core.c 194 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #ifdef CONFIG_PARAVIRT
  77. #include <asm/paravirt.h>
  78. #endif
  79. #include "sched.h"
  80. #include "../workqueue_sched.h"
  81. #define CREATE_TRACE_POINTS
  82. #include <trace/events/sched.h>
  83. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  84. {
  85. unsigned long delta;
  86. ktime_t soft, hard, now;
  87. for (;;) {
  88. if (hrtimer_active(period_timer))
  89. break;
  90. now = hrtimer_cb_get_time(period_timer);
  91. hrtimer_forward(period_timer, now, period);
  92. soft = hrtimer_get_softexpires(period_timer);
  93. hard = hrtimer_get_expires(period_timer);
  94. delta = ktime_to_ns(ktime_sub(hard, soft));
  95. __hrtimer_start_range_ns(period_timer, soft, delta,
  96. HRTIMER_MODE_ABS_PINNED, 0);
  97. }
  98. }
  99. DEFINE_MUTEX(sched_domains_mutex);
  100. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  101. static void update_rq_clock_task(struct rq *rq, s64 delta);
  102. void update_rq_clock(struct rq *rq)
  103. {
  104. s64 delta;
  105. if (rq->skip_clock_update > 0)
  106. return;
  107. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  108. rq->clock += delta;
  109. update_rq_clock_task(rq, delta);
  110. }
  111. /*
  112. * Debugging: various feature bits
  113. */
  114. #define SCHED_FEAT(name, enabled) \
  115. (1UL << __SCHED_FEAT_##name) * enabled |
  116. const_debug unsigned int sysctl_sched_features =
  117. #include "features.h"
  118. 0;
  119. #undef SCHED_FEAT
  120. #ifdef CONFIG_SCHED_DEBUG
  121. #define SCHED_FEAT(name, enabled) \
  122. #name ,
  123. static __read_mostly char *sched_feat_names[] = {
  124. #include "features.h"
  125. NULL
  126. };
  127. #undef SCHED_FEAT
  128. static int sched_feat_show(struct seq_file *m, void *v)
  129. {
  130. int i;
  131. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  132. if (!(sysctl_sched_features & (1UL << i)))
  133. seq_puts(m, "NO_");
  134. seq_printf(m, "%s ", sched_feat_names[i]);
  135. }
  136. seq_puts(m, "\n");
  137. return 0;
  138. }
  139. #ifdef HAVE_JUMP_LABEL
  140. #define jump_label_key__true jump_label_key_enabled
  141. #define jump_label_key__false jump_label_key_disabled
  142. #define SCHED_FEAT(name, enabled) \
  143. jump_label_key__##enabled ,
  144. struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
  145. #include "features.h"
  146. };
  147. #undef SCHED_FEAT
  148. static void sched_feat_disable(int i)
  149. {
  150. if (jump_label_enabled(&sched_feat_keys[i]))
  151. jump_label_dec(&sched_feat_keys[i]);
  152. }
  153. static void sched_feat_enable(int i)
  154. {
  155. if (!jump_label_enabled(&sched_feat_keys[i]))
  156. jump_label_inc(&sched_feat_keys[i]);
  157. }
  158. #else
  159. static void sched_feat_disable(int i) { };
  160. static void sched_feat_enable(int i) { };
  161. #endif /* HAVE_JUMP_LABEL */
  162. static ssize_t
  163. sched_feat_write(struct file *filp, const char __user *ubuf,
  164. size_t cnt, loff_t *ppos)
  165. {
  166. char buf[64];
  167. char *cmp;
  168. int neg = 0;
  169. int i;
  170. if (cnt > 63)
  171. cnt = 63;
  172. if (copy_from_user(&buf, ubuf, cnt))
  173. return -EFAULT;
  174. buf[cnt] = 0;
  175. cmp = strstrip(buf);
  176. if (strncmp(cmp, "NO_", 3) == 0) {
  177. neg = 1;
  178. cmp += 3;
  179. }
  180. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  181. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  182. if (neg) {
  183. sysctl_sched_features &= ~(1UL << i);
  184. sched_feat_disable(i);
  185. } else {
  186. sysctl_sched_features |= (1UL << i);
  187. sched_feat_enable(i);
  188. }
  189. break;
  190. }
  191. }
  192. if (i == __SCHED_FEAT_NR)
  193. return -EINVAL;
  194. *ppos += cnt;
  195. return cnt;
  196. }
  197. static int sched_feat_open(struct inode *inode, struct file *filp)
  198. {
  199. return single_open(filp, sched_feat_show, NULL);
  200. }
  201. static const struct file_operations sched_feat_fops = {
  202. .open = sched_feat_open,
  203. .write = sched_feat_write,
  204. .read = seq_read,
  205. .llseek = seq_lseek,
  206. .release = single_release,
  207. };
  208. static __init int sched_init_debug(void)
  209. {
  210. debugfs_create_file("sched_features", 0644, NULL, NULL,
  211. &sched_feat_fops);
  212. return 0;
  213. }
  214. late_initcall(sched_init_debug);
  215. #endif /* CONFIG_SCHED_DEBUG */
  216. /*
  217. * Number of tasks to iterate in a single balance run.
  218. * Limited because this is done with IRQs disabled.
  219. */
  220. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  221. /*
  222. * period over which we average the RT time consumption, measured
  223. * in ms.
  224. *
  225. * default: 1s
  226. */
  227. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  228. /*
  229. * period over which we measure -rt task cpu usage in us.
  230. * default: 1s
  231. */
  232. unsigned int sysctl_sched_rt_period = 1000000;
  233. __read_mostly int scheduler_running;
  234. /*
  235. * part of the period that we allow rt tasks to run in us.
  236. * default: 0.95s
  237. */
  238. int sysctl_sched_rt_runtime = 950000;
  239. /*
  240. * __task_rq_lock - lock the rq @p resides on.
  241. */
  242. static inline struct rq *__task_rq_lock(struct task_struct *p)
  243. __acquires(rq->lock)
  244. {
  245. struct rq *rq;
  246. lockdep_assert_held(&p->pi_lock);
  247. for (;;) {
  248. rq = task_rq(p);
  249. raw_spin_lock(&rq->lock);
  250. if (likely(rq == task_rq(p)))
  251. return rq;
  252. raw_spin_unlock(&rq->lock);
  253. }
  254. }
  255. /*
  256. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  257. */
  258. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  259. __acquires(p->pi_lock)
  260. __acquires(rq->lock)
  261. {
  262. struct rq *rq;
  263. for (;;) {
  264. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  265. rq = task_rq(p);
  266. raw_spin_lock(&rq->lock);
  267. if (likely(rq == task_rq(p)))
  268. return rq;
  269. raw_spin_unlock(&rq->lock);
  270. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  271. }
  272. }
  273. static void __task_rq_unlock(struct rq *rq)
  274. __releases(rq->lock)
  275. {
  276. raw_spin_unlock(&rq->lock);
  277. }
  278. static inline void
  279. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  280. __releases(rq->lock)
  281. __releases(p->pi_lock)
  282. {
  283. raw_spin_unlock(&rq->lock);
  284. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  285. }
  286. /*
  287. * this_rq_lock - lock this runqueue and disable interrupts.
  288. */
  289. static struct rq *this_rq_lock(void)
  290. __acquires(rq->lock)
  291. {
  292. struct rq *rq;
  293. local_irq_disable();
  294. rq = this_rq();
  295. raw_spin_lock(&rq->lock);
  296. return rq;
  297. }
  298. #ifdef CONFIG_SCHED_HRTICK
  299. /*
  300. * Use HR-timers to deliver accurate preemption points.
  301. *
  302. * Its all a bit involved since we cannot program an hrt while holding the
  303. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  304. * reschedule event.
  305. *
  306. * When we get rescheduled we reprogram the hrtick_timer outside of the
  307. * rq->lock.
  308. */
  309. static void hrtick_clear(struct rq *rq)
  310. {
  311. if (hrtimer_active(&rq->hrtick_timer))
  312. hrtimer_cancel(&rq->hrtick_timer);
  313. }
  314. /*
  315. * High-resolution timer tick.
  316. * Runs from hardirq context with interrupts disabled.
  317. */
  318. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  319. {
  320. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  321. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  322. raw_spin_lock(&rq->lock);
  323. update_rq_clock(rq);
  324. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  325. raw_spin_unlock(&rq->lock);
  326. return HRTIMER_NORESTART;
  327. }
  328. #ifdef CONFIG_SMP
  329. /*
  330. * called from hardirq (IPI) context
  331. */
  332. static void __hrtick_start(void *arg)
  333. {
  334. struct rq *rq = arg;
  335. raw_spin_lock(&rq->lock);
  336. hrtimer_restart(&rq->hrtick_timer);
  337. rq->hrtick_csd_pending = 0;
  338. raw_spin_unlock(&rq->lock);
  339. }
  340. /*
  341. * Called to set the hrtick timer state.
  342. *
  343. * called with rq->lock held and irqs disabled
  344. */
  345. void hrtick_start(struct rq *rq, u64 delay)
  346. {
  347. struct hrtimer *timer = &rq->hrtick_timer;
  348. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  349. hrtimer_set_expires(timer, time);
  350. if (rq == this_rq()) {
  351. hrtimer_restart(timer);
  352. } else if (!rq->hrtick_csd_pending) {
  353. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  354. rq->hrtick_csd_pending = 1;
  355. }
  356. }
  357. static int
  358. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  359. {
  360. int cpu = (int)(long)hcpu;
  361. switch (action) {
  362. case CPU_UP_CANCELED:
  363. case CPU_UP_CANCELED_FROZEN:
  364. case CPU_DOWN_PREPARE:
  365. case CPU_DOWN_PREPARE_FROZEN:
  366. case CPU_DEAD:
  367. case CPU_DEAD_FROZEN:
  368. hrtick_clear(cpu_rq(cpu));
  369. return NOTIFY_OK;
  370. }
  371. return NOTIFY_DONE;
  372. }
  373. static __init void init_hrtick(void)
  374. {
  375. hotcpu_notifier(hotplug_hrtick, 0);
  376. }
  377. #else
  378. /*
  379. * Called to set the hrtick timer state.
  380. *
  381. * called with rq->lock held and irqs disabled
  382. */
  383. void hrtick_start(struct rq *rq, u64 delay)
  384. {
  385. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  386. HRTIMER_MODE_REL_PINNED, 0);
  387. }
  388. static inline void init_hrtick(void)
  389. {
  390. }
  391. #endif /* CONFIG_SMP */
  392. static void init_rq_hrtick(struct rq *rq)
  393. {
  394. #ifdef CONFIG_SMP
  395. rq->hrtick_csd_pending = 0;
  396. rq->hrtick_csd.flags = 0;
  397. rq->hrtick_csd.func = __hrtick_start;
  398. rq->hrtick_csd.info = rq;
  399. #endif
  400. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  401. rq->hrtick_timer.function = hrtick;
  402. }
  403. #else /* CONFIG_SCHED_HRTICK */
  404. static inline void hrtick_clear(struct rq *rq)
  405. {
  406. }
  407. static inline void init_rq_hrtick(struct rq *rq)
  408. {
  409. }
  410. static inline void init_hrtick(void)
  411. {
  412. }
  413. #endif /* CONFIG_SCHED_HRTICK */
  414. /*
  415. * resched_task - mark a task 'to be rescheduled now'.
  416. *
  417. * On UP this means the setting of the need_resched flag, on SMP it
  418. * might also involve a cross-CPU call to trigger the scheduler on
  419. * the target CPU.
  420. */
  421. #ifdef CONFIG_SMP
  422. #ifndef tsk_is_polling
  423. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  424. #endif
  425. void resched_task(struct task_struct *p)
  426. {
  427. int cpu;
  428. assert_raw_spin_locked(&task_rq(p)->lock);
  429. if (test_tsk_need_resched(p))
  430. return;
  431. set_tsk_need_resched(p);
  432. cpu = task_cpu(p);
  433. if (cpu == smp_processor_id())
  434. return;
  435. /* NEED_RESCHED must be visible before we test polling */
  436. smp_mb();
  437. if (!tsk_is_polling(p))
  438. smp_send_reschedule(cpu);
  439. }
  440. void resched_cpu(int cpu)
  441. {
  442. struct rq *rq = cpu_rq(cpu);
  443. unsigned long flags;
  444. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  445. return;
  446. resched_task(cpu_curr(cpu));
  447. raw_spin_unlock_irqrestore(&rq->lock, flags);
  448. }
  449. #ifdef CONFIG_NO_HZ
  450. /*
  451. * In the semi idle case, use the nearest busy cpu for migrating timers
  452. * from an idle cpu. This is good for power-savings.
  453. *
  454. * We don't do similar optimization for completely idle system, as
  455. * selecting an idle cpu will add more delays to the timers than intended
  456. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  457. */
  458. int get_nohz_timer_target(void)
  459. {
  460. int cpu = smp_processor_id();
  461. int i;
  462. struct sched_domain *sd;
  463. rcu_read_lock();
  464. for_each_domain(cpu, sd) {
  465. for_each_cpu(i, sched_domain_span(sd)) {
  466. if (!idle_cpu(i)) {
  467. cpu = i;
  468. goto unlock;
  469. }
  470. }
  471. }
  472. unlock:
  473. rcu_read_unlock();
  474. return cpu;
  475. }
  476. /*
  477. * When add_timer_on() enqueues a timer into the timer wheel of an
  478. * idle CPU then this timer might expire before the next timer event
  479. * which is scheduled to wake up that CPU. In case of a completely
  480. * idle system the next event might even be infinite time into the
  481. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  482. * leaves the inner idle loop so the newly added timer is taken into
  483. * account when the CPU goes back to idle and evaluates the timer
  484. * wheel for the next timer event.
  485. */
  486. void wake_up_idle_cpu(int cpu)
  487. {
  488. struct rq *rq = cpu_rq(cpu);
  489. if (cpu == smp_processor_id())
  490. return;
  491. /*
  492. * This is safe, as this function is called with the timer
  493. * wheel base lock of (cpu) held. When the CPU is on the way
  494. * to idle and has not yet set rq->curr to idle then it will
  495. * be serialized on the timer wheel base lock and take the new
  496. * timer into account automatically.
  497. */
  498. if (rq->curr != rq->idle)
  499. return;
  500. /*
  501. * We can set TIF_RESCHED on the idle task of the other CPU
  502. * lockless. The worst case is that the other CPU runs the
  503. * idle task through an additional NOOP schedule()
  504. */
  505. set_tsk_need_resched(rq->idle);
  506. /* NEED_RESCHED must be visible before we test polling */
  507. smp_mb();
  508. if (!tsk_is_polling(rq->idle))
  509. smp_send_reschedule(cpu);
  510. }
  511. static inline bool got_nohz_idle_kick(void)
  512. {
  513. int cpu = smp_processor_id();
  514. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  515. }
  516. #else /* CONFIG_NO_HZ */
  517. static inline bool got_nohz_idle_kick(void)
  518. {
  519. return false;
  520. }
  521. #endif /* CONFIG_NO_HZ */
  522. void sched_avg_update(struct rq *rq)
  523. {
  524. s64 period = sched_avg_period();
  525. while ((s64)(rq->clock - rq->age_stamp) > period) {
  526. /*
  527. * Inline assembly required to prevent the compiler
  528. * optimising this loop into a divmod call.
  529. * See __iter_div_u64_rem() for another example of this.
  530. */
  531. asm("" : "+rm" (rq->age_stamp));
  532. rq->age_stamp += period;
  533. rq->rt_avg /= 2;
  534. }
  535. }
  536. #else /* !CONFIG_SMP */
  537. void resched_task(struct task_struct *p)
  538. {
  539. assert_raw_spin_locked(&task_rq(p)->lock);
  540. set_tsk_need_resched(p);
  541. }
  542. #endif /* CONFIG_SMP */
  543. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  544. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  545. /*
  546. * Iterate task_group tree rooted at *from, calling @down when first entering a
  547. * node and @up when leaving it for the final time.
  548. *
  549. * Caller must hold rcu_lock or sufficient equivalent.
  550. */
  551. int walk_tg_tree_from(struct task_group *from,
  552. tg_visitor down, tg_visitor up, void *data)
  553. {
  554. struct task_group *parent, *child;
  555. int ret;
  556. parent = from;
  557. down:
  558. ret = (*down)(parent, data);
  559. if (ret)
  560. goto out;
  561. list_for_each_entry_rcu(child, &parent->children, siblings) {
  562. parent = child;
  563. goto down;
  564. up:
  565. continue;
  566. }
  567. ret = (*up)(parent, data);
  568. if (ret || parent == from)
  569. goto out;
  570. child = parent;
  571. parent = parent->parent;
  572. if (parent)
  573. goto up;
  574. out:
  575. return ret;
  576. }
  577. int tg_nop(struct task_group *tg, void *data)
  578. {
  579. return 0;
  580. }
  581. #endif
  582. void update_cpu_load(struct rq *this_rq);
  583. static void set_load_weight(struct task_struct *p)
  584. {
  585. int prio = p->static_prio - MAX_RT_PRIO;
  586. struct load_weight *load = &p->se.load;
  587. /*
  588. * SCHED_IDLE tasks get minimal weight:
  589. */
  590. if (p->policy == SCHED_IDLE) {
  591. load->weight = scale_load(WEIGHT_IDLEPRIO);
  592. load->inv_weight = WMULT_IDLEPRIO;
  593. return;
  594. }
  595. load->weight = scale_load(prio_to_weight[prio]);
  596. load->inv_weight = prio_to_wmult[prio];
  597. }
  598. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  599. {
  600. update_rq_clock(rq);
  601. sched_info_queued(p);
  602. p->sched_class->enqueue_task(rq, p, flags);
  603. }
  604. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  605. {
  606. update_rq_clock(rq);
  607. sched_info_dequeued(p);
  608. p->sched_class->dequeue_task(rq, p, flags);
  609. }
  610. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  611. {
  612. if (task_contributes_to_load(p))
  613. rq->nr_uninterruptible--;
  614. enqueue_task(rq, p, flags);
  615. }
  616. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  617. {
  618. if (task_contributes_to_load(p))
  619. rq->nr_uninterruptible++;
  620. dequeue_task(rq, p, flags);
  621. }
  622. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  623. /*
  624. * There are no locks covering percpu hardirq/softirq time.
  625. * They are only modified in account_system_vtime, on corresponding CPU
  626. * with interrupts disabled. So, writes are safe.
  627. * They are read and saved off onto struct rq in update_rq_clock().
  628. * This may result in other CPU reading this CPU's irq time and can
  629. * race with irq/account_system_vtime on this CPU. We would either get old
  630. * or new value with a side effect of accounting a slice of irq time to wrong
  631. * task when irq is in progress while we read rq->clock. That is a worthy
  632. * compromise in place of having locks on each irq in account_system_time.
  633. */
  634. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  635. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  636. static DEFINE_PER_CPU(u64, irq_start_time);
  637. static int sched_clock_irqtime;
  638. void enable_sched_clock_irqtime(void)
  639. {
  640. sched_clock_irqtime = 1;
  641. }
  642. void disable_sched_clock_irqtime(void)
  643. {
  644. sched_clock_irqtime = 0;
  645. }
  646. #ifndef CONFIG_64BIT
  647. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  648. static inline void irq_time_write_begin(void)
  649. {
  650. __this_cpu_inc(irq_time_seq.sequence);
  651. smp_wmb();
  652. }
  653. static inline void irq_time_write_end(void)
  654. {
  655. smp_wmb();
  656. __this_cpu_inc(irq_time_seq.sequence);
  657. }
  658. static inline u64 irq_time_read(int cpu)
  659. {
  660. u64 irq_time;
  661. unsigned seq;
  662. do {
  663. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  664. irq_time = per_cpu(cpu_softirq_time, cpu) +
  665. per_cpu(cpu_hardirq_time, cpu);
  666. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  667. return irq_time;
  668. }
  669. #else /* CONFIG_64BIT */
  670. static inline void irq_time_write_begin(void)
  671. {
  672. }
  673. static inline void irq_time_write_end(void)
  674. {
  675. }
  676. static inline u64 irq_time_read(int cpu)
  677. {
  678. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  679. }
  680. #endif /* CONFIG_64BIT */
  681. /*
  682. * Called before incrementing preempt_count on {soft,}irq_enter
  683. * and before decrementing preempt_count on {soft,}irq_exit.
  684. */
  685. void account_system_vtime(struct task_struct *curr)
  686. {
  687. unsigned long flags;
  688. s64 delta;
  689. int cpu;
  690. if (!sched_clock_irqtime)
  691. return;
  692. local_irq_save(flags);
  693. cpu = smp_processor_id();
  694. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  695. __this_cpu_add(irq_start_time, delta);
  696. irq_time_write_begin();
  697. /*
  698. * We do not account for softirq time from ksoftirqd here.
  699. * We want to continue accounting softirq time to ksoftirqd thread
  700. * in that case, so as not to confuse scheduler with a special task
  701. * that do not consume any time, but still wants to run.
  702. */
  703. if (hardirq_count())
  704. __this_cpu_add(cpu_hardirq_time, delta);
  705. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  706. __this_cpu_add(cpu_softirq_time, delta);
  707. irq_time_write_end();
  708. local_irq_restore(flags);
  709. }
  710. EXPORT_SYMBOL_GPL(account_system_vtime);
  711. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  712. #ifdef CONFIG_PARAVIRT
  713. static inline u64 steal_ticks(u64 steal)
  714. {
  715. if (unlikely(steal > NSEC_PER_SEC))
  716. return div_u64(steal, TICK_NSEC);
  717. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  718. }
  719. #endif
  720. static void update_rq_clock_task(struct rq *rq, s64 delta)
  721. {
  722. /*
  723. * In theory, the compile should just see 0 here, and optimize out the call
  724. * to sched_rt_avg_update. But I don't trust it...
  725. */
  726. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  727. s64 steal = 0, irq_delta = 0;
  728. #endif
  729. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  730. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  731. /*
  732. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  733. * this case when a previous update_rq_clock() happened inside a
  734. * {soft,}irq region.
  735. *
  736. * When this happens, we stop ->clock_task and only update the
  737. * prev_irq_time stamp to account for the part that fit, so that a next
  738. * update will consume the rest. This ensures ->clock_task is
  739. * monotonic.
  740. *
  741. * It does however cause some slight miss-attribution of {soft,}irq
  742. * time, a more accurate solution would be to update the irq_time using
  743. * the current rq->clock timestamp, except that would require using
  744. * atomic ops.
  745. */
  746. if (irq_delta > delta)
  747. irq_delta = delta;
  748. rq->prev_irq_time += irq_delta;
  749. delta -= irq_delta;
  750. #endif
  751. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  752. if (static_branch((&paravirt_steal_rq_enabled))) {
  753. u64 st;
  754. steal = paravirt_steal_clock(cpu_of(rq));
  755. steal -= rq->prev_steal_time_rq;
  756. if (unlikely(steal > delta))
  757. steal = delta;
  758. st = steal_ticks(steal);
  759. steal = st * TICK_NSEC;
  760. rq->prev_steal_time_rq += steal;
  761. delta -= steal;
  762. }
  763. #endif
  764. rq->clock_task += delta;
  765. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  766. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  767. sched_rt_avg_update(rq, irq_delta + steal);
  768. #endif
  769. }
  770. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  771. static int irqtime_account_hi_update(void)
  772. {
  773. u64 *cpustat = kcpustat_this_cpu->cpustat;
  774. unsigned long flags;
  775. u64 latest_ns;
  776. int ret = 0;
  777. local_irq_save(flags);
  778. latest_ns = this_cpu_read(cpu_hardirq_time);
  779. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
  780. ret = 1;
  781. local_irq_restore(flags);
  782. return ret;
  783. }
  784. static int irqtime_account_si_update(void)
  785. {
  786. u64 *cpustat = kcpustat_this_cpu->cpustat;
  787. unsigned long flags;
  788. u64 latest_ns;
  789. int ret = 0;
  790. local_irq_save(flags);
  791. latest_ns = this_cpu_read(cpu_softirq_time);
  792. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
  793. ret = 1;
  794. local_irq_restore(flags);
  795. return ret;
  796. }
  797. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  798. #define sched_clock_irqtime (0)
  799. #endif
  800. void sched_set_stop_task(int cpu, struct task_struct *stop)
  801. {
  802. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  803. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  804. if (stop) {
  805. /*
  806. * Make it appear like a SCHED_FIFO task, its something
  807. * userspace knows about and won't get confused about.
  808. *
  809. * Also, it will make PI more or less work without too
  810. * much confusion -- but then, stop work should not
  811. * rely on PI working anyway.
  812. */
  813. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  814. stop->sched_class = &stop_sched_class;
  815. }
  816. cpu_rq(cpu)->stop = stop;
  817. if (old_stop) {
  818. /*
  819. * Reset it back to a normal scheduling class so that
  820. * it can die in pieces.
  821. */
  822. old_stop->sched_class = &rt_sched_class;
  823. }
  824. }
  825. /*
  826. * __normal_prio - return the priority that is based on the static prio
  827. */
  828. static inline int __normal_prio(struct task_struct *p)
  829. {
  830. return p->static_prio;
  831. }
  832. /*
  833. * Calculate the expected normal priority: i.e. priority
  834. * without taking RT-inheritance into account. Might be
  835. * boosted by interactivity modifiers. Changes upon fork,
  836. * setprio syscalls, and whenever the interactivity
  837. * estimator recalculates.
  838. */
  839. static inline int normal_prio(struct task_struct *p)
  840. {
  841. int prio;
  842. if (task_has_rt_policy(p))
  843. prio = MAX_RT_PRIO-1 - p->rt_priority;
  844. else
  845. prio = __normal_prio(p);
  846. return prio;
  847. }
  848. /*
  849. * Calculate the current priority, i.e. the priority
  850. * taken into account by the scheduler. This value might
  851. * be boosted by RT tasks, or might be boosted by
  852. * interactivity modifiers. Will be RT if the task got
  853. * RT-boosted. If not then it returns p->normal_prio.
  854. */
  855. static int effective_prio(struct task_struct *p)
  856. {
  857. p->normal_prio = normal_prio(p);
  858. /*
  859. * If we are RT tasks or we were boosted to RT priority,
  860. * keep the priority unchanged. Otherwise, update priority
  861. * to the normal priority:
  862. */
  863. if (!rt_prio(p->prio))
  864. return p->normal_prio;
  865. return p->prio;
  866. }
  867. /**
  868. * task_curr - is this task currently executing on a CPU?
  869. * @p: the task in question.
  870. */
  871. inline int task_curr(const struct task_struct *p)
  872. {
  873. return cpu_curr(task_cpu(p)) == p;
  874. }
  875. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  876. const struct sched_class *prev_class,
  877. int oldprio)
  878. {
  879. if (prev_class != p->sched_class) {
  880. if (prev_class->switched_from)
  881. prev_class->switched_from(rq, p);
  882. p->sched_class->switched_to(rq, p);
  883. } else if (oldprio != p->prio)
  884. p->sched_class->prio_changed(rq, p, oldprio);
  885. }
  886. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  887. {
  888. const struct sched_class *class;
  889. if (p->sched_class == rq->curr->sched_class) {
  890. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  891. } else {
  892. for_each_class(class) {
  893. if (class == rq->curr->sched_class)
  894. break;
  895. if (class == p->sched_class) {
  896. resched_task(rq->curr);
  897. break;
  898. }
  899. }
  900. }
  901. /*
  902. * A queue event has occurred, and we're going to schedule. In
  903. * this case, we can save a useless back to back clock update.
  904. */
  905. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  906. rq->skip_clock_update = 1;
  907. }
  908. #ifdef CONFIG_SMP
  909. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  910. {
  911. #ifdef CONFIG_SCHED_DEBUG
  912. /*
  913. * We should never call set_task_cpu() on a blocked task,
  914. * ttwu() will sort out the placement.
  915. */
  916. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  917. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  918. #ifdef CONFIG_LOCKDEP
  919. /*
  920. * The caller should hold either p->pi_lock or rq->lock, when changing
  921. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  922. *
  923. * sched_move_task() holds both and thus holding either pins the cgroup,
  924. * see set_task_rq().
  925. *
  926. * Furthermore, all task_rq users should acquire both locks, see
  927. * task_rq_lock().
  928. */
  929. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  930. lockdep_is_held(&task_rq(p)->lock)));
  931. #endif
  932. #endif
  933. trace_sched_migrate_task(p, new_cpu);
  934. if (task_cpu(p) != new_cpu) {
  935. p->se.nr_migrations++;
  936. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  937. }
  938. __set_task_cpu(p, new_cpu);
  939. }
  940. struct migration_arg {
  941. struct task_struct *task;
  942. int dest_cpu;
  943. };
  944. static int migration_cpu_stop(void *data);
  945. /*
  946. * wait_task_inactive - wait for a thread to unschedule.
  947. *
  948. * If @match_state is nonzero, it's the @p->state value just checked and
  949. * not expected to change. If it changes, i.e. @p might have woken up,
  950. * then return zero. When we succeed in waiting for @p to be off its CPU,
  951. * we return a positive number (its total switch count). If a second call
  952. * a short while later returns the same number, the caller can be sure that
  953. * @p has remained unscheduled the whole time.
  954. *
  955. * The caller must ensure that the task *will* unschedule sometime soon,
  956. * else this function might spin for a *long* time. This function can't
  957. * be called with interrupts off, or it may introduce deadlock with
  958. * smp_call_function() if an IPI is sent by the same process we are
  959. * waiting to become inactive.
  960. */
  961. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  962. {
  963. unsigned long flags;
  964. int running, on_rq;
  965. unsigned long ncsw;
  966. struct rq *rq;
  967. for (;;) {
  968. /*
  969. * We do the initial early heuristics without holding
  970. * any task-queue locks at all. We'll only try to get
  971. * the runqueue lock when things look like they will
  972. * work out!
  973. */
  974. rq = task_rq(p);
  975. /*
  976. * If the task is actively running on another CPU
  977. * still, just relax and busy-wait without holding
  978. * any locks.
  979. *
  980. * NOTE! Since we don't hold any locks, it's not
  981. * even sure that "rq" stays as the right runqueue!
  982. * But we don't care, since "task_running()" will
  983. * return false if the runqueue has changed and p
  984. * is actually now running somewhere else!
  985. */
  986. while (task_running(rq, p)) {
  987. if (match_state && unlikely(p->state != match_state))
  988. return 0;
  989. cpu_relax();
  990. }
  991. /*
  992. * Ok, time to look more closely! We need the rq
  993. * lock now, to be *sure*. If we're wrong, we'll
  994. * just go back and repeat.
  995. */
  996. rq = task_rq_lock(p, &flags);
  997. trace_sched_wait_task(p);
  998. running = task_running(rq, p);
  999. on_rq = p->on_rq;
  1000. ncsw = 0;
  1001. if (!match_state || p->state == match_state)
  1002. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1003. task_rq_unlock(rq, p, &flags);
  1004. /*
  1005. * If it changed from the expected state, bail out now.
  1006. */
  1007. if (unlikely(!ncsw))
  1008. break;
  1009. /*
  1010. * Was it really running after all now that we
  1011. * checked with the proper locks actually held?
  1012. *
  1013. * Oops. Go back and try again..
  1014. */
  1015. if (unlikely(running)) {
  1016. cpu_relax();
  1017. continue;
  1018. }
  1019. /*
  1020. * It's not enough that it's not actively running,
  1021. * it must be off the runqueue _entirely_, and not
  1022. * preempted!
  1023. *
  1024. * So if it was still runnable (but just not actively
  1025. * running right now), it's preempted, and we should
  1026. * yield - it could be a while.
  1027. */
  1028. if (unlikely(on_rq)) {
  1029. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1030. set_current_state(TASK_UNINTERRUPTIBLE);
  1031. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1032. continue;
  1033. }
  1034. /*
  1035. * Ahh, all good. It wasn't running, and it wasn't
  1036. * runnable, which means that it will never become
  1037. * running in the future either. We're all done!
  1038. */
  1039. break;
  1040. }
  1041. return ncsw;
  1042. }
  1043. /***
  1044. * kick_process - kick a running thread to enter/exit the kernel
  1045. * @p: the to-be-kicked thread
  1046. *
  1047. * Cause a process which is running on another CPU to enter
  1048. * kernel-mode, without any delay. (to get signals handled.)
  1049. *
  1050. * NOTE: this function doesn't have to take the runqueue lock,
  1051. * because all it wants to ensure is that the remote task enters
  1052. * the kernel. If the IPI races and the task has been migrated
  1053. * to another CPU then no harm is done and the purpose has been
  1054. * achieved as well.
  1055. */
  1056. void kick_process(struct task_struct *p)
  1057. {
  1058. int cpu;
  1059. preempt_disable();
  1060. cpu = task_cpu(p);
  1061. if ((cpu != smp_processor_id()) && task_curr(p))
  1062. smp_send_reschedule(cpu);
  1063. preempt_enable();
  1064. }
  1065. EXPORT_SYMBOL_GPL(kick_process);
  1066. #endif /* CONFIG_SMP */
  1067. #ifdef CONFIG_SMP
  1068. /*
  1069. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1070. */
  1071. static int select_fallback_rq(int cpu, struct task_struct *p)
  1072. {
  1073. int dest_cpu;
  1074. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1075. /* Look for allowed, online CPU in same node. */
  1076. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1077. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1078. return dest_cpu;
  1079. /* Any allowed, online CPU? */
  1080. dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
  1081. if (dest_cpu < nr_cpu_ids)
  1082. return dest_cpu;
  1083. /* No more Mr. Nice Guy. */
  1084. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1085. /*
  1086. * Don't tell them about moving exiting tasks or
  1087. * kernel threads (both mm NULL), since they never
  1088. * leave kernel.
  1089. */
  1090. if (p->mm && printk_ratelimit()) {
  1091. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  1092. task_pid_nr(p), p->comm, cpu);
  1093. }
  1094. return dest_cpu;
  1095. }
  1096. /*
  1097. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1098. */
  1099. static inline
  1100. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1101. {
  1102. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1103. /*
  1104. * In order not to call set_task_cpu() on a blocking task we need
  1105. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1106. * cpu.
  1107. *
  1108. * Since this is common to all placement strategies, this lives here.
  1109. *
  1110. * [ this allows ->select_task() to simply return task_cpu(p) and
  1111. * not worry about this generic constraint ]
  1112. */
  1113. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1114. !cpu_online(cpu)))
  1115. cpu = select_fallback_rq(task_cpu(p), p);
  1116. return cpu;
  1117. }
  1118. static void update_avg(u64 *avg, u64 sample)
  1119. {
  1120. s64 diff = sample - *avg;
  1121. *avg += diff >> 3;
  1122. }
  1123. #endif
  1124. static void
  1125. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1126. {
  1127. #ifdef CONFIG_SCHEDSTATS
  1128. struct rq *rq = this_rq();
  1129. #ifdef CONFIG_SMP
  1130. int this_cpu = smp_processor_id();
  1131. if (cpu == this_cpu) {
  1132. schedstat_inc(rq, ttwu_local);
  1133. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1134. } else {
  1135. struct sched_domain *sd;
  1136. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1137. rcu_read_lock();
  1138. for_each_domain(this_cpu, sd) {
  1139. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1140. schedstat_inc(sd, ttwu_wake_remote);
  1141. break;
  1142. }
  1143. }
  1144. rcu_read_unlock();
  1145. }
  1146. if (wake_flags & WF_MIGRATED)
  1147. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1148. #endif /* CONFIG_SMP */
  1149. schedstat_inc(rq, ttwu_count);
  1150. schedstat_inc(p, se.statistics.nr_wakeups);
  1151. if (wake_flags & WF_SYNC)
  1152. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1153. #endif /* CONFIG_SCHEDSTATS */
  1154. }
  1155. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1156. {
  1157. activate_task(rq, p, en_flags);
  1158. p->on_rq = 1;
  1159. /* if a worker is waking up, notify workqueue */
  1160. if (p->flags & PF_WQ_WORKER)
  1161. wq_worker_waking_up(p, cpu_of(rq));
  1162. }
  1163. /*
  1164. * Mark the task runnable and perform wakeup-preemption.
  1165. */
  1166. static void
  1167. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1168. {
  1169. trace_sched_wakeup(p, true);
  1170. check_preempt_curr(rq, p, wake_flags);
  1171. p->state = TASK_RUNNING;
  1172. #ifdef CONFIG_SMP
  1173. if (p->sched_class->task_woken)
  1174. p->sched_class->task_woken(rq, p);
  1175. if (rq->idle_stamp) {
  1176. u64 delta = rq->clock - rq->idle_stamp;
  1177. u64 max = 2*sysctl_sched_migration_cost;
  1178. if (delta > max)
  1179. rq->avg_idle = max;
  1180. else
  1181. update_avg(&rq->avg_idle, delta);
  1182. rq->idle_stamp = 0;
  1183. }
  1184. #endif
  1185. }
  1186. static void
  1187. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1188. {
  1189. #ifdef CONFIG_SMP
  1190. if (p->sched_contributes_to_load)
  1191. rq->nr_uninterruptible--;
  1192. #endif
  1193. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1194. ttwu_do_wakeup(rq, p, wake_flags);
  1195. }
  1196. /*
  1197. * Called in case the task @p isn't fully descheduled from its runqueue,
  1198. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1199. * since all we need to do is flip p->state to TASK_RUNNING, since
  1200. * the task is still ->on_rq.
  1201. */
  1202. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1203. {
  1204. struct rq *rq;
  1205. int ret = 0;
  1206. rq = __task_rq_lock(p);
  1207. if (p->on_rq) {
  1208. ttwu_do_wakeup(rq, p, wake_flags);
  1209. ret = 1;
  1210. }
  1211. __task_rq_unlock(rq);
  1212. return ret;
  1213. }
  1214. #ifdef CONFIG_SMP
  1215. static void sched_ttwu_pending(void)
  1216. {
  1217. struct rq *rq = this_rq();
  1218. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1219. struct task_struct *p;
  1220. raw_spin_lock(&rq->lock);
  1221. while (llist) {
  1222. p = llist_entry(llist, struct task_struct, wake_entry);
  1223. llist = llist_next(llist);
  1224. ttwu_do_activate(rq, p, 0);
  1225. }
  1226. raw_spin_unlock(&rq->lock);
  1227. }
  1228. void scheduler_ipi(void)
  1229. {
  1230. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1231. return;
  1232. /*
  1233. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1234. * traditionally all their work was done from the interrupt return
  1235. * path. Now that we actually do some work, we need to make sure
  1236. * we do call them.
  1237. *
  1238. * Some archs already do call them, luckily irq_enter/exit nest
  1239. * properly.
  1240. *
  1241. * Arguably we should visit all archs and update all handlers,
  1242. * however a fair share of IPIs are still resched only so this would
  1243. * somewhat pessimize the simple resched case.
  1244. */
  1245. irq_enter();
  1246. sched_ttwu_pending();
  1247. /*
  1248. * Check if someone kicked us for doing the nohz idle load balance.
  1249. */
  1250. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1251. this_rq()->idle_balance = 1;
  1252. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1253. }
  1254. irq_exit();
  1255. }
  1256. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1257. {
  1258. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1259. smp_send_reschedule(cpu);
  1260. }
  1261. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1262. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  1263. {
  1264. struct rq *rq;
  1265. int ret = 0;
  1266. rq = __task_rq_lock(p);
  1267. if (p->on_cpu) {
  1268. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1269. ttwu_do_wakeup(rq, p, wake_flags);
  1270. ret = 1;
  1271. }
  1272. __task_rq_unlock(rq);
  1273. return ret;
  1274. }
  1275. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1276. static inline int ttwu_share_cache(int this_cpu, int that_cpu)
  1277. {
  1278. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1279. }
  1280. #endif /* CONFIG_SMP */
  1281. static void ttwu_queue(struct task_struct *p, int cpu)
  1282. {
  1283. struct rq *rq = cpu_rq(cpu);
  1284. #if defined(CONFIG_SMP)
  1285. if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
  1286. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1287. ttwu_queue_remote(p, cpu);
  1288. return;
  1289. }
  1290. #endif
  1291. raw_spin_lock(&rq->lock);
  1292. ttwu_do_activate(rq, p, 0);
  1293. raw_spin_unlock(&rq->lock);
  1294. }
  1295. /**
  1296. * try_to_wake_up - wake up a thread
  1297. * @p: the thread to be awakened
  1298. * @state: the mask of task states that can be woken
  1299. * @wake_flags: wake modifier flags (WF_*)
  1300. *
  1301. * Put it on the run-queue if it's not already there. The "current"
  1302. * thread is always on the run-queue (except when the actual
  1303. * re-schedule is in progress), and as such you're allowed to do
  1304. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1305. * runnable without the overhead of this.
  1306. *
  1307. * Returns %true if @p was woken up, %false if it was already running
  1308. * or @state didn't match @p's state.
  1309. */
  1310. static int
  1311. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1312. {
  1313. unsigned long flags;
  1314. int cpu, success = 0;
  1315. smp_wmb();
  1316. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1317. if (!(p->state & state))
  1318. goto out;
  1319. success = 1; /* we're going to change ->state */
  1320. cpu = task_cpu(p);
  1321. if (p->on_rq && ttwu_remote(p, wake_flags))
  1322. goto stat;
  1323. #ifdef CONFIG_SMP
  1324. /*
  1325. * If the owning (remote) cpu is still in the middle of schedule() with
  1326. * this task as prev, wait until its done referencing the task.
  1327. */
  1328. while (p->on_cpu) {
  1329. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1330. /*
  1331. * In case the architecture enables interrupts in
  1332. * context_switch(), we cannot busy wait, since that
  1333. * would lead to deadlocks when an interrupt hits and
  1334. * tries to wake up @prev. So bail and do a complete
  1335. * remote wakeup.
  1336. */
  1337. if (ttwu_activate_remote(p, wake_flags))
  1338. goto stat;
  1339. #else
  1340. cpu_relax();
  1341. #endif
  1342. }
  1343. /*
  1344. * Pairs with the smp_wmb() in finish_lock_switch().
  1345. */
  1346. smp_rmb();
  1347. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1348. p->state = TASK_WAKING;
  1349. if (p->sched_class->task_waking)
  1350. p->sched_class->task_waking(p);
  1351. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1352. if (task_cpu(p) != cpu) {
  1353. wake_flags |= WF_MIGRATED;
  1354. set_task_cpu(p, cpu);
  1355. }
  1356. #endif /* CONFIG_SMP */
  1357. ttwu_queue(p, cpu);
  1358. stat:
  1359. ttwu_stat(p, cpu, wake_flags);
  1360. out:
  1361. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1362. return success;
  1363. }
  1364. /**
  1365. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1366. * @p: the thread to be awakened
  1367. *
  1368. * Put @p on the run-queue if it's not already there. The caller must
  1369. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1370. * the current task.
  1371. */
  1372. static void try_to_wake_up_local(struct task_struct *p)
  1373. {
  1374. struct rq *rq = task_rq(p);
  1375. BUG_ON(rq != this_rq());
  1376. BUG_ON(p == current);
  1377. lockdep_assert_held(&rq->lock);
  1378. if (!raw_spin_trylock(&p->pi_lock)) {
  1379. raw_spin_unlock(&rq->lock);
  1380. raw_spin_lock(&p->pi_lock);
  1381. raw_spin_lock(&rq->lock);
  1382. }
  1383. if (!(p->state & TASK_NORMAL))
  1384. goto out;
  1385. if (!p->on_rq)
  1386. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1387. ttwu_do_wakeup(rq, p, 0);
  1388. ttwu_stat(p, smp_processor_id(), 0);
  1389. out:
  1390. raw_spin_unlock(&p->pi_lock);
  1391. }
  1392. /**
  1393. * wake_up_process - Wake up a specific process
  1394. * @p: The process to be woken up.
  1395. *
  1396. * Attempt to wake up the nominated process and move it to the set of runnable
  1397. * processes. Returns 1 if the process was woken up, 0 if it was already
  1398. * running.
  1399. *
  1400. * It may be assumed that this function implies a write memory barrier before
  1401. * changing the task state if and only if any tasks are woken up.
  1402. */
  1403. int wake_up_process(struct task_struct *p)
  1404. {
  1405. return try_to_wake_up(p, TASK_ALL, 0);
  1406. }
  1407. EXPORT_SYMBOL(wake_up_process);
  1408. int wake_up_state(struct task_struct *p, unsigned int state)
  1409. {
  1410. return try_to_wake_up(p, state, 0);
  1411. }
  1412. /*
  1413. * Perform scheduler related setup for a newly forked process p.
  1414. * p is forked by current.
  1415. *
  1416. * __sched_fork() is basic setup used by init_idle() too:
  1417. */
  1418. static void __sched_fork(struct task_struct *p)
  1419. {
  1420. p->on_rq = 0;
  1421. p->se.on_rq = 0;
  1422. p->se.exec_start = 0;
  1423. p->se.sum_exec_runtime = 0;
  1424. p->se.prev_sum_exec_runtime = 0;
  1425. p->se.nr_migrations = 0;
  1426. p->se.vruntime = 0;
  1427. INIT_LIST_HEAD(&p->se.group_node);
  1428. #ifdef CONFIG_SCHEDSTATS
  1429. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1430. #endif
  1431. INIT_LIST_HEAD(&p->rt.run_list);
  1432. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1433. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1434. #endif
  1435. }
  1436. /*
  1437. * fork()/clone()-time setup:
  1438. */
  1439. void sched_fork(struct task_struct *p)
  1440. {
  1441. unsigned long flags;
  1442. int cpu = get_cpu();
  1443. __sched_fork(p);
  1444. /*
  1445. * We mark the process as running here. This guarantees that
  1446. * nobody will actually run it, and a signal or other external
  1447. * event cannot wake it up and insert it on the runqueue either.
  1448. */
  1449. p->state = TASK_RUNNING;
  1450. /*
  1451. * Make sure we do not leak PI boosting priority to the child.
  1452. */
  1453. p->prio = current->normal_prio;
  1454. /*
  1455. * Revert to default priority/policy on fork if requested.
  1456. */
  1457. if (unlikely(p->sched_reset_on_fork)) {
  1458. if (task_has_rt_policy(p)) {
  1459. p->policy = SCHED_NORMAL;
  1460. p->static_prio = NICE_TO_PRIO(0);
  1461. p->rt_priority = 0;
  1462. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1463. p->static_prio = NICE_TO_PRIO(0);
  1464. p->prio = p->normal_prio = __normal_prio(p);
  1465. set_load_weight(p);
  1466. /*
  1467. * We don't need the reset flag anymore after the fork. It has
  1468. * fulfilled its duty:
  1469. */
  1470. p->sched_reset_on_fork = 0;
  1471. }
  1472. if (!rt_prio(p->prio))
  1473. p->sched_class = &fair_sched_class;
  1474. if (p->sched_class->task_fork)
  1475. p->sched_class->task_fork(p);
  1476. /*
  1477. * The child is not yet in the pid-hash so no cgroup attach races,
  1478. * and the cgroup is pinned to this child due to cgroup_fork()
  1479. * is ran before sched_fork().
  1480. *
  1481. * Silence PROVE_RCU.
  1482. */
  1483. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1484. set_task_cpu(p, cpu);
  1485. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1486. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1487. if (likely(sched_info_on()))
  1488. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1489. #endif
  1490. #if defined(CONFIG_SMP)
  1491. p->on_cpu = 0;
  1492. #endif
  1493. #ifdef CONFIG_PREEMPT_COUNT
  1494. /* Want to start with kernel preemption disabled. */
  1495. task_thread_info(p)->preempt_count = 1;
  1496. #endif
  1497. #ifdef CONFIG_SMP
  1498. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1499. #endif
  1500. put_cpu();
  1501. }
  1502. /*
  1503. * wake_up_new_task - wake up a newly created task for the first time.
  1504. *
  1505. * This function will do some initial scheduler statistics housekeeping
  1506. * that must be done for every newly created context, then puts the task
  1507. * on the runqueue and wakes it.
  1508. */
  1509. void wake_up_new_task(struct task_struct *p)
  1510. {
  1511. unsigned long flags;
  1512. struct rq *rq;
  1513. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1514. #ifdef CONFIG_SMP
  1515. /*
  1516. * Fork balancing, do it here and not earlier because:
  1517. * - cpus_allowed can change in the fork path
  1518. * - any previously selected cpu might disappear through hotplug
  1519. */
  1520. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1521. #endif
  1522. rq = __task_rq_lock(p);
  1523. activate_task(rq, p, 0);
  1524. p->on_rq = 1;
  1525. trace_sched_wakeup_new(p, true);
  1526. check_preempt_curr(rq, p, WF_FORK);
  1527. #ifdef CONFIG_SMP
  1528. if (p->sched_class->task_woken)
  1529. p->sched_class->task_woken(rq, p);
  1530. #endif
  1531. task_rq_unlock(rq, p, &flags);
  1532. }
  1533. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1534. /**
  1535. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1536. * @notifier: notifier struct to register
  1537. */
  1538. void preempt_notifier_register(struct preempt_notifier *notifier)
  1539. {
  1540. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1541. }
  1542. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1543. /**
  1544. * preempt_notifier_unregister - no longer interested in preemption notifications
  1545. * @notifier: notifier struct to unregister
  1546. *
  1547. * This is safe to call from within a preemption notifier.
  1548. */
  1549. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1550. {
  1551. hlist_del(&notifier->link);
  1552. }
  1553. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1554. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1555. {
  1556. struct preempt_notifier *notifier;
  1557. struct hlist_node *node;
  1558. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1559. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1560. }
  1561. static void
  1562. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1563. struct task_struct *next)
  1564. {
  1565. struct preempt_notifier *notifier;
  1566. struct hlist_node *node;
  1567. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1568. notifier->ops->sched_out(notifier, next);
  1569. }
  1570. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1571. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1572. {
  1573. }
  1574. static void
  1575. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1576. struct task_struct *next)
  1577. {
  1578. }
  1579. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1580. /**
  1581. * prepare_task_switch - prepare to switch tasks
  1582. * @rq: the runqueue preparing to switch
  1583. * @prev: the current task that is being switched out
  1584. * @next: the task we are going to switch to.
  1585. *
  1586. * This is called with the rq lock held and interrupts off. It must
  1587. * be paired with a subsequent finish_task_switch after the context
  1588. * switch.
  1589. *
  1590. * prepare_task_switch sets up locking and calls architecture specific
  1591. * hooks.
  1592. */
  1593. static inline void
  1594. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1595. struct task_struct *next)
  1596. {
  1597. sched_info_switch(prev, next);
  1598. perf_event_task_sched_out(prev, next);
  1599. fire_sched_out_preempt_notifiers(prev, next);
  1600. prepare_lock_switch(rq, next);
  1601. prepare_arch_switch(next);
  1602. trace_sched_switch(prev, next);
  1603. }
  1604. /**
  1605. * finish_task_switch - clean up after a task-switch
  1606. * @rq: runqueue associated with task-switch
  1607. * @prev: the thread we just switched away from.
  1608. *
  1609. * finish_task_switch must be called after the context switch, paired
  1610. * with a prepare_task_switch call before the context switch.
  1611. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1612. * and do any other architecture-specific cleanup actions.
  1613. *
  1614. * Note that we may have delayed dropping an mm in context_switch(). If
  1615. * so, we finish that here outside of the runqueue lock. (Doing it
  1616. * with the lock held can cause deadlocks; see schedule() for
  1617. * details.)
  1618. */
  1619. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1620. __releases(rq->lock)
  1621. {
  1622. struct mm_struct *mm = rq->prev_mm;
  1623. long prev_state;
  1624. rq->prev_mm = NULL;
  1625. /*
  1626. * A task struct has one reference for the use as "current".
  1627. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1628. * schedule one last time. The schedule call will never return, and
  1629. * the scheduled task must drop that reference.
  1630. * The test for TASK_DEAD must occur while the runqueue locks are
  1631. * still held, otherwise prev could be scheduled on another cpu, die
  1632. * there before we look at prev->state, and then the reference would
  1633. * be dropped twice.
  1634. * Manfred Spraul <manfred@colorfullife.com>
  1635. */
  1636. prev_state = prev->state;
  1637. finish_arch_switch(prev);
  1638. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1639. local_irq_disable();
  1640. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1641. perf_event_task_sched_in(prev, current);
  1642. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1643. local_irq_enable();
  1644. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1645. finish_lock_switch(rq, prev);
  1646. trace_sched_stat_sleeptime(current, rq->clock);
  1647. fire_sched_in_preempt_notifiers(current);
  1648. if (mm)
  1649. mmdrop(mm);
  1650. if (unlikely(prev_state == TASK_DEAD)) {
  1651. /*
  1652. * Remove function-return probe instances associated with this
  1653. * task and put them back on the free list.
  1654. */
  1655. kprobe_flush_task(prev);
  1656. put_task_struct(prev);
  1657. }
  1658. }
  1659. #ifdef CONFIG_SMP
  1660. /* assumes rq->lock is held */
  1661. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1662. {
  1663. if (prev->sched_class->pre_schedule)
  1664. prev->sched_class->pre_schedule(rq, prev);
  1665. }
  1666. /* rq->lock is NOT held, but preemption is disabled */
  1667. static inline void post_schedule(struct rq *rq)
  1668. {
  1669. if (rq->post_schedule) {
  1670. unsigned long flags;
  1671. raw_spin_lock_irqsave(&rq->lock, flags);
  1672. if (rq->curr->sched_class->post_schedule)
  1673. rq->curr->sched_class->post_schedule(rq);
  1674. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1675. rq->post_schedule = 0;
  1676. }
  1677. }
  1678. #else
  1679. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1680. {
  1681. }
  1682. static inline void post_schedule(struct rq *rq)
  1683. {
  1684. }
  1685. #endif
  1686. /**
  1687. * schedule_tail - first thing a freshly forked thread must call.
  1688. * @prev: the thread we just switched away from.
  1689. */
  1690. asmlinkage void schedule_tail(struct task_struct *prev)
  1691. __releases(rq->lock)
  1692. {
  1693. struct rq *rq = this_rq();
  1694. finish_task_switch(rq, prev);
  1695. /*
  1696. * FIXME: do we need to worry about rq being invalidated by the
  1697. * task_switch?
  1698. */
  1699. post_schedule(rq);
  1700. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1701. /* In this case, finish_task_switch does not reenable preemption */
  1702. preempt_enable();
  1703. #endif
  1704. if (current->set_child_tid)
  1705. put_user(task_pid_vnr(current), current->set_child_tid);
  1706. }
  1707. /*
  1708. * context_switch - switch to the new MM and the new
  1709. * thread's register state.
  1710. */
  1711. static inline void
  1712. context_switch(struct rq *rq, struct task_struct *prev,
  1713. struct task_struct *next)
  1714. {
  1715. struct mm_struct *mm, *oldmm;
  1716. prepare_task_switch(rq, prev, next);
  1717. mm = next->mm;
  1718. oldmm = prev->active_mm;
  1719. /*
  1720. * For paravirt, this is coupled with an exit in switch_to to
  1721. * combine the page table reload and the switch backend into
  1722. * one hypercall.
  1723. */
  1724. arch_start_context_switch(prev);
  1725. if (!mm) {
  1726. next->active_mm = oldmm;
  1727. atomic_inc(&oldmm->mm_count);
  1728. enter_lazy_tlb(oldmm, next);
  1729. } else
  1730. switch_mm(oldmm, mm, next);
  1731. if (!prev->mm) {
  1732. prev->active_mm = NULL;
  1733. rq->prev_mm = oldmm;
  1734. }
  1735. /*
  1736. * Since the runqueue lock will be released by the next
  1737. * task (which is an invalid locking op but in the case
  1738. * of the scheduler it's an obvious special-case), so we
  1739. * do an early lockdep release here:
  1740. */
  1741. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1742. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1743. #endif
  1744. /* Here we just switch the register state and the stack. */
  1745. switch_to(prev, next, prev);
  1746. barrier();
  1747. /*
  1748. * this_rq must be evaluated again because prev may have moved
  1749. * CPUs since it called schedule(), thus the 'rq' on its stack
  1750. * frame will be invalid.
  1751. */
  1752. finish_task_switch(this_rq(), prev);
  1753. }
  1754. /*
  1755. * nr_running, nr_uninterruptible and nr_context_switches:
  1756. *
  1757. * externally visible scheduler statistics: current number of runnable
  1758. * threads, current number of uninterruptible-sleeping threads, total
  1759. * number of context switches performed since bootup.
  1760. */
  1761. unsigned long nr_running(void)
  1762. {
  1763. unsigned long i, sum = 0;
  1764. for_each_online_cpu(i)
  1765. sum += cpu_rq(i)->nr_running;
  1766. return sum;
  1767. }
  1768. unsigned long nr_uninterruptible(void)
  1769. {
  1770. unsigned long i, sum = 0;
  1771. for_each_possible_cpu(i)
  1772. sum += cpu_rq(i)->nr_uninterruptible;
  1773. /*
  1774. * Since we read the counters lockless, it might be slightly
  1775. * inaccurate. Do not allow it to go below zero though:
  1776. */
  1777. if (unlikely((long)sum < 0))
  1778. sum = 0;
  1779. return sum;
  1780. }
  1781. unsigned long long nr_context_switches(void)
  1782. {
  1783. int i;
  1784. unsigned long long sum = 0;
  1785. for_each_possible_cpu(i)
  1786. sum += cpu_rq(i)->nr_switches;
  1787. return sum;
  1788. }
  1789. unsigned long nr_iowait(void)
  1790. {
  1791. unsigned long i, sum = 0;
  1792. for_each_possible_cpu(i)
  1793. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1794. return sum;
  1795. }
  1796. unsigned long nr_iowait_cpu(int cpu)
  1797. {
  1798. struct rq *this = cpu_rq(cpu);
  1799. return atomic_read(&this->nr_iowait);
  1800. }
  1801. unsigned long this_cpu_load(void)
  1802. {
  1803. struct rq *this = this_rq();
  1804. return this->cpu_load[0];
  1805. }
  1806. /* Variables and functions for calc_load */
  1807. static atomic_long_t calc_load_tasks;
  1808. static unsigned long calc_load_update;
  1809. unsigned long avenrun[3];
  1810. EXPORT_SYMBOL(avenrun);
  1811. static long calc_load_fold_active(struct rq *this_rq)
  1812. {
  1813. long nr_active, delta = 0;
  1814. nr_active = this_rq->nr_running;
  1815. nr_active += (long) this_rq->nr_uninterruptible;
  1816. if (nr_active != this_rq->calc_load_active) {
  1817. delta = nr_active - this_rq->calc_load_active;
  1818. this_rq->calc_load_active = nr_active;
  1819. }
  1820. return delta;
  1821. }
  1822. static unsigned long
  1823. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1824. {
  1825. load *= exp;
  1826. load += active * (FIXED_1 - exp);
  1827. load += 1UL << (FSHIFT - 1);
  1828. return load >> FSHIFT;
  1829. }
  1830. #ifdef CONFIG_NO_HZ
  1831. /*
  1832. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  1833. *
  1834. * When making the ILB scale, we should try to pull this in as well.
  1835. */
  1836. static atomic_long_t calc_load_tasks_idle;
  1837. void calc_load_account_idle(struct rq *this_rq)
  1838. {
  1839. long delta;
  1840. delta = calc_load_fold_active(this_rq);
  1841. if (delta)
  1842. atomic_long_add(delta, &calc_load_tasks_idle);
  1843. }
  1844. static long calc_load_fold_idle(void)
  1845. {
  1846. long delta = 0;
  1847. /*
  1848. * Its got a race, we don't care...
  1849. */
  1850. if (atomic_long_read(&calc_load_tasks_idle))
  1851. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  1852. return delta;
  1853. }
  1854. /**
  1855. * fixed_power_int - compute: x^n, in O(log n) time
  1856. *
  1857. * @x: base of the power
  1858. * @frac_bits: fractional bits of @x
  1859. * @n: power to raise @x to.
  1860. *
  1861. * By exploiting the relation between the definition of the natural power
  1862. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1863. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1864. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1865. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1866. * of course trivially computable in O(log_2 n), the length of our binary
  1867. * vector.
  1868. */
  1869. static unsigned long
  1870. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1871. {
  1872. unsigned long result = 1UL << frac_bits;
  1873. if (n) for (;;) {
  1874. if (n & 1) {
  1875. result *= x;
  1876. result += 1UL << (frac_bits - 1);
  1877. result >>= frac_bits;
  1878. }
  1879. n >>= 1;
  1880. if (!n)
  1881. break;
  1882. x *= x;
  1883. x += 1UL << (frac_bits - 1);
  1884. x >>= frac_bits;
  1885. }
  1886. return result;
  1887. }
  1888. /*
  1889. * a1 = a0 * e + a * (1 - e)
  1890. *
  1891. * a2 = a1 * e + a * (1 - e)
  1892. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1893. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1894. *
  1895. * a3 = a2 * e + a * (1 - e)
  1896. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1897. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1898. *
  1899. * ...
  1900. *
  1901. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1902. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1903. * = a0 * e^n + a * (1 - e^n)
  1904. *
  1905. * [1] application of the geometric series:
  1906. *
  1907. * n 1 - x^(n+1)
  1908. * S_n := \Sum x^i = -------------
  1909. * i=0 1 - x
  1910. */
  1911. static unsigned long
  1912. calc_load_n(unsigned long load, unsigned long exp,
  1913. unsigned long active, unsigned int n)
  1914. {
  1915. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1916. }
  1917. /*
  1918. * NO_HZ can leave us missing all per-cpu ticks calling
  1919. * calc_load_account_active(), but since an idle CPU folds its delta into
  1920. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1921. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1922. *
  1923. * Once we've updated the global active value, we need to apply the exponential
  1924. * weights adjusted to the number of cycles missed.
  1925. */
  1926. static void calc_global_nohz(unsigned long ticks)
  1927. {
  1928. long delta, active, n;
  1929. if (time_before(jiffies, calc_load_update))
  1930. return;
  1931. /*
  1932. * If we crossed a calc_load_update boundary, make sure to fold
  1933. * any pending idle changes, the respective CPUs might have
  1934. * missed the tick driven calc_load_account_active() update
  1935. * due to NO_HZ.
  1936. */
  1937. delta = calc_load_fold_idle();
  1938. if (delta)
  1939. atomic_long_add(delta, &calc_load_tasks);
  1940. /*
  1941. * If we were idle for multiple load cycles, apply them.
  1942. */
  1943. if (ticks >= LOAD_FREQ) {
  1944. n = ticks / LOAD_FREQ;
  1945. active = atomic_long_read(&calc_load_tasks);
  1946. active = active > 0 ? active * FIXED_1 : 0;
  1947. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  1948. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  1949. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  1950. calc_load_update += n * LOAD_FREQ;
  1951. }
  1952. /*
  1953. * Its possible the remainder of the above division also crosses
  1954. * a LOAD_FREQ period, the regular check in calc_global_load()
  1955. * which comes after this will take care of that.
  1956. *
  1957. * Consider us being 11 ticks before a cycle completion, and us
  1958. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  1959. * age us 4 cycles, and the test in calc_global_load() will
  1960. * pick up the final one.
  1961. */
  1962. }
  1963. #else
  1964. void calc_load_account_idle(struct rq *this_rq)
  1965. {
  1966. }
  1967. static inline long calc_load_fold_idle(void)
  1968. {
  1969. return 0;
  1970. }
  1971. static void calc_global_nohz(unsigned long ticks)
  1972. {
  1973. }
  1974. #endif
  1975. /**
  1976. * get_avenrun - get the load average array
  1977. * @loads: pointer to dest load array
  1978. * @offset: offset to add
  1979. * @shift: shift count to shift the result left
  1980. *
  1981. * These values are estimates at best, so no need for locking.
  1982. */
  1983. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1984. {
  1985. loads[0] = (avenrun[0] + offset) << shift;
  1986. loads[1] = (avenrun[1] + offset) << shift;
  1987. loads[2] = (avenrun[2] + offset) << shift;
  1988. }
  1989. /*
  1990. * calc_load - update the avenrun load estimates 10 ticks after the
  1991. * CPUs have updated calc_load_tasks.
  1992. */
  1993. void calc_global_load(unsigned long ticks)
  1994. {
  1995. long active;
  1996. calc_global_nohz(ticks);
  1997. if (time_before(jiffies, calc_load_update + 10))
  1998. return;
  1999. active = atomic_long_read(&calc_load_tasks);
  2000. active = active > 0 ? active * FIXED_1 : 0;
  2001. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2002. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2003. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2004. calc_load_update += LOAD_FREQ;
  2005. }
  2006. /*
  2007. * Called from update_cpu_load() to periodically update this CPU's
  2008. * active count.
  2009. */
  2010. static void calc_load_account_active(struct rq *this_rq)
  2011. {
  2012. long delta;
  2013. if (time_before(jiffies, this_rq->calc_load_update))
  2014. return;
  2015. delta = calc_load_fold_active(this_rq);
  2016. delta += calc_load_fold_idle();
  2017. if (delta)
  2018. atomic_long_add(delta, &calc_load_tasks);
  2019. this_rq->calc_load_update += LOAD_FREQ;
  2020. }
  2021. /*
  2022. * The exact cpuload at various idx values, calculated at every tick would be
  2023. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2024. *
  2025. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2026. * on nth tick when cpu may be busy, then we have:
  2027. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2028. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2029. *
  2030. * decay_load_missed() below does efficient calculation of
  2031. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2032. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2033. *
  2034. * The calculation is approximated on a 128 point scale.
  2035. * degrade_zero_ticks is the number of ticks after which load at any
  2036. * particular idx is approximated to be zero.
  2037. * degrade_factor is a precomputed table, a row for each load idx.
  2038. * Each column corresponds to degradation factor for a power of two ticks,
  2039. * based on 128 point scale.
  2040. * Example:
  2041. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2042. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2043. *
  2044. * With this power of 2 load factors, we can degrade the load n times
  2045. * by looking at 1 bits in n and doing as many mult/shift instead of
  2046. * n mult/shifts needed by the exact degradation.
  2047. */
  2048. #define DEGRADE_SHIFT 7
  2049. static const unsigned char
  2050. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2051. static const unsigned char
  2052. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2053. {0, 0, 0, 0, 0, 0, 0, 0},
  2054. {64, 32, 8, 0, 0, 0, 0, 0},
  2055. {96, 72, 40, 12, 1, 0, 0},
  2056. {112, 98, 75, 43, 15, 1, 0},
  2057. {120, 112, 98, 76, 45, 16, 2} };
  2058. /*
  2059. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2060. * would be when CPU is idle and so we just decay the old load without
  2061. * adding any new load.
  2062. */
  2063. static unsigned long
  2064. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2065. {
  2066. int j = 0;
  2067. if (!missed_updates)
  2068. return load;
  2069. if (missed_updates >= degrade_zero_ticks[idx])
  2070. return 0;
  2071. if (idx == 1)
  2072. return load >> missed_updates;
  2073. while (missed_updates) {
  2074. if (missed_updates % 2)
  2075. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2076. missed_updates >>= 1;
  2077. j++;
  2078. }
  2079. return load;
  2080. }
  2081. /*
  2082. * Update rq->cpu_load[] statistics. This function is usually called every
  2083. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2084. * every tick. We fix it up based on jiffies.
  2085. */
  2086. void update_cpu_load(struct rq *this_rq)
  2087. {
  2088. unsigned long this_load = this_rq->load.weight;
  2089. unsigned long curr_jiffies = jiffies;
  2090. unsigned long pending_updates;
  2091. int i, scale;
  2092. this_rq->nr_load_updates++;
  2093. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2094. if (curr_jiffies == this_rq->last_load_update_tick)
  2095. return;
  2096. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2097. this_rq->last_load_update_tick = curr_jiffies;
  2098. /* Update our load: */
  2099. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2100. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2101. unsigned long old_load, new_load;
  2102. /* scale is effectively 1 << i now, and >> i divides by scale */
  2103. old_load = this_rq->cpu_load[i];
  2104. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2105. new_load = this_load;
  2106. /*
  2107. * Round up the averaging division if load is increasing. This
  2108. * prevents us from getting stuck on 9 if the load is 10, for
  2109. * example.
  2110. */
  2111. if (new_load > old_load)
  2112. new_load += scale - 1;
  2113. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2114. }
  2115. sched_avg_update(this_rq);
  2116. }
  2117. static void update_cpu_load_active(struct rq *this_rq)
  2118. {
  2119. update_cpu_load(this_rq);
  2120. calc_load_account_active(this_rq);
  2121. }
  2122. #ifdef CONFIG_SMP
  2123. /*
  2124. * sched_exec - execve() is a valuable balancing opportunity, because at
  2125. * this point the task has the smallest effective memory and cache footprint.
  2126. */
  2127. void sched_exec(void)
  2128. {
  2129. struct task_struct *p = current;
  2130. unsigned long flags;
  2131. int dest_cpu;
  2132. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2133. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2134. if (dest_cpu == smp_processor_id())
  2135. goto unlock;
  2136. if (likely(cpu_active(dest_cpu))) {
  2137. struct migration_arg arg = { p, dest_cpu };
  2138. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2139. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2140. return;
  2141. }
  2142. unlock:
  2143. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2144. }
  2145. #endif
  2146. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2147. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2148. EXPORT_PER_CPU_SYMBOL(kstat);
  2149. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2150. /*
  2151. * Return any ns on the sched_clock that have not yet been accounted in
  2152. * @p in case that task is currently running.
  2153. *
  2154. * Called with task_rq_lock() held on @rq.
  2155. */
  2156. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2157. {
  2158. u64 ns = 0;
  2159. if (task_current(rq, p)) {
  2160. update_rq_clock(rq);
  2161. ns = rq->clock_task - p->se.exec_start;
  2162. if ((s64)ns < 0)
  2163. ns = 0;
  2164. }
  2165. return ns;
  2166. }
  2167. unsigned long long task_delta_exec(struct task_struct *p)
  2168. {
  2169. unsigned long flags;
  2170. struct rq *rq;
  2171. u64 ns = 0;
  2172. rq = task_rq_lock(p, &flags);
  2173. ns = do_task_delta_exec(p, rq);
  2174. task_rq_unlock(rq, p, &flags);
  2175. return ns;
  2176. }
  2177. /*
  2178. * Return accounted runtime for the task.
  2179. * In case the task is currently running, return the runtime plus current's
  2180. * pending runtime that have not been accounted yet.
  2181. */
  2182. unsigned long long task_sched_runtime(struct task_struct *p)
  2183. {
  2184. unsigned long flags;
  2185. struct rq *rq;
  2186. u64 ns = 0;
  2187. rq = task_rq_lock(p, &flags);
  2188. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2189. task_rq_unlock(rq, p, &flags);
  2190. return ns;
  2191. }
  2192. #ifdef CONFIG_CGROUP_CPUACCT
  2193. struct cgroup_subsys cpuacct_subsys;
  2194. struct cpuacct root_cpuacct;
  2195. #endif
  2196. static inline void task_group_account_field(struct task_struct *p, int index,
  2197. u64 tmp)
  2198. {
  2199. #ifdef CONFIG_CGROUP_CPUACCT
  2200. struct kernel_cpustat *kcpustat;
  2201. struct cpuacct *ca;
  2202. #endif
  2203. /*
  2204. * Since all updates are sure to touch the root cgroup, we
  2205. * get ourselves ahead and touch it first. If the root cgroup
  2206. * is the only cgroup, then nothing else should be necessary.
  2207. *
  2208. */
  2209. __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
  2210. #ifdef CONFIG_CGROUP_CPUACCT
  2211. if (unlikely(!cpuacct_subsys.active))
  2212. return;
  2213. rcu_read_lock();
  2214. ca = task_ca(p);
  2215. while (ca && (ca != &root_cpuacct)) {
  2216. kcpustat = this_cpu_ptr(ca->cpustat);
  2217. kcpustat->cpustat[index] += tmp;
  2218. ca = parent_ca(ca);
  2219. }
  2220. rcu_read_unlock();
  2221. #endif
  2222. }
  2223. /*
  2224. * Account user cpu time to a process.
  2225. * @p: the process that the cpu time gets accounted to
  2226. * @cputime: the cpu time spent in user space since the last update
  2227. * @cputime_scaled: cputime scaled by cpu frequency
  2228. */
  2229. void account_user_time(struct task_struct *p, cputime_t cputime,
  2230. cputime_t cputime_scaled)
  2231. {
  2232. int index;
  2233. /* Add user time to process. */
  2234. p->utime += cputime;
  2235. p->utimescaled += cputime_scaled;
  2236. account_group_user_time(p, cputime);
  2237. index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
  2238. /* Add user time to cpustat. */
  2239. task_group_account_field(p, index, (__force u64) cputime);
  2240. /* Account for user time used */
  2241. acct_update_integrals(p);
  2242. }
  2243. /*
  2244. * Account guest cpu time to a process.
  2245. * @p: the process that the cpu time gets accounted to
  2246. * @cputime: the cpu time spent in virtual machine since the last update
  2247. * @cputime_scaled: cputime scaled by cpu frequency
  2248. */
  2249. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2250. cputime_t cputime_scaled)
  2251. {
  2252. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2253. /* Add guest time to process. */
  2254. p->utime += cputime;
  2255. p->utimescaled += cputime_scaled;
  2256. account_group_user_time(p, cputime);
  2257. p->gtime += cputime;
  2258. /* Add guest time to cpustat. */
  2259. if (TASK_NICE(p) > 0) {
  2260. cpustat[CPUTIME_NICE] += (__force u64) cputime;
  2261. cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
  2262. } else {
  2263. cpustat[CPUTIME_USER] += (__force u64) cputime;
  2264. cpustat[CPUTIME_GUEST] += (__force u64) cputime;
  2265. }
  2266. }
  2267. /*
  2268. * Account system cpu time to a process and desired cpustat field
  2269. * @p: the process that the cpu time gets accounted to
  2270. * @cputime: the cpu time spent in kernel space since the last update
  2271. * @cputime_scaled: cputime scaled by cpu frequency
  2272. * @target_cputime64: pointer to cpustat field that has to be updated
  2273. */
  2274. static inline
  2275. void __account_system_time(struct task_struct *p, cputime_t cputime,
  2276. cputime_t cputime_scaled, int index)
  2277. {
  2278. /* Add system time to process. */
  2279. p->stime += cputime;
  2280. p->stimescaled += cputime_scaled;
  2281. account_group_system_time(p, cputime);
  2282. /* Add system time to cpustat. */
  2283. task_group_account_field(p, index, (__force u64) cputime);
  2284. /* Account for system time used */
  2285. acct_update_integrals(p);
  2286. }
  2287. /*
  2288. * Account system cpu time to a process.
  2289. * @p: the process that the cpu time gets accounted to
  2290. * @hardirq_offset: the offset to subtract from hardirq_count()
  2291. * @cputime: the cpu time spent in kernel space since the last update
  2292. * @cputime_scaled: cputime scaled by cpu frequency
  2293. */
  2294. void account_system_time(struct task_struct *p, int hardirq_offset,
  2295. cputime_t cputime, cputime_t cputime_scaled)
  2296. {
  2297. int index;
  2298. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2299. account_guest_time(p, cputime, cputime_scaled);
  2300. return;
  2301. }
  2302. if (hardirq_count() - hardirq_offset)
  2303. index = CPUTIME_IRQ;
  2304. else if (in_serving_softirq())
  2305. index = CPUTIME_SOFTIRQ;
  2306. else
  2307. index = CPUTIME_SYSTEM;
  2308. __account_system_time(p, cputime, cputime_scaled, index);
  2309. }
  2310. /*
  2311. * Account for involuntary wait time.
  2312. * @cputime: the cpu time spent in involuntary wait
  2313. */
  2314. void account_steal_time(cputime_t cputime)
  2315. {
  2316. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2317. cpustat[CPUTIME_STEAL] += (__force u64) cputime;
  2318. }
  2319. /*
  2320. * Account for idle time.
  2321. * @cputime: the cpu time spent in idle wait
  2322. */
  2323. void account_idle_time(cputime_t cputime)
  2324. {
  2325. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2326. struct rq *rq = this_rq();
  2327. if (atomic_read(&rq->nr_iowait) > 0)
  2328. cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
  2329. else
  2330. cpustat[CPUTIME_IDLE] += (__force u64) cputime;
  2331. }
  2332. static __always_inline bool steal_account_process_tick(void)
  2333. {
  2334. #ifdef CONFIG_PARAVIRT
  2335. if (static_branch(&paravirt_steal_enabled)) {
  2336. u64 steal, st = 0;
  2337. steal = paravirt_steal_clock(smp_processor_id());
  2338. steal -= this_rq()->prev_steal_time;
  2339. st = steal_ticks(steal);
  2340. this_rq()->prev_steal_time += st * TICK_NSEC;
  2341. account_steal_time(st);
  2342. return st;
  2343. }
  2344. #endif
  2345. return false;
  2346. }
  2347. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2348. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  2349. /*
  2350. * Account a tick to a process and cpustat
  2351. * @p: the process that the cpu time gets accounted to
  2352. * @user_tick: is the tick from userspace
  2353. * @rq: the pointer to rq
  2354. *
  2355. * Tick demultiplexing follows the order
  2356. * - pending hardirq update
  2357. * - pending softirq update
  2358. * - user_time
  2359. * - idle_time
  2360. * - system time
  2361. * - check for guest_time
  2362. * - else account as system_time
  2363. *
  2364. * Check for hardirq is done both for system and user time as there is
  2365. * no timer going off while we are on hardirq and hence we may never get an
  2366. * opportunity to update it solely in system time.
  2367. * p->stime and friends are only updated on system time and not on irq
  2368. * softirq as those do not count in task exec_runtime any more.
  2369. */
  2370. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2371. struct rq *rq)
  2372. {
  2373. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2374. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2375. if (steal_account_process_tick())
  2376. return;
  2377. if (irqtime_account_hi_update()) {
  2378. cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
  2379. } else if (irqtime_account_si_update()) {
  2380. cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
  2381. } else if (this_cpu_ksoftirqd() == p) {
  2382. /*
  2383. * ksoftirqd time do not get accounted in cpu_softirq_time.
  2384. * So, we have to handle it separately here.
  2385. * Also, p->stime needs to be updated for ksoftirqd.
  2386. */
  2387. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2388. CPUTIME_SOFTIRQ);
  2389. } else if (user_tick) {
  2390. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2391. } else if (p == rq->idle) {
  2392. account_idle_time(cputime_one_jiffy);
  2393. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  2394. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2395. } else {
  2396. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2397. CPUTIME_SYSTEM);
  2398. }
  2399. }
  2400. static void irqtime_account_idle_ticks(int ticks)
  2401. {
  2402. int i;
  2403. struct rq *rq = this_rq();
  2404. for (i = 0; i < ticks; i++)
  2405. irqtime_account_process_tick(current, 0, rq);
  2406. }
  2407. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  2408. static void irqtime_account_idle_ticks(int ticks) {}
  2409. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2410. struct rq *rq) {}
  2411. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  2412. /*
  2413. * Account a single tick of cpu time.
  2414. * @p: the process that the cpu time gets accounted to
  2415. * @user_tick: indicates if the tick is a user or a system tick
  2416. */
  2417. void account_process_tick(struct task_struct *p, int user_tick)
  2418. {
  2419. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2420. struct rq *rq = this_rq();
  2421. if (sched_clock_irqtime) {
  2422. irqtime_account_process_tick(p, user_tick, rq);
  2423. return;
  2424. }
  2425. if (steal_account_process_tick())
  2426. return;
  2427. if (user_tick)
  2428. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2429. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2430. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2431. one_jiffy_scaled);
  2432. else
  2433. account_idle_time(cputime_one_jiffy);
  2434. }
  2435. /*
  2436. * Account multiple ticks of steal time.
  2437. * @p: the process from which the cpu time has been stolen
  2438. * @ticks: number of stolen ticks
  2439. */
  2440. void account_steal_ticks(unsigned long ticks)
  2441. {
  2442. account_steal_time(jiffies_to_cputime(ticks));
  2443. }
  2444. /*
  2445. * Account multiple ticks of idle time.
  2446. * @ticks: number of stolen ticks
  2447. */
  2448. void account_idle_ticks(unsigned long ticks)
  2449. {
  2450. if (sched_clock_irqtime) {
  2451. irqtime_account_idle_ticks(ticks);
  2452. return;
  2453. }
  2454. account_idle_time(jiffies_to_cputime(ticks));
  2455. }
  2456. #endif
  2457. /*
  2458. * Use precise platform statistics if available:
  2459. */
  2460. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2461. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2462. {
  2463. *ut = p->utime;
  2464. *st = p->stime;
  2465. }
  2466. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2467. {
  2468. struct task_cputime cputime;
  2469. thread_group_cputime(p, &cputime);
  2470. *ut = cputime.utime;
  2471. *st = cputime.stime;
  2472. }
  2473. #else
  2474. #ifndef nsecs_to_cputime
  2475. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2476. #endif
  2477. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2478. {
  2479. cputime_t rtime, utime = p->utime, total = utime + p->stime;
  2480. /*
  2481. * Use CFS's precise accounting:
  2482. */
  2483. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2484. if (total) {
  2485. u64 temp = (__force u64) rtime;
  2486. temp *= (__force u64) utime;
  2487. do_div(temp, (__force u32) total);
  2488. utime = (__force cputime_t) temp;
  2489. } else
  2490. utime = rtime;
  2491. /*
  2492. * Compare with previous values, to keep monotonicity:
  2493. */
  2494. p->prev_utime = max(p->prev_utime, utime);
  2495. p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
  2496. *ut = p->prev_utime;
  2497. *st = p->prev_stime;
  2498. }
  2499. /*
  2500. * Must be called with siglock held.
  2501. */
  2502. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2503. {
  2504. struct signal_struct *sig = p->signal;
  2505. struct task_cputime cputime;
  2506. cputime_t rtime, utime, total;
  2507. thread_group_cputime(p, &cputime);
  2508. total = cputime.utime + cputime.stime;
  2509. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2510. if (total) {
  2511. u64 temp = (__force u64) rtime;
  2512. temp *= (__force u64) cputime.utime;
  2513. do_div(temp, (__force u32) total);
  2514. utime = (__force cputime_t) temp;
  2515. } else
  2516. utime = rtime;
  2517. sig->prev_utime = max(sig->prev_utime, utime);
  2518. sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
  2519. *ut = sig->prev_utime;
  2520. *st = sig->prev_stime;
  2521. }
  2522. #endif
  2523. /*
  2524. * This function gets called by the timer code, with HZ frequency.
  2525. * We call it with interrupts disabled.
  2526. */
  2527. void scheduler_tick(void)
  2528. {
  2529. int cpu = smp_processor_id();
  2530. struct rq *rq = cpu_rq(cpu);
  2531. struct task_struct *curr = rq->curr;
  2532. sched_clock_tick();
  2533. raw_spin_lock(&rq->lock);
  2534. update_rq_clock(rq);
  2535. update_cpu_load_active(rq);
  2536. curr->sched_class->task_tick(rq, curr, 0);
  2537. raw_spin_unlock(&rq->lock);
  2538. perf_event_task_tick();
  2539. #ifdef CONFIG_SMP
  2540. rq->idle_balance = idle_cpu(cpu);
  2541. trigger_load_balance(rq, cpu);
  2542. #endif
  2543. }
  2544. notrace unsigned long get_parent_ip(unsigned long addr)
  2545. {
  2546. if (in_lock_functions(addr)) {
  2547. addr = CALLER_ADDR2;
  2548. if (in_lock_functions(addr))
  2549. addr = CALLER_ADDR3;
  2550. }
  2551. return addr;
  2552. }
  2553. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2554. defined(CONFIG_PREEMPT_TRACER))
  2555. void __kprobes add_preempt_count(int val)
  2556. {
  2557. #ifdef CONFIG_DEBUG_PREEMPT
  2558. /*
  2559. * Underflow?
  2560. */
  2561. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2562. return;
  2563. #endif
  2564. preempt_count() += val;
  2565. #ifdef CONFIG_DEBUG_PREEMPT
  2566. /*
  2567. * Spinlock count overflowing soon?
  2568. */
  2569. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2570. PREEMPT_MASK - 10);
  2571. #endif
  2572. if (preempt_count() == val)
  2573. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2574. }
  2575. EXPORT_SYMBOL(add_preempt_count);
  2576. void __kprobes sub_preempt_count(int val)
  2577. {
  2578. #ifdef CONFIG_DEBUG_PREEMPT
  2579. /*
  2580. * Underflow?
  2581. */
  2582. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2583. return;
  2584. /*
  2585. * Is the spinlock portion underflowing?
  2586. */
  2587. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2588. !(preempt_count() & PREEMPT_MASK)))
  2589. return;
  2590. #endif
  2591. if (preempt_count() == val)
  2592. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2593. preempt_count() -= val;
  2594. }
  2595. EXPORT_SYMBOL(sub_preempt_count);
  2596. #endif
  2597. /*
  2598. * Print scheduling while atomic bug:
  2599. */
  2600. static noinline void __schedule_bug(struct task_struct *prev)
  2601. {
  2602. struct pt_regs *regs = get_irq_regs();
  2603. if (oops_in_progress)
  2604. return;
  2605. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2606. prev->comm, prev->pid, preempt_count());
  2607. debug_show_held_locks(prev);
  2608. print_modules();
  2609. if (irqs_disabled())
  2610. print_irqtrace_events(prev);
  2611. if (regs)
  2612. show_regs(regs);
  2613. else
  2614. dump_stack();
  2615. }
  2616. /*
  2617. * Various schedule()-time debugging checks and statistics:
  2618. */
  2619. static inline void schedule_debug(struct task_struct *prev)
  2620. {
  2621. /*
  2622. * Test if we are atomic. Since do_exit() needs to call into
  2623. * schedule() atomically, we ignore that path for now.
  2624. * Otherwise, whine if we are scheduling when we should not be.
  2625. */
  2626. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2627. __schedule_bug(prev);
  2628. rcu_sleep_check();
  2629. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2630. schedstat_inc(this_rq(), sched_count);
  2631. }
  2632. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2633. {
  2634. if (prev->on_rq || rq->skip_clock_update < 0)
  2635. update_rq_clock(rq);
  2636. prev->sched_class->put_prev_task(rq, prev);
  2637. }
  2638. /*
  2639. * Pick up the highest-prio task:
  2640. */
  2641. static inline struct task_struct *
  2642. pick_next_task(struct rq *rq)
  2643. {
  2644. const struct sched_class *class;
  2645. struct task_struct *p;
  2646. /*
  2647. * Optimization: we know that if all tasks are in
  2648. * the fair class we can call that function directly:
  2649. */
  2650. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2651. p = fair_sched_class.pick_next_task(rq);
  2652. if (likely(p))
  2653. return p;
  2654. }
  2655. for_each_class(class) {
  2656. p = class->pick_next_task(rq);
  2657. if (p)
  2658. return p;
  2659. }
  2660. BUG(); /* the idle class will always have a runnable task */
  2661. }
  2662. /*
  2663. * __schedule() is the main scheduler function.
  2664. */
  2665. static void __sched __schedule(void)
  2666. {
  2667. struct task_struct *prev, *next;
  2668. unsigned long *switch_count;
  2669. struct rq *rq;
  2670. int cpu;
  2671. need_resched:
  2672. preempt_disable();
  2673. cpu = smp_processor_id();
  2674. rq = cpu_rq(cpu);
  2675. rcu_note_context_switch(cpu);
  2676. prev = rq->curr;
  2677. schedule_debug(prev);
  2678. if (sched_feat(HRTICK))
  2679. hrtick_clear(rq);
  2680. raw_spin_lock_irq(&rq->lock);
  2681. switch_count = &prev->nivcsw;
  2682. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2683. if (unlikely(signal_pending_state(prev->state, prev))) {
  2684. prev->state = TASK_RUNNING;
  2685. } else {
  2686. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2687. prev->on_rq = 0;
  2688. /*
  2689. * If a worker went to sleep, notify and ask workqueue
  2690. * whether it wants to wake up a task to maintain
  2691. * concurrency.
  2692. */
  2693. if (prev->flags & PF_WQ_WORKER) {
  2694. struct task_struct *to_wakeup;
  2695. to_wakeup = wq_worker_sleeping(prev, cpu);
  2696. if (to_wakeup)
  2697. try_to_wake_up_local(to_wakeup);
  2698. }
  2699. }
  2700. switch_count = &prev->nvcsw;
  2701. }
  2702. pre_schedule(rq, prev);
  2703. if (unlikely(!rq->nr_running))
  2704. idle_balance(cpu, rq);
  2705. put_prev_task(rq, prev);
  2706. next = pick_next_task(rq);
  2707. clear_tsk_need_resched(prev);
  2708. rq->skip_clock_update = 0;
  2709. if (likely(prev != next)) {
  2710. rq->nr_switches++;
  2711. rq->curr = next;
  2712. ++*switch_count;
  2713. context_switch(rq, prev, next); /* unlocks the rq */
  2714. /*
  2715. * The context switch have flipped the stack from under us
  2716. * and restored the local variables which were saved when
  2717. * this task called schedule() in the past. prev == current
  2718. * is still correct, but it can be moved to another cpu/rq.
  2719. */
  2720. cpu = smp_processor_id();
  2721. rq = cpu_rq(cpu);
  2722. } else
  2723. raw_spin_unlock_irq(&rq->lock);
  2724. post_schedule(rq);
  2725. preempt_enable_no_resched();
  2726. if (need_resched())
  2727. goto need_resched;
  2728. }
  2729. static inline void sched_submit_work(struct task_struct *tsk)
  2730. {
  2731. if (!tsk->state)
  2732. return;
  2733. /*
  2734. * If we are going to sleep and we have plugged IO queued,
  2735. * make sure to submit it to avoid deadlocks.
  2736. */
  2737. if (blk_needs_flush_plug(tsk))
  2738. blk_schedule_flush_plug(tsk);
  2739. }
  2740. asmlinkage void __sched schedule(void)
  2741. {
  2742. struct task_struct *tsk = current;
  2743. sched_submit_work(tsk);
  2744. __schedule();
  2745. }
  2746. EXPORT_SYMBOL(schedule);
  2747. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2748. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2749. {
  2750. if (lock->owner != owner)
  2751. return false;
  2752. /*
  2753. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2754. * lock->owner still matches owner, if that fails, owner might
  2755. * point to free()d memory, if it still matches, the rcu_read_lock()
  2756. * ensures the memory stays valid.
  2757. */
  2758. barrier();
  2759. return owner->on_cpu;
  2760. }
  2761. /*
  2762. * Look out! "owner" is an entirely speculative pointer
  2763. * access and not reliable.
  2764. */
  2765. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2766. {
  2767. if (!sched_feat(OWNER_SPIN))
  2768. return 0;
  2769. rcu_read_lock();
  2770. while (owner_running(lock, owner)) {
  2771. if (need_resched())
  2772. break;
  2773. arch_mutex_cpu_relax();
  2774. }
  2775. rcu_read_unlock();
  2776. /*
  2777. * We break out the loop above on need_resched() and when the
  2778. * owner changed, which is a sign for heavy contention. Return
  2779. * success only when lock->owner is NULL.
  2780. */
  2781. return lock->owner == NULL;
  2782. }
  2783. #endif
  2784. #ifdef CONFIG_PREEMPT
  2785. /*
  2786. * this is the entry point to schedule() from in-kernel preemption
  2787. * off of preempt_enable. Kernel preemptions off return from interrupt
  2788. * occur there and call schedule directly.
  2789. */
  2790. asmlinkage void __sched notrace preempt_schedule(void)
  2791. {
  2792. struct thread_info *ti = current_thread_info();
  2793. /*
  2794. * If there is a non-zero preempt_count or interrupts are disabled,
  2795. * we do not want to preempt the current task. Just return..
  2796. */
  2797. if (likely(ti->preempt_count || irqs_disabled()))
  2798. return;
  2799. do {
  2800. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2801. __schedule();
  2802. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2803. /*
  2804. * Check again in case we missed a preemption opportunity
  2805. * between schedule and now.
  2806. */
  2807. barrier();
  2808. } while (need_resched());
  2809. }
  2810. EXPORT_SYMBOL(preempt_schedule);
  2811. /*
  2812. * this is the entry point to schedule() from kernel preemption
  2813. * off of irq context.
  2814. * Note, that this is called and return with irqs disabled. This will
  2815. * protect us against recursive calling from irq.
  2816. */
  2817. asmlinkage void __sched preempt_schedule_irq(void)
  2818. {
  2819. struct thread_info *ti = current_thread_info();
  2820. /* Catch callers which need to be fixed */
  2821. BUG_ON(ti->preempt_count || !irqs_disabled());
  2822. do {
  2823. add_preempt_count(PREEMPT_ACTIVE);
  2824. local_irq_enable();
  2825. __schedule();
  2826. local_irq_disable();
  2827. sub_preempt_count(PREEMPT_ACTIVE);
  2828. /*
  2829. * Check again in case we missed a preemption opportunity
  2830. * between schedule and now.
  2831. */
  2832. barrier();
  2833. } while (need_resched());
  2834. }
  2835. #endif /* CONFIG_PREEMPT */
  2836. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2837. void *key)
  2838. {
  2839. return try_to_wake_up(curr->private, mode, wake_flags);
  2840. }
  2841. EXPORT_SYMBOL(default_wake_function);
  2842. /*
  2843. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2844. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2845. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2846. *
  2847. * There are circumstances in which we can try to wake a task which has already
  2848. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2849. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2850. */
  2851. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2852. int nr_exclusive, int wake_flags, void *key)
  2853. {
  2854. wait_queue_t *curr, *next;
  2855. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2856. unsigned flags = curr->flags;
  2857. if (curr->func(curr, mode, wake_flags, key) &&
  2858. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2859. break;
  2860. }
  2861. }
  2862. /**
  2863. * __wake_up - wake up threads blocked on a waitqueue.
  2864. * @q: the waitqueue
  2865. * @mode: which threads
  2866. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2867. * @key: is directly passed to the wakeup function
  2868. *
  2869. * It may be assumed that this function implies a write memory barrier before
  2870. * changing the task state if and only if any tasks are woken up.
  2871. */
  2872. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2873. int nr_exclusive, void *key)
  2874. {
  2875. unsigned long flags;
  2876. spin_lock_irqsave(&q->lock, flags);
  2877. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2878. spin_unlock_irqrestore(&q->lock, flags);
  2879. }
  2880. EXPORT_SYMBOL(__wake_up);
  2881. /*
  2882. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2883. */
  2884. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  2885. {
  2886. __wake_up_common(q, mode, 1, 0, NULL);
  2887. }
  2888. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2889. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2890. {
  2891. __wake_up_common(q, mode, 1, 0, key);
  2892. }
  2893. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2894. /**
  2895. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2896. * @q: the waitqueue
  2897. * @mode: which threads
  2898. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2899. * @key: opaque value to be passed to wakeup targets
  2900. *
  2901. * The sync wakeup differs that the waker knows that it will schedule
  2902. * away soon, so while the target thread will be woken up, it will not
  2903. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2904. * with each other. This can prevent needless bouncing between CPUs.
  2905. *
  2906. * On UP it can prevent extra preemption.
  2907. *
  2908. * It may be assumed that this function implies a write memory barrier before
  2909. * changing the task state if and only if any tasks are woken up.
  2910. */
  2911. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2912. int nr_exclusive, void *key)
  2913. {
  2914. unsigned long flags;
  2915. int wake_flags = WF_SYNC;
  2916. if (unlikely(!q))
  2917. return;
  2918. if (unlikely(!nr_exclusive))
  2919. wake_flags = 0;
  2920. spin_lock_irqsave(&q->lock, flags);
  2921. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2922. spin_unlock_irqrestore(&q->lock, flags);
  2923. }
  2924. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2925. /*
  2926. * __wake_up_sync - see __wake_up_sync_key()
  2927. */
  2928. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2929. {
  2930. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2931. }
  2932. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2933. /**
  2934. * complete: - signals a single thread waiting on this completion
  2935. * @x: holds the state of this particular completion
  2936. *
  2937. * This will wake up a single thread waiting on this completion. Threads will be
  2938. * awakened in the same order in which they were queued.
  2939. *
  2940. * See also complete_all(), wait_for_completion() and related routines.
  2941. *
  2942. * It may be assumed that this function implies a write memory barrier before
  2943. * changing the task state if and only if any tasks are woken up.
  2944. */
  2945. void complete(struct completion *x)
  2946. {
  2947. unsigned long flags;
  2948. spin_lock_irqsave(&x->wait.lock, flags);
  2949. x->done++;
  2950. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2951. spin_unlock_irqrestore(&x->wait.lock, flags);
  2952. }
  2953. EXPORT_SYMBOL(complete);
  2954. /**
  2955. * complete_all: - signals all threads waiting on this completion
  2956. * @x: holds the state of this particular completion
  2957. *
  2958. * This will wake up all threads waiting on this particular completion event.
  2959. *
  2960. * It may be assumed that this function implies a write memory barrier before
  2961. * changing the task state if and only if any tasks are woken up.
  2962. */
  2963. void complete_all(struct completion *x)
  2964. {
  2965. unsigned long flags;
  2966. spin_lock_irqsave(&x->wait.lock, flags);
  2967. x->done += UINT_MAX/2;
  2968. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2969. spin_unlock_irqrestore(&x->wait.lock, flags);
  2970. }
  2971. EXPORT_SYMBOL(complete_all);
  2972. static inline long __sched
  2973. do_wait_for_common(struct completion *x, long timeout, int state)
  2974. {
  2975. if (!x->done) {
  2976. DECLARE_WAITQUEUE(wait, current);
  2977. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2978. do {
  2979. if (signal_pending_state(state, current)) {
  2980. timeout = -ERESTARTSYS;
  2981. break;
  2982. }
  2983. __set_current_state(state);
  2984. spin_unlock_irq(&x->wait.lock);
  2985. timeout = schedule_timeout(timeout);
  2986. spin_lock_irq(&x->wait.lock);
  2987. } while (!x->done && timeout);
  2988. __remove_wait_queue(&x->wait, &wait);
  2989. if (!x->done)
  2990. return timeout;
  2991. }
  2992. x->done--;
  2993. return timeout ?: 1;
  2994. }
  2995. static long __sched
  2996. wait_for_common(struct completion *x, long timeout, int state)
  2997. {
  2998. might_sleep();
  2999. spin_lock_irq(&x->wait.lock);
  3000. timeout = do_wait_for_common(x, timeout, state);
  3001. spin_unlock_irq(&x->wait.lock);
  3002. return timeout;
  3003. }
  3004. /**
  3005. * wait_for_completion: - waits for completion of a task
  3006. * @x: holds the state of this particular completion
  3007. *
  3008. * This waits to be signaled for completion of a specific task. It is NOT
  3009. * interruptible and there is no timeout.
  3010. *
  3011. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3012. * and interrupt capability. Also see complete().
  3013. */
  3014. void __sched wait_for_completion(struct completion *x)
  3015. {
  3016. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3017. }
  3018. EXPORT_SYMBOL(wait_for_completion);
  3019. /**
  3020. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3021. * @x: holds the state of this particular completion
  3022. * @timeout: timeout value in jiffies
  3023. *
  3024. * This waits for either a completion of a specific task to be signaled or for a
  3025. * specified timeout to expire. The timeout is in jiffies. It is not
  3026. * interruptible.
  3027. *
  3028. * The return value is 0 if timed out, and positive (at least 1, or number of
  3029. * jiffies left till timeout) if completed.
  3030. */
  3031. unsigned long __sched
  3032. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3033. {
  3034. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3035. }
  3036. EXPORT_SYMBOL(wait_for_completion_timeout);
  3037. /**
  3038. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3039. * @x: holds the state of this particular completion
  3040. *
  3041. * This waits for completion of a specific task to be signaled. It is
  3042. * interruptible.
  3043. *
  3044. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3045. */
  3046. int __sched wait_for_completion_interruptible(struct completion *x)
  3047. {
  3048. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3049. if (t == -ERESTARTSYS)
  3050. return t;
  3051. return 0;
  3052. }
  3053. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3054. /**
  3055. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3056. * @x: holds the state of this particular completion
  3057. * @timeout: timeout value in jiffies
  3058. *
  3059. * This waits for either a completion of a specific task to be signaled or for a
  3060. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3061. *
  3062. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3063. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3064. */
  3065. long __sched
  3066. wait_for_completion_interruptible_timeout(struct completion *x,
  3067. unsigned long timeout)
  3068. {
  3069. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3070. }
  3071. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3072. /**
  3073. * wait_for_completion_killable: - waits for completion of a task (killable)
  3074. * @x: holds the state of this particular completion
  3075. *
  3076. * This waits to be signaled for completion of a specific task. It can be
  3077. * interrupted by a kill signal.
  3078. *
  3079. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3080. */
  3081. int __sched wait_for_completion_killable(struct completion *x)
  3082. {
  3083. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3084. if (t == -ERESTARTSYS)
  3085. return t;
  3086. return 0;
  3087. }
  3088. EXPORT_SYMBOL(wait_for_completion_killable);
  3089. /**
  3090. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3091. * @x: holds the state of this particular completion
  3092. * @timeout: timeout value in jiffies
  3093. *
  3094. * This waits for either a completion of a specific task to be
  3095. * signaled or for a specified timeout to expire. It can be
  3096. * interrupted by a kill signal. The timeout is in jiffies.
  3097. *
  3098. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3099. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3100. */
  3101. long __sched
  3102. wait_for_completion_killable_timeout(struct completion *x,
  3103. unsigned long timeout)
  3104. {
  3105. return wait_for_common(x, timeout, TASK_KILLABLE);
  3106. }
  3107. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3108. /**
  3109. * try_wait_for_completion - try to decrement a completion without blocking
  3110. * @x: completion structure
  3111. *
  3112. * Returns: 0 if a decrement cannot be done without blocking
  3113. * 1 if a decrement succeeded.
  3114. *
  3115. * If a completion is being used as a counting completion,
  3116. * attempt to decrement the counter without blocking. This
  3117. * enables us to avoid waiting if the resource the completion
  3118. * is protecting is not available.
  3119. */
  3120. bool try_wait_for_completion(struct completion *x)
  3121. {
  3122. unsigned long flags;
  3123. int ret = 1;
  3124. spin_lock_irqsave(&x->wait.lock, flags);
  3125. if (!x->done)
  3126. ret = 0;
  3127. else
  3128. x->done--;
  3129. spin_unlock_irqrestore(&x->wait.lock, flags);
  3130. return ret;
  3131. }
  3132. EXPORT_SYMBOL(try_wait_for_completion);
  3133. /**
  3134. * completion_done - Test to see if a completion has any waiters
  3135. * @x: completion structure
  3136. *
  3137. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3138. * 1 if there are no waiters.
  3139. *
  3140. */
  3141. bool completion_done(struct completion *x)
  3142. {
  3143. unsigned long flags;
  3144. int ret = 1;
  3145. spin_lock_irqsave(&x->wait.lock, flags);
  3146. if (!x->done)
  3147. ret = 0;
  3148. spin_unlock_irqrestore(&x->wait.lock, flags);
  3149. return ret;
  3150. }
  3151. EXPORT_SYMBOL(completion_done);
  3152. static long __sched
  3153. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3154. {
  3155. unsigned long flags;
  3156. wait_queue_t wait;
  3157. init_waitqueue_entry(&wait, current);
  3158. __set_current_state(state);
  3159. spin_lock_irqsave(&q->lock, flags);
  3160. __add_wait_queue(q, &wait);
  3161. spin_unlock(&q->lock);
  3162. timeout = schedule_timeout(timeout);
  3163. spin_lock_irq(&q->lock);
  3164. __remove_wait_queue(q, &wait);
  3165. spin_unlock_irqrestore(&q->lock, flags);
  3166. return timeout;
  3167. }
  3168. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3169. {
  3170. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3171. }
  3172. EXPORT_SYMBOL(interruptible_sleep_on);
  3173. long __sched
  3174. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3175. {
  3176. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3177. }
  3178. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3179. void __sched sleep_on(wait_queue_head_t *q)
  3180. {
  3181. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3182. }
  3183. EXPORT_SYMBOL(sleep_on);
  3184. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3185. {
  3186. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3187. }
  3188. EXPORT_SYMBOL(sleep_on_timeout);
  3189. #ifdef CONFIG_RT_MUTEXES
  3190. /*
  3191. * rt_mutex_setprio - set the current priority of a task
  3192. * @p: task
  3193. * @prio: prio value (kernel-internal form)
  3194. *
  3195. * This function changes the 'effective' priority of a task. It does
  3196. * not touch ->normal_prio like __setscheduler().
  3197. *
  3198. * Used by the rt_mutex code to implement priority inheritance logic.
  3199. */
  3200. void rt_mutex_setprio(struct task_struct *p, int prio)
  3201. {
  3202. int oldprio, on_rq, running;
  3203. struct rq *rq;
  3204. const struct sched_class *prev_class;
  3205. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3206. rq = __task_rq_lock(p);
  3207. trace_sched_pi_setprio(p, prio);
  3208. oldprio = p->prio;
  3209. prev_class = p->sched_class;
  3210. on_rq = p->on_rq;
  3211. running = task_current(rq, p);
  3212. if (on_rq)
  3213. dequeue_task(rq, p, 0);
  3214. if (running)
  3215. p->sched_class->put_prev_task(rq, p);
  3216. if (rt_prio(prio))
  3217. p->sched_class = &rt_sched_class;
  3218. else
  3219. p->sched_class = &fair_sched_class;
  3220. p->prio = prio;
  3221. if (running)
  3222. p->sched_class->set_curr_task(rq);
  3223. if (on_rq)
  3224. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3225. check_class_changed(rq, p, prev_class, oldprio);
  3226. __task_rq_unlock(rq);
  3227. }
  3228. #endif
  3229. void set_user_nice(struct task_struct *p, long nice)
  3230. {
  3231. int old_prio, delta, on_rq;
  3232. unsigned long flags;
  3233. struct rq *rq;
  3234. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3235. return;
  3236. /*
  3237. * We have to be careful, if called from sys_setpriority(),
  3238. * the task might be in the middle of scheduling on another CPU.
  3239. */
  3240. rq = task_rq_lock(p, &flags);
  3241. /*
  3242. * The RT priorities are set via sched_setscheduler(), but we still
  3243. * allow the 'normal' nice value to be set - but as expected
  3244. * it wont have any effect on scheduling until the task is
  3245. * SCHED_FIFO/SCHED_RR:
  3246. */
  3247. if (task_has_rt_policy(p)) {
  3248. p->static_prio = NICE_TO_PRIO(nice);
  3249. goto out_unlock;
  3250. }
  3251. on_rq = p->on_rq;
  3252. if (on_rq)
  3253. dequeue_task(rq, p, 0);
  3254. p->static_prio = NICE_TO_PRIO(nice);
  3255. set_load_weight(p);
  3256. old_prio = p->prio;
  3257. p->prio = effective_prio(p);
  3258. delta = p->prio - old_prio;
  3259. if (on_rq) {
  3260. enqueue_task(rq, p, 0);
  3261. /*
  3262. * If the task increased its priority or is running and
  3263. * lowered its priority, then reschedule its CPU:
  3264. */
  3265. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3266. resched_task(rq->curr);
  3267. }
  3268. out_unlock:
  3269. task_rq_unlock(rq, p, &flags);
  3270. }
  3271. EXPORT_SYMBOL(set_user_nice);
  3272. /*
  3273. * can_nice - check if a task can reduce its nice value
  3274. * @p: task
  3275. * @nice: nice value
  3276. */
  3277. int can_nice(const struct task_struct *p, const int nice)
  3278. {
  3279. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3280. int nice_rlim = 20 - nice;
  3281. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3282. capable(CAP_SYS_NICE));
  3283. }
  3284. #ifdef __ARCH_WANT_SYS_NICE
  3285. /*
  3286. * sys_nice - change the priority of the current process.
  3287. * @increment: priority increment
  3288. *
  3289. * sys_setpriority is a more generic, but much slower function that
  3290. * does similar things.
  3291. */
  3292. SYSCALL_DEFINE1(nice, int, increment)
  3293. {
  3294. long nice, retval;
  3295. /*
  3296. * Setpriority might change our priority at the same moment.
  3297. * We don't have to worry. Conceptually one call occurs first
  3298. * and we have a single winner.
  3299. */
  3300. if (increment < -40)
  3301. increment = -40;
  3302. if (increment > 40)
  3303. increment = 40;
  3304. nice = TASK_NICE(current) + increment;
  3305. if (nice < -20)
  3306. nice = -20;
  3307. if (nice > 19)
  3308. nice = 19;
  3309. if (increment < 0 && !can_nice(current, nice))
  3310. return -EPERM;
  3311. retval = security_task_setnice(current, nice);
  3312. if (retval)
  3313. return retval;
  3314. set_user_nice(current, nice);
  3315. return 0;
  3316. }
  3317. #endif
  3318. /**
  3319. * task_prio - return the priority value of a given task.
  3320. * @p: the task in question.
  3321. *
  3322. * This is the priority value as seen by users in /proc.
  3323. * RT tasks are offset by -200. Normal tasks are centered
  3324. * around 0, value goes from -16 to +15.
  3325. */
  3326. int task_prio(const struct task_struct *p)
  3327. {
  3328. return p->prio - MAX_RT_PRIO;
  3329. }
  3330. /**
  3331. * task_nice - return the nice value of a given task.
  3332. * @p: the task in question.
  3333. */
  3334. int task_nice(const struct task_struct *p)
  3335. {
  3336. return TASK_NICE(p);
  3337. }
  3338. EXPORT_SYMBOL(task_nice);
  3339. /**
  3340. * idle_cpu - is a given cpu idle currently?
  3341. * @cpu: the processor in question.
  3342. */
  3343. int idle_cpu(int cpu)
  3344. {
  3345. struct rq *rq = cpu_rq(cpu);
  3346. if (rq->curr != rq->idle)
  3347. return 0;
  3348. if (rq->nr_running)
  3349. return 0;
  3350. #ifdef CONFIG_SMP
  3351. if (!llist_empty(&rq->wake_list))
  3352. return 0;
  3353. #endif
  3354. return 1;
  3355. }
  3356. /**
  3357. * idle_task - return the idle task for a given cpu.
  3358. * @cpu: the processor in question.
  3359. */
  3360. struct task_struct *idle_task(int cpu)
  3361. {
  3362. return cpu_rq(cpu)->idle;
  3363. }
  3364. /**
  3365. * find_process_by_pid - find a process with a matching PID value.
  3366. * @pid: the pid in question.
  3367. */
  3368. static struct task_struct *find_process_by_pid(pid_t pid)
  3369. {
  3370. return pid ? find_task_by_vpid(pid) : current;
  3371. }
  3372. /* Actually do priority change: must hold rq lock. */
  3373. static void
  3374. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3375. {
  3376. p->policy = policy;
  3377. p->rt_priority = prio;
  3378. p->normal_prio = normal_prio(p);
  3379. /* we are holding p->pi_lock already */
  3380. p->prio = rt_mutex_getprio(p);
  3381. if (rt_prio(p->prio))
  3382. p->sched_class = &rt_sched_class;
  3383. else
  3384. p->sched_class = &fair_sched_class;
  3385. set_load_weight(p);
  3386. }
  3387. /*
  3388. * check the target process has a UID that matches the current process's
  3389. */
  3390. static bool check_same_owner(struct task_struct *p)
  3391. {
  3392. const struct cred *cred = current_cred(), *pcred;
  3393. bool match;
  3394. rcu_read_lock();
  3395. pcred = __task_cred(p);
  3396. if (cred->user->user_ns == pcred->user->user_ns)
  3397. match = (cred->euid == pcred->euid ||
  3398. cred->euid == pcred->uid);
  3399. else
  3400. match = false;
  3401. rcu_read_unlock();
  3402. return match;
  3403. }
  3404. static int __sched_setscheduler(struct task_struct *p, int policy,
  3405. const struct sched_param *param, bool user)
  3406. {
  3407. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3408. unsigned long flags;
  3409. const struct sched_class *prev_class;
  3410. struct rq *rq;
  3411. int reset_on_fork;
  3412. /* may grab non-irq protected spin_locks */
  3413. BUG_ON(in_interrupt());
  3414. recheck:
  3415. /* double check policy once rq lock held */
  3416. if (policy < 0) {
  3417. reset_on_fork = p->sched_reset_on_fork;
  3418. policy = oldpolicy = p->policy;
  3419. } else {
  3420. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3421. policy &= ~SCHED_RESET_ON_FORK;
  3422. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3423. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3424. policy != SCHED_IDLE)
  3425. return -EINVAL;
  3426. }
  3427. /*
  3428. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3429. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3430. * SCHED_BATCH and SCHED_IDLE is 0.
  3431. */
  3432. if (param->sched_priority < 0 ||
  3433. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3434. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3435. return -EINVAL;
  3436. if (rt_policy(policy) != (param->sched_priority != 0))
  3437. return -EINVAL;
  3438. /*
  3439. * Allow unprivileged RT tasks to decrease priority:
  3440. */
  3441. if (user && !capable(CAP_SYS_NICE)) {
  3442. if (rt_policy(policy)) {
  3443. unsigned long rlim_rtprio =
  3444. task_rlimit(p, RLIMIT_RTPRIO);
  3445. /* can't set/change the rt policy */
  3446. if (policy != p->policy && !rlim_rtprio)
  3447. return -EPERM;
  3448. /* can't increase priority */
  3449. if (param->sched_priority > p->rt_priority &&
  3450. param->sched_priority > rlim_rtprio)
  3451. return -EPERM;
  3452. }
  3453. /*
  3454. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3455. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3456. */
  3457. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3458. if (!can_nice(p, TASK_NICE(p)))
  3459. return -EPERM;
  3460. }
  3461. /* can't change other user's priorities */
  3462. if (!check_same_owner(p))
  3463. return -EPERM;
  3464. /* Normal users shall not reset the sched_reset_on_fork flag */
  3465. if (p->sched_reset_on_fork && !reset_on_fork)
  3466. return -EPERM;
  3467. }
  3468. if (user) {
  3469. retval = security_task_setscheduler(p);
  3470. if (retval)
  3471. return retval;
  3472. }
  3473. /*
  3474. * make sure no PI-waiters arrive (or leave) while we are
  3475. * changing the priority of the task:
  3476. *
  3477. * To be able to change p->policy safely, the appropriate
  3478. * runqueue lock must be held.
  3479. */
  3480. rq = task_rq_lock(p, &flags);
  3481. /*
  3482. * Changing the policy of the stop threads its a very bad idea
  3483. */
  3484. if (p == rq->stop) {
  3485. task_rq_unlock(rq, p, &flags);
  3486. return -EINVAL;
  3487. }
  3488. /*
  3489. * If not changing anything there's no need to proceed further:
  3490. */
  3491. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3492. param->sched_priority == p->rt_priority))) {
  3493. __task_rq_unlock(rq);
  3494. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3495. return 0;
  3496. }
  3497. #ifdef CONFIG_RT_GROUP_SCHED
  3498. if (user) {
  3499. /*
  3500. * Do not allow realtime tasks into groups that have no runtime
  3501. * assigned.
  3502. */
  3503. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3504. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3505. !task_group_is_autogroup(task_group(p))) {
  3506. task_rq_unlock(rq, p, &flags);
  3507. return -EPERM;
  3508. }
  3509. }
  3510. #endif
  3511. /* recheck policy now with rq lock held */
  3512. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3513. policy = oldpolicy = -1;
  3514. task_rq_unlock(rq, p, &flags);
  3515. goto recheck;
  3516. }
  3517. on_rq = p->on_rq;
  3518. running = task_current(rq, p);
  3519. if (on_rq)
  3520. dequeue_task(rq, p, 0);
  3521. if (running)
  3522. p->sched_class->put_prev_task(rq, p);
  3523. p->sched_reset_on_fork = reset_on_fork;
  3524. oldprio = p->prio;
  3525. prev_class = p->sched_class;
  3526. __setscheduler(rq, p, policy, param->sched_priority);
  3527. if (running)
  3528. p->sched_class->set_curr_task(rq);
  3529. if (on_rq)
  3530. enqueue_task(rq, p, 0);
  3531. check_class_changed(rq, p, prev_class, oldprio);
  3532. task_rq_unlock(rq, p, &flags);
  3533. rt_mutex_adjust_pi(p);
  3534. return 0;
  3535. }
  3536. /**
  3537. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3538. * @p: the task in question.
  3539. * @policy: new policy.
  3540. * @param: structure containing the new RT priority.
  3541. *
  3542. * NOTE that the task may be already dead.
  3543. */
  3544. int sched_setscheduler(struct task_struct *p, int policy,
  3545. const struct sched_param *param)
  3546. {
  3547. return __sched_setscheduler(p, policy, param, true);
  3548. }
  3549. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3550. /**
  3551. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3552. * @p: the task in question.
  3553. * @policy: new policy.
  3554. * @param: structure containing the new RT priority.
  3555. *
  3556. * Just like sched_setscheduler, only don't bother checking if the
  3557. * current context has permission. For example, this is needed in
  3558. * stop_machine(): we create temporary high priority worker threads,
  3559. * but our caller might not have that capability.
  3560. */
  3561. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3562. const struct sched_param *param)
  3563. {
  3564. return __sched_setscheduler(p, policy, param, false);
  3565. }
  3566. static int
  3567. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3568. {
  3569. struct sched_param lparam;
  3570. struct task_struct *p;
  3571. int retval;
  3572. if (!param || pid < 0)
  3573. return -EINVAL;
  3574. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3575. return -EFAULT;
  3576. rcu_read_lock();
  3577. retval = -ESRCH;
  3578. p = find_process_by_pid(pid);
  3579. if (p != NULL)
  3580. retval = sched_setscheduler(p, policy, &lparam);
  3581. rcu_read_unlock();
  3582. return retval;
  3583. }
  3584. /**
  3585. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3586. * @pid: the pid in question.
  3587. * @policy: new policy.
  3588. * @param: structure containing the new RT priority.
  3589. */
  3590. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3591. struct sched_param __user *, param)
  3592. {
  3593. /* negative values for policy are not valid */
  3594. if (policy < 0)
  3595. return -EINVAL;
  3596. return do_sched_setscheduler(pid, policy, param);
  3597. }
  3598. /**
  3599. * sys_sched_setparam - set/change the RT priority of a thread
  3600. * @pid: the pid in question.
  3601. * @param: structure containing the new RT priority.
  3602. */
  3603. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3604. {
  3605. return do_sched_setscheduler(pid, -1, param);
  3606. }
  3607. /**
  3608. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3609. * @pid: the pid in question.
  3610. */
  3611. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3612. {
  3613. struct task_struct *p;
  3614. int retval;
  3615. if (pid < 0)
  3616. return -EINVAL;
  3617. retval = -ESRCH;
  3618. rcu_read_lock();
  3619. p = find_process_by_pid(pid);
  3620. if (p) {
  3621. retval = security_task_getscheduler(p);
  3622. if (!retval)
  3623. retval = p->policy
  3624. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3625. }
  3626. rcu_read_unlock();
  3627. return retval;
  3628. }
  3629. /**
  3630. * sys_sched_getparam - get the RT priority of a thread
  3631. * @pid: the pid in question.
  3632. * @param: structure containing the RT priority.
  3633. */
  3634. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3635. {
  3636. struct sched_param lp;
  3637. struct task_struct *p;
  3638. int retval;
  3639. if (!param || pid < 0)
  3640. return -EINVAL;
  3641. rcu_read_lock();
  3642. p = find_process_by_pid(pid);
  3643. retval = -ESRCH;
  3644. if (!p)
  3645. goto out_unlock;
  3646. retval = security_task_getscheduler(p);
  3647. if (retval)
  3648. goto out_unlock;
  3649. lp.sched_priority = p->rt_priority;
  3650. rcu_read_unlock();
  3651. /*
  3652. * This one might sleep, we cannot do it with a spinlock held ...
  3653. */
  3654. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3655. return retval;
  3656. out_unlock:
  3657. rcu_read_unlock();
  3658. return retval;
  3659. }
  3660. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3661. {
  3662. cpumask_var_t cpus_allowed, new_mask;
  3663. struct task_struct *p;
  3664. int retval;
  3665. get_online_cpus();
  3666. rcu_read_lock();
  3667. p = find_process_by_pid(pid);
  3668. if (!p) {
  3669. rcu_read_unlock();
  3670. put_online_cpus();
  3671. return -ESRCH;
  3672. }
  3673. /* Prevent p going away */
  3674. get_task_struct(p);
  3675. rcu_read_unlock();
  3676. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3677. retval = -ENOMEM;
  3678. goto out_put_task;
  3679. }
  3680. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3681. retval = -ENOMEM;
  3682. goto out_free_cpus_allowed;
  3683. }
  3684. retval = -EPERM;
  3685. if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
  3686. goto out_unlock;
  3687. retval = security_task_setscheduler(p);
  3688. if (retval)
  3689. goto out_unlock;
  3690. cpuset_cpus_allowed(p, cpus_allowed);
  3691. cpumask_and(new_mask, in_mask, cpus_allowed);
  3692. again:
  3693. retval = set_cpus_allowed_ptr(p, new_mask);
  3694. if (!retval) {
  3695. cpuset_cpus_allowed(p, cpus_allowed);
  3696. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3697. /*
  3698. * We must have raced with a concurrent cpuset
  3699. * update. Just reset the cpus_allowed to the
  3700. * cpuset's cpus_allowed
  3701. */
  3702. cpumask_copy(new_mask, cpus_allowed);
  3703. goto again;
  3704. }
  3705. }
  3706. out_unlock:
  3707. free_cpumask_var(new_mask);
  3708. out_free_cpus_allowed:
  3709. free_cpumask_var(cpus_allowed);
  3710. out_put_task:
  3711. put_task_struct(p);
  3712. put_online_cpus();
  3713. return retval;
  3714. }
  3715. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3716. struct cpumask *new_mask)
  3717. {
  3718. if (len < cpumask_size())
  3719. cpumask_clear(new_mask);
  3720. else if (len > cpumask_size())
  3721. len = cpumask_size();
  3722. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3723. }
  3724. /**
  3725. * sys_sched_setaffinity - set the cpu affinity of a process
  3726. * @pid: pid of the process
  3727. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3728. * @user_mask_ptr: user-space pointer to the new cpu mask
  3729. */
  3730. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3731. unsigned long __user *, user_mask_ptr)
  3732. {
  3733. cpumask_var_t new_mask;
  3734. int retval;
  3735. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3736. return -ENOMEM;
  3737. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3738. if (retval == 0)
  3739. retval = sched_setaffinity(pid, new_mask);
  3740. free_cpumask_var(new_mask);
  3741. return retval;
  3742. }
  3743. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3744. {
  3745. struct task_struct *p;
  3746. unsigned long flags;
  3747. int retval;
  3748. get_online_cpus();
  3749. rcu_read_lock();
  3750. retval = -ESRCH;
  3751. p = find_process_by_pid(pid);
  3752. if (!p)
  3753. goto out_unlock;
  3754. retval = security_task_getscheduler(p);
  3755. if (retval)
  3756. goto out_unlock;
  3757. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3758. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3759. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3760. out_unlock:
  3761. rcu_read_unlock();
  3762. put_online_cpus();
  3763. return retval;
  3764. }
  3765. /**
  3766. * sys_sched_getaffinity - get the cpu affinity of a process
  3767. * @pid: pid of the process
  3768. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3769. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3770. */
  3771. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3772. unsigned long __user *, user_mask_ptr)
  3773. {
  3774. int ret;
  3775. cpumask_var_t mask;
  3776. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3777. return -EINVAL;
  3778. if (len & (sizeof(unsigned long)-1))
  3779. return -EINVAL;
  3780. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3781. return -ENOMEM;
  3782. ret = sched_getaffinity(pid, mask);
  3783. if (ret == 0) {
  3784. size_t retlen = min_t(size_t, len, cpumask_size());
  3785. if (copy_to_user(user_mask_ptr, mask, retlen))
  3786. ret = -EFAULT;
  3787. else
  3788. ret = retlen;
  3789. }
  3790. free_cpumask_var(mask);
  3791. return ret;
  3792. }
  3793. /**
  3794. * sys_sched_yield - yield the current processor to other threads.
  3795. *
  3796. * This function yields the current CPU to other tasks. If there are no
  3797. * other threads running on this CPU then this function will return.
  3798. */
  3799. SYSCALL_DEFINE0(sched_yield)
  3800. {
  3801. struct rq *rq = this_rq_lock();
  3802. schedstat_inc(rq, yld_count);
  3803. current->sched_class->yield_task(rq);
  3804. /*
  3805. * Since we are going to call schedule() anyway, there's
  3806. * no need to preempt or enable interrupts:
  3807. */
  3808. __release(rq->lock);
  3809. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3810. do_raw_spin_unlock(&rq->lock);
  3811. preempt_enable_no_resched();
  3812. schedule();
  3813. return 0;
  3814. }
  3815. static inline int should_resched(void)
  3816. {
  3817. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3818. }
  3819. static void __cond_resched(void)
  3820. {
  3821. add_preempt_count(PREEMPT_ACTIVE);
  3822. __schedule();
  3823. sub_preempt_count(PREEMPT_ACTIVE);
  3824. }
  3825. int __sched _cond_resched(void)
  3826. {
  3827. if (should_resched()) {
  3828. __cond_resched();
  3829. return 1;
  3830. }
  3831. return 0;
  3832. }
  3833. EXPORT_SYMBOL(_cond_resched);
  3834. /*
  3835. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3836. * call schedule, and on return reacquire the lock.
  3837. *
  3838. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3839. * operations here to prevent schedule() from being called twice (once via
  3840. * spin_unlock(), once by hand).
  3841. */
  3842. int __cond_resched_lock(spinlock_t *lock)
  3843. {
  3844. int resched = should_resched();
  3845. int ret = 0;
  3846. lockdep_assert_held(lock);
  3847. if (spin_needbreak(lock) || resched) {
  3848. spin_unlock(lock);
  3849. if (resched)
  3850. __cond_resched();
  3851. else
  3852. cpu_relax();
  3853. ret = 1;
  3854. spin_lock(lock);
  3855. }
  3856. return ret;
  3857. }
  3858. EXPORT_SYMBOL(__cond_resched_lock);
  3859. int __sched __cond_resched_softirq(void)
  3860. {
  3861. BUG_ON(!in_softirq());
  3862. if (should_resched()) {
  3863. local_bh_enable();
  3864. __cond_resched();
  3865. local_bh_disable();
  3866. return 1;
  3867. }
  3868. return 0;
  3869. }
  3870. EXPORT_SYMBOL(__cond_resched_softirq);
  3871. /**
  3872. * yield - yield the current processor to other threads.
  3873. *
  3874. * This is a shortcut for kernel-space yielding - it marks the
  3875. * thread runnable and calls sys_sched_yield().
  3876. */
  3877. void __sched yield(void)
  3878. {
  3879. set_current_state(TASK_RUNNING);
  3880. sys_sched_yield();
  3881. }
  3882. EXPORT_SYMBOL(yield);
  3883. /**
  3884. * yield_to - yield the current processor to another thread in
  3885. * your thread group, or accelerate that thread toward the
  3886. * processor it's on.
  3887. * @p: target task
  3888. * @preempt: whether task preemption is allowed or not
  3889. *
  3890. * It's the caller's job to ensure that the target task struct
  3891. * can't go away on us before we can do any checks.
  3892. *
  3893. * Returns true if we indeed boosted the target task.
  3894. */
  3895. bool __sched yield_to(struct task_struct *p, bool preempt)
  3896. {
  3897. struct task_struct *curr = current;
  3898. struct rq *rq, *p_rq;
  3899. unsigned long flags;
  3900. bool yielded = 0;
  3901. local_irq_save(flags);
  3902. rq = this_rq();
  3903. again:
  3904. p_rq = task_rq(p);
  3905. double_rq_lock(rq, p_rq);
  3906. while (task_rq(p) != p_rq) {
  3907. double_rq_unlock(rq, p_rq);
  3908. goto again;
  3909. }
  3910. if (!curr->sched_class->yield_to_task)
  3911. goto out;
  3912. if (curr->sched_class != p->sched_class)
  3913. goto out;
  3914. if (task_running(p_rq, p) || p->state)
  3915. goto out;
  3916. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3917. if (yielded) {
  3918. schedstat_inc(rq, yld_count);
  3919. /*
  3920. * Make p's CPU reschedule; pick_next_entity takes care of
  3921. * fairness.
  3922. */
  3923. if (preempt && rq != p_rq)
  3924. resched_task(p_rq->curr);
  3925. } else {
  3926. /*
  3927. * We might have set it in task_yield_fair(), but are
  3928. * not going to schedule(), so don't want to skip
  3929. * the next update.
  3930. */
  3931. rq->skip_clock_update = 0;
  3932. }
  3933. out:
  3934. double_rq_unlock(rq, p_rq);
  3935. local_irq_restore(flags);
  3936. if (yielded)
  3937. schedule();
  3938. return yielded;
  3939. }
  3940. EXPORT_SYMBOL_GPL(yield_to);
  3941. /*
  3942. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3943. * that process accounting knows that this is a task in IO wait state.
  3944. */
  3945. void __sched io_schedule(void)
  3946. {
  3947. struct rq *rq = raw_rq();
  3948. delayacct_blkio_start();
  3949. atomic_inc(&rq->nr_iowait);
  3950. blk_flush_plug(current);
  3951. current->in_iowait = 1;
  3952. schedule();
  3953. current->in_iowait = 0;
  3954. atomic_dec(&rq->nr_iowait);
  3955. delayacct_blkio_end();
  3956. }
  3957. EXPORT_SYMBOL(io_schedule);
  3958. long __sched io_schedule_timeout(long timeout)
  3959. {
  3960. struct rq *rq = raw_rq();
  3961. long ret;
  3962. delayacct_blkio_start();
  3963. atomic_inc(&rq->nr_iowait);
  3964. blk_flush_plug(current);
  3965. current->in_iowait = 1;
  3966. ret = schedule_timeout(timeout);
  3967. current->in_iowait = 0;
  3968. atomic_dec(&rq->nr_iowait);
  3969. delayacct_blkio_end();
  3970. return ret;
  3971. }
  3972. /**
  3973. * sys_sched_get_priority_max - return maximum RT priority.
  3974. * @policy: scheduling class.
  3975. *
  3976. * this syscall returns the maximum rt_priority that can be used
  3977. * by a given scheduling class.
  3978. */
  3979. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3980. {
  3981. int ret = -EINVAL;
  3982. switch (policy) {
  3983. case SCHED_FIFO:
  3984. case SCHED_RR:
  3985. ret = MAX_USER_RT_PRIO-1;
  3986. break;
  3987. case SCHED_NORMAL:
  3988. case SCHED_BATCH:
  3989. case SCHED_IDLE:
  3990. ret = 0;
  3991. break;
  3992. }
  3993. return ret;
  3994. }
  3995. /**
  3996. * sys_sched_get_priority_min - return minimum RT priority.
  3997. * @policy: scheduling class.
  3998. *
  3999. * this syscall returns the minimum rt_priority that can be used
  4000. * by a given scheduling class.
  4001. */
  4002. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4003. {
  4004. int ret = -EINVAL;
  4005. switch (policy) {
  4006. case SCHED_FIFO:
  4007. case SCHED_RR:
  4008. ret = 1;
  4009. break;
  4010. case SCHED_NORMAL:
  4011. case SCHED_BATCH:
  4012. case SCHED_IDLE:
  4013. ret = 0;
  4014. }
  4015. return ret;
  4016. }
  4017. /**
  4018. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4019. * @pid: pid of the process.
  4020. * @interval: userspace pointer to the timeslice value.
  4021. *
  4022. * this syscall writes the default timeslice value of a given process
  4023. * into the user-space timespec buffer. A value of '0' means infinity.
  4024. */
  4025. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4026. struct timespec __user *, interval)
  4027. {
  4028. struct task_struct *p;
  4029. unsigned int time_slice;
  4030. unsigned long flags;
  4031. struct rq *rq;
  4032. int retval;
  4033. struct timespec t;
  4034. if (pid < 0)
  4035. return -EINVAL;
  4036. retval = -ESRCH;
  4037. rcu_read_lock();
  4038. p = find_process_by_pid(pid);
  4039. if (!p)
  4040. goto out_unlock;
  4041. retval = security_task_getscheduler(p);
  4042. if (retval)
  4043. goto out_unlock;
  4044. rq = task_rq_lock(p, &flags);
  4045. time_slice = p->sched_class->get_rr_interval(rq, p);
  4046. task_rq_unlock(rq, p, &flags);
  4047. rcu_read_unlock();
  4048. jiffies_to_timespec(time_slice, &t);
  4049. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4050. return retval;
  4051. out_unlock:
  4052. rcu_read_unlock();
  4053. return retval;
  4054. }
  4055. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4056. void sched_show_task(struct task_struct *p)
  4057. {
  4058. unsigned long free = 0;
  4059. unsigned state;
  4060. state = p->state ? __ffs(p->state) + 1 : 0;
  4061. printk(KERN_INFO "%-15.15s %c", p->comm,
  4062. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4063. #if BITS_PER_LONG == 32
  4064. if (state == TASK_RUNNING)
  4065. printk(KERN_CONT " running ");
  4066. else
  4067. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4068. #else
  4069. if (state == TASK_RUNNING)
  4070. printk(KERN_CONT " running task ");
  4071. else
  4072. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4073. #endif
  4074. #ifdef CONFIG_DEBUG_STACK_USAGE
  4075. free = stack_not_used(p);
  4076. #endif
  4077. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4078. task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
  4079. (unsigned long)task_thread_info(p)->flags);
  4080. show_stack(p, NULL);
  4081. }
  4082. void show_state_filter(unsigned long state_filter)
  4083. {
  4084. struct task_struct *g, *p;
  4085. #if BITS_PER_LONG == 32
  4086. printk(KERN_INFO
  4087. " task PC stack pid father\n");
  4088. #else
  4089. printk(KERN_INFO
  4090. " task PC stack pid father\n");
  4091. #endif
  4092. rcu_read_lock();
  4093. do_each_thread(g, p) {
  4094. /*
  4095. * reset the NMI-timeout, listing all files on a slow
  4096. * console might take a lot of time:
  4097. */
  4098. touch_nmi_watchdog();
  4099. if (!state_filter || (p->state & state_filter))
  4100. sched_show_task(p);
  4101. } while_each_thread(g, p);
  4102. touch_all_softlockup_watchdogs();
  4103. #ifdef CONFIG_SCHED_DEBUG
  4104. sysrq_sched_debug_show();
  4105. #endif
  4106. rcu_read_unlock();
  4107. /*
  4108. * Only show locks if all tasks are dumped:
  4109. */
  4110. if (!state_filter)
  4111. debug_show_all_locks();
  4112. }
  4113. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4114. {
  4115. idle->sched_class = &idle_sched_class;
  4116. }
  4117. /**
  4118. * init_idle - set up an idle thread for a given CPU
  4119. * @idle: task in question
  4120. * @cpu: cpu the idle task belongs to
  4121. *
  4122. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4123. * flag, to make booting more robust.
  4124. */
  4125. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4126. {
  4127. struct rq *rq = cpu_rq(cpu);
  4128. unsigned long flags;
  4129. raw_spin_lock_irqsave(&rq->lock, flags);
  4130. __sched_fork(idle);
  4131. idle->state = TASK_RUNNING;
  4132. idle->se.exec_start = sched_clock();
  4133. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4134. /*
  4135. * We're having a chicken and egg problem, even though we are
  4136. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4137. * lockdep check in task_group() will fail.
  4138. *
  4139. * Similar case to sched_fork(). / Alternatively we could
  4140. * use task_rq_lock() here and obtain the other rq->lock.
  4141. *
  4142. * Silence PROVE_RCU
  4143. */
  4144. rcu_read_lock();
  4145. __set_task_cpu(idle, cpu);
  4146. rcu_read_unlock();
  4147. rq->curr = rq->idle = idle;
  4148. #if defined(CONFIG_SMP)
  4149. idle->on_cpu = 1;
  4150. #endif
  4151. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4152. /* Set the preempt count _outside_ the spinlocks! */
  4153. task_thread_info(idle)->preempt_count = 0;
  4154. /*
  4155. * The idle tasks have their own, simple scheduling class:
  4156. */
  4157. idle->sched_class = &idle_sched_class;
  4158. ftrace_graph_init_idle_task(idle, cpu);
  4159. #if defined(CONFIG_SMP)
  4160. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4161. #endif
  4162. }
  4163. #ifdef CONFIG_SMP
  4164. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4165. {
  4166. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4167. p->sched_class->set_cpus_allowed(p, new_mask);
  4168. cpumask_copy(&p->cpus_allowed, new_mask);
  4169. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4170. }
  4171. /*
  4172. * This is how migration works:
  4173. *
  4174. * 1) we invoke migration_cpu_stop() on the target CPU using
  4175. * stop_one_cpu().
  4176. * 2) stopper starts to run (implicitly forcing the migrated thread
  4177. * off the CPU)
  4178. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4179. * 4) if it's in the wrong runqueue then the migration thread removes
  4180. * it and puts it into the right queue.
  4181. * 5) stopper completes and stop_one_cpu() returns and the migration
  4182. * is done.
  4183. */
  4184. /*
  4185. * Change a given task's CPU affinity. Migrate the thread to a
  4186. * proper CPU and schedule it away if the CPU it's executing on
  4187. * is removed from the allowed bitmask.
  4188. *
  4189. * NOTE: the caller must have a valid reference to the task, the
  4190. * task must not exit() & deallocate itself prematurely. The
  4191. * call is not atomic; no spinlocks may be held.
  4192. */
  4193. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4194. {
  4195. unsigned long flags;
  4196. struct rq *rq;
  4197. unsigned int dest_cpu;
  4198. int ret = 0;
  4199. rq = task_rq_lock(p, &flags);
  4200. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4201. goto out;
  4202. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4203. ret = -EINVAL;
  4204. goto out;
  4205. }
  4206. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4207. ret = -EINVAL;
  4208. goto out;
  4209. }
  4210. do_set_cpus_allowed(p, new_mask);
  4211. /* Can the task run on the task's current CPU? If so, we're done */
  4212. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4213. goto out;
  4214. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4215. if (p->on_rq) {
  4216. struct migration_arg arg = { p, dest_cpu };
  4217. /* Need help from migration thread: drop lock and wait. */
  4218. task_rq_unlock(rq, p, &flags);
  4219. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4220. tlb_migrate_finish(p->mm);
  4221. return 0;
  4222. }
  4223. out:
  4224. task_rq_unlock(rq, p, &flags);
  4225. return ret;
  4226. }
  4227. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4228. /*
  4229. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4230. * this because either it can't run here any more (set_cpus_allowed()
  4231. * away from this CPU, or CPU going down), or because we're
  4232. * attempting to rebalance this task on exec (sched_exec).
  4233. *
  4234. * So we race with normal scheduler movements, but that's OK, as long
  4235. * as the task is no longer on this CPU.
  4236. *
  4237. * Returns non-zero if task was successfully migrated.
  4238. */
  4239. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4240. {
  4241. struct rq *rq_dest, *rq_src;
  4242. int ret = 0;
  4243. if (unlikely(!cpu_active(dest_cpu)))
  4244. return ret;
  4245. rq_src = cpu_rq(src_cpu);
  4246. rq_dest = cpu_rq(dest_cpu);
  4247. raw_spin_lock(&p->pi_lock);
  4248. double_rq_lock(rq_src, rq_dest);
  4249. /* Already moved. */
  4250. if (task_cpu(p) != src_cpu)
  4251. goto done;
  4252. /* Affinity changed (again). */
  4253. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4254. goto fail;
  4255. /*
  4256. * If we're not on a rq, the next wake-up will ensure we're
  4257. * placed properly.
  4258. */
  4259. if (p->on_rq) {
  4260. dequeue_task(rq_src, p, 0);
  4261. set_task_cpu(p, dest_cpu);
  4262. enqueue_task(rq_dest, p, 0);
  4263. check_preempt_curr(rq_dest, p, 0);
  4264. }
  4265. done:
  4266. ret = 1;
  4267. fail:
  4268. double_rq_unlock(rq_src, rq_dest);
  4269. raw_spin_unlock(&p->pi_lock);
  4270. return ret;
  4271. }
  4272. /*
  4273. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4274. * and performs thread migration by bumping thread off CPU then
  4275. * 'pushing' onto another runqueue.
  4276. */
  4277. static int migration_cpu_stop(void *data)
  4278. {
  4279. struct migration_arg *arg = data;
  4280. /*
  4281. * The original target cpu might have gone down and we might
  4282. * be on another cpu but it doesn't matter.
  4283. */
  4284. local_irq_disable();
  4285. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4286. local_irq_enable();
  4287. return 0;
  4288. }
  4289. #ifdef CONFIG_HOTPLUG_CPU
  4290. /*
  4291. * Ensures that the idle task is using init_mm right before its cpu goes
  4292. * offline.
  4293. */
  4294. void idle_task_exit(void)
  4295. {
  4296. struct mm_struct *mm = current->active_mm;
  4297. BUG_ON(cpu_online(smp_processor_id()));
  4298. if (mm != &init_mm)
  4299. switch_mm(mm, &init_mm, current);
  4300. mmdrop(mm);
  4301. }
  4302. /*
  4303. * While a dead CPU has no uninterruptible tasks queued at this point,
  4304. * it might still have a nonzero ->nr_uninterruptible counter, because
  4305. * for performance reasons the counter is not stricly tracking tasks to
  4306. * their home CPUs. So we just add the counter to another CPU's counter,
  4307. * to keep the global sum constant after CPU-down:
  4308. */
  4309. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4310. {
  4311. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4312. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4313. rq_src->nr_uninterruptible = 0;
  4314. }
  4315. /*
  4316. * remove the tasks which were accounted by rq from calc_load_tasks.
  4317. */
  4318. static void calc_global_load_remove(struct rq *rq)
  4319. {
  4320. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4321. rq->calc_load_active = 0;
  4322. }
  4323. /*
  4324. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4325. * try_to_wake_up()->select_task_rq().
  4326. *
  4327. * Called with rq->lock held even though we'er in stop_machine() and
  4328. * there's no concurrency possible, we hold the required locks anyway
  4329. * because of lock validation efforts.
  4330. */
  4331. static void migrate_tasks(unsigned int dead_cpu)
  4332. {
  4333. struct rq *rq = cpu_rq(dead_cpu);
  4334. struct task_struct *next, *stop = rq->stop;
  4335. int dest_cpu;
  4336. /*
  4337. * Fudge the rq selection such that the below task selection loop
  4338. * doesn't get stuck on the currently eligible stop task.
  4339. *
  4340. * We're currently inside stop_machine() and the rq is either stuck
  4341. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4342. * either way we should never end up calling schedule() until we're
  4343. * done here.
  4344. */
  4345. rq->stop = NULL;
  4346. /* Ensure any throttled groups are reachable by pick_next_task */
  4347. unthrottle_offline_cfs_rqs(rq);
  4348. for ( ; ; ) {
  4349. /*
  4350. * There's this thread running, bail when that's the only
  4351. * remaining thread.
  4352. */
  4353. if (rq->nr_running == 1)
  4354. break;
  4355. next = pick_next_task(rq);
  4356. BUG_ON(!next);
  4357. next->sched_class->put_prev_task(rq, next);
  4358. /* Find suitable destination for @next, with force if needed. */
  4359. dest_cpu = select_fallback_rq(dead_cpu, next);
  4360. raw_spin_unlock(&rq->lock);
  4361. __migrate_task(next, dead_cpu, dest_cpu);
  4362. raw_spin_lock(&rq->lock);
  4363. }
  4364. rq->stop = stop;
  4365. }
  4366. #endif /* CONFIG_HOTPLUG_CPU */
  4367. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4368. static struct ctl_table sd_ctl_dir[] = {
  4369. {
  4370. .procname = "sched_domain",
  4371. .mode = 0555,
  4372. },
  4373. {}
  4374. };
  4375. static struct ctl_table sd_ctl_root[] = {
  4376. {
  4377. .procname = "kernel",
  4378. .mode = 0555,
  4379. .child = sd_ctl_dir,
  4380. },
  4381. {}
  4382. };
  4383. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4384. {
  4385. struct ctl_table *entry =
  4386. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4387. return entry;
  4388. }
  4389. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4390. {
  4391. struct ctl_table *entry;
  4392. /*
  4393. * In the intermediate directories, both the child directory and
  4394. * procname are dynamically allocated and could fail but the mode
  4395. * will always be set. In the lowest directory the names are
  4396. * static strings and all have proc handlers.
  4397. */
  4398. for (entry = *tablep; entry->mode; entry++) {
  4399. if (entry->child)
  4400. sd_free_ctl_entry(&entry->child);
  4401. if (entry->proc_handler == NULL)
  4402. kfree(entry->procname);
  4403. }
  4404. kfree(*tablep);
  4405. *tablep = NULL;
  4406. }
  4407. static void
  4408. set_table_entry(struct ctl_table *entry,
  4409. const char *procname, void *data, int maxlen,
  4410. umode_t mode, proc_handler *proc_handler)
  4411. {
  4412. entry->procname = procname;
  4413. entry->data = data;
  4414. entry->maxlen = maxlen;
  4415. entry->mode = mode;
  4416. entry->proc_handler = proc_handler;
  4417. }
  4418. static struct ctl_table *
  4419. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4420. {
  4421. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4422. if (table == NULL)
  4423. return NULL;
  4424. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4425. sizeof(long), 0644, proc_doulongvec_minmax);
  4426. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4427. sizeof(long), 0644, proc_doulongvec_minmax);
  4428. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4429. sizeof(int), 0644, proc_dointvec_minmax);
  4430. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4431. sizeof(int), 0644, proc_dointvec_minmax);
  4432. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4433. sizeof(int), 0644, proc_dointvec_minmax);
  4434. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4435. sizeof(int), 0644, proc_dointvec_minmax);
  4436. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4437. sizeof(int), 0644, proc_dointvec_minmax);
  4438. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4439. sizeof(int), 0644, proc_dointvec_minmax);
  4440. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4441. sizeof(int), 0644, proc_dointvec_minmax);
  4442. set_table_entry(&table[9], "cache_nice_tries",
  4443. &sd->cache_nice_tries,
  4444. sizeof(int), 0644, proc_dointvec_minmax);
  4445. set_table_entry(&table[10], "flags", &sd->flags,
  4446. sizeof(int), 0644, proc_dointvec_minmax);
  4447. set_table_entry(&table[11], "name", sd->name,
  4448. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4449. /* &table[12] is terminator */
  4450. return table;
  4451. }
  4452. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4453. {
  4454. struct ctl_table *entry, *table;
  4455. struct sched_domain *sd;
  4456. int domain_num = 0, i;
  4457. char buf[32];
  4458. for_each_domain(cpu, sd)
  4459. domain_num++;
  4460. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4461. if (table == NULL)
  4462. return NULL;
  4463. i = 0;
  4464. for_each_domain(cpu, sd) {
  4465. snprintf(buf, 32, "domain%d", i);
  4466. entry->procname = kstrdup(buf, GFP_KERNEL);
  4467. entry->mode = 0555;
  4468. entry->child = sd_alloc_ctl_domain_table(sd);
  4469. entry++;
  4470. i++;
  4471. }
  4472. return table;
  4473. }
  4474. static struct ctl_table_header *sd_sysctl_header;
  4475. static void register_sched_domain_sysctl(void)
  4476. {
  4477. int i, cpu_num = num_possible_cpus();
  4478. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4479. char buf[32];
  4480. WARN_ON(sd_ctl_dir[0].child);
  4481. sd_ctl_dir[0].child = entry;
  4482. if (entry == NULL)
  4483. return;
  4484. for_each_possible_cpu(i) {
  4485. snprintf(buf, 32, "cpu%d", i);
  4486. entry->procname = kstrdup(buf, GFP_KERNEL);
  4487. entry->mode = 0555;
  4488. entry->child = sd_alloc_ctl_cpu_table(i);
  4489. entry++;
  4490. }
  4491. WARN_ON(sd_sysctl_header);
  4492. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4493. }
  4494. /* may be called multiple times per register */
  4495. static void unregister_sched_domain_sysctl(void)
  4496. {
  4497. if (sd_sysctl_header)
  4498. unregister_sysctl_table(sd_sysctl_header);
  4499. sd_sysctl_header = NULL;
  4500. if (sd_ctl_dir[0].child)
  4501. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4502. }
  4503. #else
  4504. static void register_sched_domain_sysctl(void)
  4505. {
  4506. }
  4507. static void unregister_sched_domain_sysctl(void)
  4508. {
  4509. }
  4510. #endif
  4511. static void set_rq_online(struct rq *rq)
  4512. {
  4513. if (!rq->online) {
  4514. const struct sched_class *class;
  4515. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4516. rq->online = 1;
  4517. for_each_class(class) {
  4518. if (class->rq_online)
  4519. class->rq_online(rq);
  4520. }
  4521. }
  4522. }
  4523. static void set_rq_offline(struct rq *rq)
  4524. {
  4525. if (rq->online) {
  4526. const struct sched_class *class;
  4527. for_each_class(class) {
  4528. if (class->rq_offline)
  4529. class->rq_offline(rq);
  4530. }
  4531. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4532. rq->online = 0;
  4533. }
  4534. }
  4535. /*
  4536. * migration_call - callback that gets triggered when a CPU is added.
  4537. * Here we can start up the necessary migration thread for the new CPU.
  4538. */
  4539. static int __cpuinit
  4540. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4541. {
  4542. int cpu = (long)hcpu;
  4543. unsigned long flags;
  4544. struct rq *rq = cpu_rq(cpu);
  4545. switch (action & ~CPU_TASKS_FROZEN) {
  4546. case CPU_UP_PREPARE:
  4547. rq->calc_load_update = calc_load_update;
  4548. break;
  4549. case CPU_ONLINE:
  4550. /* Update our root-domain */
  4551. raw_spin_lock_irqsave(&rq->lock, flags);
  4552. if (rq->rd) {
  4553. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4554. set_rq_online(rq);
  4555. }
  4556. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4557. break;
  4558. #ifdef CONFIG_HOTPLUG_CPU
  4559. case CPU_DYING:
  4560. sched_ttwu_pending();
  4561. /* Update our root-domain */
  4562. raw_spin_lock_irqsave(&rq->lock, flags);
  4563. if (rq->rd) {
  4564. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4565. set_rq_offline(rq);
  4566. }
  4567. migrate_tasks(cpu);
  4568. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4569. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4570. migrate_nr_uninterruptible(rq);
  4571. calc_global_load_remove(rq);
  4572. break;
  4573. #endif
  4574. }
  4575. update_max_interval();
  4576. return NOTIFY_OK;
  4577. }
  4578. /*
  4579. * Register at high priority so that task migration (migrate_all_tasks)
  4580. * happens before everything else. This has to be lower priority than
  4581. * the notifier in the perf_event subsystem, though.
  4582. */
  4583. static struct notifier_block __cpuinitdata migration_notifier = {
  4584. .notifier_call = migration_call,
  4585. .priority = CPU_PRI_MIGRATION,
  4586. };
  4587. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4588. unsigned long action, void *hcpu)
  4589. {
  4590. switch (action & ~CPU_TASKS_FROZEN) {
  4591. case CPU_ONLINE:
  4592. case CPU_DOWN_FAILED:
  4593. set_cpu_active((long)hcpu, true);
  4594. return NOTIFY_OK;
  4595. default:
  4596. return NOTIFY_DONE;
  4597. }
  4598. }
  4599. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4600. unsigned long action, void *hcpu)
  4601. {
  4602. switch (action & ~CPU_TASKS_FROZEN) {
  4603. case CPU_DOWN_PREPARE:
  4604. set_cpu_active((long)hcpu, false);
  4605. return NOTIFY_OK;
  4606. default:
  4607. return NOTIFY_DONE;
  4608. }
  4609. }
  4610. static int __init migration_init(void)
  4611. {
  4612. void *cpu = (void *)(long)smp_processor_id();
  4613. int err;
  4614. /* Initialize migration for the boot CPU */
  4615. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4616. BUG_ON(err == NOTIFY_BAD);
  4617. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4618. register_cpu_notifier(&migration_notifier);
  4619. /* Register cpu active notifiers */
  4620. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4621. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4622. return 0;
  4623. }
  4624. early_initcall(migration_init);
  4625. #endif
  4626. #ifdef CONFIG_SMP
  4627. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4628. #ifdef CONFIG_SCHED_DEBUG
  4629. static __read_mostly int sched_domain_debug_enabled;
  4630. static int __init sched_domain_debug_setup(char *str)
  4631. {
  4632. sched_domain_debug_enabled = 1;
  4633. return 0;
  4634. }
  4635. early_param("sched_debug", sched_domain_debug_setup);
  4636. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4637. struct cpumask *groupmask)
  4638. {
  4639. struct sched_group *group = sd->groups;
  4640. char str[256];
  4641. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4642. cpumask_clear(groupmask);
  4643. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4644. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4645. printk("does not load-balance\n");
  4646. if (sd->parent)
  4647. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4648. " has parent");
  4649. return -1;
  4650. }
  4651. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4652. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4653. printk(KERN_ERR "ERROR: domain->span does not contain "
  4654. "CPU%d\n", cpu);
  4655. }
  4656. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4657. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4658. " CPU%d\n", cpu);
  4659. }
  4660. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4661. do {
  4662. if (!group) {
  4663. printk("\n");
  4664. printk(KERN_ERR "ERROR: group is NULL\n");
  4665. break;
  4666. }
  4667. if (!group->sgp->power) {
  4668. printk(KERN_CONT "\n");
  4669. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4670. "set\n");
  4671. break;
  4672. }
  4673. if (!cpumask_weight(sched_group_cpus(group))) {
  4674. printk(KERN_CONT "\n");
  4675. printk(KERN_ERR "ERROR: empty group\n");
  4676. break;
  4677. }
  4678. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4679. printk(KERN_CONT "\n");
  4680. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4681. break;
  4682. }
  4683. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4684. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4685. printk(KERN_CONT " %s", str);
  4686. if (group->sgp->power != SCHED_POWER_SCALE) {
  4687. printk(KERN_CONT " (cpu_power = %d)",
  4688. group->sgp->power);
  4689. }
  4690. group = group->next;
  4691. } while (group != sd->groups);
  4692. printk(KERN_CONT "\n");
  4693. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4694. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4695. if (sd->parent &&
  4696. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4697. printk(KERN_ERR "ERROR: parent span is not a superset "
  4698. "of domain->span\n");
  4699. return 0;
  4700. }
  4701. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4702. {
  4703. int level = 0;
  4704. if (!sched_domain_debug_enabled)
  4705. return;
  4706. if (!sd) {
  4707. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4708. return;
  4709. }
  4710. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4711. for (;;) {
  4712. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4713. break;
  4714. level++;
  4715. sd = sd->parent;
  4716. if (!sd)
  4717. break;
  4718. }
  4719. }
  4720. #else /* !CONFIG_SCHED_DEBUG */
  4721. # define sched_domain_debug(sd, cpu) do { } while (0)
  4722. #endif /* CONFIG_SCHED_DEBUG */
  4723. static int sd_degenerate(struct sched_domain *sd)
  4724. {
  4725. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4726. return 1;
  4727. /* Following flags need at least 2 groups */
  4728. if (sd->flags & (SD_LOAD_BALANCE |
  4729. SD_BALANCE_NEWIDLE |
  4730. SD_BALANCE_FORK |
  4731. SD_BALANCE_EXEC |
  4732. SD_SHARE_CPUPOWER |
  4733. SD_SHARE_PKG_RESOURCES)) {
  4734. if (sd->groups != sd->groups->next)
  4735. return 0;
  4736. }
  4737. /* Following flags don't use groups */
  4738. if (sd->flags & (SD_WAKE_AFFINE))
  4739. return 0;
  4740. return 1;
  4741. }
  4742. static int
  4743. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4744. {
  4745. unsigned long cflags = sd->flags, pflags = parent->flags;
  4746. if (sd_degenerate(parent))
  4747. return 1;
  4748. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4749. return 0;
  4750. /* Flags needing groups don't count if only 1 group in parent */
  4751. if (parent->groups == parent->groups->next) {
  4752. pflags &= ~(SD_LOAD_BALANCE |
  4753. SD_BALANCE_NEWIDLE |
  4754. SD_BALANCE_FORK |
  4755. SD_BALANCE_EXEC |
  4756. SD_SHARE_CPUPOWER |
  4757. SD_SHARE_PKG_RESOURCES);
  4758. if (nr_node_ids == 1)
  4759. pflags &= ~SD_SERIALIZE;
  4760. }
  4761. if (~cflags & pflags)
  4762. return 0;
  4763. return 1;
  4764. }
  4765. static void free_rootdomain(struct rcu_head *rcu)
  4766. {
  4767. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4768. cpupri_cleanup(&rd->cpupri);
  4769. free_cpumask_var(rd->rto_mask);
  4770. free_cpumask_var(rd->online);
  4771. free_cpumask_var(rd->span);
  4772. kfree(rd);
  4773. }
  4774. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4775. {
  4776. struct root_domain *old_rd = NULL;
  4777. unsigned long flags;
  4778. raw_spin_lock_irqsave(&rq->lock, flags);
  4779. if (rq->rd) {
  4780. old_rd = rq->rd;
  4781. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4782. set_rq_offline(rq);
  4783. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4784. /*
  4785. * If we dont want to free the old_rt yet then
  4786. * set old_rd to NULL to skip the freeing later
  4787. * in this function:
  4788. */
  4789. if (!atomic_dec_and_test(&old_rd->refcount))
  4790. old_rd = NULL;
  4791. }
  4792. atomic_inc(&rd->refcount);
  4793. rq->rd = rd;
  4794. cpumask_set_cpu(rq->cpu, rd->span);
  4795. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4796. set_rq_online(rq);
  4797. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4798. if (old_rd)
  4799. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4800. }
  4801. static int init_rootdomain(struct root_domain *rd)
  4802. {
  4803. memset(rd, 0, sizeof(*rd));
  4804. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4805. goto out;
  4806. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4807. goto free_span;
  4808. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4809. goto free_online;
  4810. if (cpupri_init(&rd->cpupri) != 0)
  4811. goto free_rto_mask;
  4812. return 0;
  4813. free_rto_mask:
  4814. free_cpumask_var(rd->rto_mask);
  4815. free_online:
  4816. free_cpumask_var(rd->online);
  4817. free_span:
  4818. free_cpumask_var(rd->span);
  4819. out:
  4820. return -ENOMEM;
  4821. }
  4822. /*
  4823. * By default the system creates a single root-domain with all cpus as
  4824. * members (mimicking the global state we have today).
  4825. */
  4826. struct root_domain def_root_domain;
  4827. static void init_defrootdomain(void)
  4828. {
  4829. init_rootdomain(&def_root_domain);
  4830. atomic_set(&def_root_domain.refcount, 1);
  4831. }
  4832. static struct root_domain *alloc_rootdomain(void)
  4833. {
  4834. struct root_domain *rd;
  4835. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4836. if (!rd)
  4837. return NULL;
  4838. if (init_rootdomain(rd) != 0) {
  4839. kfree(rd);
  4840. return NULL;
  4841. }
  4842. return rd;
  4843. }
  4844. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4845. {
  4846. struct sched_group *tmp, *first;
  4847. if (!sg)
  4848. return;
  4849. first = sg;
  4850. do {
  4851. tmp = sg->next;
  4852. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4853. kfree(sg->sgp);
  4854. kfree(sg);
  4855. sg = tmp;
  4856. } while (sg != first);
  4857. }
  4858. static void free_sched_domain(struct rcu_head *rcu)
  4859. {
  4860. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4861. /*
  4862. * If its an overlapping domain it has private groups, iterate and
  4863. * nuke them all.
  4864. */
  4865. if (sd->flags & SD_OVERLAP) {
  4866. free_sched_groups(sd->groups, 1);
  4867. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4868. kfree(sd->groups->sgp);
  4869. kfree(sd->groups);
  4870. }
  4871. kfree(sd);
  4872. }
  4873. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4874. {
  4875. call_rcu(&sd->rcu, free_sched_domain);
  4876. }
  4877. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4878. {
  4879. for (; sd; sd = sd->parent)
  4880. destroy_sched_domain(sd, cpu);
  4881. }
  4882. /*
  4883. * Keep a special pointer to the highest sched_domain that has
  4884. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4885. * allows us to avoid some pointer chasing select_idle_sibling().
  4886. *
  4887. * Also keep a unique ID per domain (we use the first cpu number in
  4888. * the cpumask of the domain), this allows us to quickly tell if
  4889. * two cpus are in the same cache domain, see ttwu_share_cache().
  4890. */
  4891. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4892. DEFINE_PER_CPU(int, sd_llc_id);
  4893. static void update_top_cache_domain(int cpu)
  4894. {
  4895. struct sched_domain *sd;
  4896. int id = cpu;
  4897. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4898. if (sd)
  4899. id = cpumask_first(sched_domain_span(sd));
  4900. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4901. per_cpu(sd_llc_id, cpu) = id;
  4902. }
  4903. /*
  4904. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4905. * hold the hotplug lock.
  4906. */
  4907. static void
  4908. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4909. {
  4910. struct rq *rq = cpu_rq(cpu);
  4911. struct sched_domain *tmp;
  4912. /* Remove the sched domains which do not contribute to scheduling. */
  4913. for (tmp = sd; tmp; ) {
  4914. struct sched_domain *parent = tmp->parent;
  4915. if (!parent)
  4916. break;
  4917. if (sd_parent_degenerate(tmp, parent)) {
  4918. tmp->parent = parent->parent;
  4919. if (parent->parent)
  4920. parent->parent->child = tmp;
  4921. destroy_sched_domain(parent, cpu);
  4922. } else
  4923. tmp = tmp->parent;
  4924. }
  4925. if (sd && sd_degenerate(sd)) {
  4926. tmp = sd;
  4927. sd = sd->parent;
  4928. destroy_sched_domain(tmp, cpu);
  4929. if (sd)
  4930. sd->child = NULL;
  4931. }
  4932. sched_domain_debug(sd, cpu);
  4933. rq_attach_root(rq, rd);
  4934. tmp = rq->sd;
  4935. rcu_assign_pointer(rq->sd, sd);
  4936. destroy_sched_domains(tmp, cpu);
  4937. update_top_cache_domain(cpu);
  4938. }
  4939. /* cpus with isolated domains */
  4940. static cpumask_var_t cpu_isolated_map;
  4941. /* Setup the mask of cpus configured for isolated domains */
  4942. static int __init isolated_cpu_setup(char *str)
  4943. {
  4944. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4945. cpulist_parse(str, cpu_isolated_map);
  4946. return 1;
  4947. }
  4948. __setup("isolcpus=", isolated_cpu_setup);
  4949. #ifdef CONFIG_NUMA
  4950. /**
  4951. * find_next_best_node - find the next node to include in a sched_domain
  4952. * @node: node whose sched_domain we're building
  4953. * @used_nodes: nodes already in the sched_domain
  4954. *
  4955. * Find the next node to include in a given scheduling domain. Simply
  4956. * finds the closest node not already in the @used_nodes map.
  4957. *
  4958. * Should use nodemask_t.
  4959. */
  4960. static int find_next_best_node(int node, nodemask_t *used_nodes)
  4961. {
  4962. int i, n, val, min_val, best_node = -1;
  4963. min_val = INT_MAX;
  4964. for (i = 0; i < nr_node_ids; i++) {
  4965. /* Start at @node */
  4966. n = (node + i) % nr_node_ids;
  4967. if (!nr_cpus_node(n))
  4968. continue;
  4969. /* Skip already used nodes */
  4970. if (node_isset(n, *used_nodes))
  4971. continue;
  4972. /* Simple min distance search */
  4973. val = node_distance(node, n);
  4974. if (val < min_val) {
  4975. min_val = val;
  4976. best_node = n;
  4977. }
  4978. }
  4979. if (best_node != -1)
  4980. node_set(best_node, *used_nodes);
  4981. return best_node;
  4982. }
  4983. /**
  4984. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4985. * @node: node whose cpumask we're constructing
  4986. * @span: resulting cpumask
  4987. *
  4988. * Given a node, construct a good cpumask for its sched_domain to span. It
  4989. * should be one that prevents unnecessary balancing, but also spreads tasks
  4990. * out optimally.
  4991. */
  4992. static void sched_domain_node_span(int node, struct cpumask *span)
  4993. {
  4994. nodemask_t used_nodes;
  4995. int i;
  4996. cpumask_clear(span);
  4997. nodes_clear(used_nodes);
  4998. cpumask_or(span, span, cpumask_of_node(node));
  4999. node_set(node, used_nodes);
  5000. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5001. int next_node = find_next_best_node(node, &used_nodes);
  5002. if (next_node < 0)
  5003. break;
  5004. cpumask_or(span, span, cpumask_of_node(next_node));
  5005. }
  5006. }
  5007. static const struct cpumask *cpu_node_mask(int cpu)
  5008. {
  5009. lockdep_assert_held(&sched_domains_mutex);
  5010. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  5011. return sched_domains_tmpmask;
  5012. }
  5013. static const struct cpumask *cpu_allnodes_mask(int cpu)
  5014. {
  5015. return cpu_possible_mask;
  5016. }
  5017. #endif /* CONFIG_NUMA */
  5018. static const struct cpumask *cpu_cpu_mask(int cpu)
  5019. {
  5020. return cpumask_of_node(cpu_to_node(cpu));
  5021. }
  5022. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5023. struct sd_data {
  5024. struct sched_domain **__percpu sd;
  5025. struct sched_group **__percpu sg;
  5026. struct sched_group_power **__percpu sgp;
  5027. };
  5028. struct s_data {
  5029. struct sched_domain ** __percpu sd;
  5030. struct root_domain *rd;
  5031. };
  5032. enum s_alloc {
  5033. sa_rootdomain,
  5034. sa_sd,
  5035. sa_sd_storage,
  5036. sa_none,
  5037. };
  5038. struct sched_domain_topology_level;
  5039. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5040. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5041. #define SDTL_OVERLAP 0x01
  5042. struct sched_domain_topology_level {
  5043. sched_domain_init_f init;
  5044. sched_domain_mask_f mask;
  5045. int flags;
  5046. struct sd_data data;
  5047. };
  5048. static int
  5049. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5050. {
  5051. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5052. const struct cpumask *span = sched_domain_span(sd);
  5053. struct cpumask *covered = sched_domains_tmpmask;
  5054. struct sd_data *sdd = sd->private;
  5055. struct sched_domain *child;
  5056. int i;
  5057. cpumask_clear(covered);
  5058. for_each_cpu(i, span) {
  5059. struct cpumask *sg_span;
  5060. if (cpumask_test_cpu(i, covered))
  5061. continue;
  5062. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5063. GFP_KERNEL, cpu_to_node(cpu));
  5064. if (!sg)
  5065. goto fail;
  5066. sg_span = sched_group_cpus(sg);
  5067. child = *per_cpu_ptr(sdd->sd, i);
  5068. if (child->child) {
  5069. child = child->child;
  5070. cpumask_copy(sg_span, sched_domain_span(child));
  5071. } else
  5072. cpumask_set_cpu(i, sg_span);
  5073. cpumask_or(covered, covered, sg_span);
  5074. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  5075. atomic_inc(&sg->sgp->ref);
  5076. if (cpumask_test_cpu(cpu, sg_span))
  5077. groups = sg;
  5078. if (!first)
  5079. first = sg;
  5080. if (last)
  5081. last->next = sg;
  5082. last = sg;
  5083. last->next = first;
  5084. }
  5085. sd->groups = groups;
  5086. return 0;
  5087. fail:
  5088. free_sched_groups(first, 0);
  5089. return -ENOMEM;
  5090. }
  5091. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5092. {
  5093. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5094. struct sched_domain *child = sd->child;
  5095. if (child)
  5096. cpu = cpumask_first(sched_domain_span(child));
  5097. if (sg) {
  5098. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5099. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  5100. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  5101. }
  5102. return cpu;
  5103. }
  5104. /*
  5105. * build_sched_groups will build a circular linked list of the groups
  5106. * covered by the given span, and will set each group's ->cpumask correctly,
  5107. * and ->cpu_power to 0.
  5108. *
  5109. * Assumes the sched_domain tree is fully constructed
  5110. */
  5111. static int
  5112. build_sched_groups(struct sched_domain *sd, int cpu)
  5113. {
  5114. struct sched_group *first = NULL, *last = NULL;
  5115. struct sd_data *sdd = sd->private;
  5116. const struct cpumask *span = sched_domain_span(sd);
  5117. struct cpumask *covered;
  5118. int i;
  5119. get_group(cpu, sdd, &sd->groups);
  5120. atomic_inc(&sd->groups->ref);
  5121. if (cpu != cpumask_first(sched_domain_span(sd)))
  5122. return 0;
  5123. lockdep_assert_held(&sched_domains_mutex);
  5124. covered = sched_domains_tmpmask;
  5125. cpumask_clear(covered);
  5126. for_each_cpu(i, span) {
  5127. struct sched_group *sg;
  5128. int group = get_group(i, sdd, &sg);
  5129. int j;
  5130. if (cpumask_test_cpu(i, covered))
  5131. continue;
  5132. cpumask_clear(sched_group_cpus(sg));
  5133. sg->sgp->power = 0;
  5134. for_each_cpu(j, span) {
  5135. if (get_group(j, sdd, NULL) != group)
  5136. continue;
  5137. cpumask_set_cpu(j, covered);
  5138. cpumask_set_cpu(j, sched_group_cpus(sg));
  5139. }
  5140. if (!first)
  5141. first = sg;
  5142. if (last)
  5143. last->next = sg;
  5144. last = sg;
  5145. }
  5146. last->next = first;
  5147. return 0;
  5148. }
  5149. /*
  5150. * Initialize sched groups cpu_power.
  5151. *
  5152. * cpu_power indicates the capacity of sched group, which is used while
  5153. * distributing the load between different sched groups in a sched domain.
  5154. * Typically cpu_power for all the groups in a sched domain will be same unless
  5155. * there are asymmetries in the topology. If there are asymmetries, group
  5156. * having more cpu_power will pickup more load compared to the group having
  5157. * less cpu_power.
  5158. */
  5159. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5160. {
  5161. struct sched_group *sg = sd->groups;
  5162. WARN_ON(!sd || !sg);
  5163. do {
  5164. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5165. sg = sg->next;
  5166. } while (sg != sd->groups);
  5167. if (cpu != group_first_cpu(sg))
  5168. return;
  5169. update_group_power(sd, cpu);
  5170. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  5171. }
  5172. int __weak arch_sd_sibling_asym_packing(void)
  5173. {
  5174. return 0*SD_ASYM_PACKING;
  5175. }
  5176. /*
  5177. * Initializers for schedule domains
  5178. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5179. */
  5180. #ifdef CONFIG_SCHED_DEBUG
  5181. # define SD_INIT_NAME(sd, type) sd->name = #type
  5182. #else
  5183. # define SD_INIT_NAME(sd, type) do { } while (0)
  5184. #endif
  5185. #define SD_INIT_FUNC(type) \
  5186. static noinline struct sched_domain * \
  5187. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5188. { \
  5189. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5190. *sd = SD_##type##_INIT; \
  5191. SD_INIT_NAME(sd, type); \
  5192. sd->private = &tl->data; \
  5193. return sd; \
  5194. }
  5195. SD_INIT_FUNC(CPU)
  5196. #ifdef CONFIG_NUMA
  5197. SD_INIT_FUNC(ALLNODES)
  5198. SD_INIT_FUNC(NODE)
  5199. #endif
  5200. #ifdef CONFIG_SCHED_SMT
  5201. SD_INIT_FUNC(SIBLING)
  5202. #endif
  5203. #ifdef CONFIG_SCHED_MC
  5204. SD_INIT_FUNC(MC)
  5205. #endif
  5206. #ifdef CONFIG_SCHED_BOOK
  5207. SD_INIT_FUNC(BOOK)
  5208. #endif
  5209. static int default_relax_domain_level = -1;
  5210. int sched_domain_level_max;
  5211. static int __init setup_relax_domain_level(char *str)
  5212. {
  5213. unsigned long val;
  5214. val = simple_strtoul(str, NULL, 0);
  5215. if (val < sched_domain_level_max)
  5216. default_relax_domain_level = val;
  5217. return 1;
  5218. }
  5219. __setup("relax_domain_level=", setup_relax_domain_level);
  5220. static void set_domain_attribute(struct sched_domain *sd,
  5221. struct sched_domain_attr *attr)
  5222. {
  5223. int request;
  5224. if (!attr || attr->relax_domain_level < 0) {
  5225. if (default_relax_domain_level < 0)
  5226. return;
  5227. else
  5228. request = default_relax_domain_level;
  5229. } else
  5230. request = attr->relax_domain_level;
  5231. if (request < sd->level) {
  5232. /* turn off idle balance on this domain */
  5233. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5234. } else {
  5235. /* turn on idle balance on this domain */
  5236. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5237. }
  5238. }
  5239. static void __sdt_free(const struct cpumask *cpu_map);
  5240. static int __sdt_alloc(const struct cpumask *cpu_map);
  5241. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5242. const struct cpumask *cpu_map)
  5243. {
  5244. switch (what) {
  5245. case sa_rootdomain:
  5246. if (!atomic_read(&d->rd->refcount))
  5247. free_rootdomain(&d->rd->rcu); /* fall through */
  5248. case sa_sd:
  5249. free_percpu(d->sd); /* fall through */
  5250. case sa_sd_storage:
  5251. __sdt_free(cpu_map); /* fall through */
  5252. case sa_none:
  5253. break;
  5254. }
  5255. }
  5256. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5257. const struct cpumask *cpu_map)
  5258. {
  5259. memset(d, 0, sizeof(*d));
  5260. if (__sdt_alloc(cpu_map))
  5261. return sa_sd_storage;
  5262. d->sd = alloc_percpu(struct sched_domain *);
  5263. if (!d->sd)
  5264. return sa_sd_storage;
  5265. d->rd = alloc_rootdomain();
  5266. if (!d->rd)
  5267. return sa_sd;
  5268. return sa_rootdomain;
  5269. }
  5270. /*
  5271. * NULL the sd_data elements we've used to build the sched_domain and
  5272. * sched_group structure so that the subsequent __free_domain_allocs()
  5273. * will not free the data we're using.
  5274. */
  5275. static void claim_allocations(int cpu, struct sched_domain *sd)
  5276. {
  5277. struct sd_data *sdd = sd->private;
  5278. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5279. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5280. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5281. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5282. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5283. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5284. }
  5285. #ifdef CONFIG_SCHED_SMT
  5286. static const struct cpumask *cpu_smt_mask(int cpu)
  5287. {
  5288. return topology_thread_cpumask(cpu);
  5289. }
  5290. #endif
  5291. /*
  5292. * Topology list, bottom-up.
  5293. */
  5294. static struct sched_domain_topology_level default_topology[] = {
  5295. #ifdef CONFIG_SCHED_SMT
  5296. { sd_init_SIBLING, cpu_smt_mask, },
  5297. #endif
  5298. #ifdef CONFIG_SCHED_MC
  5299. { sd_init_MC, cpu_coregroup_mask, },
  5300. #endif
  5301. #ifdef CONFIG_SCHED_BOOK
  5302. { sd_init_BOOK, cpu_book_mask, },
  5303. #endif
  5304. { sd_init_CPU, cpu_cpu_mask, },
  5305. #ifdef CONFIG_NUMA
  5306. { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
  5307. { sd_init_ALLNODES, cpu_allnodes_mask, },
  5308. #endif
  5309. { NULL, },
  5310. };
  5311. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5312. static int __sdt_alloc(const struct cpumask *cpu_map)
  5313. {
  5314. struct sched_domain_topology_level *tl;
  5315. int j;
  5316. for (tl = sched_domain_topology; tl->init; tl++) {
  5317. struct sd_data *sdd = &tl->data;
  5318. sdd->sd = alloc_percpu(struct sched_domain *);
  5319. if (!sdd->sd)
  5320. return -ENOMEM;
  5321. sdd->sg = alloc_percpu(struct sched_group *);
  5322. if (!sdd->sg)
  5323. return -ENOMEM;
  5324. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5325. if (!sdd->sgp)
  5326. return -ENOMEM;
  5327. for_each_cpu(j, cpu_map) {
  5328. struct sched_domain *sd;
  5329. struct sched_group *sg;
  5330. struct sched_group_power *sgp;
  5331. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5332. GFP_KERNEL, cpu_to_node(j));
  5333. if (!sd)
  5334. return -ENOMEM;
  5335. *per_cpu_ptr(sdd->sd, j) = sd;
  5336. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5337. GFP_KERNEL, cpu_to_node(j));
  5338. if (!sg)
  5339. return -ENOMEM;
  5340. *per_cpu_ptr(sdd->sg, j) = sg;
  5341. sgp = kzalloc_node(sizeof(struct sched_group_power),
  5342. GFP_KERNEL, cpu_to_node(j));
  5343. if (!sgp)
  5344. return -ENOMEM;
  5345. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5346. }
  5347. }
  5348. return 0;
  5349. }
  5350. static void __sdt_free(const struct cpumask *cpu_map)
  5351. {
  5352. struct sched_domain_topology_level *tl;
  5353. int j;
  5354. for (tl = sched_domain_topology; tl->init; tl++) {
  5355. struct sd_data *sdd = &tl->data;
  5356. for_each_cpu(j, cpu_map) {
  5357. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
  5358. if (sd && (sd->flags & SD_OVERLAP))
  5359. free_sched_groups(sd->groups, 0);
  5360. kfree(*per_cpu_ptr(sdd->sd, j));
  5361. kfree(*per_cpu_ptr(sdd->sg, j));
  5362. kfree(*per_cpu_ptr(sdd->sgp, j));
  5363. }
  5364. free_percpu(sdd->sd);
  5365. free_percpu(sdd->sg);
  5366. free_percpu(sdd->sgp);
  5367. }
  5368. }
  5369. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5370. struct s_data *d, const struct cpumask *cpu_map,
  5371. struct sched_domain_attr *attr, struct sched_domain *child,
  5372. int cpu)
  5373. {
  5374. struct sched_domain *sd = tl->init(tl, cpu);
  5375. if (!sd)
  5376. return child;
  5377. set_domain_attribute(sd, attr);
  5378. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5379. if (child) {
  5380. sd->level = child->level + 1;
  5381. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5382. child->parent = sd;
  5383. }
  5384. sd->child = child;
  5385. return sd;
  5386. }
  5387. /*
  5388. * Build sched domains for a given set of cpus and attach the sched domains
  5389. * to the individual cpus
  5390. */
  5391. static int build_sched_domains(const struct cpumask *cpu_map,
  5392. struct sched_domain_attr *attr)
  5393. {
  5394. enum s_alloc alloc_state = sa_none;
  5395. struct sched_domain *sd;
  5396. struct s_data d;
  5397. int i, ret = -ENOMEM;
  5398. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5399. if (alloc_state != sa_rootdomain)
  5400. goto error;
  5401. /* Set up domains for cpus specified by the cpu_map. */
  5402. for_each_cpu(i, cpu_map) {
  5403. struct sched_domain_topology_level *tl;
  5404. sd = NULL;
  5405. for (tl = sched_domain_topology; tl->init; tl++) {
  5406. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5407. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5408. sd->flags |= SD_OVERLAP;
  5409. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5410. break;
  5411. }
  5412. while (sd->child)
  5413. sd = sd->child;
  5414. *per_cpu_ptr(d.sd, i) = sd;
  5415. }
  5416. /* Build the groups for the domains */
  5417. for_each_cpu(i, cpu_map) {
  5418. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5419. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5420. if (sd->flags & SD_OVERLAP) {
  5421. if (build_overlap_sched_groups(sd, i))
  5422. goto error;
  5423. } else {
  5424. if (build_sched_groups(sd, i))
  5425. goto error;
  5426. }
  5427. }
  5428. }
  5429. /* Calculate CPU power for physical packages and nodes */
  5430. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5431. if (!cpumask_test_cpu(i, cpu_map))
  5432. continue;
  5433. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5434. claim_allocations(i, sd);
  5435. init_sched_groups_power(i, sd);
  5436. }
  5437. }
  5438. /* Attach the domains */
  5439. rcu_read_lock();
  5440. for_each_cpu(i, cpu_map) {
  5441. sd = *per_cpu_ptr(d.sd, i);
  5442. cpu_attach_domain(sd, d.rd, i);
  5443. }
  5444. rcu_read_unlock();
  5445. ret = 0;
  5446. error:
  5447. __free_domain_allocs(&d, alloc_state, cpu_map);
  5448. return ret;
  5449. }
  5450. static cpumask_var_t *doms_cur; /* current sched domains */
  5451. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5452. static struct sched_domain_attr *dattr_cur;
  5453. /* attribues of custom domains in 'doms_cur' */
  5454. /*
  5455. * Special case: If a kmalloc of a doms_cur partition (array of
  5456. * cpumask) fails, then fallback to a single sched domain,
  5457. * as determined by the single cpumask fallback_doms.
  5458. */
  5459. static cpumask_var_t fallback_doms;
  5460. /*
  5461. * arch_update_cpu_topology lets virtualized architectures update the
  5462. * cpu core maps. It is supposed to return 1 if the topology changed
  5463. * or 0 if it stayed the same.
  5464. */
  5465. int __attribute__((weak)) arch_update_cpu_topology(void)
  5466. {
  5467. return 0;
  5468. }
  5469. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5470. {
  5471. int i;
  5472. cpumask_var_t *doms;
  5473. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5474. if (!doms)
  5475. return NULL;
  5476. for (i = 0; i < ndoms; i++) {
  5477. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5478. free_sched_domains(doms, i);
  5479. return NULL;
  5480. }
  5481. }
  5482. return doms;
  5483. }
  5484. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5485. {
  5486. unsigned int i;
  5487. for (i = 0; i < ndoms; i++)
  5488. free_cpumask_var(doms[i]);
  5489. kfree(doms);
  5490. }
  5491. /*
  5492. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5493. * For now this just excludes isolated cpus, but could be used to
  5494. * exclude other special cases in the future.
  5495. */
  5496. static int init_sched_domains(const struct cpumask *cpu_map)
  5497. {
  5498. int err;
  5499. arch_update_cpu_topology();
  5500. ndoms_cur = 1;
  5501. doms_cur = alloc_sched_domains(ndoms_cur);
  5502. if (!doms_cur)
  5503. doms_cur = &fallback_doms;
  5504. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5505. dattr_cur = NULL;
  5506. err = build_sched_domains(doms_cur[0], NULL);
  5507. register_sched_domain_sysctl();
  5508. return err;
  5509. }
  5510. /*
  5511. * Detach sched domains from a group of cpus specified in cpu_map
  5512. * These cpus will now be attached to the NULL domain
  5513. */
  5514. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5515. {
  5516. int i;
  5517. rcu_read_lock();
  5518. for_each_cpu(i, cpu_map)
  5519. cpu_attach_domain(NULL, &def_root_domain, i);
  5520. rcu_read_unlock();
  5521. }
  5522. /* handle null as "default" */
  5523. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5524. struct sched_domain_attr *new, int idx_new)
  5525. {
  5526. struct sched_domain_attr tmp;
  5527. /* fast path */
  5528. if (!new && !cur)
  5529. return 1;
  5530. tmp = SD_ATTR_INIT;
  5531. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5532. new ? (new + idx_new) : &tmp,
  5533. sizeof(struct sched_domain_attr));
  5534. }
  5535. /*
  5536. * Partition sched domains as specified by the 'ndoms_new'
  5537. * cpumasks in the array doms_new[] of cpumasks. This compares
  5538. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5539. * It destroys each deleted domain and builds each new domain.
  5540. *
  5541. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5542. * The masks don't intersect (don't overlap.) We should setup one
  5543. * sched domain for each mask. CPUs not in any of the cpumasks will
  5544. * not be load balanced. If the same cpumask appears both in the
  5545. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5546. * it as it is.
  5547. *
  5548. * The passed in 'doms_new' should be allocated using
  5549. * alloc_sched_domains. This routine takes ownership of it and will
  5550. * free_sched_domains it when done with it. If the caller failed the
  5551. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5552. * and partition_sched_domains() will fallback to the single partition
  5553. * 'fallback_doms', it also forces the domains to be rebuilt.
  5554. *
  5555. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5556. * ndoms_new == 0 is a special case for destroying existing domains,
  5557. * and it will not create the default domain.
  5558. *
  5559. * Call with hotplug lock held
  5560. */
  5561. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5562. struct sched_domain_attr *dattr_new)
  5563. {
  5564. int i, j, n;
  5565. int new_topology;
  5566. mutex_lock(&sched_domains_mutex);
  5567. /* always unregister in case we don't destroy any domains */
  5568. unregister_sched_domain_sysctl();
  5569. /* Let architecture update cpu core mappings. */
  5570. new_topology = arch_update_cpu_topology();
  5571. n = doms_new ? ndoms_new : 0;
  5572. /* Destroy deleted domains */
  5573. for (i = 0; i < ndoms_cur; i++) {
  5574. for (j = 0; j < n && !new_topology; j++) {
  5575. if (cpumask_equal(doms_cur[i], doms_new[j])
  5576. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5577. goto match1;
  5578. }
  5579. /* no match - a current sched domain not in new doms_new[] */
  5580. detach_destroy_domains(doms_cur[i]);
  5581. match1:
  5582. ;
  5583. }
  5584. if (doms_new == NULL) {
  5585. ndoms_cur = 0;
  5586. doms_new = &fallback_doms;
  5587. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5588. WARN_ON_ONCE(dattr_new);
  5589. }
  5590. /* Build new domains */
  5591. for (i = 0; i < ndoms_new; i++) {
  5592. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5593. if (cpumask_equal(doms_new[i], doms_cur[j])
  5594. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5595. goto match2;
  5596. }
  5597. /* no match - add a new doms_new */
  5598. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5599. match2:
  5600. ;
  5601. }
  5602. /* Remember the new sched domains */
  5603. if (doms_cur != &fallback_doms)
  5604. free_sched_domains(doms_cur, ndoms_cur);
  5605. kfree(dattr_cur); /* kfree(NULL) is safe */
  5606. doms_cur = doms_new;
  5607. dattr_cur = dattr_new;
  5608. ndoms_cur = ndoms_new;
  5609. register_sched_domain_sysctl();
  5610. mutex_unlock(&sched_domains_mutex);
  5611. }
  5612. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5613. static void reinit_sched_domains(void)
  5614. {
  5615. get_online_cpus();
  5616. /* Destroy domains first to force the rebuild */
  5617. partition_sched_domains(0, NULL, NULL);
  5618. rebuild_sched_domains();
  5619. put_online_cpus();
  5620. }
  5621. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5622. {
  5623. unsigned int level = 0;
  5624. if (sscanf(buf, "%u", &level) != 1)
  5625. return -EINVAL;
  5626. /*
  5627. * level is always be positive so don't check for
  5628. * level < POWERSAVINGS_BALANCE_NONE which is 0
  5629. * What happens on 0 or 1 byte write,
  5630. * need to check for count as well?
  5631. */
  5632. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  5633. return -EINVAL;
  5634. if (smt)
  5635. sched_smt_power_savings = level;
  5636. else
  5637. sched_mc_power_savings = level;
  5638. reinit_sched_domains();
  5639. return count;
  5640. }
  5641. #ifdef CONFIG_SCHED_MC
  5642. static ssize_t sched_mc_power_savings_show(struct device *dev,
  5643. struct device_attribute *attr,
  5644. char *buf)
  5645. {
  5646. return sprintf(buf, "%u\n", sched_mc_power_savings);
  5647. }
  5648. static ssize_t sched_mc_power_savings_store(struct device *dev,
  5649. struct device_attribute *attr,
  5650. const char *buf, size_t count)
  5651. {
  5652. return sched_power_savings_store(buf, count, 0);
  5653. }
  5654. static DEVICE_ATTR(sched_mc_power_savings, 0644,
  5655. sched_mc_power_savings_show,
  5656. sched_mc_power_savings_store);
  5657. #endif
  5658. #ifdef CONFIG_SCHED_SMT
  5659. static ssize_t sched_smt_power_savings_show(struct device *dev,
  5660. struct device_attribute *attr,
  5661. char *buf)
  5662. {
  5663. return sprintf(buf, "%u\n", sched_smt_power_savings);
  5664. }
  5665. static ssize_t sched_smt_power_savings_store(struct device *dev,
  5666. struct device_attribute *attr,
  5667. const char *buf, size_t count)
  5668. {
  5669. return sched_power_savings_store(buf, count, 1);
  5670. }
  5671. static DEVICE_ATTR(sched_smt_power_savings, 0644,
  5672. sched_smt_power_savings_show,
  5673. sched_smt_power_savings_store);
  5674. #endif
  5675. int __init sched_create_sysfs_power_savings_entries(struct device *dev)
  5676. {
  5677. int err = 0;
  5678. #ifdef CONFIG_SCHED_SMT
  5679. if (smt_capable())
  5680. err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
  5681. #endif
  5682. #ifdef CONFIG_SCHED_MC
  5683. if (!err && mc_capable())
  5684. err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
  5685. #endif
  5686. return err;
  5687. }
  5688. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  5689. /*
  5690. * Update cpusets according to cpu_active mask. If cpusets are
  5691. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5692. * around partition_sched_domains().
  5693. */
  5694. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5695. void *hcpu)
  5696. {
  5697. switch (action & ~CPU_TASKS_FROZEN) {
  5698. case CPU_ONLINE:
  5699. case CPU_DOWN_FAILED:
  5700. cpuset_update_active_cpus();
  5701. return NOTIFY_OK;
  5702. default:
  5703. return NOTIFY_DONE;
  5704. }
  5705. }
  5706. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5707. void *hcpu)
  5708. {
  5709. switch (action & ~CPU_TASKS_FROZEN) {
  5710. case CPU_DOWN_PREPARE:
  5711. cpuset_update_active_cpus();
  5712. return NOTIFY_OK;
  5713. default:
  5714. return NOTIFY_DONE;
  5715. }
  5716. }
  5717. void __init sched_init_smp(void)
  5718. {
  5719. cpumask_var_t non_isolated_cpus;
  5720. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5721. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5722. get_online_cpus();
  5723. mutex_lock(&sched_domains_mutex);
  5724. init_sched_domains(cpu_active_mask);
  5725. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5726. if (cpumask_empty(non_isolated_cpus))
  5727. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5728. mutex_unlock(&sched_domains_mutex);
  5729. put_online_cpus();
  5730. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5731. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5732. /* RT runtime code needs to handle some hotplug events */
  5733. hotcpu_notifier(update_runtime, 0);
  5734. init_hrtick();
  5735. /* Move init over to a non-isolated CPU */
  5736. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5737. BUG();
  5738. sched_init_granularity();
  5739. free_cpumask_var(non_isolated_cpus);
  5740. init_sched_rt_class();
  5741. }
  5742. #else
  5743. void __init sched_init_smp(void)
  5744. {
  5745. sched_init_granularity();
  5746. }
  5747. #endif /* CONFIG_SMP */
  5748. const_debug unsigned int sysctl_timer_migration = 1;
  5749. int in_sched_functions(unsigned long addr)
  5750. {
  5751. return in_lock_functions(addr) ||
  5752. (addr >= (unsigned long)__sched_text_start
  5753. && addr < (unsigned long)__sched_text_end);
  5754. }
  5755. #ifdef CONFIG_CGROUP_SCHED
  5756. struct task_group root_task_group;
  5757. #endif
  5758. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5759. void __init sched_init(void)
  5760. {
  5761. int i, j;
  5762. unsigned long alloc_size = 0, ptr;
  5763. #ifdef CONFIG_FAIR_GROUP_SCHED
  5764. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5765. #endif
  5766. #ifdef CONFIG_RT_GROUP_SCHED
  5767. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5768. #endif
  5769. #ifdef CONFIG_CPUMASK_OFFSTACK
  5770. alloc_size += num_possible_cpus() * cpumask_size();
  5771. #endif
  5772. if (alloc_size) {
  5773. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5774. #ifdef CONFIG_FAIR_GROUP_SCHED
  5775. root_task_group.se = (struct sched_entity **)ptr;
  5776. ptr += nr_cpu_ids * sizeof(void **);
  5777. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5778. ptr += nr_cpu_ids * sizeof(void **);
  5779. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5780. #ifdef CONFIG_RT_GROUP_SCHED
  5781. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5782. ptr += nr_cpu_ids * sizeof(void **);
  5783. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5784. ptr += nr_cpu_ids * sizeof(void **);
  5785. #endif /* CONFIG_RT_GROUP_SCHED */
  5786. #ifdef CONFIG_CPUMASK_OFFSTACK
  5787. for_each_possible_cpu(i) {
  5788. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5789. ptr += cpumask_size();
  5790. }
  5791. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5792. }
  5793. #ifdef CONFIG_SMP
  5794. init_defrootdomain();
  5795. #endif
  5796. init_rt_bandwidth(&def_rt_bandwidth,
  5797. global_rt_period(), global_rt_runtime());
  5798. #ifdef CONFIG_RT_GROUP_SCHED
  5799. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5800. global_rt_period(), global_rt_runtime());
  5801. #endif /* CONFIG_RT_GROUP_SCHED */
  5802. #ifdef CONFIG_CGROUP_SCHED
  5803. list_add(&root_task_group.list, &task_groups);
  5804. INIT_LIST_HEAD(&root_task_group.children);
  5805. INIT_LIST_HEAD(&root_task_group.siblings);
  5806. autogroup_init(&init_task);
  5807. #endif /* CONFIG_CGROUP_SCHED */
  5808. #ifdef CONFIG_CGROUP_CPUACCT
  5809. root_cpuacct.cpustat = &kernel_cpustat;
  5810. root_cpuacct.cpuusage = alloc_percpu(u64);
  5811. /* Too early, not expected to fail */
  5812. BUG_ON(!root_cpuacct.cpuusage);
  5813. #endif
  5814. for_each_possible_cpu(i) {
  5815. struct rq *rq;
  5816. rq = cpu_rq(i);
  5817. raw_spin_lock_init(&rq->lock);
  5818. rq->nr_running = 0;
  5819. rq->calc_load_active = 0;
  5820. rq->calc_load_update = jiffies + LOAD_FREQ;
  5821. init_cfs_rq(&rq->cfs);
  5822. init_rt_rq(&rq->rt, rq);
  5823. #ifdef CONFIG_FAIR_GROUP_SCHED
  5824. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5825. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5826. /*
  5827. * How much cpu bandwidth does root_task_group get?
  5828. *
  5829. * In case of task-groups formed thr' the cgroup filesystem, it
  5830. * gets 100% of the cpu resources in the system. This overall
  5831. * system cpu resource is divided among the tasks of
  5832. * root_task_group and its child task-groups in a fair manner,
  5833. * based on each entity's (task or task-group's) weight
  5834. * (se->load.weight).
  5835. *
  5836. * In other words, if root_task_group has 10 tasks of weight
  5837. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5838. * then A0's share of the cpu resource is:
  5839. *
  5840. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5841. *
  5842. * We achieve this by letting root_task_group's tasks sit
  5843. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5844. */
  5845. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5846. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5847. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5848. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5849. #ifdef CONFIG_RT_GROUP_SCHED
  5850. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5851. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5852. #endif
  5853. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5854. rq->cpu_load[j] = 0;
  5855. rq->last_load_update_tick = jiffies;
  5856. #ifdef CONFIG_SMP
  5857. rq->sd = NULL;
  5858. rq->rd = NULL;
  5859. rq->cpu_power = SCHED_POWER_SCALE;
  5860. rq->post_schedule = 0;
  5861. rq->active_balance = 0;
  5862. rq->next_balance = jiffies;
  5863. rq->push_cpu = 0;
  5864. rq->cpu = i;
  5865. rq->online = 0;
  5866. rq->idle_stamp = 0;
  5867. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5868. rq_attach_root(rq, &def_root_domain);
  5869. #ifdef CONFIG_NO_HZ
  5870. rq->nohz_flags = 0;
  5871. #endif
  5872. #endif
  5873. init_rq_hrtick(rq);
  5874. atomic_set(&rq->nr_iowait, 0);
  5875. }
  5876. set_load_weight(&init_task);
  5877. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5878. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5879. #endif
  5880. #ifdef CONFIG_RT_MUTEXES
  5881. plist_head_init(&init_task.pi_waiters);
  5882. #endif
  5883. /*
  5884. * The boot idle thread does lazy MMU switching as well:
  5885. */
  5886. atomic_inc(&init_mm.mm_count);
  5887. enter_lazy_tlb(&init_mm, current);
  5888. /*
  5889. * Make us the idle thread. Technically, schedule() should not be
  5890. * called from this thread, however somewhere below it might be,
  5891. * but because we are the idle thread, we just pick up running again
  5892. * when this runqueue becomes "idle".
  5893. */
  5894. init_idle(current, smp_processor_id());
  5895. calc_load_update = jiffies + LOAD_FREQ;
  5896. /*
  5897. * During early bootup we pretend to be a normal task:
  5898. */
  5899. current->sched_class = &fair_sched_class;
  5900. #ifdef CONFIG_SMP
  5901. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5902. /* May be allocated at isolcpus cmdline parse time */
  5903. if (cpu_isolated_map == NULL)
  5904. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5905. #endif
  5906. init_sched_fair_class();
  5907. scheduler_running = 1;
  5908. }
  5909. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5910. static inline int preempt_count_equals(int preempt_offset)
  5911. {
  5912. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5913. return (nested == preempt_offset);
  5914. }
  5915. void __might_sleep(const char *file, int line, int preempt_offset)
  5916. {
  5917. static unsigned long prev_jiffy; /* ratelimiting */
  5918. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5919. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5920. system_state != SYSTEM_RUNNING || oops_in_progress)
  5921. return;
  5922. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5923. return;
  5924. prev_jiffy = jiffies;
  5925. printk(KERN_ERR
  5926. "BUG: sleeping function called from invalid context at %s:%d\n",
  5927. file, line);
  5928. printk(KERN_ERR
  5929. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5930. in_atomic(), irqs_disabled(),
  5931. current->pid, current->comm);
  5932. debug_show_held_locks(current);
  5933. if (irqs_disabled())
  5934. print_irqtrace_events(current);
  5935. dump_stack();
  5936. }
  5937. EXPORT_SYMBOL(__might_sleep);
  5938. #endif
  5939. #ifdef CONFIG_MAGIC_SYSRQ
  5940. static void normalize_task(struct rq *rq, struct task_struct *p)
  5941. {
  5942. const struct sched_class *prev_class = p->sched_class;
  5943. int old_prio = p->prio;
  5944. int on_rq;
  5945. on_rq = p->on_rq;
  5946. if (on_rq)
  5947. dequeue_task(rq, p, 0);
  5948. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5949. if (on_rq) {
  5950. enqueue_task(rq, p, 0);
  5951. resched_task(rq->curr);
  5952. }
  5953. check_class_changed(rq, p, prev_class, old_prio);
  5954. }
  5955. void normalize_rt_tasks(void)
  5956. {
  5957. struct task_struct *g, *p;
  5958. unsigned long flags;
  5959. struct rq *rq;
  5960. read_lock_irqsave(&tasklist_lock, flags);
  5961. do_each_thread(g, p) {
  5962. /*
  5963. * Only normalize user tasks:
  5964. */
  5965. if (!p->mm)
  5966. continue;
  5967. p->se.exec_start = 0;
  5968. #ifdef CONFIG_SCHEDSTATS
  5969. p->se.statistics.wait_start = 0;
  5970. p->se.statistics.sleep_start = 0;
  5971. p->se.statistics.block_start = 0;
  5972. #endif
  5973. if (!rt_task(p)) {
  5974. /*
  5975. * Renice negative nice level userspace
  5976. * tasks back to 0:
  5977. */
  5978. if (TASK_NICE(p) < 0 && p->mm)
  5979. set_user_nice(p, 0);
  5980. continue;
  5981. }
  5982. raw_spin_lock(&p->pi_lock);
  5983. rq = __task_rq_lock(p);
  5984. normalize_task(rq, p);
  5985. __task_rq_unlock(rq);
  5986. raw_spin_unlock(&p->pi_lock);
  5987. } while_each_thread(g, p);
  5988. read_unlock_irqrestore(&tasklist_lock, flags);
  5989. }
  5990. #endif /* CONFIG_MAGIC_SYSRQ */
  5991. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5992. /*
  5993. * These functions are only useful for the IA64 MCA handling, or kdb.
  5994. *
  5995. * They can only be called when the whole system has been
  5996. * stopped - every CPU needs to be quiescent, and no scheduling
  5997. * activity can take place. Using them for anything else would
  5998. * be a serious bug, and as a result, they aren't even visible
  5999. * under any other configuration.
  6000. */
  6001. /**
  6002. * curr_task - return the current task for a given cpu.
  6003. * @cpu: the processor in question.
  6004. *
  6005. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6006. */
  6007. struct task_struct *curr_task(int cpu)
  6008. {
  6009. return cpu_curr(cpu);
  6010. }
  6011. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6012. #ifdef CONFIG_IA64
  6013. /**
  6014. * set_curr_task - set the current task for a given cpu.
  6015. * @cpu: the processor in question.
  6016. * @p: the task pointer to set.
  6017. *
  6018. * Description: This function must only be used when non-maskable interrupts
  6019. * are serviced on a separate stack. It allows the architecture to switch the
  6020. * notion of the current task on a cpu in a non-blocking manner. This function
  6021. * must be called with all CPU's synchronized, and interrupts disabled, the
  6022. * and caller must save the original value of the current task (see
  6023. * curr_task() above) and restore that value before reenabling interrupts and
  6024. * re-starting the system.
  6025. *
  6026. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6027. */
  6028. void set_curr_task(int cpu, struct task_struct *p)
  6029. {
  6030. cpu_curr(cpu) = p;
  6031. }
  6032. #endif
  6033. #ifdef CONFIG_CGROUP_SCHED
  6034. /* task_group_lock serializes the addition/removal of task groups */
  6035. static DEFINE_SPINLOCK(task_group_lock);
  6036. static void free_sched_group(struct task_group *tg)
  6037. {
  6038. free_fair_sched_group(tg);
  6039. free_rt_sched_group(tg);
  6040. autogroup_free(tg);
  6041. kfree(tg);
  6042. }
  6043. /* allocate runqueue etc for a new task group */
  6044. struct task_group *sched_create_group(struct task_group *parent)
  6045. {
  6046. struct task_group *tg;
  6047. unsigned long flags;
  6048. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6049. if (!tg)
  6050. return ERR_PTR(-ENOMEM);
  6051. if (!alloc_fair_sched_group(tg, parent))
  6052. goto err;
  6053. if (!alloc_rt_sched_group(tg, parent))
  6054. goto err;
  6055. spin_lock_irqsave(&task_group_lock, flags);
  6056. list_add_rcu(&tg->list, &task_groups);
  6057. WARN_ON(!parent); /* root should already exist */
  6058. tg->parent = parent;
  6059. INIT_LIST_HEAD(&tg->children);
  6060. list_add_rcu(&tg->siblings, &parent->children);
  6061. spin_unlock_irqrestore(&task_group_lock, flags);
  6062. return tg;
  6063. err:
  6064. free_sched_group(tg);
  6065. return ERR_PTR(-ENOMEM);
  6066. }
  6067. /* rcu callback to free various structures associated with a task group */
  6068. static void free_sched_group_rcu(struct rcu_head *rhp)
  6069. {
  6070. /* now it should be safe to free those cfs_rqs */
  6071. free_sched_group(container_of(rhp, struct task_group, rcu));
  6072. }
  6073. /* Destroy runqueue etc associated with a task group */
  6074. void sched_destroy_group(struct task_group *tg)
  6075. {
  6076. unsigned long flags;
  6077. int i;
  6078. /* end participation in shares distribution */
  6079. for_each_possible_cpu(i)
  6080. unregister_fair_sched_group(tg, i);
  6081. spin_lock_irqsave(&task_group_lock, flags);
  6082. list_del_rcu(&tg->list);
  6083. list_del_rcu(&tg->siblings);
  6084. spin_unlock_irqrestore(&task_group_lock, flags);
  6085. /* wait for possible concurrent references to cfs_rqs complete */
  6086. call_rcu(&tg->rcu, free_sched_group_rcu);
  6087. }
  6088. /* change task's runqueue when it moves between groups.
  6089. * The caller of this function should have put the task in its new group
  6090. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6091. * reflect its new group.
  6092. */
  6093. void sched_move_task(struct task_struct *tsk)
  6094. {
  6095. int on_rq, running;
  6096. unsigned long flags;
  6097. struct rq *rq;
  6098. rq = task_rq_lock(tsk, &flags);
  6099. running = task_current(rq, tsk);
  6100. on_rq = tsk->on_rq;
  6101. if (on_rq)
  6102. dequeue_task(rq, tsk, 0);
  6103. if (unlikely(running))
  6104. tsk->sched_class->put_prev_task(rq, tsk);
  6105. #ifdef CONFIG_FAIR_GROUP_SCHED
  6106. if (tsk->sched_class->task_move_group)
  6107. tsk->sched_class->task_move_group(tsk, on_rq);
  6108. else
  6109. #endif
  6110. set_task_rq(tsk, task_cpu(tsk));
  6111. if (unlikely(running))
  6112. tsk->sched_class->set_curr_task(rq);
  6113. if (on_rq)
  6114. enqueue_task(rq, tsk, 0);
  6115. task_rq_unlock(rq, tsk, &flags);
  6116. }
  6117. #endif /* CONFIG_CGROUP_SCHED */
  6118. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6119. static unsigned long to_ratio(u64 period, u64 runtime)
  6120. {
  6121. if (runtime == RUNTIME_INF)
  6122. return 1ULL << 20;
  6123. return div64_u64(runtime << 20, period);
  6124. }
  6125. #endif
  6126. #ifdef CONFIG_RT_GROUP_SCHED
  6127. /*
  6128. * Ensure that the real time constraints are schedulable.
  6129. */
  6130. static DEFINE_MUTEX(rt_constraints_mutex);
  6131. /* Must be called with tasklist_lock held */
  6132. static inline int tg_has_rt_tasks(struct task_group *tg)
  6133. {
  6134. struct task_struct *g, *p;
  6135. do_each_thread(g, p) {
  6136. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6137. return 1;
  6138. } while_each_thread(g, p);
  6139. return 0;
  6140. }
  6141. struct rt_schedulable_data {
  6142. struct task_group *tg;
  6143. u64 rt_period;
  6144. u64 rt_runtime;
  6145. };
  6146. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6147. {
  6148. struct rt_schedulable_data *d = data;
  6149. struct task_group *child;
  6150. unsigned long total, sum = 0;
  6151. u64 period, runtime;
  6152. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6153. runtime = tg->rt_bandwidth.rt_runtime;
  6154. if (tg == d->tg) {
  6155. period = d->rt_period;
  6156. runtime = d->rt_runtime;
  6157. }
  6158. /*
  6159. * Cannot have more runtime than the period.
  6160. */
  6161. if (runtime > period && runtime != RUNTIME_INF)
  6162. return -EINVAL;
  6163. /*
  6164. * Ensure we don't starve existing RT tasks.
  6165. */
  6166. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6167. return -EBUSY;
  6168. total = to_ratio(period, runtime);
  6169. /*
  6170. * Nobody can have more than the global setting allows.
  6171. */
  6172. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6173. return -EINVAL;
  6174. /*
  6175. * The sum of our children's runtime should not exceed our own.
  6176. */
  6177. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6178. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6179. runtime = child->rt_bandwidth.rt_runtime;
  6180. if (child == d->tg) {
  6181. period = d->rt_period;
  6182. runtime = d->rt_runtime;
  6183. }
  6184. sum += to_ratio(period, runtime);
  6185. }
  6186. if (sum > total)
  6187. return -EINVAL;
  6188. return 0;
  6189. }
  6190. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6191. {
  6192. int ret;
  6193. struct rt_schedulable_data data = {
  6194. .tg = tg,
  6195. .rt_period = period,
  6196. .rt_runtime = runtime,
  6197. };
  6198. rcu_read_lock();
  6199. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6200. rcu_read_unlock();
  6201. return ret;
  6202. }
  6203. static int tg_set_rt_bandwidth(struct task_group *tg,
  6204. u64 rt_period, u64 rt_runtime)
  6205. {
  6206. int i, err = 0;
  6207. mutex_lock(&rt_constraints_mutex);
  6208. read_lock(&tasklist_lock);
  6209. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6210. if (err)
  6211. goto unlock;
  6212. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6213. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6214. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6215. for_each_possible_cpu(i) {
  6216. struct rt_rq *rt_rq = tg->rt_rq[i];
  6217. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6218. rt_rq->rt_runtime = rt_runtime;
  6219. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6220. }
  6221. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6222. unlock:
  6223. read_unlock(&tasklist_lock);
  6224. mutex_unlock(&rt_constraints_mutex);
  6225. return err;
  6226. }
  6227. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6228. {
  6229. u64 rt_runtime, rt_period;
  6230. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6231. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6232. if (rt_runtime_us < 0)
  6233. rt_runtime = RUNTIME_INF;
  6234. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6235. }
  6236. long sched_group_rt_runtime(struct task_group *tg)
  6237. {
  6238. u64 rt_runtime_us;
  6239. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6240. return -1;
  6241. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6242. do_div(rt_runtime_us, NSEC_PER_USEC);
  6243. return rt_runtime_us;
  6244. }
  6245. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6246. {
  6247. u64 rt_runtime, rt_period;
  6248. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6249. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6250. if (rt_period == 0)
  6251. return -EINVAL;
  6252. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6253. }
  6254. long sched_group_rt_period(struct task_group *tg)
  6255. {
  6256. u64 rt_period_us;
  6257. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6258. do_div(rt_period_us, NSEC_PER_USEC);
  6259. return rt_period_us;
  6260. }
  6261. static int sched_rt_global_constraints(void)
  6262. {
  6263. u64 runtime, period;
  6264. int ret = 0;
  6265. if (sysctl_sched_rt_period <= 0)
  6266. return -EINVAL;
  6267. runtime = global_rt_runtime();
  6268. period = global_rt_period();
  6269. /*
  6270. * Sanity check on the sysctl variables.
  6271. */
  6272. if (runtime > period && runtime != RUNTIME_INF)
  6273. return -EINVAL;
  6274. mutex_lock(&rt_constraints_mutex);
  6275. read_lock(&tasklist_lock);
  6276. ret = __rt_schedulable(NULL, 0, 0);
  6277. read_unlock(&tasklist_lock);
  6278. mutex_unlock(&rt_constraints_mutex);
  6279. return ret;
  6280. }
  6281. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6282. {
  6283. /* Don't accept realtime tasks when there is no way for them to run */
  6284. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6285. return 0;
  6286. return 1;
  6287. }
  6288. #else /* !CONFIG_RT_GROUP_SCHED */
  6289. static int sched_rt_global_constraints(void)
  6290. {
  6291. unsigned long flags;
  6292. int i;
  6293. if (sysctl_sched_rt_period <= 0)
  6294. return -EINVAL;
  6295. /*
  6296. * There's always some RT tasks in the root group
  6297. * -- migration, kstopmachine etc..
  6298. */
  6299. if (sysctl_sched_rt_runtime == 0)
  6300. return -EBUSY;
  6301. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6302. for_each_possible_cpu(i) {
  6303. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6304. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6305. rt_rq->rt_runtime = global_rt_runtime();
  6306. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6307. }
  6308. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6309. return 0;
  6310. }
  6311. #endif /* CONFIG_RT_GROUP_SCHED */
  6312. int sched_rt_handler(struct ctl_table *table, int write,
  6313. void __user *buffer, size_t *lenp,
  6314. loff_t *ppos)
  6315. {
  6316. int ret;
  6317. int old_period, old_runtime;
  6318. static DEFINE_MUTEX(mutex);
  6319. mutex_lock(&mutex);
  6320. old_period = sysctl_sched_rt_period;
  6321. old_runtime = sysctl_sched_rt_runtime;
  6322. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6323. if (!ret && write) {
  6324. ret = sched_rt_global_constraints();
  6325. if (ret) {
  6326. sysctl_sched_rt_period = old_period;
  6327. sysctl_sched_rt_runtime = old_runtime;
  6328. } else {
  6329. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6330. def_rt_bandwidth.rt_period =
  6331. ns_to_ktime(global_rt_period());
  6332. }
  6333. }
  6334. mutex_unlock(&mutex);
  6335. return ret;
  6336. }
  6337. #ifdef CONFIG_CGROUP_SCHED
  6338. /* return corresponding task_group object of a cgroup */
  6339. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6340. {
  6341. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6342. struct task_group, css);
  6343. }
  6344. static struct cgroup_subsys_state *
  6345. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6346. {
  6347. struct task_group *tg, *parent;
  6348. if (!cgrp->parent) {
  6349. /* This is early initialization for the top cgroup */
  6350. return &root_task_group.css;
  6351. }
  6352. parent = cgroup_tg(cgrp->parent);
  6353. tg = sched_create_group(parent);
  6354. if (IS_ERR(tg))
  6355. return ERR_PTR(-ENOMEM);
  6356. return &tg->css;
  6357. }
  6358. static void
  6359. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6360. {
  6361. struct task_group *tg = cgroup_tg(cgrp);
  6362. sched_destroy_group(tg);
  6363. }
  6364. static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6365. struct cgroup_taskset *tset)
  6366. {
  6367. struct task_struct *task;
  6368. cgroup_taskset_for_each(task, cgrp, tset) {
  6369. #ifdef CONFIG_RT_GROUP_SCHED
  6370. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6371. return -EINVAL;
  6372. #else
  6373. /* We don't support RT-tasks being in separate groups */
  6374. if (task->sched_class != &fair_sched_class)
  6375. return -EINVAL;
  6376. #endif
  6377. }
  6378. return 0;
  6379. }
  6380. static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6381. struct cgroup_taskset *tset)
  6382. {
  6383. struct task_struct *task;
  6384. cgroup_taskset_for_each(task, cgrp, tset)
  6385. sched_move_task(task);
  6386. }
  6387. static void
  6388. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6389. struct cgroup *old_cgrp, struct task_struct *task)
  6390. {
  6391. /*
  6392. * cgroup_exit() is called in the copy_process() failure path.
  6393. * Ignore this case since the task hasn't ran yet, this avoids
  6394. * trying to poke a half freed task state from generic code.
  6395. */
  6396. if (!(task->flags & PF_EXITING))
  6397. return;
  6398. sched_move_task(task);
  6399. }
  6400. #ifdef CONFIG_FAIR_GROUP_SCHED
  6401. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6402. u64 shareval)
  6403. {
  6404. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6405. }
  6406. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6407. {
  6408. struct task_group *tg = cgroup_tg(cgrp);
  6409. return (u64) scale_load_down(tg->shares);
  6410. }
  6411. #ifdef CONFIG_CFS_BANDWIDTH
  6412. static DEFINE_MUTEX(cfs_constraints_mutex);
  6413. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6414. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6415. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6416. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6417. {
  6418. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6419. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6420. if (tg == &root_task_group)
  6421. return -EINVAL;
  6422. /*
  6423. * Ensure we have at some amount of bandwidth every period. This is
  6424. * to prevent reaching a state of large arrears when throttled via
  6425. * entity_tick() resulting in prolonged exit starvation.
  6426. */
  6427. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6428. return -EINVAL;
  6429. /*
  6430. * Likewise, bound things on the otherside by preventing insane quota
  6431. * periods. This also allows us to normalize in computing quota
  6432. * feasibility.
  6433. */
  6434. if (period > max_cfs_quota_period)
  6435. return -EINVAL;
  6436. mutex_lock(&cfs_constraints_mutex);
  6437. ret = __cfs_schedulable(tg, period, quota);
  6438. if (ret)
  6439. goto out_unlock;
  6440. runtime_enabled = quota != RUNTIME_INF;
  6441. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6442. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6443. raw_spin_lock_irq(&cfs_b->lock);
  6444. cfs_b->period = ns_to_ktime(period);
  6445. cfs_b->quota = quota;
  6446. __refill_cfs_bandwidth_runtime(cfs_b);
  6447. /* restart the period timer (if active) to handle new period expiry */
  6448. if (runtime_enabled && cfs_b->timer_active) {
  6449. /* force a reprogram */
  6450. cfs_b->timer_active = 0;
  6451. __start_cfs_bandwidth(cfs_b);
  6452. }
  6453. raw_spin_unlock_irq(&cfs_b->lock);
  6454. for_each_possible_cpu(i) {
  6455. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6456. struct rq *rq = cfs_rq->rq;
  6457. raw_spin_lock_irq(&rq->lock);
  6458. cfs_rq->runtime_enabled = runtime_enabled;
  6459. cfs_rq->runtime_remaining = 0;
  6460. if (cfs_rq->throttled)
  6461. unthrottle_cfs_rq(cfs_rq);
  6462. raw_spin_unlock_irq(&rq->lock);
  6463. }
  6464. out_unlock:
  6465. mutex_unlock(&cfs_constraints_mutex);
  6466. return ret;
  6467. }
  6468. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6469. {
  6470. u64 quota, period;
  6471. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6472. if (cfs_quota_us < 0)
  6473. quota = RUNTIME_INF;
  6474. else
  6475. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6476. return tg_set_cfs_bandwidth(tg, period, quota);
  6477. }
  6478. long tg_get_cfs_quota(struct task_group *tg)
  6479. {
  6480. u64 quota_us;
  6481. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6482. return -1;
  6483. quota_us = tg->cfs_bandwidth.quota;
  6484. do_div(quota_us, NSEC_PER_USEC);
  6485. return quota_us;
  6486. }
  6487. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6488. {
  6489. u64 quota, period;
  6490. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6491. quota = tg->cfs_bandwidth.quota;
  6492. return tg_set_cfs_bandwidth(tg, period, quota);
  6493. }
  6494. long tg_get_cfs_period(struct task_group *tg)
  6495. {
  6496. u64 cfs_period_us;
  6497. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6498. do_div(cfs_period_us, NSEC_PER_USEC);
  6499. return cfs_period_us;
  6500. }
  6501. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6502. {
  6503. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6504. }
  6505. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6506. s64 cfs_quota_us)
  6507. {
  6508. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6509. }
  6510. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6511. {
  6512. return tg_get_cfs_period(cgroup_tg(cgrp));
  6513. }
  6514. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6515. u64 cfs_period_us)
  6516. {
  6517. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6518. }
  6519. struct cfs_schedulable_data {
  6520. struct task_group *tg;
  6521. u64 period, quota;
  6522. };
  6523. /*
  6524. * normalize group quota/period to be quota/max_period
  6525. * note: units are usecs
  6526. */
  6527. static u64 normalize_cfs_quota(struct task_group *tg,
  6528. struct cfs_schedulable_data *d)
  6529. {
  6530. u64 quota, period;
  6531. if (tg == d->tg) {
  6532. period = d->period;
  6533. quota = d->quota;
  6534. } else {
  6535. period = tg_get_cfs_period(tg);
  6536. quota = tg_get_cfs_quota(tg);
  6537. }
  6538. /* note: these should typically be equivalent */
  6539. if (quota == RUNTIME_INF || quota == -1)
  6540. return RUNTIME_INF;
  6541. return to_ratio(period, quota);
  6542. }
  6543. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6544. {
  6545. struct cfs_schedulable_data *d = data;
  6546. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6547. s64 quota = 0, parent_quota = -1;
  6548. if (!tg->parent) {
  6549. quota = RUNTIME_INF;
  6550. } else {
  6551. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6552. quota = normalize_cfs_quota(tg, d);
  6553. parent_quota = parent_b->hierarchal_quota;
  6554. /*
  6555. * ensure max(child_quota) <= parent_quota, inherit when no
  6556. * limit is set
  6557. */
  6558. if (quota == RUNTIME_INF)
  6559. quota = parent_quota;
  6560. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6561. return -EINVAL;
  6562. }
  6563. cfs_b->hierarchal_quota = quota;
  6564. return 0;
  6565. }
  6566. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6567. {
  6568. int ret;
  6569. struct cfs_schedulable_data data = {
  6570. .tg = tg,
  6571. .period = period,
  6572. .quota = quota,
  6573. };
  6574. if (quota != RUNTIME_INF) {
  6575. do_div(data.period, NSEC_PER_USEC);
  6576. do_div(data.quota, NSEC_PER_USEC);
  6577. }
  6578. rcu_read_lock();
  6579. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6580. rcu_read_unlock();
  6581. return ret;
  6582. }
  6583. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6584. struct cgroup_map_cb *cb)
  6585. {
  6586. struct task_group *tg = cgroup_tg(cgrp);
  6587. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6588. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6589. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6590. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6591. return 0;
  6592. }
  6593. #endif /* CONFIG_CFS_BANDWIDTH */
  6594. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6595. #ifdef CONFIG_RT_GROUP_SCHED
  6596. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6597. s64 val)
  6598. {
  6599. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6600. }
  6601. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6602. {
  6603. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6604. }
  6605. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6606. u64 rt_period_us)
  6607. {
  6608. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6609. }
  6610. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6611. {
  6612. return sched_group_rt_period(cgroup_tg(cgrp));
  6613. }
  6614. #endif /* CONFIG_RT_GROUP_SCHED */
  6615. static struct cftype cpu_files[] = {
  6616. #ifdef CONFIG_FAIR_GROUP_SCHED
  6617. {
  6618. .name = "shares",
  6619. .read_u64 = cpu_shares_read_u64,
  6620. .write_u64 = cpu_shares_write_u64,
  6621. },
  6622. #endif
  6623. #ifdef CONFIG_CFS_BANDWIDTH
  6624. {
  6625. .name = "cfs_quota_us",
  6626. .read_s64 = cpu_cfs_quota_read_s64,
  6627. .write_s64 = cpu_cfs_quota_write_s64,
  6628. },
  6629. {
  6630. .name = "cfs_period_us",
  6631. .read_u64 = cpu_cfs_period_read_u64,
  6632. .write_u64 = cpu_cfs_period_write_u64,
  6633. },
  6634. {
  6635. .name = "stat",
  6636. .read_map = cpu_stats_show,
  6637. },
  6638. #endif
  6639. #ifdef CONFIG_RT_GROUP_SCHED
  6640. {
  6641. .name = "rt_runtime_us",
  6642. .read_s64 = cpu_rt_runtime_read,
  6643. .write_s64 = cpu_rt_runtime_write,
  6644. },
  6645. {
  6646. .name = "rt_period_us",
  6647. .read_u64 = cpu_rt_period_read_uint,
  6648. .write_u64 = cpu_rt_period_write_uint,
  6649. },
  6650. #endif
  6651. };
  6652. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6653. {
  6654. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6655. }
  6656. struct cgroup_subsys cpu_cgroup_subsys = {
  6657. .name = "cpu",
  6658. .create = cpu_cgroup_create,
  6659. .destroy = cpu_cgroup_destroy,
  6660. .can_attach = cpu_cgroup_can_attach,
  6661. .attach = cpu_cgroup_attach,
  6662. .exit = cpu_cgroup_exit,
  6663. .populate = cpu_cgroup_populate,
  6664. .subsys_id = cpu_cgroup_subsys_id,
  6665. .early_init = 1,
  6666. };
  6667. #endif /* CONFIG_CGROUP_SCHED */
  6668. #ifdef CONFIG_CGROUP_CPUACCT
  6669. /*
  6670. * CPU accounting code for task groups.
  6671. *
  6672. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6673. * (balbir@in.ibm.com).
  6674. */
  6675. /* create a new cpu accounting group */
  6676. static struct cgroup_subsys_state *cpuacct_create(
  6677. struct cgroup_subsys *ss, struct cgroup *cgrp)
  6678. {
  6679. struct cpuacct *ca;
  6680. if (!cgrp->parent)
  6681. return &root_cpuacct.css;
  6682. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6683. if (!ca)
  6684. goto out;
  6685. ca->cpuusage = alloc_percpu(u64);
  6686. if (!ca->cpuusage)
  6687. goto out_free_ca;
  6688. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6689. if (!ca->cpustat)
  6690. goto out_free_cpuusage;
  6691. return &ca->css;
  6692. out_free_cpuusage:
  6693. free_percpu(ca->cpuusage);
  6694. out_free_ca:
  6695. kfree(ca);
  6696. out:
  6697. return ERR_PTR(-ENOMEM);
  6698. }
  6699. /* destroy an existing cpu accounting group */
  6700. static void
  6701. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6702. {
  6703. struct cpuacct *ca = cgroup_ca(cgrp);
  6704. free_percpu(ca->cpustat);
  6705. free_percpu(ca->cpuusage);
  6706. kfree(ca);
  6707. }
  6708. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6709. {
  6710. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6711. u64 data;
  6712. #ifndef CONFIG_64BIT
  6713. /*
  6714. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6715. */
  6716. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6717. data = *cpuusage;
  6718. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6719. #else
  6720. data = *cpuusage;
  6721. #endif
  6722. return data;
  6723. }
  6724. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6725. {
  6726. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6727. #ifndef CONFIG_64BIT
  6728. /*
  6729. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6730. */
  6731. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6732. *cpuusage = val;
  6733. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6734. #else
  6735. *cpuusage = val;
  6736. #endif
  6737. }
  6738. /* return total cpu usage (in nanoseconds) of a group */
  6739. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6740. {
  6741. struct cpuacct *ca = cgroup_ca(cgrp);
  6742. u64 totalcpuusage = 0;
  6743. int i;
  6744. for_each_present_cpu(i)
  6745. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6746. return totalcpuusage;
  6747. }
  6748. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6749. u64 reset)
  6750. {
  6751. struct cpuacct *ca = cgroup_ca(cgrp);
  6752. int err = 0;
  6753. int i;
  6754. if (reset) {
  6755. err = -EINVAL;
  6756. goto out;
  6757. }
  6758. for_each_present_cpu(i)
  6759. cpuacct_cpuusage_write(ca, i, 0);
  6760. out:
  6761. return err;
  6762. }
  6763. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6764. struct seq_file *m)
  6765. {
  6766. struct cpuacct *ca = cgroup_ca(cgroup);
  6767. u64 percpu;
  6768. int i;
  6769. for_each_present_cpu(i) {
  6770. percpu = cpuacct_cpuusage_read(ca, i);
  6771. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6772. }
  6773. seq_printf(m, "\n");
  6774. return 0;
  6775. }
  6776. static const char *cpuacct_stat_desc[] = {
  6777. [CPUACCT_STAT_USER] = "user",
  6778. [CPUACCT_STAT_SYSTEM] = "system",
  6779. };
  6780. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6781. struct cgroup_map_cb *cb)
  6782. {
  6783. struct cpuacct *ca = cgroup_ca(cgrp);
  6784. int cpu;
  6785. s64 val = 0;
  6786. for_each_online_cpu(cpu) {
  6787. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6788. val += kcpustat->cpustat[CPUTIME_USER];
  6789. val += kcpustat->cpustat[CPUTIME_NICE];
  6790. }
  6791. val = cputime64_to_clock_t(val);
  6792. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6793. val = 0;
  6794. for_each_online_cpu(cpu) {
  6795. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6796. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6797. val += kcpustat->cpustat[CPUTIME_IRQ];
  6798. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6799. }
  6800. val = cputime64_to_clock_t(val);
  6801. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6802. return 0;
  6803. }
  6804. static struct cftype files[] = {
  6805. {
  6806. .name = "usage",
  6807. .read_u64 = cpuusage_read,
  6808. .write_u64 = cpuusage_write,
  6809. },
  6810. {
  6811. .name = "usage_percpu",
  6812. .read_seq_string = cpuacct_percpu_seq_read,
  6813. },
  6814. {
  6815. .name = "stat",
  6816. .read_map = cpuacct_stats_show,
  6817. },
  6818. };
  6819. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6820. {
  6821. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  6822. }
  6823. /*
  6824. * charge this task's execution time to its accounting group.
  6825. *
  6826. * called with rq->lock held.
  6827. */
  6828. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6829. {
  6830. struct cpuacct *ca;
  6831. int cpu;
  6832. if (unlikely(!cpuacct_subsys.active))
  6833. return;
  6834. cpu = task_cpu(tsk);
  6835. rcu_read_lock();
  6836. ca = task_ca(tsk);
  6837. for (; ca; ca = parent_ca(ca)) {
  6838. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6839. *cpuusage += cputime;
  6840. }
  6841. rcu_read_unlock();
  6842. }
  6843. struct cgroup_subsys cpuacct_subsys = {
  6844. .name = "cpuacct",
  6845. .create = cpuacct_create,
  6846. .destroy = cpuacct_destroy,
  6847. .populate = cpuacct_populate,
  6848. .subsys_id = cpuacct_subsys_id,
  6849. };
  6850. #endif /* CONFIG_CGROUP_CPUACCT */