746. if (!check_valid_pointer(s, page, fp)) {
  747. if (object) {
  748. object_err(s, page, object,
  749. "Freechain corrupt");
  750. set_freepointer(s, object, NULL);
  751. break;
  752. } else {
  753. slab_err(s, page, "Freepointer corrupt");
  754. page->freelist = NULL;
  755. page->inuse = page->objects;
  756. slab_fix(s, "Freelist cleared");
  757. return 0;
  758. }
  759. break;
  760. }
  761. object = fp;
  762. fp = get_freepointer(s, object);
  763. nr++;
  764. }
  765. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  766. if (max_objects > MAX_OBJS_PER_PAGE)
  767. max_objects = MAX_OBJS_PER_PAGE;
  768. if (page->objects != max_objects) {
  769. slab_err(s, page, "Wrong number of objects. Found %d but "
  770. "should be %d", page->objects, max_objects);
  771. page->objects = max_objects;
  772. slab_fix(s, "Number of objects adjusted.");
  773. }
  774. if (page->inuse != page->objects - nr) {
  775. slab_err(s, page, "Wrong object count. Counter is %d but "
  776. "counted were %d", page->inuse, page->objects - nr);
  777. page->inuse = page->objects - nr;
  778. slab_fix(s, "Object count adjusted.");
  779. }
  780. return search == NULL;
  781. }
  782. static void trace(struct kmem_cache *s, struct page *page, void *object,
  783. int alloc)
  784. {
  785. if (s->flags & SLAB_TRACE) {
  786. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  787. s->name,
  788. alloc ? "alloc" : "free",
  789. object, page->inuse,
  790. page->freelist);
  791. if (!alloc)
  792. print_section("Object ", (void *)object, s->objsize);
  793. dump_stack();
  794. }
  795. }
  796. /*
  797. * Hooks for other subsystems that check memory allocations. In a typical
  798. * production configuration these hooks all should produce no code at all.
  799. */
  800. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  801. {
  802. flags &= gfp_allowed_mask;
  803. lockdep_trace_alloc(flags);
  804. might_sleep_if(flags & __GFP_WAIT);
  805. return should_failslab(s->objsize, flags, s->flags);
  806. }
  807. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  808. {
  809. flags &= gfp_allowed_mask;
  810. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  811. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  812. }
  813. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  814. {
  815. kmemleak_free_recursive(x, s->flags);
  816. /*
  817. * Trouble is that we may no longer disable interupts in the fast path
  818. * So in order to make the debug calls that expect irqs to be
  819. * disabled we need to disable interrupts temporarily.
  820. */
  821. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  822. {
  823. unsigned long flags;
  824. local_irq_save(flags);
  825. kmemcheck_slab_free(s, x, s->objsize);
  826. debug_check_no_locks_freed(x, s->objsize);
  827. local_irq_restore(flags);
  828. }
  829. #endif
  830. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  831. debug_check_no_obj_freed(x, s->objsize);
  832. }
  833. /*
  834. * Tracking of fully allocated slabs for debugging purposes.
  835. *
  836. * list_lock must be held.
  837. */
  838. static void add_full(struct kmem_cache *s,
  839. struct kmem_cache_node *n, struct page *page)
  840. {
  841. if (!(s->flags & SLAB_STORE_USER))
  842. return;
  843. list_add(&page->lru, &n->full);
  844. }
  845. /*
  846. * list_lock must be held.
  847. */
  848. static void remove_full(struct kmem_cache *s, struct page *page)
  849. {
  850. if (!(s->flags & SLAB_STORE_USER))
  851. return;
  852. list_del(&page->lru);
  853. }
  854. /* Tracking of the number of slabs for debugging purposes */
  855. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  856. {
  857. struct kmem_cache_node *n = get_node(s, node);
  858. return atomic_long_read(&n->nr_slabs);
  859. }
  860. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  861. {
  862. return atomic_long_read(&n->nr_slabs);
  863. }
  864. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  865. {
  866. struct kmem_cache_node *n = get_node(s, node);
  867. /*
  868. * May be called early in order to allocate a slab for the
  869. * kmem_cache_node structure. Solve the chicken-egg
  870. * dilemma by deferring the increment of the count during
  871. * bootstrap (see early_kmem_cache_node_alloc).
  872. */
  873. if (n) {
  874. atomic_long_inc(&n->nr_slabs);
  875. atomic_long_add(objects, &n->total_objects);
  876. }
  877. }
  878. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  879. {
  880. struct kmem_cache_node *n = get_node(s, node);
  881. atomic_long_dec(&n->nr_slabs);
  882. atomic_long_sub(objects, &n->total_objects);
  883. }
  884. /* Object debug checks for alloc/free paths */
  885. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  886. void *object)
  887. {
  888. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  889. return;
  890. init_object(s, object, SLUB_RED_INACTIVE);
  891. init_tracking(s, object);
  892. }
  893. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  894. void *object, unsigned long addr)
  895. {
  896. if (!check_slab(s, page))
  897. goto bad;
  898. if (!check_valid_pointer(s, page, object)) {
  899. object_err(s, page, object, "Freelist Pointer check fails");
  900. goto bad;
  901. }
  902. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  903. goto bad;
  904. /* Success perform special debug activities for allocs */
  905. if (s->flags & SLAB_STORE_USER)
  906. set_track(s, object, TRACK_ALLOC, addr);
  907. trace(s, page, object, 1);
  908. init_object(s, object, SLUB_RED_ACTIVE);
  909. return 1;
  910. bad:
  911. if (PageSlab(page)) {
  912. /*
  913. * If this is a slab page then lets do the best we can
  914. * to avoid issues in the future. Marking all objects
  915. * as used avoids touching the remaining objects.
  916. */
  917. slab_fix(s, "Marking all objects used");
  918. page->inuse = page->objects;
  919. page->freelist = NULL;
  920. }
  921. return 0;
  922. }
  923. static noinline int free_debug_processing(struct kmem_cache *s,
  924. struct page *page, void *object, unsigned long addr)
  925. {
  926. unsigned long flags;
  927. int rc = 0;
  928. local_irq_save(flags);
  929. slab_lock(page);
  930. if (!check_slab(s, page))
  931. goto fail;
  932. if (!check_valid_pointer(s, page, object)) {
  933. slab_err(s, page, "Invalid object pointer 0x%p", object);
  934. goto fail;
  935. }
  936. if (on_freelist(s, page, object)) {
  937. object_err(s, page, object, "Object already free");
  938. goto fail;
  939. }
  940. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  941. goto out;
  942. if (unlikely(s != page->slab)) {
  943. if (!PageSlab(page)) {
  944. slab_err(s, page, "Attempt to free object(0x%p) "
  945. "outside of slab", object);
  946. } else if (!page->slab) {
  947. printk(KERN_ERR
  948. "SLUB <none>: no slab for object 0x%p.\n",
  949. object);
  950. dump_stack();
  951. } else
  952. object_err(s, page, object,
  953. "page slab pointer corrupt.");
  954. goto fail;
  955. }
  956. if (s->flags & SLAB_STORE_USER)
  957. set_track(s, object, TRACK_FREE, addr);
  958. trace(s, page, object, 0);
  959. init_object(s, object, SLUB_RED_INACTIVE);
  960. rc = 1;
  961. out:
  962. slab_unlock(page);
  963. local_irq_restore(flags);
  964. return rc;
  965. fail:
  966. slab_fix(s, "Object at 0x%p not freed", object);
  967. goto out;
  968. }
  969. static int __init setup_slub_debug(char *str)
  970. {
  971. slub_debug = DEBUG_DEFAULT_FLAGS;
  972. if (*str++ != '=' || !*str)
  973. /*
  974. * No options specified. Switch on full debugging.
  975. */
  976. goto out;
  977. if (*str == ',')
  978. /*
  979. * No options but restriction on slabs. This means full
  980. * debugging for slabs matching a pattern.
  981. */
  982. goto check_slabs;
  983. if (tolower(*str) == 'o') {
  984. /*
  985. * Avoid enabling debugging on caches if its minimum order
  986. * would increase as a result.
  987. */
  988. disable_higher_order_debug = 1;
  989. goto out;
  990. }
  991. slub_debug = 0;
  992. if (*str == '-')
  993. /*
  994. * Switch off all debugging measures.
  995. */
  996. goto out;
  997. /*
  998. * Determine which debug features should be switched on
  999. */
  1000. for (; *str && *str != ','; str++) {
  1001. switch (tolower(*str)) {
  1002. case 'f':
  1003. slub_debug |= SLAB_DEBUG_FREE;
  1004. break;
  1005. case 'z':
  1006. slub_debug |= SLAB_RED_ZONE;
  1007. break;
  1008. case 'p':
  1009. slub_debug |= SLAB_POISON;
  1010. break;
  1011. case 'u':
  1012. slub_debug |= SLAB_STORE_USER;
  1013. break;
  1014. case 't':
  1015. slub_debug |= SLAB_TRACE;
  1016. break;
  1017. case 'a':
  1018. slub_debug |= SLAB_FAILSLAB;
  1019. break;
  1020. default:
  1021. printk(KERN_ERR "slub_debug option '%c' "
  1022. "unknown. skipped\n", *str);
  1023. }
  1024. }
  1025. check_slabs:
  1026. if (*str == ',')
  1027. slub_debug_slabs = str + 1;
  1028. out:
  1029. return 1;
  1030. }
  1031. __setup("slub_debug", setup_slub_debug);
  1032. static unsigned long kmem_cache_flags(unsigned long objsize,
  1033. unsigned long flags, const char *name,
  1034. void (*ctor)(void *))
  1035. {
  1036. /*
  1037. * Enable debugging if selected on the kernel commandline.
  1038. */
  1039. if (slub_debug && (!slub_debug_slabs ||
  1040. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1041. flags |= slub_debug;
  1042. return flags;
  1043. }
  1044. #else
  1045. static inline void setup_object_debug(struct kmem_cache *s,
  1046. struct page *page, void *object) {}
  1047. static inline int alloc_debug_processing(struct kmem_cache *s,
  1048. struct page *page, void *object, unsigned long addr) { return 0; }
  1049. static inline int free_debug_processing(struct kmem_cache *s,
  1050. struct page *page, void *object, unsigned long addr) { return 0; }
  1051. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1052. { return 1; }
  1053. static inline int check_object(struct kmem_cache *s, struct page *page,
  1054. void *object, u8 val) { return 1; }
  1055. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1056. struct page *page) {}
  1057. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1058. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  1059. unsigned long flags, const char *name,
  1060. void (*ctor)(void *))
  1061. {
  1062. return flags;
  1063. }
  1064. #define slub_debug 0
  1065. #define disable_higher_order_debug 0
  1066. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1067. { return 0; }
  1068. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1069. { return 0; }
  1070. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1071. int objects) {}
  1072. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1073. int objects) {}
  1074. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1075. { return 0; }
  1076. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1077. void *object) {}
  1078. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1079. #endif /* CONFIG_SLUB_DEBUG */
  1080. /*
  1081. * Slab allocation and freeing
  1082. */
  1083. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1084. struct kmem_cache_order_objects oo)
  1085. {
  1086. int order = oo_order(oo);
  1087. flags |= __GFP_NOTRACK;
  1088. if (node == NUMA_NO_NODE)
  1089. return alloc_pages(flags, order);
  1090. else
  1091. return alloc_pages_exact_node(node, flags, order);
  1092. }
  1093. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1094. {
  1095. struct page *page;
  1096. struct kmem_cache_order_objects oo = s->oo;
  1097. gfp_t alloc_gfp;
  1098. flags &= gfp_allowed_mask;
  1099. if (flags & __GFP_WAIT)
  1100. local_irq_enable();
  1101. flags |= s->allocflags;
  1102. /*
  1103. * Let the initial higher-order allocation fail under memory pressure
  1104. * so we fall-back to the minimum order allocation.
  1105. */
  1106. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1107. page = alloc_slab_page(alloc_gfp, node, oo);
  1108. if (unlikely(!page)) {
  1109. oo = s->min;
  1110. /*
  1111. * Allocation may have failed due to fragmentation.
  1112. * Try a lower order alloc if possible
  1113. */
  1114. page = alloc_slab_page(flags, node, oo);
  1115. if (page)
  1116. stat(s, ORDER_FALLBACK);
  1117. }
  1118. if (flags & __GFP_WAIT)
  1119. local_irq_disable();
  1120. if (!page)
  1121. return NULL;
  1122. if (kmemcheck_enabled
  1123. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1124. int pages = 1 << oo_order(oo);
  1125. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1126. /*
  1127. * Objects from caches that have a constructor don't get
  1128. * cleared when they're allocated, so we need to do it here.
  1129. */
  1130. if (s->ctor)
  1131. kmemcheck_mark_uninitialized_pages(page, pages);
  1132. else
  1133. kmemcheck_mark_unallocated_pages(page, pages);
  1134. }
  1135. page->objects = oo_objects(oo);
  1136. mod_zone_page_state(page_zone(page),
  1137. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1138. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1139. 1 << oo_order(oo));
  1140. return page;
  1141. }
  1142. static void setup_object(struct kmem_cache *s, struct page *page,
  1143. void *object)
  1144. {
  1145. setup_object_debug(s, page, object);
  1146. if (unlikely(s->ctor))
  1147. s->ctor(object);
  1148. }
  1149. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1150. {
  1151. struct page *page;
  1152. void *start;
  1153. void *last;
  1154. void *p;
  1155. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1156. page = allocate_slab(s,
  1157. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1158. if (!page)
  1159. goto out;
  1160. inc_slabs_node(s, page_to_nid(page), page->objects);
  1161. page->slab = s;
  1162. page->flags |= 1 << PG_slab;
  1163. start = page_address(page);
  1164. if (unlikely(s->flags & SLAB_POISON))
  1165. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1166. last = start;
  1167. for_each_object(p, s, start, page->objects) {
  1168. setup_object(s, page, last);
  1169. set_freepointer(s, last, p);
  1170. last = p;
  1171. }
  1172. setup_object(s, page, last);
  1173. set_freepointer(s, last, NULL);
  1174. page->freelist = start;
  1175. page->inuse = page->objects;
  1176. page->frozen = 1;
  1177. out:
  1178. return page;
  1179. }
  1180. static void __free_slab(struct kmem_cache *s, struct page *page)
  1181. {
  1182. int order = compound_order(page);
  1183. int pages = 1 << order;
  1184. if (kmem_cache_debug(s)) {
  1185. void *p;
  1186. slab_pad_check(s, page);
  1187. for_each_object(p, s, page_address(page),
  1188. page->objects)
  1189. check_object(s, page, p, SLUB_RED_INACTIVE);
  1190. }
  1191. kmemcheck_free_shadow(page, compound_order(page));
  1192. mod_zone_page_state(page_zone(page),
  1193. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1194. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1195. -pages);
  1196. __ClearPageSlab(page);
  1197. reset_page_mapcount(page);
  1198. if (current->reclaim_state)
  1199. current->reclaim_state->reclaimed_slab += pages;
  1200. __free_pages(page, order);
  1201. }
  1202. #define need_reserve_slab_rcu \
  1203. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1204. static void rcu_free_slab(struct rcu_head *h)
  1205. {
  1206. struct page *page;
  1207. if (need_reserve_slab_rcu)
  1208. page = virt_to_head_page(h);
  1209. else
  1210. page = container_of((struct list_head *)h, struct page, lru);
  1211. __free_slab(page->slab, page);
  1212. }
  1213. static void free_slab(struct kmem_cache *s, struct page *page)
  1214. {
  1215. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1216. struct rcu_head *head;
  1217. if (need_reserve_slab_rcu) {
  1218. int order = compound_order(page);
  1219. int offset = (PAGE_SIZE << order) - s->reserved;
  1220. VM_BUG_ON(s->reserved != sizeof(*head));
  1221. head = page_address(page) + offset;
  1222. } else {
  1223. /*
  1224. * RCU free overloads the RCU head over the LRU
  1225. */
  1226. head = (void *)&page->lru;
  1227. }
  1228. call_rcu(head, rcu_free_slab);
  1229. } else
  1230. __free_slab(s, page);
  1231. }
  1232. static void discard_slab(struct kmem_cache *s, struct page *page)
  1233. {
  1234. dec_slabs_node(s, page_to_nid(page), page->objects);
  1235. free_slab(s, page);
  1236. }
  1237. /*
  1238. * Management of partially allocated slabs.
  1239. *
  1240. * list_lock must be held.
  1241. */
  1242. static inline void add_partial(struct kmem_cache_node *n,
  1243. struct page *page, int tail)
  1244. {
  1245. n->nr_partial++;
  1246. if (tail == DEACTIVATE_TO_TAIL)
  1247. list_add_tail(&page->lru, &n->partial);
  1248. else
  1249. list_add(&page->lru, &n->partial);
  1250. }
  1251. /*
  1252. * list_lock must be held.
  1253. */
  1254. static inline void remove_partial(struct kmem_cache_node *n,
  1255. struct page *page)
  1256. {
  1257. list_del(&page->lru);
  1258. n->nr_partial--;
  1259. }
  1260. /*
  1261. * Lock slab, remove from the partial list and put the object into the
  1262. * per cpu freelist.
  1263. *
  1264. * Returns a list of objects or NULL if it fails.
  1265. *
  1266. * Must hold list_lock.
  1267. */
  1268. static inline void *acquire_slab(struct kmem_cache *s,
  1269. struct kmem_cache_node *n, struct page *page,
  1270. int mode)
  1271. {
  1272. void *freelist;
  1273. unsigned long counters;
  1274. struct page new;
  1275. /*
  1276. * Zap the freelist and set the frozen bit.
  1277. * The old freelist is the list of objects for the
  1278. * per cpu allocation list.
  1279. */
  1280. do {
  1281. freelist = page->freelist;
  1282. counters = page->counters;
  1283. new.counters = counters;
  1284. if (mode)
  1285. new.inuse = page->objects;
  1286. VM_BUG_ON(new.frozen);
  1287. new.frozen = 1;
  1288. } while (!__cmpxchg_double_slab(s, page,
  1289. freelist, counters,
  1290. NULL, new.counters,
  1291. "lock and freeze"));
  1292. remove_partial(n, page);
  1293. return freelist;
  1294. }
  1295. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1296. /*
  1297. * Try to allocate a partial slab from a specific node.
  1298. */
  1299. static void *get_partial_node(struct kmem_cache *s,
  1300. struct kmem_cache_node *n, struct kmem_cache_cpu *c)
  1301. {
  1302. struct page *page, *page2;
  1303. void *object = NULL;
  1304. /*
  1305. * Racy check. If we mistakenly see no partial slabs then we
  1306. * just allocate an empty slab. If we mistakenly try to get a
  1307. * partial slab and there is none available then get_partials()
  1308. * will return NULL.
  1309. */
  1310. if (!n || !n->nr_partial)
  1311. return NULL;
  1312. spin_lock(&n->list_lock);
  1313. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1314. void *t = acquire_slab(s, n, page, object == NULL);
  1315. int available;
  1316. if (!t)
  1317. break;
  1318. if (!object) {
  1319. c->page = page;
  1320. c->node = page_to_nid(page);
  1321. stat(s, ALLOC_FROM_PARTIAL);
  1322. object = t;
  1323. available = page->objects - page->inuse;
  1324. } else {
  1325. page->freelist = t;
  1326. available = put_cpu_partial(s, page, 0);
  1327. }
  1328. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1329. break;
  1330. }
  1331. spin_unlock(&n->list_lock);
  1332. return object;
  1333. }
  1334. /*
  1335. * Get a page from somewhere. Search in increasing NUMA distances.
  1336. */
  1337. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1338. struct kmem_cache_cpu *c)
  1339. {
  1340. #ifdef CONFIG_NUMA
  1341. struct zonelist *zonelist;
  1342. struct zoneref *z;
  1343. struct zone *zone;
  1344. enum zone_type high_zoneidx = gfp_zone(flags);
  1345. void *object;
  1346. /*
  1347. * The defrag ratio allows a configuration of the tradeoffs between
  1348. * inter node defragmentation and node local allocations. A lower
  1349. * defrag_ratio increases the tendency to do local allocations
  1350. * instead of attempting to obtain partial slabs from other nodes.
  1351. *
  1352. * If the defrag_ratio is set to 0 then kmalloc() always
  1353. * returns node local objects. If the ratio is higher then kmalloc()
  1354. * may return off node objects because partial slabs are obtained
  1355. * from other nodes and filled up.
  1356. *
  1357. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1358. * defrag_ratio = 1000) then every (well almost) allocation will
  1359. * first attempt to defrag slab caches on other nodes. This means
  1360. * scanning over all nodes to look for partial slabs which may be
  1361. * expensive if we do it every time we are trying to find a slab
  1362. * with available objects.
  1363. */
  1364. if (!s->remote_node_defrag_ratio ||
  1365. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1366. return NULL;
  1367. get_mems_allowed();
  1368. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1369. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1370. struct kmem_cache_node *n;
  1371. n = get_node(s, zone_to_nid(zone));
  1372. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1373. n->nr_partial > s->min_partial) {
  1374. object = get_partial_node(s, n, c);
  1375. if (object) {
  1376. put_mems_allowed();
  1377. return object;
  1378. }
  1379. }
  1380. }
  1381. put_mems_allowed();
  1382. #endif
  1383. return NULL;
  1384. }
  1385. /*
  1386. * Get a partial page, lock it and return it.
  1387. */
  1388. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1389. struct kmem_cache_cpu *c)
  1390. {
  1391. void *object;
  1392. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1393. object = get_partial_node(s, get_node(s, searchnode), c);
  1394. if (object || node != NUMA_NO_NODE)
  1395. return object;
  1396. return get_any_partial(s, flags, c);
  1397. }
  1398. #ifdef CONFIG_PREEMPT
  1399. /*
  1400. * Calculate the next globally unique transaction for disambiguiation
  1401. * during cmpxchg. The transactions start with the cpu number and are then
  1402. * incremented by CONFIG_NR_CPUS.
  1403. */
  1404. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1405. #else
  1406. /*
  1407. * No preemption supported therefore also no need to check for
  1408. * different cpus.
  1409. */
  1410. #define TID_STEP 1
  1411. #endif
  1412. static inline unsigned long next_tid(unsigned long tid)
  1413. {
  1414. return tid + TID_STEP;
  1415. }
  1416. static inline unsigned int tid_to_cpu(unsigned long tid)
  1417. {
  1418. return tid % TID_STEP;
  1419. }
  1420. static inline unsigned long tid_to_event(unsigned long tid)
  1421. {
  1422. return tid / TID_STEP;
  1423. }
  1424. static inline unsigned int init_tid(int cpu)
  1425. {
  1426. return cpu;
  1427. }
  1428. static inline void note_cmpxchg_failure(const char *n,
  1429. const struct kmem_cache *s, unsigned long tid)
  1430. {
  1431. #ifdef SLUB_DEBUG_CMPXCHG
  1432. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1433. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1434. #ifdef CONFIG_PREEMPT
  1435. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1436. printk("due to cpu change %d -> %d\n",
  1437. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1438. else
  1439. #endif
  1440. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1441. printk("due to cpu running other code. Event %ld->%ld\n",
  1442. tid_to_event(tid), tid_to_event(actual_tid));
  1443. else
  1444. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1445. actual_tid, tid, next_tid(tid));
  1446. #endif
  1447. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1448. }
  1449. void init_kmem_cache_cpus(struct kmem_cache *s)
  1450. {
  1451. int cpu;
  1452. for_each_possible_cpu(cpu)
  1453. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1454. }
  1455. /*
  1456. * Remove the cpu slab
  1457. */
  1458. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1459. {
  1460. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1461. struct page *page = c->page;
  1462. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1463. int lock = 0;
  1464. enum slab_modes l = M_NONE, m = M_NONE;
  1465. void *freelist;
  1466. void *nextfree;
  1467. int tail = DEACTIVATE_TO_HEAD;
  1468. struct page new;
  1469. struct page old;
  1470. if (page->freelist) {
  1471. stat(s, DEACTIVATE_REMOTE_FREES);
  1472. tail = DEACTIVATE_TO_TAIL;
  1473. }
  1474. c->tid = next_tid(c->tid);
  1475. c->page = NULL;
  1476. freelist = c->freelist;
  1477. c->freelist = NULL;
  1478. /*
  1479. * Stage one: Free all available per cpu objects back
  1480. * to the page freelist while it is still frozen. Leave the
  1481. * last one.
  1482. *
  1483. * There is no need to take the list->lock because the page
  1484. * is still frozen.
  1485. */
  1486. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1487. void *prior;
  1488. unsigned long counters;
  1489. do {
  1490. prior = page->freelist;
  1491. counters = page->counters;
  1492. set_freepointer(s, freelist, prior);
  1493. new.counters = counters;
  1494. new.inuse--;
  1495. VM_BUG_ON(!new.frozen);
  1496. } while (!__cmpxchg_double_slab(s, page,
  1497. prior, counters,
  1498. freelist, new.counters,
  1499. "drain percpu freelist"));
  1500. freelist = nextfree;
  1501. }
  1502. /*
  1503. * Stage two: Ensure that the page is unfrozen while the
  1504. * list presence reflects the actual number of objects
  1505. * during unfreeze.
  1506. *
  1507. * We setup the list membership and then perform a cmpxchg
  1508. * with the count. If there is a mismatch then the page
  1509. * is not unfrozen but the page is on the wrong list.
  1510. *
  1511. * Then we restart the process which may have to remove
  1512. * the page from the list that we just put it on again
  1513. * because the number of objects in the slab may have
  1514. * changed.
  1515. */
  1516. redo:
  1517. old.freelist = page->freelist;
  1518. old.counters = page->counters;
  1519. VM_BUG_ON(!old.frozen);
  1520. /* Determine target state of the slab */
  1521. new.counters = old.counters;
  1522. if (freelist) {
  1523. new.inuse--;
  1524. set_freepointer(s, freelist, old.freelist);
  1525. new.freelist = freelist;
  1526. } else
  1527. new.freelist = old.freelist;
  1528. new.frozen = 0;
  1529. if (!new.inuse && n->nr_partial > s->min_partial)
  1530. m = M_FREE;
  1531. else if (new.freelist) {
  1532. m = M_PARTIAL;
  1533. if (!lock) {
  1534. lock = 1;
  1535. /*
  1536. * Taking the spinlock removes the possiblity
  1537. * that acquire_slab() will see a slab page that
  1538. * is frozen
  1539. */
  1540. spin_lock(&n->list_lock);
  1541. }
  1542. } else {
  1543. m = M_FULL;
  1544. if (kmem_cache_debug(s) && !lock) {
  1545. lock = 1;
  1546. /*
  1547. * This also ensures that the scanning of full
  1548. * slabs from diagnostic functions will not see
  1549. * any frozen slabs.
  1550. */
  1551. spin_lock(&n->list_lock);
  1552. }
  1553. }
  1554. if (l != m) {
  1555. if (l == M_PARTIAL)
  1556. remove_partial(n, page);
  1557. else if (l == M_FULL)
  1558. remove_full(s, page);
  1559. if (m == M_PARTIAL) {
  1560. add_partial(n, page, tail);
  1561. stat(s, tail);
  1562. } else if (m == M_FULL) {
  1563. stat(s, DEACTIVATE_FULL);
  1564. add_full(s, n, page);
  1565. }
  1566. }
  1567. l = m;
  1568. if (!__cmpxchg_double_slab(s, page,
  1569. old.freelist, old.counters,
  1570. new.freelist, new.counters,
  1571. "unfreezing slab"))
  1572. goto redo;
  1573. if (lock)
  1574. spin_unlock(&n->list_lock);
  1575. if (m == M_FREE) {
  1576. stat(s, DEACTIVATE_EMPTY);
  1577. discard_slab(s, page);
  1578. stat(s, FREE_SLAB);
  1579. }
  1580. }
  1581. /* Unfreeze all the cpu partial slabs */
  1582. static void unfreeze_partials(struct kmem_cache *s)
  1583. {
  1584. struct kmem_cache_node *n = NULL;
  1585. struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
  1586. struct page *page, *discard_page = NULL;
  1587. while ((page = c->partial)) {
  1588. enum slab_modes { M_PARTIAL, M_FREE };
  1589. enum slab_modes l, m;
  1590. struct page new;
  1591. struct page old;
  1592. c->partial = page->next;
  1593. l = M_FREE;
  1594. do {
  1595. old.freelist = page->freelist;
  1596. old.counters = page->counters;
  1597. VM_BUG_ON(!old.frozen);
  1598. new.counters = old.counters;
  1599. new.freelist = old.freelist;
  1600. new.frozen = 0;
  1601. if (!new.inuse && (!n || n->nr_partial > s->min_partial))
  1602. m = M_FREE;
  1603. else {
  1604. struct kmem_cache_node *n2 = get_node(s,
  1605. page_to_nid(page));
  1606. m = M_PARTIAL;
  1607. if (n != n2) {
  1608. if (n)
  1609. spin_unlock(&n->list_lock);
  1610. n = n2;
  1611. spin_lock(&n->list_lock);
  1612. }
  1613. }
  1614. if (l != m) {
  1615. if (l == M_PARTIAL) {
  1616. remove_partial(n, page);
  1617. stat(s, FREE_REMOVE_PARTIAL);
  1618. } else {
  1619. add_partial(n, page,
  1620. DEACTIVATE_TO_TAIL);
  1621. stat(s, FREE_ADD_PARTIAL);
  1622. }
  1623. l = m;
  1624. }
  1625. } while (!cmpxchg_double_slab(s, page,
  1626. old.freelist, old.counters,
  1627. new.freelist, new.counters,
  1628. "unfreezing slab"));
  1629. if (m == M_FREE) {
  1630. page->next = discard_page;
  1631. discard_page = page;
  1632. }
  1633. }
  1634. if (n)
  1635. spin_unlock(&n->list_lock);
  1636. while (discard_page) {
  1637. page = discard_page;
  1638. discard_page = discard_page->next;
  1639. stat(s, DEACTIVATE_EMPTY);
  1640. discard_slab(s, page);
  1641. stat(s, FREE_SLAB);
  1642. }
  1643. }
  1644. /*
  1645. * Put a page that was just frozen (in __slab_free) into a partial page
  1646. * slot if available. This is done without interrupts disabled and without
  1647. * preemption disabled. The cmpxchg is racy and may put the partial page
  1648. * onto a random cpus partial slot.
  1649. *
  1650. * If we did not find a slot then simply move all the partials to the
  1651. * per node partial list.
  1652. */
  1653. int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1654. {
  1655. struct page *oldpage;
  1656. int pages;
  1657. int pobjects;
  1658. do {
  1659. pages = 0;
  1660. pobjects = 0;
  1661. oldpage = this_cpu_read(s->cpu_slab->partial);
  1662. if (oldpage) {
  1663. pobjects = oldpage->pobjects;
  1664. pages = oldpage->pages;
  1665. if (drain && pobjects > s->cpu_partial) {
  1666. unsigned long flags;
  1667. /*
  1668. * partial array is full. Move the existing
  1669. * set to the per node partial list.
  1670. */
  1671. local_irq_save(flags);
  1672. unfreeze_partials(s);
  1673. local_irq_restore(flags);
  1674. pobjects = 0;
  1675. pages = 0;
  1676. }
  1677. }
  1678. pages++;
  1679. pobjects += page->objects - page->inuse;
  1680. page->pages = pages;
  1681. page->pobjects = pobjects;
  1682. page->next = oldpage;
  1683. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1684. stat(s, CPU_PARTIAL_FREE);
  1685. return pobjects;
  1686. }
  1687. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1688. {
  1689. stat(s, CPUSLAB_FLUSH);
  1690. deactivate_slab(s, c);
  1691. }
  1692. /*
  1693. * Flush cpu slab.
  1694. *
  1695. * Called from IPI handler with interrupts disabled.
  1696. */
  1697. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1698. {
  1699. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1700. if (likely(c)) {
  1701. if (c->page)
  1702. flush_slab(s, c);
  1703. unfreeze_partials(s);
  1704. }
  1705. }
  1706. static void flush_cpu_slab(void *d)
  1707. {
  1708. struct kmem_cache *s = d;
  1709. __flush_cpu_slab(s, smp_processor_id());
  1710. }
  1711. static void flush_all(struct kmem_cache *s)
  1712. {
  1713. on_each_cpu(flush_cpu_slab, s, 1);
  1714. }
  1715. /*
  1716. * Check if the objects in a per cpu structure fit numa
  1717. * locality expectations.
  1718. */
  1719. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1720. {
  1721. #ifdef CONFIG_NUMA
  1722. if (node != NUMA_NO_NODE && c->node != node)
  1723. return 0;
  1724. #endif
  1725. return 1;
  1726. }
  1727. static int count_free(struct page *page)
  1728. {
  1729. return page->objects - page->inuse;
  1730. }
  1731. static unsigned long count_partial(struct kmem_cache_node *n,
  1732. int (*get_count)(struct page *))
  1733. {
  1734. unsigned long flags;
  1735. unsigned long x = 0;
  1736. struct page *page;
  1737. spin_lock_irqsave(&n->list_lock, flags);
  1738. list_for_each_entry(page, &n->partial, lru)
  1739. x += get_count(page);
  1740. spin_unlock_irqrestore(&n->list_lock, flags);
  1741. return x;
  1742. }
  1743. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1744. {
  1745. #ifdef CONFIG_SLUB_DEBUG
  1746. return atomic_long_read(&n->total_objects);
  1747. #else
  1748. return 0;
  1749. #endif
  1750. }
  1751. static noinline void
  1752. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1753. {
  1754. int node;
  1755. printk(KERN_WARNING
  1756. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1757. nid, gfpflags);
  1758. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1759. "default order: %d, min order: %d\n", s->name, s->objsize,
  1760. s->size, oo_order(s->oo), oo_order(s->min));
  1761. if (oo_order(s->min) > get_order(s->objsize))
  1762. printk(KERN_WARNING " %s debugging increased min order, use "
  1763. "slub_debug=O to disable.\n", s->name);
  1764. for_each_online_node(node) {
  1765. struct kmem_cache_node *n = get_node(s, node);
  1766. unsigned long nr_slabs;
  1767. unsigned long nr_objs;
  1768. unsigned long nr_free;
  1769. if (!n)
  1770. continue;
  1771. nr_free = count_partial(n, count_free);
  1772. nr_slabs = node_nr_slabs(n);
  1773. nr_objs = node_nr_objs(n);
  1774. printk(KERN_WARNING
  1775. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1776. node, nr_slabs, nr_objs, nr_free);
  1777. }
  1778. }
  1779. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1780. int node, struct kmem_cache_cpu **pc)
  1781. {
  1782. void *object;
  1783. struct kmem_cache_cpu *c;
  1784. struct page *page = new_slab(s, flags, node);
  1785. if (page) {
  1786. c = __this_cpu_ptr(s->cpu_slab);
  1787. if (c->page)
  1788. flush_slab(s, c);
  1789. /*
  1790. * No other reference to the page yet so we can
  1791. * muck around with it freely without cmpxchg
  1792. */
  1793. object = page->freelist;
  1794. page->freelist = NULL;
  1795. stat(s, ALLOC_SLAB);
  1796. c->node = page_to_nid(page);
  1797. c->page = page;
  1798. *pc = c;
  1799. } else
  1800. object = NULL;
  1801. return object;
  1802. }
  1803. /*
  1804. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1805. * or deactivate the page.
  1806. *
  1807. * The page is still frozen if the return value is not NULL.
  1808. *
  1809. * If this function returns NULL then the page has been unfrozen.
  1810. */
  1811. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1812. {
  1813. struct page new;
  1814. unsigned long counters;
  1815. void *freelist;
  1816. do {
  1817. freelist = page->freelist;
  1818. counters = page->counters;
  1819. new.counters = counters;
  1820. VM_BUG_ON(!new.frozen);
  1821. new.inuse = page->objects;
  1822. new.frozen = freelist != NULL;
  1823. } while (!cmpxchg_double_slab(s, page,
  1824. freelist, counters,
  1825. NULL, new.counters,
  1826. "get_freelist"));
  1827. return freelist;
  1828. }
  1829. /*
  1830. * Slow path. The lockless freelist is empty or we need to perform
  1831. * debugging duties.
  1832. *
  1833. * Processing is still very fast if new objects have been freed to the
  1834. * regular freelist. In that case we simply take over the regular freelist
  1835. * as the lockless freelist and zap the regular freelist.
  1836. *
  1837. * If that is not working then we fall back to the partial lists. We take the
  1838. * first element of the freelist as the object to allocate now and move the
  1839. * rest of the freelist to the lockless freelist.
  1840. *
  1841. * And if we were unable to get a new slab from the partial slab lists then
  1842. * we need to allocate a new slab. This is the slowest path since it involves
  1843. * a call to the page allocator and the setup of a new slab.
  1844. */
  1845. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1846. unsigned long addr, struct kmem_cache_cpu *c)
  1847. {
  1848. void **object;
  1849. unsigned long flags;
  1850. local_irq_save(flags);
  1851. #ifdef CONFIG_PREEMPT
  1852. /*
  1853. * We may have been preempted and rescheduled on a different
  1854. * cpu before disabling interrupts. Need to reload cpu area
  1855. * pointer.
  1856. */
  1857. c = this_cpu_ptr(s->cpu_slab);
  1858. #endif
  1859. if (!c->page)
  1860. goto new_slab;
  1861. redo:
  1862. if (unlikely(!node_match(c, node))) {
  1863. stat(s, ALLOC_NODE_MISMATCH);
  1864. deactivate_slab(s, c);
  1865. goto new_slab;
  1866. }
  1867. /* must check again c->freelist in case of cpu migration or IRQ */
  1868. object = c->freelist;
  1869. if (object)
  1870. goto load_freelist;
  1871. stat(s, ALLOC_SLOWPATH);
  1872. object = get_freelist(s, c->page);
  1873. if (!object) {
  1874. c->page = NULL;
  1875. stat(s, DEACTIVATE_BYPASS);
  1876. goto new_slab;
  1877. }
  1878. stat(s, ALLOC_REFILL);
  1879. load_freelist:
  1880. c->freelist = get_freepointer(s, object);
  1881. c->tid = next_tid(c->tid);
  1882. local_irq_restore(flags);
  1883. return object;
  1884. new_slab:
  1885. if (c->partial) {
  1886. c->page = c->partial;
  1887. c->partial = c->page->next;
  1888. c->node = page_to_nid(c->page);
  1889. stat(s, CPU_PARTIAL_ALLOC);
  1890. c->freelist = NULL;
  1891. goto redo;
  1892. }
  1893. /* Then do expensive stuff like retrieving pages from the partial lists */
  1894. object = get_partial(s, gfpflags, node, c);
  1895. if (unlikely(!object)) {
  1896. object = new_slab_objects(s, gfpflags, node, &c);
  1897. if (unlikely(!object)) {
  1898. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1899. slab_out_of_memory(s, gfpflags, node);
  1900. local_irq_restore(flags);
  1901. return NULL;
  1902. }
  1903. }
  1904. if (likely(!kmem_cache_debug(s)))
  1905. goto load_freelist;
  1906. /* Only entered in the debug case */
  1907. if (!alloc_debug_processing(s, c->page, object, addr))
  1908. goto new_slab; /* Slab failed checks. Next slab needed */
  1909. c->freelist = get_freepointer(s, object);
  1910. deactivate_slab(s, c);
  1911. c->node = NUMA_NO_NODE;
  1912. local_irq_restore(flags);
  1913. return object;
  1914. }
  1915. /*
  1916. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1917. * have the fastpath folded into their functions. So no function call
  1918. * overhead for requests that can be satisfied on the fastpath.
  1919. *
  1920. * The fastpath works by first checking if the lockless freelist can be used.
  1921. * If not then __slab_alloc is called for slow processing.
  1922. *
  1923. * Otherwise we can simply pick the next object from the lockless free list.
  1924. */
  1925. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1926. gfp_t gfpflags, int node, unsigned long addr)
  1927. {
  1928. void **object;
  1929. struct kmem_cache_cpu *c;
  1930. unsigned long tid;
  1931. if (slab_pre_alloc_hook(s, gfpflags))
  1932. return NULL;
  1933. redo:
  1934. /*
  1935. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1936. * enabled. We may switch back and forth between cpus while
  1937. * reading from one cpu area. That does not matter as long
  1938. * as we end up on the original cpu again when doing the cmpxchg.
  1939. */
  1940. c = __this_cpu_ptr(s->cpu_slab);
  1941. /*
  1942. * The transaction ids are globally unique per cpu and per operation on
  1943. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1944. * occurs on the right processor and that there was no operation on the
  1945. * linked list in between.
  1946. */
  1947. tid = c->tid;
  1948. barrier();
  1949. object = c->freelist;
  1950. if (unlikely(!object || !node_match(c, node)))
  1951. object = __slab_alloc(s, gfpflags, node, addr, c);
  1952. else {
  1953. /*
  1954. * The cmpxchg will only match if there was no additional
  1955. * operation and if we are on the right processor.
  1956. *
  1957. * The cmpxchg does the following atomically (without lock semantics!)
  1958. * 1. Relocate first pointer to the current per cpu area.
  1959. * 2. Verify that tid and freelist have not been changed
  1960. * 3. If they were not changed replace tid and freelist
  1961. *
  1962. * Since this is without lock semantics the protection is only against
  1963. * code executing on this cpu *not* from access by other cpus.
  1964. */
  1965. if (unlikely(!this_cpu_cmpxchg_double(
  1966. s->cpu_slab->freelist, s->cpu_slab->tid,
  1967. object, tid,
  1968. get_freepointer_safe(s, object), next_tid(tid)))) {
  1969. note_cmpxchg_failure("slab_alloc", s, tid);
  1970. goto redo;
  1971. }
  1972. stat(s, ALLOC_FASTPATH);
  1973. }
  1974. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1975. memset(object, 0, s->objsize);
  1976. slab_post_alloc_hook(s, gfpflags, object);
  1977. return object;
  1978. }
  1979. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1980. {
  1981. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1982. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1983. return ret;
  1984. }
  1985. EXPORT_SYMBOL(kmem_cache_alloc);
  1986. #ifdef CONFIG_TRACING
  1987. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  1988. {
  1989. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1990. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  1991. return ret;
  1992. }
  1993. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  1994. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  1995. {
  1996. void *ret = kmalloc_order(size, flags, order);
  1997. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  1998. return ret;
  1999. }
  2000. EXPORT_SYMBOL(kmalloc_order_trace);
  2001. #endif
  2002. #ifdef CONFIG_NUMA
  2003. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2004. {
  2005. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2006. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2007. s->objsize, s->size, gfpflags, node);
  2008. return ret;
  2009. }
  2010. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2011. #ifdef CONFIG_TRACING
  2012. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2013. gfp_t gfpflags,
  2014. int node, size_t size)
  2015. {
  2016. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2017. trace_kmalloc_node(_RET_IP_, ret,
  2018. size, s->size, gfpflags, node);
  2019. return ret;
  2020. }
  2021. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2022. #endif
  2023. #endif
  2024. /*
  2025. * Slow patch handling. This may still be called frequently since objects
  2026. * have a longer lifetime than the cpu slabs in most processing loads.
  2027. *
  2028. * So we still attempt to reduce cache line usage. Just take the slab
  2029. * lock and free the item. If there is no additional partial page
  2030. * handling required then we can return immediately.
  2031. */
  2032. static void __slab_free(struct kmem_cache *s, struct page *page,
  2033. void *x, unsigned long addr)
  2034. {
  2035. void *prior;
  2036. void **object = (void *)x;
  2037. int was_frozen;
  2038. int inuse;
  2039. struct page new;
  2040. unsigned long counters;
  2041. struct kmem_cache_node *n = NULL;
  2042. unsigned long uninitialized_var(flags);
  2043. stat(s, FREE_SLOWPATH);
  2044. if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
  2045. return;
  2046. do {
  2047. prior = page->freelist;
  2048. counters = page->counters;
  2049. set_freepointer(s, object, prior);
  2050. new.counters = counters;
  2051. was_frozen = new.frozen;
  2052. new.inuse--;
  2053. if ((!new.inuse || !prior) && !was_frozen && !n) {
  2054. if (!kmem_cache_debug(s) && !prior)
  2055. /*
  2056. * Slab was on no list before and will be partially empty
  2057. * We can defer the list move and instead freeze it.
  2058. */
  2059. new.frozen = 1;
  2060. else { /* Needs to be taken off a list */
  2061. n = get_node(s, page_to_nid(page));
  2062. /*
  2063. * Speculatively acquire the list_lock.
  2064. * If the cmpxchg does not succeed then we may
  2065. * drop the list_lock without any processing.
  2066. *
  2067. * Otherwise the list_lock will synchronize with
  2068. * other processors updating the list of slabs.
  2069. */
  2070. spin_lock_irqsave(&n->list_lock, flags);
  2071. }
  2072. }
  2073. inuse = new.inuse;
  2074. } while (!cmpxchg_double_slab(s, page,
  2075. prior, counters,
  2076. object, new.counters,
  2077. "__slab_free"));
  2078. if (likely(!n)) {
  2079. /*
  2080. * If we just froze the page then put it onto the
  2081. * per cpu partial list.
  2082. */
  2083. if (new.frozen && !was_frozen)
  2084. put_cpu_partial(s, page, 1);
  2085. /*
  2086. * The list lock was not taken therefore no list
  2087. * activity can be necessary.
  2088. */
  2089. if (was_frozen)
  2090. stat(s, FREE_FROZEN);
  2091. return;
  2092. }
  2093. /*
  2094. * was_frozen may have been set after we acquired the list_lock in
  2095. * an earlier loop. So we need to check it here again.
  2096. */
  2097. if (was_frozen)
  2098. stat(s, FREE_FROZEN);
  2099. else {
  2100. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  2101. goto slab_empty;
  2102. /*
  2103. * Objects left in the slab. If it was not on the partial list before
  2104. * then add it.
  2105. */
  2106. if (unlikely(!prior)) {
  2107. remove_full(s, page);
  2108. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2109. stat(s, FREE_ADD_PARTIAL);
  2110. }
  2111. }
  2112. spin_unlock_irqrestore(&n->list_lock, flags);
  2113. return;
  2114. slab_empty:
  2115. if (prior) {
  2116. /*
  2117. * Slab on the partial list.
  2118. */
  2119. remove_partial(n, page);
  2120. stat(s, FREE_REMOVE_PARTIAL);
  2121. } else
  2122. /* Slab must be on the full list */
  2123. remove_full(s, page);
  2124. spin_unlock_irqrestore(&n->list_lock, flags);
  2125. stat(s, FREE_SLAB);
  2126. discard_slab(s, page);
  2127. }
  2128. /*
  2129. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2130. * can perform fastpath freeing without additional function calls.
  2131. *
  2132. * The fastpath is only possible if we are freeing to the current cpu slab
  2133. * of this processor. This typically the case if we have just allocated
  2134. * the item before.
  2135. *
  2136. * If fastpath is not possible then fall back to __slab_free where we deal
  2137. * with all sorts of special processing.
  2138. */
  2139. static __always_inline void slab_free(struct kmem_cache *s,
  2140. struct page *page, void *x, unsigned long addr)
  2141. {
  2142. void **object = (void *)x;
  2143. struct kmem_cache_cpu *c;
  2144. unsigned long tid;
  2145. slab_free_hook(s, x);
  2146. redo:
  2147. /*
  2148. * Determine the currently cpus per cpu slab.
  2149. * The cpu may change afterward. However that does not matter since
  2150. * data is retrieved via this pointer. If we are on the same cpu
  2151. * during the cmpxchg then the free will succedd.
  2152. */
  2153. c = __this_cpu_ptr(s->cpu_slab);
  2154. tid = c->tid;
  2155. barrier();
  2156. if (likely(page == c->page)) {
  2157. set_freepointer(s, object, c->freelist);
  2158. if (unlikely(!this_cpu_cmpxchg_double(
  2159. s->cpu_slab->freelist, s->cpu_slab->tid,
  2160. c->freelist, tid,
  2161. object, next_tid(tid)))) {
  2162. note_cmpxchg_failure("slab_free", s, tid);
  2163. goto redo;
  2164. }
  2165. stat(s, FREE_FASTPATH);
  2166. } else
  2167. __slab_free(s, page, x, addr);
  2168. }
  2169. void kmem_cache_free(struct kmem_cache *s, void *x)
  2170. {
  2171. struct page *page;
  2172. page = virt_to_head_page(x);
  2173. slab_free(s, page, x, _RET_IP_);
  2174. trace_kmem_cache_free(_RET_IP_, x);
  2175. }
  2176. EXPORT_SYMBOL(kmem_cache_free);
  2177. /*
  2178. * Object placement in a slab is made very easy because we always start at
  2179. * offset 0. If we tune the size of the object to the alignment then we can
  2180. * get the required alignment by putting one properly sized object after
  2181. * another.
  2182. *
  2183. * Notice that the allocation order determines the sizes of the per cpu
  2184. * caches. Each processor has always one slab available for allocations.
  2185. * Increasing the allocation order reduces the number of times that slabs
  2186. * must be moved on and off the partial lists and is therefore a factor in
  2187. * locking overhead.
  2188. */
  2189. /*
  2190. * Mininum / Maximum order of slab pages. This influences locking overhead
  2191. * and slab fragmentation. A higher order reduces the number of partial slabs
  2192. * and increases the number of allocations possible without having to
  2193. * take the list_lock.
  2194. */
  2195. static int slub_min_order;
  2196. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2197. static int slub_min_objects;
  2198. /*
  2199. * Merge control. If this is set then no merging of slab caches will occur.
  2200. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2201. */
  2202. static int slub_nomerge;
  2203. /*
  2204. * Calculate the order of allocation given an slab object size.
  2205. *
  2206. * The order of allocation has significant impact on performance and other
  2207. * system components. Generally order 0 allocations should be preferred since
  2208. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2209. * be problematic to put into order 0 slabs because there may be too much
  2210. * unused space left. We go to a higher order if more than 1/16th of the slab
  2211. * would be wasted.
  2212. *
  2213. * In order to reach satisfactory performance we must ensure that a minimum
  2214. * number of objects is in one slab. Otherwise we may generate too much
  2215. * activity on the partial lists which requires taking the list_lock. This is
  2216. * less a concern for large slabs though which are rarely used.
  2217. *
  2218. * slub_max_order specifies the order where we begin to stop considering the
  2219. * number of objects in a slab as critical. If we reach slub_max_order then
  2220. * we try to keep the page order as low as possible. So we accept more waste
  2221. * of space in favor of a small page order.
  2222. *
  2223. * Higher order allocations also allow the placement of more objects in a
  2224. * slab and thereby reduce object handling overhead. If the user has
  2225. * requested a higher mininum order then we start with that one instead of
  2226. * the smallest order which will fit the object.
  2227. */
  2228. static inline int slab_order(int size, int min_objects,
  2229. int max_order, int fract_leftover, int reserved)
  2230. {
  2231. int order;
  2232. int rem;
  2233. int min_order = slub_min_order;
  2234. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2235. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2236. for (order = max(min_order,
  2237. fls(min_objects * size - 1) - PAGE_SHIFT);
  2238. order <= max_order; order++) {
  2239. unsigned long slab_size = PAGE_SIZE << order;
  2240. if (slab_size < min_objects * size + reserved)
  2241. continue;
  2242. rem = (slab_size - reserved) % size;
  2243. if (rem <= slab_size / fract_leftover)
  2244. break;
  2245. }
  2246. return order;
  2247. }
  2248. static inline int calculate_order(int size, int reserved)
  2249. {
  2250. int order;
  2251. int min_objects;
  2252. int fraction;
  2253. int max_objects;
  2254. /*
  2255. * Attempt to find best configuration for a slab. This
  2256. * works by first attempting to generate a layout with
  2257. * the best configuration and backing off gradually.
  2258. *
  2259. * First we reduce the acceptable waste in a slab. Then
  2260. * we reduce the minimum objects required in a slab.
  2261. */
  2262. min_objects = slub_min_objects;
  2263. if (!min_objects)
  2264. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2265. max_objects = order_objects(slub_max_order, size, reserved);
  2266. min_objects = min(min_objects, max_objects);
  2267. while (min_objects > 1) {
  2268. fraction = 16;
  2269. while (fraction >= 4) {
  2270. order = slab_order(size, min_objects,
  2271. slub_max_order, fraction, reserved);
  2272. if (order <= slub_max_order)
  2273. return order;
  2274. fraction /= 2;
  2275. }
  2276. min_objects--;
  2277. }
  2278. /*
  2279. * We were unable to place multiple objects in a slab. Now
  2280. * lets see if we can place a single object there.
  2281. */
  2282. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2283. if (order <= slub_max_order)
  2284. return order;
  2285. /*
  2286. * Doh this slab cannot be placed using slub_max_order.
  2287. */
  2288. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2289. if (order < MAX_ORDER)
  2290. return order;
  2291. return -ENOSYS;
  2292. }
  2293. /*
  2294. * Figure out what the alignment of the objects will be.
  2295. */
  2296. static unsigned long calculate_alignment(unsigned long flags,
  2297. unsigned long align, unsigned long size)
  2298. {
  2299. /*
  2300. * If the user wants hardware cache aligned objects then follow that
  2301. * suggestion if the object is sufficiently large.
  2302. *
  2303. * The hardware cache alignment cannot override the specified
  2304. * alignment though. If that is greater then use it.
  2305. */
  2306. if (flags & SLAB_HWCACHE_ALIGN) {
  2307. unsigned long ralign = cache_line_size();
  2308. while (size <= ralign / 2)
  2309. ralign /= 2;
  2310. align = max(align, ralign);
  2311. }
  2312. if (align < ARCH_SLAB_MINALIGN)
  2313. align = ARCH_SLAB_MINALIGN;
  2314. return ALIGN(align, sizeof(void *));
  2315. }
  2316. static void
  2317. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  2318. {
  2319. n->nr_partial = 0;
  2320. spin_lock_init(&n->list_lock);
  2321. INIT_LIST_HEAD(&n->partial);
  2322. #ifdef CONFIG_SLUB_DEBUG
  2323. atomic_long_set(&n->nr_slabs, 0);
  2324. atomic_long_set(&n->total_objects, 0);
  2325. INIT_LIST_HEAD(&n->full);
  2326. #endif
  2327. }
  2328. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2329. {
  2330. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2331. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2332. /*
  2333. * Must align to double word boundary for the double cmpxchg
  2334. * instructions to work; see __pcpu_double_call_return_bool().
  2335. */
  2336. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2337. 2 * sizeof(void *));
  2338. if (!s->cpu_slab)
  2339. return 0;
  2340. init_kmem_cache_cpus(s);
  2341. return 1;
  2342. }
  2343. static struct kmem_cache *kmem_cache_node;
  2344. /*
  2345. * No kmalloc_node yet so do it by hand. We know that this is the first
  2346. * slab on the node for this slabcache. There are no concurrent accesses
  2347. * possible.
  2348. *
  2349. * Note that this function only works on the kmalloc_node_cache
  2350. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2351. * memory on a fresh node that has no slab structures yet.
  2352. */
  2353. static void early_kmem_cache_node_alloc(int node)
  2354. {
  2355. struct page *page;
  2356. struct kmem_cache_node *n;
  2357. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2358. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2359. BUG_ON(!page);
  2360. if (page_to_nid(page) != node) {
  2361. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2362. "node %d\n", node);
  2363. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2364. "in order to be able to continue\n");
  2365. }
  2366. n = page->freelist;
  2367. BUG_ON(!n);
  2368. page->freelist = get_freepointer(kmem_cache_node, n);
  2369. page->inuse = 1;
  2370. page->frozen = 0;
  2371. kmem_cache_node->node[node] = n;
  2372. #ifdef CONFIG_SLUB_DEBUG
  2373. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2374. init_tracking(kmem_cache_node, n);
  2375. #endif
  2376. init_kmem_cache_node(n, kmem_cache_node);
  2377. inc_slabs_node(kmem_cache_node, node, page->objects);
  2378. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2379. }
  2380. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2381. {
  2382. int node;
  2383. for_each_node_state(node, N_NORMAL_MEMORY) {
  2384. struct kmem_cache_node *n = s->node[node];
  2385. if (n)
  2386. kmem_cache_free(kmem_cache_node, n);
  2387. s->node[node] = NULL;
  2388. }
  2389. }
  2390. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2391. {
  2392. int node;
  2393. for_each_node_state(node, N_NORMAL_MEMORY) {
  2394. struct kmem_cache_node *n;
  2395. if (slab_state == DOWN) {
  2396. early_kmem_cache_node_alloc(node);
  2397. continue;
  2398. }
  2399. n = kmem_cache_alloc_node(kmem_cache_node,
  2400. GFP_KERNEL, node);
  2401. if (!n) {
  2402. free_kmem_cache_nodes(s);
  2403. return 0;
  2404. }
  2405. s->node[node] = n;
  2406. init_kmem_cache_node(n, s);
  2407. }
  2408. return 1;
  2409. }
  2410. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2411. {
  2412. if (min < MIN_PARTIAL)
  2413. min = MIN_PARTIAL;
  2414. else if (min > MAX_PARTIAL)
  2415. min = MAX_PARTIAL;
  2416. s->min_partial = min;
  2417. }
  2418. /*
  2419. * calculate_sizes() determines the order and the distribution of data within
  2420. * a slab object.
  2421. */
  2422. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2423. {
  2424. unsigned long flags = s->flags;
  2425. unsigned long size = s->objsize;
  2426. unsigned long align = s->align;
  2427. int order;
  2428. /*
  2429. * Round up object size to the next word boundary. We can only
  2430. * place the free pointer at word boundaries and this determines
  2431. * the possible location of the free pointer.
  2432. */
  2433. size = ALIGN(size, sizeof(void *));
  2434. #ifdef CONFIG_SLUB_DEBUG
  2435. /*
  2436. * Determine if we can poison the object itself. If the user of
  2437. * the slab may touch the object after free or before allocation
  2438. * then we should never poison the object itself.
  2439. */
  2440. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2441. !s->ctor)
  2442. s->flags |= __OBJECT_POISON;
  2443. else
  2444. s->flags &= ~__OBJECT_POISON;
  2445. /*
  2446. * If we are Redzoning then check if there is some space between the
  2447. * end of the object and the free pointer. If not then add an
  2448. * additional word to have some bytes to store Redzone information.
  2449. */
  2450. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  2451. size += sizeof(void *);
  2452. #endif
  2453. /*
  2454. * With that we have determined the number of bytes in actual use
  2455. * by the object. This is the potential offset to the free pointer.
  2456. */
  2457. s->inuse = size;
  2458. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2459. s->ctor)) {
  2460. /*
  2461. * Relocate free pointer after the object if it is not
  2462. * permitted to overwrite the first word of the object on
  2463. * kmem_cache_free.
  2464. *
  2465. * This is the case if we do RCU, have a constructor or
  2466. * destructor or are poisoning the objects.
  2467. */
  2468. s->offset = size;
  2469. size += sizeof(void *);
  2470. }
  2471. #ifdef CONFIG_SLUB_DEBUG
  2472. if (flags & SLAB_STORE_USER)
  2473. /*
  2474. * Need to store information about allocs and frees after
  2475. * the object.
  2476. */
  2477. size += 2 * sizeof(struct track);
  2478. if (flags & SLAB_RED_ZONE)
  2479. /*
  2480. * Add some empty padding so that we can catch
  2481. * overwrites from earlier objects rather than let
  2482. * tracking information or the free pointer be
  2483. * corrupted if a user writes before the start
  2484. * of the object.
  2485. */
  2486. size += sizeof(void *);
  2487. #endif
  2488. /*
  2489. * Determine the alignment based on various parameters that the
  2490. * user specified and the dynamic determination of cache line size
  2491. * on bootup.
  2492. */
  2493. align = calculate_alignment(flags, align, s->objsize);
  2494. s->align = align;
  2495. /*
  2496. * SLUB stores one object immediately after another beginning from
  2497. * offset 0. In order to align the objects we have to simply size
  2498. * each object to conform to the alignment.
  2499. */
  2500. size = ALIGN(size, align);
  2501. s->size = size;
  2502. if (forced_order >= 0)
  2503. order = forced_order;
  2504. else
  2505. order = calculate_order(size, s->reserved);
  2506. if (order < 0)
  2507. return 0;
  2508. s->allocflags = 0;
  2509. if (order)
  2510. s->allocflags |= __GFP_COMP;
  2511. if (s->flags & SLAB_CACHE_DMA)
  2512. s->allocflags |= SLUB_DMA;
  2513. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2514. s->allocflags |= __GFP_RECLAIMABLE;
  2515. /*
  2516. * Determine the number of objects per slab
  2517. */
  2518. s->oo = oo_make(order, size, s->reserved);
  2519. s->min = oo_make(get_order(size), size, s->reserved);
  2520. if (oo_objects(s->oo) > oo_objects(s->max))
  2521. s->max = s->oo;
  2522. return !!oo_objects(s->oo);
  2523. }
  2524. static int kmem_cache_open(struct kmem_cache *s,
  2525. const char *name, size_t size,
  2526. size_t align, unsigned long flags,
  2527. void (*ctor)(void *))
  2528. {
  2529. memset(s, 0, kmem_size);
  2530. s->name = name;
  2531. s->ctor = ctor;
  2532. s->objsize = size;
  2533. s->align = align;
  2534. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2535. s->reserved = 0;
  2536. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2537. s->reserved = sizeof(struct rcu_head);
  2538. if (!calculate_sizes(s, -1))
  2539. goto error;
  2540. if (disable_higher_order_debug) {
  2541. /*
  2542. * Disable debugging flags that store metadata if the min slab
  2543. * order increased.
  2544. */
  2545. if (get_order(s->size) > get_order(s->objsize)) {
  2546. s->flags &= ~DEBUG_METADATA_FLAGS;
  2547. s->offset = 0;
  2548. if (!calculate_sizes(s, -1))
  2549. goto error;
  2550. }
  2551. }
  2552. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2553. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2554. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2555. /* Enable fast mode */
  2556. s->flags |= __CMPXCHG_DOUBLE;
  2557. #endif
  2558. /*
  2559. * The larger the object size is, the more pages we want on the partial
  2560. * list to avoid pounding the page allocator excessively.
  2561. */
  2562. set_min_partial(s, ilog2(s->size) / 2);
  2563. /*
  2564. * cpu_partial determined the maximum number of objects kept in the
  2565. * per cpu partial lists of a processor.
  2566. *
  2567. * Per cpu partial lists mainly contain slabs that just have one
  2568. * object freed. If they are used for allocation then they can be
  2569. * filled up again with minimal effort. The slab will never hit the
  2570. * per node partial lists and therefore no locking will be required.
  2571. *
  2572. * This setting also determines
  2573. *
  2574. * A) The number of objects from per cpu partial slabs dumped to the
  2575. * per node list when we reach the limit.
  2576. * B) The number of objects in cpu partial slabs to extract from the
  2577. * per node list when we run out of per cpu objects. We only fetch 50%
  2578. * to keep some capacity around for frees.
  2579. */
  2580. if (kmem_cache_debug(s))
  2581. s->cpu_partial = 0;
  2582. else if (s->size >= PAGE_SIZE)
  2583. s->cpu_partial = 2;
  2584. else if (s->size >= 1024)
  2585. s->cpu_partial = 6;
  2586. else if (s->size >= 256)
  2587. s->cpu_partial = 13;
  2588. else
  2589. s->cpu_partial = 30;
  2590. s->refcount = 1;
  2591. #ifdef CONFIG_NUMA
  2592. s->remote_node_defrag_ratio = 1000;
  2593. #endif
  2594. if (!init_kmem_cache_nodes(s))
  2595. goto error;
  2596. if (alloc_kmem_cache_cpus(s))
  2597. return 1;
  2598. free_kmem_cache_nodes(s);
  2599. error:
  2600. if (flags & SLAB_PANIC)
  2601. panic("Cannot create slab %s size=%lu realsize=%u "
  2602. "order=%u offset=%u flags=%lx\n",
  2603. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2604. s->offset, flags);
  2605. return 0;
  2606. }
  2607. /*
  2608. * Determine the size of a slab object
  2609. */
  2610. unsigned int kmem_cache_size(struct kmem_cache *s)
  2611. {
  2612. return s->objsize;
  2613. }
  2614. EXPORT_SYMBOL(kmem_cache_size);
  2615. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2616. const char *text)
  2617. {
  2618. #ifdef CONFIG_SLUB_DEBUG
  2619. void *addr = page_address(page);
  2620. void *p;
  2621. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2622. sizeof(long), GFP_ATOMIC);
  2623. if (!map)
  2624. return;
  2625. slab_err(s, page, "%s", text);
  2626. slab_lock(page);
  2627. get_map(s, page, map);
  2628. for_each_object(p, s, addr, page->objects) {
  2629. if (!test_bit(slab_index(p, s, addr), map)) {
  2630. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2631. p, p - addr);
  2632. print_tracking(s, p);
  2633. }
  2634. }
  2635. slab_unlock(page);
  2636. kfree(map);
  2637. #endif
  2638. }
  2639. /*
  2640. * Attempt to free all partial slabs on a node.
  2641. * This is called from kmem_cache_close(). We must be the last thread
  2642. * using the cache and therefore we do not need to lock anymore.
  2643. */
  2644. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2645. {
  2646. struct page *page, *h;
  2647. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2648. if (!page->inuse) {
  2649. remove_partial(n, page);
  2650. discard_slab(s, page);
  2651. } else {
  2652. list_slab_objects(s, page,
  2653. "Objects remaining on kmem_cache_close()");
  2654. }
  2655. }
  2656. }
  2657. /*
  2658. * Release all resources used by a slab cache.
  2659. */
  2660. static inline int kmem_cache_close(struct kmem_cache *s)
  2661. {
  2662. int node;
  2663. flush_all(s);
  2664. free_percpu(s->cpu_slab);
  2665. /* Attempt to free all objects */
  2666. for_each_node_state(node, N_NORMAL_MEMORY) {
  2667. struct kmem_cache_node *n = get_node(s, node);
  2668. free_partial(s, n);
  2669. if (n->nr_partial || slabs_node(s, node))
  2670. return 1;
  2671. }
  2672. free_kmem_cache_nodes(s);
  2673. return 0;
  2674. }
  2675. /*
  2676. * Close a cache and release the kmem_cache structure
  2677. * (must be used for caches created using kmem_cache_create)
  2678. */
  2679. void kmem_cache_destroy(struct kmem_cache *s)
  2680. {
  2681. down_write(&slub_lock);
  2682. s->refcount--;
  2683. if (!s->refcount) {
  2684. list_del(&s->list);
  2685. up_write(&slub_lock);
  2686. if (kmem_cache_close(s)) {
  2687. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2688. "still has objects.\n", s->name, __func__);
  2689. dump_stack();
  2690. }
  2691. if (s->flags & SLAB_DESTROY_BY_RCU)
  2692. rcu_barrier();
  2693. sysfs_slab_remove(s);
  2694. } else
  2695. up_write(&slub_lock);
  2696. }
  2697. EXPORT_SYMBOL(kmem_cache_destroy);
  2698. /********************************************************************
  2699. * Kmalloc subsystem
  2700. *******************************************************************/
  2701. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2702. EXPORT_SYMBOL(kmalloc_caches);
  2703. static struct kmem_cache *kmem_cache;
  2704. #ifdef CONFIG_ZONE_DMA
  2705. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2706. #endif
  2707. static int __init setup_slub_min_order(char *str)
  2708. {
  2709. get_option(&str, &slub_min_order);
  2710. return 1;
  2711. }
  2712. __setup("slub_min_order=", setup_slub_min_order);
  2713. static int __init setup_slub_max_order(char *str)
  2714. {
  2715. get_option(&str, &slub_max_order);
  2716. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2717. return 1;
  2718. }
  2719. __setup("slub_max_order=", setup_slub_max_order);
  2720. static int __init setup_slub_min_objects(char *str)
  2721. {
  2722. get_option(&str, &slub_min_objects);
  2723. return 1;
  2724. }
  2725. __setup("slub_min_objects=", setup_slub_min_objects);
  2726. static int __init setup_slub_nomerge(char *str)
  2727. {
  2728. slub_nomerge = 1;
  2729. return 1;
  2730. }
  2731. __setup("slub_nomerge", setup_slub_nomerge);
  2732. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2733. int size, unsigned int flags)
  2734. {
  2735. struct kmem_cache *s;
  2736. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2737. /*
  2738. * This function is called with IRQs disabled during early-boot on
  2739. * single CPU so there's no need to take slub_lock here.
  2740. */
  2741. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2742. flags, NULL))
  2743. goto panic;
  2744. list_add(&s->list, &slab_caches);
  2745. return s;
  2746. panic:
  2747. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2748. return NULL;
  2749. }
  2750. /*
  2751. * Conversion table for small slabs sizes / 8 to the index in the
  2752. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2753. * of two cache sizes there. The size of larger slabs can be determined using
  2754. * fls.
  2755. */
  2756. static s8 size_index[24] = {
  2757. 3, /* 8 */
  2758. 4, /* 16 */
  2759. 5, /* 24 */
  2760. 5, /* 32 */
  2761. 6, /* 40 */
  2762. 6, /* 48 */
  2763. 6, /* 56 */
  2764. 6, /* 64 */
  2765. 1, /* 72 */
  2766. 1, /* 80 */
  2767. 1, /* 88 */
  2768. 1, /* 96 */
  2769. 7, /* 104 */
  2770. 7, /* 112 */
  2771. 7, /* 120 */
  2772. 7, /* 128 */
  2773. 2, /* 136 */
  2774. 2, /* 144 */
  2775. 2, /* 152 */
  2776. 2, /* 160 */
  2777. 2, /* 168 */
  2778. 2, /* 176 */
  2779. 2, /* 184 */
  2780. 2 /* 192 */
  2781. };
  2782. static inline int size_index_elem(size_t bytes)
  2783. {
  2784. return (bytes - 1) / 8;
  2785. }
  2786. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2787. {
  2788. int index;
  2789. if (size <= 192) {
  2790. if (!size)
  2791. return ZERO_SIZE_PTR;
  2792. index = size_index[size_index_elem(size)];
  2793. } else
  2794. index = fls(size - 1);
  2795. #ifdef CONFIG_ZONE_DMA
  2796. if (unlikely((flags & SLUB_DMA)))
  2797. return kmalloc_dma_caches[index];
  2798. #endif
  2799. return kmalloc_caches[index];
  2800. }
  2801. void *__kmalloc(size_t size, gfp_t flags)
  2802. {
  2803. struct kmem_cache *s;
  2804. void *ret;
  2805. if (unlikely(size > SLUB_MAX_SIZE))
  2806. return kmalloc_large(size, flags);
  2807. s = get_slab(size, flags);
  2808. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2809. return s;
  2810. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2811. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2812. return ret;
  2813. }
  2814. EXPORT_SYMBOL(__kmalloc);
  2815. #ifdef CONFIG_NUMA
  2816. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2817. {
  2818. struct page *page;
  2819. void *ptr = NULL;
  2820. flags |= __GFP_COMP | __GFP_NOTRACK;
  2821. page = alloc_pages_node(node, flags, get_order(size));
  2822. if (page)
  2823. ptr = page_address(page);
  2824. kmemleak_alloc(ptr, size, 1, flags);
  2825. return ptr;
  2826. }
  2827. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2828. {
  2829. struct kmem_cache *s;
  2830. void *ret;
  2831. if (unlikely(size > SLUB_MAX_SIZE)) {
  2832. ret = kmalloc_large_node(size, flags, node);
  2833. trace_kmalloc_node(_RET_IP_, ret,
  2834. size, PAGE_SIZE << get_order(size),
  2835. flags, node);
  2836. return ret;
  2837. }
  2838. s = get_slab(size, flags);
  2839. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2840. return s;
  2841. ret = slab_alloc(s, flags, node, _RET_IP_);
  2842. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2843. return ret;
  2844. }
  2845. EXPORT_SYMBOL(__kmalloc_node);
  2846. #endif
  2847. size_t ksize(const void *object)
  2848. {
  2849. struct page *page;
  2850. if (unlikely(object == ZERO_SIZE_PTR))
  2851. return 0;
  2852. page = virt_to_head_page(object);
  2853. if (unlikely(!PageSlab(page))) {
  2854. WARN_ON(!PageCompound(page));
  2855. return PAGE_SIZE << compound_order(page);
  2856. }
  2857. return slab_ksize(page->slab);
  2858. }
  2859. EXPORT_SYMBOL(ksize);
  2860. #ifdef CONFIG_SLUB_DEBUG
  2861. bool verify_mem_not_deleted(const void *x)
  2862. {
  2863. struct page *page;
  2864. void *object = (void *)x;
  2865. unsigned long flags;
  2866. bool rv;
  2867. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2868. return false;
  2869. local_irq_save(flags);
  2870. page = virt_to_head_page(x);
  2871. if (unlikely(!PageSlab(page))) {
  2872. /* maybe it was from stack? */
  2873. rv = true;
  2874. goto out_unlock;
  2875. }
  2876. slab_lock(page);
  2877. if (on_freelist(page->slab, page, object)) {
  2878. object_err(page->slab, page, object, "Object is on free-list");
  2879. rv = false;
  2880. } else {
  2881. rv = true;
  2882. }
  2883. slab_unlock(page);
  2884. out_unlock:
  2885. local_irq_restore(flags);
  2886. return rv;
  2887. }
  2888. EXPORT_SYMBOL(verify_mem_not_deleted);
  2889. #endif
  2890. void kfree(const void *x)
  2891. {
  2892. struct page *page;
  2893. void *object = (void *)x;
  2894. trace_kfree(_RET_IP_, x);
  2895. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2896. return;
  2897. page = virt_to_head_page(x);
  2898. if (unlikely(!PageSlab(page))) {
  2899. BUG_ON(!PageCompound(page));
  2900. kmemleak_free(x);
  2901. put_page(page);
  2902. return;
  2903. }
  2904. slab_free(page->slab, page, object, _RET_IP_);
  2905. }
  2906. EXPORT_SYMBOL(kfree);
  2907. /*
  2908. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2909. * the remaining slabs by the number of items in use. The slabs with the
  2910. * most items in use come first. New allocations will then fill those up
  2911. * and thus they can be removed from the partial lists.
  2912. *
  2913. * The slabs with the least items are placed last. This results in them
  2914. * being allocated from last increasing the chance that the last objects
  2915. * are freed in them.
  2916. */
  2917. int kmem_cache_shrink(struct kmem_cache *s)
  2918. {
  2919. int node;
  2920. int i;
  2921. struct kmem_cache_node *n;
  2922. struct page *page;
  2923. struct page *t;
  2924. int objects = oo_objects(s->max);
  2925. struct list_head *slabs_by_inuse =
  2926. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2927. unsigned long flags;
  2928. if (!slabs_by_inuse)
  2929. return -ENOMEM;
  2930. flush_all(s);
  2931. for_each_node_state(node, N_NORMAL_MEMORY) {
  2932. n = get_node(s, node);
  2933. if (!n->nr_partial)
  2934. continue;
  2935. for (i = 0; i < objects; i++)
  2936. INIT_LIST_HEAD(slabs_by_inuse + i);
  2937. spin_lock_irqsave(&n->list_lock, flags);
  2938. /*
  2939. * Build lists indexed by the items in use in each slab.
  2940. *
  2941. * Note that concurrent frees may occur while we hold the
  2942. * list_lock. page->inuse here is the upper limit.
  2943. */
  2944. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2945. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2946. if (!page->inuse)
  2947. n->nr_partial--;
  2948. }
  2949. /*
  2950. * Rebuild the partial list with the slabs filled up most
  2951. * first and the least used slabs at the end.
  2952. */
  2953. for (i = objects - 1; i > 0; i--)
  2954. list_splice(slabs_by_inuse + i, n->partial.prev);
  2955. spin_unlock_irqrestore(&n->list_lock, flags);
  2956. /* Release empty slabs */
  2957. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2958. discard_slab(s, page);
  2959. }
  2960. kfree(slabs_by_inuse);
  2961. return 0;
  2962. }
  2963. EXPORT_SYMBOL(kmem_cache_shrink);
  2964. #if defined(CONFIG_MEMORY_HOTPLUG)
  2965. static int slab_mem_going_offline_callback(void *arg)
  2966. {
  2967. struct kmem_cache *s;
  2968. down_read(&slub_lock);
  2969. list_for_each_entry(s, &slab_caches, list)
  2970. kmem_cache_shrink(s);
  2971. up_read(&slub_lock);
  2972. return 0;
  2973. }
  2974. static void slab_mem_offline_callback(void *arg)
  2975. {
  2976. struct kmem_cache_node *n;
  2977. struct kmem_cache *s;
  2978. struct memory_notify *marg = arg;
  2979. int offline_node;
  2980. offline_node = marg->status_change_nid;
  2981. /*
  2982. * If the node still has available memory. we need kmem_cache_node
  2983. * for it yet.
  2984. */
  2985. if (offline_node < 0)
  2986. return;
  2987. down_read(&slub_lock);
  2988. list_for_each_entry(s, &slab_caches, list) {
  2989. n = get_node(s, offline_node);
  2990. if (n) {
  2991. /*
  2992. * if n->nr_slabs > 0, slabs still exist on the node
  2993. * that is going down. We were unable to free them,
  2994. * and offline_pages() function shouldn't call this
  2995. * callback. So, we must fail.
  2996. */
  2997. BUG_ON(slabs_node(s, offline_node));
  2998. s->node[offline_node] = NULL;
  2999. kmem_cache_free(kmem_cache_node, n);
  3000. }
  3001. }
  3002. up_read(&slub_lock);
  3003. }
  3004. static int slab_mem_going_online_callback(void *arg)
  3005. {
  3006. struct kmem_cache_node *n;
  3007. struct kmem_cache *s;
  3008. struct memory_notify *marg = arg;
  3009. int nid = marg->status_change_nid;
  3010. int ret = 0;
  3011. /*
  3012. * If the node's memory is already available, then kmem_cache_node is
  3013. * already created. Nothing to do.
  3014. */
  3015. if (nid < 0)
  3016. return 0;
  3017. /*
  3018. * We are bringing a node online. No memory is available yet. We must
  3019. * allocate a kmem_cache_node structure in order to bring the node
  3020. * online.
  3021. */
  3022. down_read(&slub_lock);
  3023. list_for_each_entry(s, &slab_caches, list) {
  3024. /*
  3025. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3026. * since memory is not yet available from the node that
  3027. * is brought up.
  3028. */
  3029. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3030. if (!n) {
  3031. ret = -ENOMEM;
  3032. goto out;
  3033. }
  3034. init_kmem_cache_node(n, s);
  3035. s->node[nid] = n;
  3036. }
  3037. out:
  3038. up_read(&slub_lock);
  3039. return ret;
  3040. }
  3041. static int slab_memory_callback(struct notifier_block *self,
  3042. unsigned long action, void *arg)
  3043. {
  3044. int ret = 0;
  3045. switch (action) {
  3046. case MEM_GOING_ONLINE:
  3047. ret = slab_mem_going_online_callback(arg);
  3048. break;
  3049. case MEM_GOING_OFFLINE:
  3050. ret = slab_mem_going_offline_callback(arg);
  3051. break;
  3052. case MEM_OFFLINE:
  3053. case MEM_CANCEL_ONLINE:
  3054. slab_mem_offline_callback(arg);
  3055. break;
  3056. case MEM_ONLINE:
  3057. case MEM_CANCEL_OFFLINE:
  3058. break;
  3059. }
  3060. if (ret)
  3061. ret = notifier_from_errno(ret);
  3062. else
  3063. ret = NOTIFY_OK;
  3064. return ret;
  3065. }
  3066. #endif /* CONFIG_MEMORY_HOTPLUG */
  3067. /********************************************************************
  3068. * Basic setup of slabs
  3069. *******************************************************************/
  3070. /*
  3071. * Used for early kmem_cache structures that were allocated using
  3072. * the page allocator
  3073. */
  3074. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  3075. {
  3076. int node;
  3077. list_add(&s->list, &slab_caches);
  3078. s->refcount = -1;
  3079. for_each_node_state(node, N_NORMAL_MEMORY) {
  3080. struct kmem_cache_node *n = get_node(s, node);
  3081. struct page *p;
  3082. if (n) {
  3083. list_for_each_entry(p, &n->partial, lru)
  3084. p->slab = s;
  3085. #ifdef CONFIG_SLUB_DEBUG
  3086. list_for_each_entry(p, &n->full, lru)
  3087. p->slab = s;
  3088. #endif
  3089. }
  3090. }
  3091. }
  3092. void __init kmem_cache_init(void)
  3093. {
  3094. int i;
  3095. int caches = 0;
  3096. struct kmem_cache *temp_kmem_cache;
  3097. int order;
  3098. struct kmem_cache *temp_kmem_cache_node;
  3099. unsigned long kmalloc_size;
  3100. if (debug_guardpage_minorder())
  3101. slub_max_order = 0;
  3102. kmem_size = offsetof(struct kmem_cache, node) +
  3103. nr_node_ids * sizeof(struct kmem_cache_node *);
  3104. /* Allocate two kmem_caches from the page allocator */
  3105. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  3106. order = get_order(2 * kmalloc_size);
  3107. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  3108. /*
  3109. * Must first have the slab cache available for the allocations of the
  3110. * struct kmem_cache_node's. There is special bootstrap code in
  3111. * kmem_cache_open for slab_state == DOWN.
  3112. */
  3113. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  3114. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  3115. sizeof(struct kmem_cache_node),
  3116. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3117. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3118. /* Able to allocate the per node structures */
  3119. slab_state = PARTIAL;
  3120. temp_kmem_cache = kmem_cache;
  3121. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  3122. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3123. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3124. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  3125. /*
  3126. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3127. * kmem_cache_node is separately allocated so no need to
  3128. * update any list pointers.
  3129. */
  3130. temp_kmem_cache_node = kmem_cache_node;
  3131. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3132. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  3133. kmem_cache_bootstrap_fixup(kmem_cache_node);
  3134. caches++;
  3135. kmem_cache_bootstrap_fixup(kmem_cache);
  3136. caches++;
  3137. /* Free temporary boot structure */
  3138. free_pages((unsigned long)temp_kmem_cache, order);
  3139. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3140. /*
  3141. * Patch up the size_index table if we have strange large alignment
  3142. * requirements for the kmalloc array. This is only the case for
  3143. * MIPS it seems. The standard arches will not generate any code here.
  3144. *
  3145. * Largest permitted alignment is 256 bytes due to the way we
  3146. * handle the index determination for the smaller caches.
  3147. *
  3148. * Make sure that nothing crazy happens if someone starts tinkering
  3149. * around with ARCH_KMALLOC_MINALIGN
  3150. */
  3151. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3152. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3153. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3154. int elem = size_index_elem(i);
  3155. if (elem >= ARRAY_SIZE(size_index))
  3156. break;
  3157. size_index[elem] = KMALLOC_SHIFT_LOW;
  3158. }
  3159. if (KMALLOC_MIN_SIZE == 64) {
  3160. /*
  3161. * The 96 byte size cache is not used if the alignment
  3162. * is 64 byte.
  3163. */
  3164. for (i = 64 + 8; i <= 96; i += 8)
  3165. size_index[size_index_elem(i)] = 7;
  3166. } else if (KMALLOC_MIN_SIZE == 128) {
  3167. /*
  3168. * The 192 byte sized cache is not used if the alignment
  3169. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3170. * instead.
  3171. */
  3172. for (i = 128 + 8; i <= 192; i += 8)
  3173. size_index[size_index_elem(i)] = 8;
  3174. }
  3175. /* Caches that are not of the two-to-the-power-of size */
  3176. if (KMALLOC_MIN_SIZE <= 32) {
  3177. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3178. caches++;
  3179. }
  3180. if (KMALLOC_MIN_SIZE <= 64) {
  3181. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3182. caches++;
  3183. }
  3184. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3185. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3186. caches++;
  3187. }
  3188. slab_state = UP;
  3189. /* Provide the correct kmalloc names now that the caches are up */
  3190. if (KMALLOC_MIN_SIZE <= 32) {
  3191. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3192. BUG_ON(!kmalloc_caches[1]->name);
  3193. }
  3194. if (KMALLOC_MIN_SIZE <= 64) {
  3195. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3196. BUG_ON(!kmalloc_caches[2]->name);
  3197. }
  3198. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3199. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3200. BUG_ON(!s);
  3201. kmalloc_caches[i]->name = s;
  3202. }
  3203. #ifdef CONFIG_SMP
  3204. register_cpu_notifier(&slab_notifier);
  3205. #endif
  3206. #ifdef CONFIG_ZONE_DMA
  3207. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3208. struct kmem_cache *s = kmalloc_caches[i];
  3209. if (s && s->size) {
  3210. char *name = kasprintf(GFP_NOWAIT,
  3211. "dma-kmalloc-%d", s->objsize);
  3212. BUG_ON(!name);
  3213. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3214. s->objsize, SLAB_CACHE_DMA);
  3215. }
  3216. }
  3217. #endif
  3218. printk(KERN_INFO
  3219. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3220. " CPUs=%d, Nodes=%d\n",
  3221. caches, cache_line_size(),
  3222. slub_min_order, slub_max_order, slub_min_objects,
  3223. nr_cpu_ids, nr_node_ids);
  3224. }
  3225. void __init kmem_cache_init_late(void)
  3226. {
  3227. }
  3228. /*
  3229. * Find a mergeable slab cache
  3230. */
  3231. static int slab_unmergeable(struct kmem_cache *s)
  3232. {
  3233. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3234. return 1;
  3235. if (s->ctor)
  3236. return 1;
  3237. /*
  3238. * We may have set a slab to be unmergeable during bootstrap.
  3239. */
  3240. if (s->refcount < 0)
  3241. return 1;
  3242. return 0;
  3243. }
  3244. static struct kmem_cache *find_mergeable(size_t size,
  3245. size_t align, unsigned long flags, const char *name,
  3246. void (*ctor)(void *))
  3247. {
  3248. struct kmem_cache *s;
  3249. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3250. return NULL;
  3251. if (ctor)
  3252. return NULL;
  3253. size = ALIGN(size, sizeof(void *));
  3254. align = calculate_alignment(flags, align, size);
  3255. size = ALIGN(size, align);
  3256. flags = kmem_cache_flags(size, flags, name, NULL);
  3257. list_for_each_entry(s, &slab_caches, list) {
  3258. if (slab_unmergeable(s))
  3259. continue;
  3260. if (size > s->size)
  3261. continue;
  3262. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3263. continue;
  3264. /*
  3265. * Check if alignment is compatible.
  3266. * Courtesy of Adrian Drzewiecki
  3267. */
  3268. if ((s->size & ~(align - 1)) != s->size)
  3269. continue;
  3270. if (s->size - size >= sizeof(void *))
  3271. continue;
  3272. return s;
  3273. }
  3274. return NULL;
  3275. }
  3276. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  3277. size_t align, unsigned long flags, void (*ctor)(void *))
  3278. {
  3279. struct kmem_cache *s;
  3280. char *n;
  3281. if (WARN_ON(!name))
  3282. return NULL;
  3283. down_write(&slub_lock);
  3284. s = find_mergeable(size, align, flags, name, ctor);
  3285. if (s) {
  3286. s->refcount++;
  3287. /*
  3288. * Adjust the object sizes so that we clear
  3289. * the complete object on kzalloc.
  3290. */
  3291. s->objsize = max(s->objsize, (int)size);
  3292. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3293. if (sysfs_slab_alias(s, name)) {
  3294. s->refcount--;
  3295. goto err;
  3296. }
  3297. up_write(&slub_lock);
  3298. return s;
  3299. }
  3300. n = kstrdup(name, GFP_KERNEL);
  3301. if (!n)
  3302. goto err;
  3303. s = kmalloc(kmem_size, GFP_KERNEL);
  3304. if (s) {
  3305. if (kmem_cache_open(s, n,
  3306. size, align, flags, ctor)) {
  3307. list_add(&s->list, &slab_caches);
  3308. if (sysfs_slab_add(s)) {
  3309. list_del(&s->list);
  3310. kfree(n);
  3311. kfree(s);
  3312. goto err;
  3313. }
  3314. up_write(&slub_lock);
  3315. return s;
  3316. }
  3317. kfree(n);
  3318. kfree(s);
  3319. }
  3320. err:
  3321. up_write(&slub_lock);
  3322. if (flags & SLAB_PANIC)
  3323. panic("Cannot create slabcache %s\n", name);
  3324. else
  3325. s = NULL;
  3326. return s;
  3327. }
  3328. EXPORT_SYMBOL(kmem_cache_create);
  3329. #ifdef CONFIG_SMP
  3330. /*
  3331. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3332. * necessary.
  3333. */
  3334. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3335. unsigned long action, void *hcpu)
  3336. {
  3337. long cpu = (long)hcpu;
  3338. struct kmem_cache *s;
  3339. unsigned long flags;
  3340. switch (action) {
  3341. case CPU_UP_CANCELED:
  3342. case CPU_UP_CANCELED_FROZEN:
  3343. case CPU_DEAD:
  3344. case CPU_DEAD_FROZEN:
  3345. down_read(&slub_lock);
  3346. list_for_each_entry(s, &slab_caches, list) {
  3347. local_irq_save(flags);
  3348. __flush_cpu_slab(s, cpu);
  3349. local_irq_restore(flags);
  3350. }
  3351. up_read(&slub_lock);
  3352. break;
  3353. default:
  3354. break;
  3355. }
  3356. return NOTIFY_OK;
  3357. }
  3358. static struct notifier_block __cpuinitdata slab_notifier = {
  3359. .notifier_call = slab_cpuup_callback
  3360. };
  3361. #endif
  3362. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3363. {
  3364. struct kmem_cache *s;
  3365. void *ret;
  3366. if (unlikely(size > SLUB_MAX_SIZE))
  3367. return kmalloc_large(size, gfpflags);
  3368. s = get_slab(size, gfpflags);
  3369. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3370. return s;
  3371. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3372. /* Honor the call site pointer we received. */
  3373. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3374. return ret;
  3375. }
  3376. #ifdef CONFIG_NUMA
  3377. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3378. int node, unsigned long caller)
  3379. {
  3380. struct kmem_cache *s;
  3381. void *ret;
  3382. if (unlikely(size > SLUB_MAX_SIZE)) {
  3383. ret = kmalloc_large_node(size, gfpflags, node);
  3384. trace_kmalloc_node(caller, ret,
  3385. size, PAGE_SIZE << get_order(size),
  3386. gfpflags, node);
  3387. return ret;
  3388. }
  3389. s = get_slab(size, gfpflags);
  3390. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3391. return s;
  3392. ret = slab_alloc(s, gfpflags, node, caller);
  3393. /* Honor the call site pointer we received. */
  3394. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3395. return ret;
  3396. }
  3397. #endif
  3398. #ifdef CONFIG_SYSFS
  3399. static int count_inuse(struct page *page)
  3400. {
  3401. return page->inuse;
  3402. }
  3403. static int count_total(struct page *page)
  3404. {
  3405. return page->objects;
  3406. }
  3407. #endif
  3408. #ifdef CONFIG_SLUB_DEBUG
  3409. static int validate_slab(struct kmem_cache *s, struct page *page,
  3410. unsigned long *map)
  3411. {
  3412. void *p;
  3413. void *addr = page_address(page);
  3414. if (!check_slab(s, page) ||
  3415. !on_freelist(s, page, NULL))
  3416. return 0;
  3417. /* Now we know that a valid freelist exists */
  3418. bitmap_zero(map, page->objects);
  3419. get_map(s, page, map);
  3420. for_each_object(p, s, addr, page->objects) {
  3421. if (test_bit(slab_index(p, s, addr), map))
  3422. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3423. return 0;
  3424. }
  3425. for_each_object(p, s, addr, page->objects)
  3426. if (!test_bit(slab_index(p, s, addr), map))
  3427. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3428. return 0;
  3429. return 1;
  3430. }
  3431. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3432. unsigned long *map)
  3433. {
  3434. slab_lock(page);
  3435. validate_slab(s, page, map);
  3436. slab_unlock(page);
  3437. }
  3438. static int validate_slab_node(struct kmem_cache *s,
  3439. struct kmem_cache_node *n, unsigned long *map)
  3440. {
  3441. unsigned long count = 0;
  3442. struct page *page;
  3443. unsigned long flags;
  3444. spin_lock_irqsave(&n->list_lock, flags);
  3445. list_for_each_entry(page, &n->partial, lru) {
  3446. validate_slab_slab(s, page, map);
  3447. count++;
  3448. }
  3449. if (count != n->nr_partial)
  3450. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3451. "counter=%ld\n", s->name, count, n->nr_partial);
  3452. if (!(s->flags & SLAB_STORE_USER))
  3453. goto out;
  3454. list_for_each_entry(page, &n->full, lru) {
  3455. validate_slab_slab(s, page, map);
  3456. count++;
  3457. }
  3458. if (count != atomic_long_read(&n->nr_slabs))
  3459. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3460. "counter=%ld\n", s->name, count,
  3461. atomic_long_read(&n->nr_slabs));
  3462. out:
  3463. spin_unlock_irqrestore(&n->list_lock, flags);
  3464. return count;
  3465. }
  3466. static long validate_slab_cache(struct kmem_cache *s)
  3467. {
  3468. int node;
  3469. unsigned long count = 0;
  3470. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3471. sizeof(unsigned long), GFP_KERNEL);
  3472. if (!map)
  3473. return -ENOMEM;
  3474. flush_all(s);
  3475. for_each_node_state(node, N_NORMAL_MEMORY) {
  3476. struct kmem_cache_node *n = get_node(s, node);
  3477. count += validate_slab_node(s, n, map);
  3478. }
  3479. kfree(map);
  3480. return count;
  3481. }
  3482. /*
  3483. * Generate lists of code addresses where slabcache objects are allocated
  3484. * and freed.
  3485. */
  3486. struct location {
  3487. unsigned long count;
  3488. unsigned long addr;
  3489. long long sum_time;
  3490. long min_time;
  3491. long max_time;
  3492. long min_pid;
  3493. long max_pid;
  3494. DECLARE_BITMAP(cpus, NR_CPUS);
  3495. nodemask_t nodes;
  3496. };
  3497. struct loc_track {
  3498. unsigned long max;
  3499. unsigned long count;
  3500. struct location *loc;
  3501. };
  3502. static void free_loc_track(struct loc_track *t)
  3503. {
  3504. if (t->max)
  3505. free_pages((unsigned long)t->loc,
  3506. get_order(sizeof(struct location) * t->max));
  3507. }
  3508. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3509. {
  3510. struct location *l;
  3511. int order;
  3512. order = get_order(sizeof(struct location) * max);
  3513. l = (void *)__get_free_pages(flags, order);
  3514. if (!l)
  3515. return 0;
  3516. if (t->count) {
  3517. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3518. free_loc_track(t);
  3519. }
  3520. t->max = max;
  3521. t->loc = l;
  3522. return 1;
  3523. }
  3524. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3525. const struct track *track)
  3526. {
  3527. long start, end, pos;
  3528. struct location *l;
  3529. unsigned long caddr;
  3530. unsigned long age = jiffies - track->when;
  3531. start = -1;
  3532. end = t->count;
  3533. for ( ; ; ) {
  3534. pos = start + (end - start + 1) / 2;
  3535. /*
  3536. * There is nothing at "end". If we end up there
  3537. * we need to add something to before end.
  3538. */
  3539. if (pos == end)
  3540. break;
  3541. caddr = t->loc[pos].addr;
  3542. if (track->addr == caddr) {
  3543. l = &t->loc[pos];
  3544. l->count++;
  3545. if (track->when) {
  3546. l->sum_time += age;
  3547. if (age < l->min_time)
  3548. l->min_time = age;
  3549. if (age > l->max_time)
  3550. l->max_time = age;
  3551. if (track->pid < l->min_pid)
  3552. l->min_pid = track->pid;
  3553. if (track->pid > l->max_pid)
  3554. l->max_pid = track->pid;
  3555. cpumask_set_cpu(track->cpu,
  3556. to_cpumask(l->cpus));
  3557. }
  3558. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3559. return 1;
  3560. }
  3561. if (track->addr < caddr)
  3562. end = pos;
  3563. else
  3564. start = pos;
  3565. }
  3566. /*
  3567. * Not found. Insert new tracking element.
  3568. */
  3569. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3570. return 0;
  3571. l = t->loc + pos;
  3572. if (pos < t->count)
  3573. memmove(l + 1, l,
  3574. (t->count - pos) * sizeof(struct location));
  3575. t->count++;
  3576. l->count = 1;
  3577. l->addr = track->addr;
  3578. l->sum_time = age;
  3579. l->min_time = age;
  3580. l->max_time = age;
  3581. l->min_pid = track->pid;
  3582. l->max_pid = track->pid;
  3583. cpumask_clear(to_cpumask(l->cpus));
  3584. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3585. nodes_clear(l->nodes);
  3586. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3587. return 1;
  3588. }
  3589. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3590. struct page *page, enum track_item alloc,
  3591. unsigned long *map)
  3592. {
  3593. void *addr = page_address(page);
  3594. void *p;
  3595. bitmap_zero(map, page->objects);
  3596. get_map(s, page, map);
  3597. for_each_object(p, s, addr, page->objects)
  3598. if (!test_bit(slab_index(p, s, addr), map))
  3599. add_location(t, s, get_track(s, p, alloc));
  3600. }
  3601. static int list_locations(struct kmem_cache *s, char *buf,
  3602. enum track_item alloc)
  3603. {
  3604. int len = 0;
  3605. unsigned long i;
  3606. struct loc_track t = { 0, 0, NULL };
  3607. int node;
  3608. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3609. sizeof(unsigned long), GFP_KERNEL);
  3610. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3611. GFP_TEMPORARY)) {
  3612. kfree(map);
  3613. return sprintf(buf, "Out of memory\n");
  3614. }
  3615. /* Push back cpu slabs */
  3616. flush_all(s);
  3617. for_each_node_state(node, N_NORMAL_MEMORY) {
  3618. struct kmem_cache_node *n = get_node(s, node);
  3619. unsigned long flags;
  3620. struct page *page;
  3621. if (!atomic_long_read(&n->nr_slabs))
  3622. continue;
  3623. spin_lock_irqsave(&n->list_lock, flags);
  3624. list_for_each_entry(page, &n->partial, lru)
  3625. process_slab(&t, s, page, alloc, map);
  3626. list_for_each_entry(page, &n->full, lru)
  3627. process_slab(&t, s, page, alloc, map);
  3628. spin_unlock_irqrestore(&n->list_lock, flags);
  3629. }
  3630. for (i = 0; i < t.count; i++) {
  3631. struct location *l = &t.loc[i];
  3632. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3633. break;
  3634. len += sprintf(buf + len, "%7ld ", l->count);
  3635. if (l->addr)
  3636. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3637. else
  3638. len += sprintf(buf + len, "<not-available>");
  3639. if (l->sum_time != l->min_time) {
  3640. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3641. l->min_time,
  3642. (long)div_u64(l->sum_time, l->count),
  3643. l->max_time);
  3644. } else
  3645. len += sprintf(buf + len, " age=%ld",
  3646. l->min_time);
  3647. if (l->min_pid != l->max_pid)
  3648. len += sprintf(buf + len, " pid=%ld-%ld",
  3649. l->min_pid, l->max_pid);
  3650. else
  3651. len += sprintf(buf + len, " pid=%ld",
  3652. l->min_pid);
  3653. if (num_online_cpus() > 1 &&
  3654. !cpumask_empty(to_cpumask(l->cpus)) &&
  3655. len < PAGE_SIZE - 60) {
  3656. len += sprintf(buf + len, " cpus=");
  3657. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3658. to_cpumask(l->cpus));
  3659. }
  3660. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3661. len < PAGE_SIZE - 60) {
  3662. len += sprintf(buf + len, " nodes=");
  3663. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3664. l->nodes);
  3665. }
  3666. len += sprintf(buf + len, "\n");
  3667. }
  3668. free_loc_track(&t);
  3669. kfree(map);
  3670. if (!t.count)
  3671. len += sprintf(buf, "No data\n");
  3672. return len;
  3673. }
  3674. #endif
  3675. #ifdef SLUB_RESILIENCY_TEST
  3676. static void resiliency_test(void)
  3677. {
  3678. u8 *p;
  3679. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3680. printk(KERN_ERR "SLUB resiliency testing\n");
  3681. printk(KERN_ERR "-----------------------\n");
  3682. printk(KERN_ERR "A. Corruption after allocation\n");
  3683. p = kzalloc(16, GFP_KERNEL);
  3684. p[16] = 0x12;
  3685. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3686. " 0x12->0x%p\n\n", p + 16);
  3687. validate_slab_cache(kmalloc_caches[4]);
  3688. /* Hmmm... The next two are dangerous */
  3689. p = kzalloc(32, GFP_KERNEL);
  3690. p[32 + sizeof(void *)] = 0x34;
  3691. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3692. " 0x34 -> -0x%p\n", p);
  3693. printk(KERN_ERR
  3694. "If allocated object is overwritten then not detectable\n\n");
  3695. validate_slab_cache(kmalloc_caches[5]);
  3696. p = kzalloc(64, GFP_KERNEL);
  3697. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3698. *p = 0x56;
  3699. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3700. p);
  3701. printk(KERN_ERR
  3702. "If allocated object is overwritten then not detectable\n\n");
  3703. validate_slab_cache(kmalloc_caches[6]);
  3704. printk(KERN_ERR "\nB. Corruption after free\n");
  3705. p = kzalloc(128, GFP_KERNEL);
  3706. kfree(p);
  3707. *p = 0x78;
  3708. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3709. validate_slab_cache(kmalloc_caches[7]);
  3710. p = kzalloc(256, GFP_KERNEL);
  3711. kfree(p);
  3712. p[50] = 0x9a;
  3713. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3714. p);
  3715. validate_slab_cache(kmalloc_caches[8]);
  3716. p = kzalloc(512, GFP_KERNEL);
  3717. kfree(p);
  3718. p[512] = 0xab;
  3719. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3720. validate_slab_cache(kmalloc_caches[9]);
  3721. }
  3722. #else
  3723. #ifdef CONFIG_SYSFS
  3724. static void resiliency_test(void) {};
  3725. #endif
  3726. #endif
  3727. #ifdef CONFIG_SYSFS
  3728. enum slab_stat_type {
  3729. SL_ALL, /* All slabs */
  3730. SL_PARTIAL, /* Only partially allocated slabs */
  3731. SL_CPU, /* Only slabs used for cpu caches */
  3732. SL_OBJECTS, /* Determine allocated objects not slabs */
  3733. SL_TOTAL /* Determine object capacity not slabs */
  3734. };
  3735. #define SO_ALL (1 << SL_ALL)
  3736. #define SO_PARTIAL (1 << SL_PARTIAL)
  3737. #define SO_CPU (1 << SL_CPU)
  3738. #define SO_OBJECTS (1 << SL_OBJECTS)
  3739. #define SO_TOTAL (1 << SL_TOTAL)
  3740. static ssize_t show_slab_objects(struct kmem_cache *s,
  3741. char *buf, unsigned long flags)
  3742. {
  3743. unsigned long total = 0;
  3744. int node;
  3745. int x;
  3746. unsigned long *nodes;
  3747. unsigned long *per_cpu;
  3748. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3749. if (!nodes)
  3750. return -ENOMEM;
  3751. per_cpu = nodes + nr_node_ids;
  3752. if (flags & SO_CPU) {
  3753. int cpu;
  3754. for_each_possible_cpu(cpu) {
  3755. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3756. int node = ACCESS_ONCE(c->node);
  3757. struct page *page;
  3758. if (node < 0)
  3759. continue;
  3760. page = ACCESS_ONCE(c->page);
  3761. if (page) {
  3762. if (flags & SO_TOTAL)
  3763. x = page->objects;
  3764. else if (flags & SO_OBJECTS)
  3765. x = page->inuse;
  3766. else
  3767. x = 1;
  3768. total += x;
  3769. nodes[node] += x;
  3770. }
  3771. page = c->partial;
  3772. if (page) {
  3773. x = page->pobjects;
  3774. total += x;
  3775. nodes[node] += x;
  3776. }
  3777. per_cpu[node]++;
  3778. }
  3779. }
  3780. lock_memory_hotplug();
  3781. #ifdef CONFIG_SLUB_DEBUG
  3782. if (flags & SO_ALL) {
  3783. for_each_node_state(node, N_NORMAL_MEMORY) {
  3784. struct kmem_cache_node *n = get_node(s, node);
  3785. if (flags & SO_TOTAL)
  3786. x = atomic_long_read(&n->total_objects);
  3787. else if (flags & SO_OBJECTS)
  3788. x = atomic_long_read(&n->total_objects) -
  3789. count_partial(n, count_free);
  3790. else
  3791. x = atomic_long_read(&n->nr_slabs);
  3792. total += x;
  3793. nodes[node] += x;
  3794. }
  3795. } else
  3796. #endif
  3797. if (flags & SO_PARTIAL) {
  3798. for_each_node_state(node, N_NORMAL_MEMORY) {
  3799. struct kmem_cache_node *n = get_node(s, node);
  3800. if (flags & SO_TOTAL)
  3801. x = count_partial(n, count_total);
  3802. else if (flags & SO_OBJECTS)
  3803. x = count_partial(n, count_inuse);
  3804. else
  3805. x = n->nr_partial;
  3806. total += x;
  3807. nodes[node] += x;
  3808. }
  3809. }
  3810. x = sprintf(buf, "%lu", total);
  3811. #ifdef CONFIG_NUMA
  3812. for_each_node_state(node, N_NORMAL_MEMORY)
  3813. if (nodes[node])
  3814. x += sprintf(buf + x, " N%d=%lu",
  3815. node, nodes[node]);
  3816. #endif
  3817. unlock_memory_hotplug();
  3818. kfree(nodes);
  3819. return x + sprintf(buf + x, "\n");
  3820. }
  3821. #ifdef CONFIG_SLUB_DEBUG
  3822. static int any_slab_objects(struct kmem_cache *s)
  3823. {
  3824. int node;
  3825. for_each_online_node(node) {
  3826. struct kmem_cache_node *n = get_node(s, node);
  3827. if (!n)
  3828. continue;
  3829. if (atomic_long_read(&n->total_objects))
  3830. return 1;
  3831. }
  3832. return 0;
  3833. }
  3834. #endif
  3835. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3836. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3837. struct slab_attribute {
  3838. struct attribute attr;
  3839. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3840. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3841. };
  3842. #define SLAB_ATTR_RO(_name) \
  3843. static struct slab_attribute _name##_attr = \
  3844. __ATTR(_name, 0400, _name##_show, NULL)
  3845. #define SLAB_ATTR(_name) \
  3846. static struct slab_attribute _name##_attr = \
  3847. __ATTR(_name, 0600, _name##_show, _name##_store)
  3848. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3849. {
  3850. return sprintf(buf, "%d\n", s->size);
  3851. }
  3852. SLAB_ATTR_RO(slab_size);
  3853. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3854. {
  3855. return sprintf(buf, "%d\n", s->align);
  3856. }
  3857. SLAB_ATTR_RO(align);
  3858. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3859. {
  3860. return sprintf(buf, "%d\n", s->objsize);
  3861. }
  3862. SLAB_ATTR_RO(object_size);
  3863. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3864. {
  3865. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3866. }
  3867. SLAB_ATTR_RO(objs_per_slab);
  3868. static ssize_t order_store(struct kmem_cache *s,
  3869. const char *buf, size_t length)
  3870. {
  3871. unsigned long order;
  3872. int err;
  3873. err = strict_strtoul(buf, 10, &order);
  3874. if (err)
  3875. return err;
  3876. if (order > slub_max_order || order < slub_min_order)
  3877. return -EINVAL;
  3878. calculate_sizes(s, order);
  3879. return length;
  3880. }
  3881. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3882. {
  3883. return sprintf(buf, "%d\n", oo_order(s->oo));
  3884. }
  3885. SLAB_ATTR(order);
  3886. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3887. {
  3888. return sprintf(buf, "%lu\n", s->min_partial);
  3889. }
  3890. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3891. size_t length)
  3892. {
  3893. unsigned long min;
  3894. int err;
  3895. err = strict_strtoul(buf, 10, &min);
  3896. if (err)
  3897. return err;
  3898. set_min_partial(s, min);
  3899. return length;
  3900. }
  3901. SLAB_ATTR(min_partial);
  3902. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3903. {
  3904. return sprintf(buf, "%u\n", s->cpu_partial);
  3905. }
  3906. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3907. size_t length)
  3908. {
  3909. unsigned long objects;
  3910. int err;
  3911. err = strict_strtoul(buf, 10, &objects);
  3912. if (err)
  3913. return err;
  3914. if (objects && kmem_cache_debug(s))
  3915. return -EINVAL;
  3916. s->cpu_partial = objects;
  3917. flush_all(s);
  3918. return length;
  3919. }
  3920. SLAB_ATTR(cpu_partial);
  3921. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3922. {
  3923. if (!s->ctor)
  3924. return 0;
  3925. return sprintf(buf, "%pS\n", s->ctor);
  3926. }
  3927. SLAB_ATTR_RO(ctor);
  3928. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3929. {
  3930. return sprintf(buf, "%d\n", s->refcount - 1);
  3931. }
  3932. SLAB_ATTR_RO(aliases);
  3933. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3934. {
  3935. return show_slab_objects(s, buf, SO_PARTIAL);
  3936. }
  3937. SLAB_ATTR_RO(partial);
  3938. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3939. {
  3940. return show_slab_objects(s, buf, SO_CPU);
  3941. }
  3942. SLAB_ATTR_RO(cpu_slabs);
  3943. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3944. {
  3945. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3946. }
  3947. SLAB_ATTR_RO(objects);
  3948. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3949. {
  3950. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3951. }
  3952. SLAB_ATTR_RO(objects_partial);
  3953. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3954. {
  3955. int objects = 0;
  3956. int pages = 0;
  3957. int cpu;
  3958. int len;
  3959. for_each_online_cpu(cpu) {
  3960. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3961. if (page) {
  3962. pages += page->pages;
  3963. objects += page->pobjects;
  3964. }
  3965. }
  3966. len = sprintf(buf, "%d(%d)", objects, pages);
  3967. #ifdef CONFIG_SMP
  3968. for_each_online_cpu(cpu) {
  3969. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3970. if (page && len < PAGE_SIZE - 20)
  3971. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3972. page->pobjects, page->pages);
  3973. }
  3974. #endif
  3975. return len + sprintf(buf + len, "\n");
  3976. }
  3977. SLAB_ATTR_RO(slabs_cpu_partial);
  3978. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3979. {
  3980. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3981. }
  3982. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3983. const char *buf, size_t length)
  3984. {
  3985. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3986. if (buf[0] == '1')
  3987. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3988. return length;
  3989. }
  3990. SLAB_ATTR(reclaim_account);
  3991. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3992. {
  3993. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3994. }
  3995. SLAB_ATTR_RO(hwcache_align);
  3996. #ifdef CONFIG_ZONE_DMA
  3997. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3998. {
  3999. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  4000. }
  4001. SLAB_ATTR_RO(cache_dma);
  4002. #endif
  4003. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  4004. {
  4005. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  4006. }
  4007. SLAB_ATTR_RO(destroy_by_rcu);
  4008. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  4009. {
  4010. return sprintf(buf, "%d\n", s->reserved);
  4011. }
  4012. SLAB_ATTR_RO(reserved);
  4013. #ifdef CONFIG_SLUB_DEBUG
  4014. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  4015. {
  4016. return show_slab_objects(s, buf, SO_ALL);
  4017. }
  4018. SLAB_ATTR_RO(slabs);
  4019. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  4020. {
  4021. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  4022. }
  4023. SLAB_ATTR_RO(total_objects);
  4024. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  4025. {
  4026. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  4027. }
  4028. static ssize_t sanity_checks_store(struct kmem_cache *s,
  4029. const char *buf, size_t length)
  4030. {
  4031. s->flags &= ~SLAB_DEBUG_FREE;
  4032. if (buf[0] == '1') {
  4033. s->flags &= ~__CMPXCHG_DOUBLE;
  4034. s->flags |= SLAB_DEBUG_FREE;
  4035. }
  4036. return length;
  4037. }
  4038. SLAB_ATTR(sanity_checks);
  4039. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  4040. {
  4041. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4042. }
  4043. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4044. size_t length)
  4045. {
  4046. s->flags &= ~SLAB_TRACE;
  4047. if (buf[0] == '1') {
  4048. s->flags &= ~__CMPXCHG_DOUBLE;
  4049. s->flags |= SLAB_TRACE;
  4050. }
  4051. return length;
  4052. }
  4053. SLAB_ATTR(trace);
  4054. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4055. {
  4056. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4057. }
  4058. static ssize_t red_zone_store(struct kmem_cache *s,
  4059. const char *buf, size_t length)
  4060. {
  4061. if (any_slab_objects(s))
  4062. return -EBUSY;
  4063. s->flags &= ~SLAB_RED_ZONE;
  4064. if (buf[0] == '1') {
  4065. s->flags &= ~__CMPXCHG_DOUBLE;
  4066. s->flags |= SLAB_RED_ZONE;
  4067. }
  4068. calculate_sizes(s, -1);
  4069. return length;
  4070. }
  4071. SLAB_ATTR(red_zone);
  4072. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4073. {
  4074. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4075. }
  4076. static ssize_t poison_store(struct kmem_cache *s,
  4077. const char *buf, size_t length)
  4078. {
  4079. if (any_slab_objects(s))
  4080. return -EBUSY;
  4081. s->flags &= ~SLAB_POISON;
  4082. if (buf[0] == '1') {
  4083. s->flags &= ~__CMPXCHG_DOUBLE;
  4084. s->flags |= SLAB_POISON;
  4085. }
  4086. calculate_sizes(s, -1);
  4087. return length;
  4088. }
  4089. SLAB_ATTR(poison);
  4090. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4091. {
  4092. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4093. }
  4094. static ssize_t store_user_store(struct kmem_cache *s,
  4095. const char *buf, size_t length)
  4096. {
  4097. if (any_slab_objects(s))
  4098. return -EBUSY;
  4099. s->flags &= ~SLAB_STORE_USER;
  4100. if (buf[0] == '1') {
  4101. s->flags &= ~__CMPXCHG_DOUBLE;
  4102. s->flags |= SLAB_STORE_USER;
  4103. }
  4104. calculate_sizes(s, -1);
  4105. return length;
  4106. }
  4107. SLAB_ATTR(store_user);
  4108. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4109. {
  4110. return 0;
  4111. }
  4112. static ssize_t validate_store(struct kmem_cache *s,
  4113. const char *buf, size_t length)
  4114. {
  4115. int ret = -EINVAL;
  4116. if (buf[0] == '1') {
  4117. ret = validate_slab_cache(s);
  4118. if (ret >= 0)
  4119. ret = length;
  4120. }
  4121. return ret;
  4122. }
  4123. SLAB_ATTR(validate);
  4124. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4125. {
  4126. if (!(s->flags & SLAB_STORE_USER))
  4127. return -ENOSYS;
  4128. return list_locations(s, buf, TRACK_ALLOC);
  4129. }
  4130. SLAB_ATTR_RO(alloc_calls);
  4131. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4132. {
  4133. if (!(s->flags & SLAB_STORE_USER))
  4134. return -ENOSYS;
  4135. return list_locations(s, buf, TRACK_FREE);
  4136. }
  4137. SLAB_ATTR_RO(free_calls);
  4138. #endif /* CONFIG_SLUB_DEBUG */
  4139. #ifdef CONFIG_FAILSLAB
  4140. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4141. {
  4142. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4143. }
  4144. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4145. size_t length)
  4146. {
  4147. s->flags &= ~SLAB_FAILSLAB;
  4148. if (buf[0] == '1')
  4149. s->flags |= SLAB_FAILSLAB;
  4150. return length;
  4151. }
  4152. SLAB_ATTR(failslab);
  4153. #endif
  4154. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4155. {
  4156. return 0;
  4157. }
  4158. static ssize_t shrink_store(struct kmem_cache *s,
  4159. const char *buf, size_t length)
  4160. {
  4161. if (buf[0] == '1') {
  4162. int rc = kmem_cache_shrink(s);
  4163. if (rc)
  4164. return rc;
  4165. } else
  4166. return -EINVAL;
  4167. return length;
  4168. }
  4169. SLAB_ATTR(shrink);
  4170. #ifdef CONFIG_NUMA
  4171. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4172. {
  4173. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4174. }
  4175. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4176. const char *buf, size_t length)
  4177. {
  4178. unsigned long ratio;
  4179. int err;
  4180. err = strict_strtoul(buf, 10, &ratio);
  4181. if (err)
  4182. return err;
  4183. if (ratio <= 100)
  4184. s->remote_node_defrag_ratio = ratio * 10;
  4185. return length;
  4186. }
  4187. SLAB_ATTR(remote_node_defrag_ratio);
  4188. #endif
  4189. #ifdef CONFIG_SLUB_STATS
  4190. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4191. {
  4192. unsigned long sum = 0;
  4193. int cpu;
  4194. int len;
  4195. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4196. if (!data)
  4197. return -ENOMEM;
  4198. for_each_online_cpu(cpu) {
  4199. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4200. data[cpu] = x;
  4201. sum += x;
  4202. }
  4203. len = sprintf(buf, "%lu", sum);
  4204. #ifdef CONFIG_SMP
  4205. for_each_online_cpu(cpu) {
  4206. if (data[cpu] && len < PAGE_SIZE - 20)
  4207. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4208. }
  4209. #endif
  4210. kfree(data);
  4211. return len + sprintf(buf + len, "\n");
  4212. }
  4213. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4214. {
  4215. int cpu;
  4216. for_each_online_cpu(cpu)
  4217. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4218. }
  4219. #define STAT_ATTR(si, text) \
  4220. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4221. { \
  4222. return show_stat(s, buf, si); \
  4223. } \
  4224. static ssize_t text##_store(struct kmem_cache *s, \
  4225. const char *buf, size_t length) \
  4226. { \
  4227. if (buf[0] != '0') \
  4228. return -EINVAL; \
  4229. clear_stat(s, si); \
  4230. return length; \
  4231. } \
  4232. SLAB_ATTR(text); \
  4233. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4234. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4235. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4236. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4237. STAT_ATTR(FREE_FROZEN, free_frozen);
  4238. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4239. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4240. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4241. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4242. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4243. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4244. STAT_ATTR(FREE_SLAB, free_slab);
  4245. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4246. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4247. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4248. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4249. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4250. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4251. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4252. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4253. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4254. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4255. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4256. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4257. #endif
  4258. static struct attribute *slab_attrs[] = {
  4259. &slab_size_attr.attr,
  4260. &object_size_attr.attr,
  4261. &objs_per_slab_attr.attr,
  4262. &order_attr.attr,
  4263. &min_partial_attr.attr,
  4264. &cpu_partial_attr.attr,
  4265. &objects_attr.attr,
  4266. &objects_partial_attr.attr,
  4267. &partial_attr.attr,
  4268. &cpu_slabs_attr.attr,
  4269. &ctor_attr.attr,
  4270. &aliases_attr.attr,
  4271. &align_attr.attr,
  4272. &hwcache_align_attr.attr,
  4273. &reclaim_account_attr.attr,
  4274. &destroy_by_rcu_attr.attr,
  4275. &shrink_attr.attr,
  4276. &reserved_attr.attr,
  4277. &slabs_cpu_partial_attr.attr,
  4278. #ifdef CONFIG_SLUB_DEBUG
  4279. &total_objects_attr.attr,
  4280. &slabs_attr.attr,
  4281. &sanity_checks_attr.attr,
  4282. &trace_attr.attr,
  4283. &red_zone_attr.attr,
  4284. &poison_attr.attr,
  4285. &store_user_attr.attr,
  4286. &validate_attr.attr,
  4287. &alloc_calls_attr.attr,
  4288. &free_calls_attr.attr,
  4289. #endif
  4290. #ifdef CONFIG_ZONE_DMA
  4291. &cache_dma_attr.attr,
  4292. #endif
  4293. #ifdef CONFIG_NUMA
  4294. &remote_node_defrag_ratio_attr.attr,
  4295. #endif
  4296. #ifdef CONFIG_SLUB_STATS
  4297. &alloc_fastpath_attr.attr,
  4298. &alloc_slowpath_attr.attr,
  4299. &free_fastpath_attr.attr,
  4300. &free_slowpath_attr.attr,
  4301. &free_frozen_attr.attr,
  4302. &free_add_partial_attr.attr,
  4303. &free_remove_partial_attr.attr,
  4304. &alloc_from_partial_attr.attr,
  4305. &alloc_slab_attr.attr,
  4306. &alloc_refill_attr.attr,
  4307. &alloc_node_mismatch_attr.attr,
  4308. &free_slab_attr.attr,
  4309. &cpuslab_flush_attr.attr,
  4310. &deactivate_full_attr.attr,
  4311. &deactivate_empty_attr.attr,
  4312. &deactivate_to_head_attr.attr,
  4313. &deactivate_to_tail_attr.attr,
  4314. &deactivate_remote_frees_attr.attr,
  4315. &deactivate_bypass_attr.attr,
  4316. &order_fallback_attr.attr,
  4317. &cmpxchg_double_fail_attr.attr,
  4318. &cmpxchg_double_cpu_fail_attr.attr,
  4319. &cpu_partial_alloc_attr.attr,
  4320. &cpu_partial_free_attr.attr,
  4321. #endif
  4322. #ifdef CONFIG_FAILSLAB
  4323. &failslab_attr.attr,
  4324. #endif
  4325. NULL
  4326. };
  4327. static struct attribute_group slab_attr_group = {
  4328. .attrs = slab_attrs,
  4329. };
  4330. static ssize_t slab_attr_show(struct kobject *kobj,
  4331. struct attribute *attr,
  4332. char *buf)
  4333. {
  4334. struct slab_attribute *attribute;
  4335. struct kmem_cache *s;
  4336. int err;
  4337. attribute = to_slab_attr(attr);
  4338. s = to_slab(kobj);
  4339. if (!attribute->show)
  4340. return -EIO;
  4341. err = attribute->show(s, buf);
  4342. return err;
  4343. }
  4344. static ssize_t slab_attr_store(struct kobject *kobj,
  4345. struct attribute *attr,
  4346. const char *buf, size_t len)
  4347. {
  4348. struct slab_attribute *attribute;
  4349. struct kmem_cache *s;
  4350. int err;
  4351. attribute = to_slab_attr(attr);
  4352. s = to_slab(kobj);
  4353. if (!attribute->store)
  4354. return -EIO;
  4355. err = attribute->store(s, buf, len);
  4356. return err;
  4357. }
  4358. static void kmem_cache_release(struct kobject *kobj)
  4359. {
  4360. struct kmem_cache *s = to_slab(kobj);
  4361. kfree(s->name);
  4362. kfree(s);
  4363. }
  4364. static const struct sysfs_ops slab_sysfs_ops = {
  4365. .show = slab_attr_show,
  4366. .store = slab_attr_store,
  4367. };
  4368. static struct kobj_type slab_ktype = {
  4369. .sysfs_ops = &slab_sysfs_ops,
  4370. .release = kmem_cache_release
  4371. };
  4372. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4373. {
  4374. struct kobj_type *ktype = get_ktype(kobj);
  4375. if (ktype == &slab_ktype)
  4376. return 1;
  4377. return 0;
  4378. }
  4379. static const struct kset_uevent_ops slab_uevent_ops = {
  4380. .filter = uevent_filter,
  4381. };
  4382. static struct kset *slab_kset;
  4383. #define ID_STR_LENGTH 64
  4384. /* Create a unique string id for a slab cache:
  4385. *
  4386. * Format :[flags-]size
  4387. */
  4388. static char *create_unique_id(struct kmem_cache *s)
  4389. {
  4390. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4391. char *p = name;
  4392. BUG_ON(!name);
  4393. *p++ = ':';
  4394. /*
  4395. * First flags affecting slabcache operations. We will only
  4396. * get here for aliasable slabs so we do not need to support
  4397. * too many flags. The flags here must cover all flags that
  4398. * are matched during merging to guarantee that the id is
  4399. * unique.
  4400. */
  4401. if (s->flags & SLAB_CACHE_DMA)
  4402. *p++ = 'd';
  4403. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4404. *p++ = 'a';
  4405. if (s->flags & SLAB_DEBUG_FREE)
  4406. *p++ = 'F';
  4407. if (!(s->flags & SLAB_NOTRACK))
  4408. *p++ = 't';
  4409. if (p != name + 1)
  4410. *p++ = '-';
  4411. p += sprintf(p, "%07d", s->size);
  4412. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4413. return name;
  4414. }
  4415. static int sysfs_slab_add(struct kmem_cache *s)
  4416. {
  4417. int err;
  4418. const char *name;
  4419. int unmergeable;
  4420. if (slab_state < SYSFS)
  4421. /* Defer until later */
  4422. return 0;
  4423. unmergeable = slab_unmergeable(s);
  4424. if (unmergeable) {
  4425. /*
  4426. * Slabcache can never be merged so we can use the name proper.
  4427. * This is typically the case for debug situations. In that
  4428. * case we can catch duplicate names easily.
  4429. */
  4430. sysfs_remove_link(&slab_kset->kobj, s->name);
  4431. name = s->name;
  4432. } else {
  4433. /*
  4434. * Create a unique name for the slab as a target
  4435. * for the symlinks.
  4436. */
  4437. name = create_unique_id(s);
  4438. }
  4439. s->kobj.kset = slab_kset;
  4440. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4441. if (err) {
  4442. kobject_put(&s->kobj);
  4443. return err;
  4444. }
  4445. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4446. if (err) {
  4447. kobject_del(&s->kobj);
  4448. kobject_put(&s->kobj);
  4449. return err;
  4450. }
  4451. kobject_uevent(&s->kobj, KOBJ_ADD);
  4452. if (!unmergeable) {
  4453. /* Setup first alias */
  4454. sysfs_slab_alias(s, s->name);
  4455. kfree(name);
  4456. }
  4457. return 0;
  4458. }
  4459. static void sysfs_slab_remove(struct kmem_cache *s)
  4460. {
  4461. if (slab_state < SYSFS)
  4462. /*
  4463. * Sysfs has not been setup yet so no need to remove the
  4464. * cache from sysfs.
  4465. */
  4466. return;
  4467. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4468. kobject_del(&s->kobj);
  4469. kobject_put(&s->kobj);
  4470. }
  4471. /*
  4472. * Need to buffer aliases during bootup until sysfs becomes
  4473. * available lest we lose that information.
  4474. */
  4475. struct saved_alias {
  4476. struct kmem_cache *s;
  4477. const char *name;
  4478. struct saved_alias *next;
  4479. };
  4480. static struct saved_alias *alias_list;
  4481. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4482. {
  4483. struct saved_alias *al;
  4484. if (slab_state == SYSFS) {
  4485. /*
  4486. * If we have a leftover link then remove it.
  4487. */
  4488. sysfs_remove_link(&slab_kset->kobj, name);
  4489. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4490. }
  4491. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4492. if (!al)
  4493. return -ENOMEM;
  4494. al->s = s;
  4495. al->name = name;
  4496. al->next = alias_list;
  4497. alias_list = al;
  4498. return 0;
  4499. }
  4500. static int __init slab_sysfs_init(void)
  4501. {
  4502. struct kmem_cache *s;
  4503. int err;
  4504. down_write(&slub_lock);
  4505. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4506. if (!slab_kset) {
  4507. up_write(&slub_lock);
  4508. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4509. return -ENOSYS;
  4510. }
  4511. slab_state = SYSFS;
  4512. list_for_each_entry(s, &slab_caches, list) {
  4513. err = sysfs_slab_add(s);
  4514. if (err)
  4515. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4516. " to sysfs\n", s->name);
  4517. }
  4518. while (alias_list) {
  4519. struct saved_alias *al = alias_list;
  4520. alias_list = alias_list->next;
  4521. err = sysfs_slab_alias(al->s, al->name);
  4522. if (err)
  4523. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4524. " %s to sysfs\n", s->name);
  4525. kfree(al);
  4526. }
  4527. up_write(&slub_lock);
  4528. resiliency_test();
  4529. return 0;
  4530. }
  4531. __initcall(slab_sysfs_init);
  4532. #endif /* CONFIG_SYSFS */
  4533. /*
  4534. * The /proc/slabinfo ABI
  4535. */
  4536. #ifdef CONFIG_SLABINFO
  4537. static void print_slabinfo_header(struct seq_file *m)
  4538. {
  4539. seq_puts(m, "slabinfo - version: 2.1\n");
  4540. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  4541. "<objperslab> <pagesperslab>");
  4542. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4543. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4544. seq_putc(m, '\n');
  4545. }
  4546. static void *s_start(struct seq_file *m, loff_t *pos)
  4547. {
  4548. loff_t n = *pos;
  4549. down_read(&slub_lock);
  4550. if (!n)
  4551. print_slabinfo_header(m);
  4552. return seq_list_start(&slab_caches, *pos);
  4553. }
  4554. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4555. {
  4556. return seq_list_next(p, &slab_caches, pos);
  4557. }
  4558. static void s_stop(struct seq_file *m, void *p)
  4559. {
  4560. up_read(&slub_lock);
  4561. }
  4562. static int s_show(struct seq_file *m, void *p)
  4563. {
  4564. unsigned long nr_partials = 0;
  4565. unsigned long nr_slabs = 0;
  4566. unsigned long nr_inuse = 0;
  4567. unsigned long nr_objs = 0;
  4568. unsigned long nr_free = 0;
  4569. struct kmem_cache *s;
  4570. int node;
  4571. s = list_entry(p, struct kmem_cache, list);
  4572. for_each_online_node(node) {
  4573. struct kmem_cache_node *n = get_node(s, node);
  4574. if (!n)
  4575. continue;
  4576. nr_partials += n->nr_partial;
  4577. nr_slabs += atomic_long_read(&n->nr_slabs);
  4578. nr_objs += atomic_long_read(&n->total_objects);
  4579. nr_free += count_partial(n, count_free);
  4580. }
  4581. nr_inuse = nr_objs - nr_free;
  4582. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4583. nr_objs, s->size, oo_objects(s->oo),
  4584. (1 << oo_order(s->oo)));
  4585. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4586. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4587. 0UL);
  4588. seq_putc(m, '\n');
  4589. return 0;
  4590. }
  4591. static const struct seq_operations slabinfo_op = {
  4592. .start = s_start,
  4593. .next = s_next,
  4594. .stop = s_stop,
  4595. .show = s_show,
  4596. };
  4597. static int slabinfo_open(struct inode *inode, struct file *file)
  4598. {
  4599. return seq_open(file, &slabinfo_op);
  4600. }
  4601. static const struct file_operations proc_slabinfo_operations = {
  4602. .open = slabinfo_open,
  4603. .read = seq_read,
  4604. .llseek = seq_lseek,
  4605. .release = seq_release,
  4606. };
  4607. static int __init slab_proc_init(void)
  4608. {
  4609. proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
  4610. return 0;
  4611. }
  4612. module_init(slab_proc_init);
  4613. #endif /* CONFIG_SLABINFO */