vmx.c 206 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "cpuid.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <linux/ftrace_event.h>
  29. #include <linux/slab.h>
  30. #include <linux/tboot.h>
  31. #include "kvm_cache_regs.h"
  32. #include "x86.h"
  33. #include <asm/io.h>
  34. #include <asm/desc.h>
  35. #include <asm/vmx.h>
  36. #include <asm/virtext.h>
  37. #include <asm/mce.h>
  38. #include <asm/i387.h>
  39. #include <asm/xcr.h>
  40. #include <asm/perf_event.h>
  41. #include "trace.h"
  42. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  43. #define __ex_clear(x, reg) \
  44. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  45. MODULE_AUTHOR("Qumranet");
  46. MODULE_LICENSE("GPL");
  47. static bool __read_mostly enable_vpid = 1;
  48. module_param_named(vpid, enable_vpid, bool, 0444);
  49. static bool __read_mostly flexpriority_enabled = 1;
  50. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  51. static bool __read_mostly enable_ept = 1;
  52. module_param_named(ept, enable_ept, bool, S_IRUGO);
  53. static bool __read_mostly enable_unrestricted_guest = 1;
  54. module_param_named(unrestricted_guest,
  55. enable_unrestricted_guest, bool, S_IRUGO);
  56. static bool __read_mostly emulate_invalid_guest_state = 0;
  57. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  58. static bool __read_mostly vmm_exclusive = 1;
  59. module_param(vmm_exclusive, bool, S_IRUGO);
  60. static bool __read_mostly yield_on_hlt = 1;
  61. module_param(yield_on_hlt, bool, S_IRUGO);
  62. static bool __read_mostly fasteoi = 1;
  63. module_param(fasteoi, bool, S_IRUGO);
  64. /*
  65. * If nested=1, nested virtualization is supported, i.e., guests may use
  66. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  67. * use VMX instructions.
  68. */
  69. static bool __read_mostly nested = 0;
  70. module_param(nested, bool, S_IRUGO);
  71. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  72. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  73. #define KVM_GUEST_CR0_MASK \
  74. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  75. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  76. (X86_CR0_WP | X86_CR0_NE)
  77. #define KVM_VM_CR0_ALWAYS_ON \
  78. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  79. #define KVM_CR4_GUEST_OWNED_BITS \
  80. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  81. | X86_CR4_OSXMMEXCPT)
  82. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  83. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  84. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  85. /*
  86. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  87. * ple_gap: upper bound on the amount of time between two successive
  88. * executions of PAUSE in a loop. Also indicate if ple enabled.
  89. * According to test, this time is usually smaller than 128 cycles.
  90. * ple_window: upper bound on the amount of time a guest is allowed to execute
  91. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  92. * less than 2^12 cycles
  93. * Time is measured based on a counter that runs at the same rate as the TSC,
  94. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  95. */
  96. #define KVM_VMX_DEFAULT_PLE_GAP 128
  97. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  98. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  99. module_param(ple_gap, int, S_IRUGO);
  100. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  101. module_param(ple_window, int, S_IRUGO);
  102. #define NR_AUTOLOAD_MSRS 8
  103. #define VMCS02_POOL_SIZE 1
  104. struct vmcs {
  105. u32 revision_id;
  106. u32 abort;
  107. char data[0];
  108. };
  109. /*
  110. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  111. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  112. * loaded on this CPU (so we can clear them if the CPU goes down).
  113. */
  114. struct loaded_vmcs {
  115. struct vmcs *vmcs;
  116. int cpu;
  117. int launched;
  118. struct list_head loaded_vmcss_on_cpu_link;
  119. };
  120. struct shared_msr_entry {
  121. unsigned index;
  122. u64 data;
  123. u64 mask;
  124. };
  125. /*
  126. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  127. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  128. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  129. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  130. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  131. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  132. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  133. * underlying hardware which will be used to run L2.
  134. * This structure is packed to ensure that its layout is identical across
  135. * machines (necessary for live migration).
  136. * If there are changes in this struct, VMCS12_REVISION must be changed.
  137. */
  138. typedef u64 natural_width;
  139. struct __packed vmcs12 {
  140. /* According to the Intel spec, a VMCS region must start with the
  141. * following two fields. Then follow implementation-specific data.
  142. */
  143. u32 revision_id;
  144. u32 abort;
  145. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  146. u32 padding[7]; /* room for future expansion */
  147. u64 io_bitmap_a;
  148. u64 io_bitmap_b;
  149. u64 msr_bitmap;
  150. u64 vm_exit_msr_store_addr;
  151. u64 vm_exit_msr_load_addr;
  152. u64 vm_entry_msr_load_addr;
  153. u64 tsc_offset;
  154. u64 virtual_apic_page_addr;
  155. u64 apic_access_addr;
  156. u64 ept_pointer;
  157. u64 guest_physical_address;
  158. u64 vmcs_link_pointer;
  159. u64 guest_ia32_debugctl;
  160. u64 guest_ia32_pat;
  161. u64 guest_ia32_efer;
  162. u64 guest_ia32_perf_global_ctrl;
  163. u64 guest_pdptr0;
  164. u64 guest_pdptr1;
  165. u64 guest_pdptr2;
  166. u64 guest_pdptr3;
  167. u64 host_ia32_pat;
  168. u64 host_ia32_efer;
  169. u64 host_ia32_perf_global_ctrl;
  170. u64 padding64[8]; /* room for future expansion */
  171. /*
  172. * To allow migration of L1 (complete with its L2 guests) between
  173. * machines of different natural widths (32 or 64 bit), we cannot have
  174. * unsigned long fields with no explict size. We use u64 (aliased
  175. * natural_width) instead. Luckily, x86 is little-endian.
  176. */
  177. natural_width cr0_guest_host_mask;
  178. natural_width cr4_guest_host_mask;
  179. natural_width cr0_read_shadow;
  180. natural_width cr4_read_shadow;
  181. natural_width cr3_target_value0;
  182. natural_width cr3_target_value1;
  183. natural_width cr3_target_value2;
  184. natural_width cr3_target_value3;
  185. natural_width exit_qualification;
  186. natural_width guest_linear_address;
  187. natural_width guest_cr0;
  188. natural_width guest_cr3;
  189. natural_width guest_cr4;
  190. natural_width guest_es_base;
  191. natural_width guest_cs_base;
  192. natural_width guest_ss_base;
  193. natural_width guest_ds_base;
  194. natural_width guest_fs_base;
  195. natural_width guest_gs_base;
  196. natural_width guest_ldtr_base;
  197. natural_width guest_tr_base;
  198. natural_width guest_gdtr_base;
  199. natural_width guest_idtr_base;
  200. natural_width guest_dr7;
  201. natural_width guest_rsp;
  202. natural_width guest_rip;
  203. natural_width guest_rflags;
  204. natural_width guest_pending_dbg_exceptions;
  205. natural_width guest_sysenter_esp;
  206. natural_width guest_sysenter_eip;
  207. natural_width host_cr0;
  208. natural_width host_cr3;
  209. natural_width host_cr4;
  210. natural_width host_fs_base;
  211. natural_width host_gs_base;
  212. natural_width host_tr_base;
  213. natural_width host_gdtr_base;
  214. natural_width host_idtr_base;
  215. natural_width host_ia32_sysenter_esp;
  216. natural_width host_ia32_sysenter_eip;
  217. natural_width host_rsp;
  218. natural_width host_rip;
  219. natural_width paddingl[8]; /* room for future expansion */
  220. u32 pin_based_vm_exec_control;
  221. u32 cpu_based_vm_exec_control;
  222. u32 exception_bitmap;
  223. u32 page_fault_error_code_mask;
  224. u32 page_fault_error_code_match;
  225. u32 cr3_target_count;
  226. u32 vm_exit_controls;
  227. u32 vm_exit_msr_store_count;
  228. u32 vm_exit_msr_load_count;
  229. u32 vm_entry_controls;
  230. u32 vm_entry_msr_load_count;
  231. u32 vm_entry_intr_info_field;
  232. u32 vm_entry_exception_error_code;
  233. u32 vm_entry_instruction_len;
  234. u32 tpr_threshold;
  235. u32 secondary_vm_exec_control;
  236. u32 vm_instruction_error;
  237. u32 vm_exit_reason;
  238. u32 vm_exit_intr_info;
  239. u32 vm_exit_intr_error_code;
  240. u32 idt_vectoring_info_field;
  241. u32 idt_vectoring_error_code;
  242. u32 vm_exit_instruction_len;
  243. u32 vmx_instruction_info;
  244. u32 guest_es_limit;
  245. u32 guest_cs_limit;
  246. u32 guest_ss_limit;
  247. u32 guest_ds_limit;
  248. u32 guest_fs_limit;
  249. u32 guest_gs_limit;
  250. u32 guest_ldtr_limit;
  251. u32 guest_tr_limit;
  252. u32 guest_gdtr_limit;
  253. u32 guest_idtr_limit;
  254. u32 guest_es_ar_bytes;
  255. u32 guest_cs_ar_bytes;
  256. u32 guest_ss_ar_bytes;
  257. u32 guest_ds_ar_bytes;
  258. u32 guest_fs_ar_bytes;
  259. u32 guest_gs_ar_bytes;
  260. u32 guest_ldtr_ar_bytes;
  261. u32 guest_tr_ar_bytes;
  262. u32 guest_interruptibility_info;
  263. u32 guest_activity_state;
  264. u32 guest_sysenter_cs;
  265. u32 host_ia32_sysenter_cs;
  266. u32 padding32[8]; /* room for future expansion */
  267. u16 virtual_processor_id;
  268. u16 guest_es_selector;
  269. u16 guest_cs_selector;
  270. u16 guest_ss_selector;
  271. u16 guest_ds_selector;
  272. u16 guest_fs_selector;
  273. u16 guest_gs_selector;
  274. u16 guest_ldtr_selector;
  275. u16 guest_tr_selector;
  276. u16 host_es_selector;
  277. u16 host_cs_selector;
  278. u16 host_ss_selector;
  279. u16 host_ds_selector;
  280. u16 host_fs_selector;
  281. u16 host_gs_selector;
  282. u16 host_tr_selector;
  283. };
  284. /*
  285. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  286. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  287. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  288. */
  289. #define VMCS12_REVISION 0x11e57ed0
  290. /*
  291. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  292. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  293. * current implementation, 4K are reserved to avoid future complications.
  294. */
  295. #define VMCS12_SIZE 0x1000
  296. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  297. struct vmcs02_list {
  298. struct list_head list;
  299. gpa_t vmptr;
  300. struct loaded_vmcs vmcs02;
  301. };
  302. /*
  303. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  304. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  305. */
  306. struct nested_vmx {
  307. /* Has the level1 guest done vmxon? */
  308. bool vmxon;
  309. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  310. gpa_t current_vmptr;
  311. /* The host-usable pointer to the above */
  312. struct page *current_vmcs12_page;
  313. struct vmcs12 *current_vmcs12;
  314. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  315. struct list_head vmcs02_pool;
  316. int vmcs02_num;
  317. u64 vmcs01_tsc_offset;
  318. /* L2 must run next, and mustn't decide to exit to L1. */
  319. bool nested_run_pending;
  320. /*
  321. * Guest pages referred to in vmcs02 with host-physical pointers, so
  322. * we must keep them pinned while L2 runs.
  323. */
  324. struct page *apic_access_page;
  325. };
  326. struct vcpu_vmx {
  327. struct kvm_vcpu vcpu;
  328. unsigned long host_rsp;
  329. u8 fail;
  330. u8 cpl;
  331. bool nmi_known_unmasked;
  332. u32 exit_intr_info;
  333. u32 idt_vectoring_info;
  334. ulong rflags;
  335. struct shared_msr_entry *guest_msrs;
  336. int nmsrs;
  337. int save_nmsrs;
  338. #ifdef CONFIG_X86_64
  339. u64 msr_host_kernel_gs_base;
  340. u64 msr_guest_kernel_gs_base;
  341. #endif
  342. /*
  343. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  344. * non-nested (L1) guest, it always points to vmcs01. For a nested
  345. * guest (L2), it points to a different VMCS.
  346. */
  347. struct loaded_vmcs vmcs01;
  348. struct loaded_vmcs *loaded_vmcs;
  349. bool __launched; /* temporary, used in vmx_vcpu_run */
  350. struct msr_autoload {
  351. unsigned nr;
  352. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  353. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  354. } msr_autoload;
  355. struct {
  356. int loaded;
  357. u16 fs_sel, gs_sel, ldt_sel;
  358. int gs_ldt_reload_needed;
  359. int fs_reload_needed;
  360. } host_state;
  361. struct {
  362. int vm86_active;
  363. ulong save_rflags;
  364. struct kvm_save_segment {
  365. u16 selector;
  366. unsigned long base;
  367. u32 limit;
  368. u32 ar;
  369. } tr, es, ds, fs, gs;
  370. } rmode;
  371. struct {
  372. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  373. struct kvm_save_segment seg[8];
  374. } segment_cache;
  375. int vpid;
  376. bool emulation_required;
  377. /* Support for vnmi-less CPUs */
  378. int soft_vnmi_blocked;
  379. ktime_t entry_time;
  380. s64 vnmi_blocked_time;
  381. u32 exit_reason;
  382. bool rdtscp_enabled;
  383. /* Support for a guest hypervisor (nested VMX) */
  384. struct nested_vmx nested;
  385. };
  386. enum segment_cache_field {
  387. SEG_FIELD_SEL = 0,
  388. SEG_FIELD_BASE = 1,
  389. SEG_FIELD_LIMIT = 2,
  390. SEG_FIELD_AR = 3,
  391. SEG_FIELD_NR = 4
  392. };
  393. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  394. {
  395. return container_of(vcpu, struct vcpu_vmx, vcpu);
  396. }
  397. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  398. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  399. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  400. [number##_HIGH] = VMCS12_OFFSET(name)+4
  401. static unsigned short vmcs_field_to_offset_table[] = {
  402. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  403. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  404. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  405. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  406. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  407. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  408. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  409. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  410. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  411. FIELD(HOST_ES_SELECTOR, host_es_selector),
  412. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  413. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  414. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  415. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  416. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  417. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  418. FIELD64(IO_BITMAP_A, io_bitmap_a),
  419. FIELD64(IO_BITMAP_B, io_bitmap_b),
  420. FIELD64(MSR_BITMAP, msr_bitmap),
  421. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  422. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  423. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  424. FIELD64(TSC_OFFSET, tsc_offset),
  425. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  426. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  427. FIELD64(EPT_POINTER, ept_pointer),
  428. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  429. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  430. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  431. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  432. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  433. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  434. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  435. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  436. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  437. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  438. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  439. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  440. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  441. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  442. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  443. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  444. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  445. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  446. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  447. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  448. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  449. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  450. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  451. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  452. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  453. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  454. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  455. FIELD(TPR_THRESHOLD, tpr_threshold),
  456. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  457. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  458. FIELD(VM_EXIT_REASON, vm_exit_reason),
  459. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  460. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  461. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  462. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  463. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  464. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  465. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  466. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  467. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  468. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  469. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  470. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  471. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  472. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  473. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  474. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  475. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  476. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  477. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  478. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  479. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  480. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  481. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  482. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  483. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  484. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  485. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  486. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  487. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  488. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  489. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  490. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  491. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  492. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  493. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  494. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  495. FIELD(EXIT_QUALIFICATION, exit_qualification),
  496. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  497. FIELD(GUEST_CR0, guest_cr0),
  498. FIELD(GUEST_CR3, guest_cr3),
  499. FIELD(GUEST_CR4, guest_cr4),
  500. FIELD(GUEST_ES_BASE, guest_es_base),
  501. FIELD(GUEST_CS_BASE, guest_cs_base),
  502. FIELD(GUEST_SS_BASE, guest_ss_base),
  503. FIELD(GUEST_DS_BASE, guest_ds_base),
  504. FIELD(GUEST_FS_BASE, guest_fs_base),
  505. FIELD(GUEST_GS_BASE, guest_gs_base),
  506. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  507. FIELD(GUEST_TR_BASE, guest_tr_base),
  508. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  509. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  510. FIELD(GUEST_DR7, guest_dr7),
  511. FIELD(GUEST_RSP, guest_rsp),
  512. FIELD(GUEST_RIP, guest_rip),
  513. FIELD(GUEST_RFLAGS, guest_rflags),
  514. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  515. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  516. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  517. FIELD(HOST_CR0, host_cr0),
  518. FIELD(HOST_CR3, host_cr3),
  519. FIELD(HOST_CR4, host_cr4),
  520. FIELD(HOST_FS_BASE, host_fs_base),
  521. FIELD(HOST_GS_BASE, host_gs_base),
  522. FIELD(HOST_TR_BASE, host_tr_base),
  523. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  524. FIELD(HOST_IDTR_BASE, host_idtr_base),
  525. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  526. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  527. FIELD(HOST_RSP, host_rsp),
  528. FIELD(HOST_RIP, host_rip),
  529. };
  530. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  531. static inline short vmcs_field_to_offset(unsigned long field)
  532. {
  533. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  534. return -1;
  535. return vmcs_field_to_offset_table[field];
  536. }
  537. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  538. {
  539. return to_vmx(vcpu)->nested.current_vmcs12;
  540. }
  541. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  542. {
  543. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  544. if (is_error_page(page)) {
  545. kvm_release_page_clean(page);
  546. return NULL;
  547. }
  548. return page;
  549. }
  550. static void nested_release_page(struct page *page)
  551. {
  552. kvm_release_page_dirty(page);
  553. }
  554. static void nested_release_page_clean(struct page *page)
  555. {
  556. kvm_release_page_clean(page);
  557. }
  558. static u64 construct_eptp(unsigned long root_hpa);
  559. static void kvm_cpu_vmxon(u64 addr);
  560. static void kvm_cpu_vmxoff(void);
  561. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  562. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  563. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  564. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  565. /*
  566. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  567. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  568. */
  569. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  570. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  571. static unsigned long *vmx_io_bitmap_a;
  572. static unsigned long *vmx_io_bitmap_b;
  573. static unsigned long *vmx_msr_bitmap_legacy;
  574. static unsigned long *vmx_msr_bitmap_longmode;
  575. static bool cpu_has_load_ia32_efer;
  576. static bool cpu_has_load_perf_global_ctrl;
  577. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  578. static DEFINE_SPINLOCK(vmx_vpid_lock);
  579. static struct vmcs_config {
  580. int size;
  581. int order;
  582. u32 revision_id;
  583. u32 pin_based_exec_ctrl;
  584. u32 cpu_based_exec_ctrl;
  585. u32 cpu_based_2nd_exec_ctrl;
  586. u32 vmexit_ctrl;
  587. u32 vmentry_ctrl;
  588. } vmcs_config;
  589. static struct vmx_capability {
  590. u32 ept;
  591. u32 vpid;
  592. } vmx_capability;
  593. #define VMX_SEGMENT_FIELD(seg) \
  594. [VCPU_SREG_##seg] = { \
  595. .selector = GUEST_##seg##_SELECTOR, \
  596. .base = GUEST_##seg##_BASE, \
  597. .limit = GUEST_##seg##_LIMIT, \
  598. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  599. }
  600. static struct kvm_vmx_segment_field {
  601. unsigned selector;
  602. unsigned base;
  603. unsigned limit;
  604. unsigned ar_bytes;
  605. } kvm_vmx_segment_fields[] = {
  606. VMX_SEGMENT_FIELD(CS),
  607. VMX_SEGMENT_FIELD(DS),
  608. VMX_SEGMENT_FIELD(ES),
  609. VMX_SEGMENT_FIELD(FS),
  610. VMX_SEGMENT_FIELD(GS),
  611. VMX_SEGMENT_FIELD(SS),
  612. VMX_SEGMENT_FIELD(TR),
  613. VMX_SEGMENT_FIELD(LDTR),
  614. };
  615. static u64 host_efer;
  616. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  617. /*
  618. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  619. * away by decrementing the array size.
  620. */
  621. static const u32 vmx_msr_index[] = {
  622. #ifdef CONFIG_X86_64
  623. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  624. #endif
  625. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  626. };
  627. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  628. static inline bool is_page_fault(u32 intr_info)
  629. {
  630. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  631. INTR_INFO_VALID_MASK)) ==
  632. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  633. }
  634. static inline bool is_no_device(u32 intr_info)
  635. {
  636. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  637. INTR_INFO_VALID_MASK)) ==
  638. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  639. }
  640. static inline bool is_invalid_opcode(u32 intr_info)
  641. {
  642. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  643. INTR_INFO_VALID_MASK)) ==
  644. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  645. }
  646. static inline bool is_external_interrupt(u32 intr_info)
  647. {
  648. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  649. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  650. }
  651. static inline bool is_machine_check(u32 intr_info)
  652. {
  653. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  654. INTR_INFO_VALID_MASK)) ==
  655. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  656. }
  657. static inline bool cpu_has_vmx_msr_bitmap(void)
  658. {
  659. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  660. }
  661. static inline bool cpu_has_vmx_tpr_shadow(void)
  662. {
  663. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  664. }
  665. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  666. {
  667. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  668. }
  669. static inline bool cpu_has_secondary_exec_ctrls(void)
  670. {
  671. return vmcs_config.cpu_based_exec_ctrl &
  672. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  673. }
  674. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  675. {
  676. return vmcs_config.cpu_based_2nd_exec_ctrl &
  677. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  678. }
  679. static inline bool cpu_has_vmx_flexpriority(void)
  680. {
  681. return cpu_has_vmx_tpr_shadow() &&
  682. cpu_has_vmx_virtualize_apic_accesses();
  683. }
  684. static inline bool cpu_has_vmx_ept_execute_only(void)
  685. {
  686. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  687. }
  688. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  689. {
  690. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  691. }
  692. static inline bool cpu_has_vmx_eptp_writeback(void)
  693. {
  694. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  695. }
  696. static inline bool cpu_has_vmx_ept_2m_page(void)
  697. {
  698. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  699. }
  700. static inline bool cpu_has_vmx_ept_1g_page(void)
  701. {
  702. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  703. }
  704. static inline bool cpu_has_vmx_ept_4levels(void)
  705. {
  706. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  707. }
  708. static inline bool cpu_has_vmx_invept_individual_addr(void)
  709. {
  710. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  711. }
  712. static inline bool cpu_has_vmx_invept_context(void)
  713. {
  714. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  715. }
  716. static inline bool cpu_has_vmx_invept_global(void)
  717. {
  718. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  719. }
  720. static inline bool cpu_has_vmx_invvpid_single(void)
  721. {
  722. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  723. }
  724. static inline bool cpu_has_vmx_invvpid_global(void)
  725. {
  726. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  727. }
  728. static inline bool cpu_has_vmx_ept(void)
  729. {
  730. return vmcs_config.cpu_based_2nd_exec_ctrl &
  731. SECONDARY_EXEC_ENABLE_EPT;
  732. }
  733. static inline bool cpu_has_vmx_unrestricted_guest(void)
  734. {
  735. return vmcs_config.cpu_based_2nd_exec_ctrl &
  736. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  737. }
  738. static inline bool cpu_has_vmx_ple(void)
  739. {
  740. return vmcs_config.cpu_based_2nd_exec_ctrl &
  741. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  742. }
  743. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  744. {
  745. return flexpriority_enabled && irqchip_in_kernel(kvm);
  746. }
  747. static inline bool cpu_has_vmx_vpid(void)
  748. {
  749. return vmcs_config.cpu_based_2nd_exec_ctrl &
  750. SECONDARY_EXEC_ENABLE_VPID;
  751. }
  752. static inline bool cpu_has_vmx_rdtscp(void)
  753. {
  754. return vmcs_config.cpu_based_2nd_exec_ctrl &
  755. SECONDARY_EXEC_RDTSCP;
  756. }
  757. static inline bool cpu_has_virtual_nmis(void)
  758. {
  759. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  760. }
  761. static inline bool cpu_has_vmx_wbinvd_exit(void)
  762. {
  763. return vmcs_config.cpu_based_2nd_exec_ctrl &
  764. SECONDARY_EXEC_WBINVD_EXITING;
  765. }
  766. static inline bool report_flexpriority(void)
  767. {
  768. return flexpriority_enabled;
  769. }
  770. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  771. {
  772. return vmcs12->cpu_based_vm_exec_control & bit;
  773. }
  774. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  775. {
  776. return (vmcs12->cpu_based_vm_exec_control &
  777. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  778. (vmcs12->secondary_vm_exec_control & bit);
  779. }
  780. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  781. struct kvm_vcpu *vcpu)
  782. {
  783. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  784. }
  785. static inline bool is_exception(u32 intr_info)
  786. {
  787. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  788. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  789. }
  790. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  791. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  792. struct vmcs12 *vmcs12,
  793. u32 reason, unsigned long qualification);
  794. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  795. {
  796. int i;
  797. for (i = 0; i < vmx->nmsrs; ++i)
  798. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  799. return i;
  800. return -1;
  801. }
  802. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  803. {
  804. struct {
  805. u64 vpid : 16;
  806. u64 rsvd : 48;
  807. u64 gva;
  808. } operand = { vpid, 0, gva };
  809. asm volatile (__ex(ASM_VMX_INVVPID)
  810. /* CF==1 or ZF==1 --> rc = -1 */
  811. "; ja 1f ; ud2 ; 1:"
  812. : : "a"(&operand), "c"(ext) : "cc", "memory");
  813. }
  814. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  815. {
  816. struct {
  817. u64 eptp, gpa;
  818. } operand = {eptp, gpa};
  819. asm volatile (__ex(ASM_VMX_INVEPT)
  820. /* CF==1 or ZF==1 --> rc = -1 */
  821. "; ja 1f ; ud2 ; 1:\n"
  822. : : "a" (&operand), "c" (ext) : "cc", "memory");
  823. }
  824. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  825. {
  826. int i;
  827. i = __find_msr_index(vmx, msr);
  828. if (i >= 0)
  829. return &vmx->guest_msrs[i];
  830. return NULL;
  831. }
  832. static void vmcs_clear(struct vmcs *vmcs)
  833. {
  834. u64 phys_addr = __pa(vmcs);
  835. u8 error;
  836. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  837. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  838. : "cc", "memory");
  839. if (error)
  840. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  841. vmcs, phys_addr);
  842. }
  843. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  844. {
  845. vmcs_clear(loaded_vmcs->vmcs);
  846. loaded_vmcs->cpu = -1;
  847. loaded_vmcs->launched = 0;
  848. }
  849. static void vmcs_load(struct vmcs *vmcs)
  850. {
  851. u64 phys_addr = __pa(vmcs);
  852. u8 error;
  853. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  854. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  855. : "cc", "memory");
  856. if (error)
  857. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  858. vmcs, phys_addr);
  859. }
  860. static void __loaded_vmcs_clear(void *arg)
  861. {
  862. struct loaded_vmcs *loaded_vmcs = arg;
  863. int cpu = raw_smp_processor_id();
  864. if (loaded_vmcs->cpu != cpu)
  865. return; /* vcpu migration can race with cpu offline */
  866. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  867. per_cpu(current_vmcs, cpu) = NULL;
  868. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  869. loaded_vmcs_init(loaded_vmcs);
  870. }
  871. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  872. {
  873. if (loaded_vmcs->cpu != -1)
  874. smp_call_function_single(
  875. loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
  876. }
  877. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  878. {
  879. if (vmx->vpid == 0)
  880. return;
  881. if (cpu_has_vmx_invvpid_single())
  882. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  883. }
  884. static inline void vpid_sync_vcpu_global(void)
  885. {
  886. if (cpu_has_vmx_invvpid_global())
  887. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  888. }
  889. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  890. {
  891. if (cpu_has_vmx_invvpid_single())
  892. vpid_sync_vcpu_single(vmx);
  893. else
  894. vpid_sync_vcpu_global();
  895. }
  896. static inline void ept_sync_global(void)
  897. {
  898. if (cpu_has_vmx_invept_global())
  899. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  900. }
  901. static inline void ept_sync_context(u64 eptp)
  902. {
  903. if (enable_ept) {
  904. if (cpu_has_vmx_invept_context())
  905. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  906. else
  907. ept_sync_global();
  908. }
  909. }
  910. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  911. {
  912. if (enable_ept) {
  913. if (cpu_has_vmx_invept_individual_addr())
  914. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  915. eptp, gpa);
  916. else
  917. ept_sync_context(eptp);
  918. }
  919. }
  920. static __always_inline unsigned long vmcs_readl(unsigned long field)
  921. {
  922. unsigned long value;
  923. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  924. : "=a"(value) : "d"(field) : "cc");
  925. return value;
  926. }
  927. static __always_inline u16 vmcs_read16(unsigned long field)
  928. {
  929. return vmcs_readl(field);
  930. }
  931. static __always_inline u32 vmcs_read32(unsigned long field)
  932. {
  933. return vmcs_readl(field);
  934. }
  935. static __always_inline u64 vmcs_read64(unsigned long field)
  936. {
  937. #ifdef CONFIG_X86_64
  938. return vmcs_readl(field);
  939. #else
  940. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  941. #endif
  942. }
  943. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  944. {
  945. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  946. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  947. dump_stack();
  948. }
  949. static void vmcs_writel(unsigned long field, unsigned long value)
  950. {
  951. u8 error;
  952. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  953. : "=q"(error) : "a"(value), "d"(field) : "cc");
  954. if (unlikely(error))
  955. vmwrite_error(field, value);
  956. }
  957. static void vmcs_write16(unsigned long field, u16 value)
  958. {
  959. vmcs_writel(field, value);
  960. }
  961. static void vmcs_write32(unsigned long field, u32 value)
  962. {
  963. vmcs_writel(field, value);
  964. }
  965. static void vmcs_write64(unsigned long field, u64 value)
  966. {
  967. vmcs_writel(field, value);
  968. #ifndef CONFIG_X86_64
  969. asm volatile ("");
  970. vmcs_writel(field+1, value >> 32);
  971. #endif
  972. }
  973. static void vmcs_clear_bits(unsigned long field, u32 mask)
  974. {
  975. vmcs_writel(field, vmcs_readl(field) & ~mask);
  976. }
  977. static void vmcs_set_bits(unsigned long field, u32 mask)
  978. {
  979. vmcs_writel(field, vmcs_readl(field) | mask);
  980. }
  981. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  982. {
  983. vmx->segment_cache.bitmask = 0;
  984. }
  985. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  986. unsigned field)
  987. {
  988. bool ret;
  989. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  990. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  991. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  992. vmx->segment_cache.bitmask = 0;
  993. }
  994. ret = vmx->segment_cache.bitmask & mask;
  995. vmx->segment_cache.bitmask |= mask;
  996. return ret;
  997. }
  998. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  999. {
  1000. u16 *p = &vmx->segment_cache.seg[seg].selector;
  1001. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  1002. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1003. return *p;
  1004. }
  1005. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1006. {
  1007. ulong *p = &vmx->segment_cache.seg[seg].base;
  1008. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1009. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1010. return *p;
  1011. }
  1012. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1013. {
  1014. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1015. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1016. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1017. return *p;
  1018. }
  1019. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1020. {
  1021. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1022. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1023. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1024. return *p;
  1025. }
  1026. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1027. {
  1028. u32 eb;
  1029. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1030. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1031. if ((vcpu->guest_debug &
  1032. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1033. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1034. eb |= 1u << BP_VECTOR;
  1035. if (to_vmx(vcpu)->rmode.vm86_active)
  1036. eb = ~0;
  1037. if (enable_ept)
  1038. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1039. if (vcpu->fpu_active)
  1040. eb &= ~(1u << NM_VECTOR);
  1041. /* When we are running a nested L2 guest and L1 specified for it a
  1042. * certain exception bitmap, we must trap the same exceptions and pass
  1043. * them to L1. When running L2, we will only handle the exceptions
  1044. * specified above if L1 did not want them.
  1045. */
  1046. if (is_guest_mode(vcpu))
  1047. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1048. vmcs_write32(EXCEPTION_BITMAP, eb);
  1049. }
  1050. static void clear_atomic_switch_msr_special(unsigned long entry,
  1051. unsigned long exit)
  1052. {
  1053. vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
  1054. vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
  1055. }
  1056. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1057. {
  1058. unsigned i;
  1059. struct msr_autoload *m = &vmx->msr_autoload;
  1060. switch (msr) {
  1061. case MSR_EFER:
  1062. if (cpu_has_load_ia32_efer) {
  1063. clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1064. VM_EXIT_LOAD_IA32_EFER);
  1065. return;
  1066. }
  1067. break;
  1068. case MSR_CORE_PERF_GLOBAL_CTRL:
  1069. if (cpu_has_load_perf_global_ctrl) {
  1070. clear_atomic_switch_msr_special(
  1071. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1072. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  1073. return;
  1074. }
  1075. break;
  1076. }
  1077. for (i = 0; i < m->nr; ++i)
  1078. if (m->guest[i].index == msr)
  1079. break;
  1080. if (i == m->nr)
  1081. return;
  1082. --m->nr;
  1083. m->guest[i] = m->guest[m->nr];
  1084. m->host[i] = m->host[m->nr];
  1085. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1086. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1087. }
  1088. static void add_atomic_switch_msr_special(unsigned long entry,
  1089. unsigned long exit, unsigned long guest_val_vmcs,
  1090. unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
  1091. {
  1092. vmcs_write64(guest_val_vmcs, guest_val);
  1093. vmcs_write64(host_val_vmcs, host_val);
  1094. vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
  1095. vmcs_set_bits(VM_EXIT_CONTROLS, exit);
  1096. }
  1097. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1098. u64 guest_val, u64 host_val)
  1099. {
  1100. unsigned i;
  1101. struct msr_autoload *m = &vmx->msr_autoload;
  1102. switch (msr) {
  1103. case MSR_EFER:
  1104. if (cpu_has_load_ia32_efer) {
  1105. add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1106. VM_EXIT_LOAD_IA32_EFER,
  1107. GUEST_IA32_EFER,
  1108. HOST_IA32_EFER,
  1109. guest_val, host_val);
  1110. return;
  1111. }
  1112. break;
  1113. case MSR_CORE_PERF_GLOBAL_CTRL:
  1114. if (cpu_has_load_perf_global_ctrl) {
  1115. add_atomic_switch_msr_special(
  1116. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1117. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
  1118. GUEST_IA32_PERF_GLOBAL_CTRL,
  1119. HOST_IA32_PERF_GLOBAL_CTRL,
  1120. guest_val, host_val);
  1121. return;
  1122. }
  1123. break;
  1124. }
  1125. for (i = 0; i < m->nr; ++i)
  1126. if (m->guest[i].index == msr)
  1127. break;
  1128. if (i == NR_AUTOLOAD_MSRS) {
  1129. printk_once(KERN_WARNING"Not enough mst switch entries. "
  1130. "Can't add msr %x\n", msr);
  1131. return;
  1132. } else if (i == m->nr) {
  1133. ++m->nr;
  1134. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1135. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1136. }
  1137. m->guest[i].index = msr;
  1138. m->guest[i].value = guest_val;
  1139. m->host[i].index = msr;
  1140. m->host[i].value = host_val;
  1141. }
  1142. static void reload_tss(void)
  1143. {
  1144. /*
  1145. * VT restores TR but not its size. Useless.
  1146. */
  1147. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1148. struct desc_struct *descs;
  1149. descs = (void *)gdt->address;
  1150. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1151. load_TR_desc();
  1152. }
  1153. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1154. {
  1155. u64 guest_efer;
  1156. u64 ignore_bits;
  1157. guest_efer = vmx->vcpu.arch.efer;
  1158. /*
  1159. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  1160. * outside long mode
  1161. */
  1162. ignore_bits = EFER_NX | EFER_SCE;
  1163. #ifdef CONFIG_X86_64
  1164. ignore_bits |= EFER_LMA | EFER_LME;
  1165. /* SCE is meaningful only in long mode on Intel */
  1166. if (guest_efer & EFER_LMA)
  1167. ignore_bits &= ~(u64)EFER_SCE;
  1168. #endif
  1169. guest_efer &= ~ignore_bits;
  1170. guest_efer |= host_efer & ignore_bits;
  1171. vmx->guest_msrs[efer_offset].data = guest_efer;
  1172. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1173. clear_atomic_switch_msr(vmx, MSR_EFER);
  1174. /* On ept, can't emulate nx, and must switch nx atomically */
  1175. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1176. guest_efer = vmx->vcpu.arch.efer;
  1177. if (!(guest_efer & EFER_LMA))
  1178. guest_efer &= ~EFER_LME;
  1179. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1180. return false;
  1181. }
  1182. return true;
  1183. }
  1184. static unsigned long segment_base(u16 selector)
  1185. {
  1186. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1187. struct desc_struct *d;
  1188. unsigned long table_base;
  1189. unsigned long v;
  1190. if (!(selector & ~3))
  1191. return 0;
  1192. table_base = gdt->address;
  1193. if (selector & 4) { /* from ldt */
  1194. u16 ldt_selector = kvm_read_ldt();
  1195. if (!(ldt_selector & ~3))
  1196. return 0;
  1197. table_base = segment_base(ldt_selector);
  1198. }
  1199. d = (struct desc_struct *)(table_base + (selector & ~7));
  1200. v = get_desc_base(d);
  1201. #ifdef CONFIG_X86_64
  1202. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1203. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1204. #endif
  1205. return v;
  1206. }
  1207. static inline unsigned long kvm_read_tr_base(void)
  1208. {
  1209. u16 tr;
  1210. asm("str %0" : "=g"(tr));
  1211. return segment_base(tr);
  1212. }
  1213. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1214. {
  1215. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1216. int i;
  1217. if (vmx->host_state.loaded)
  1218. return;
  1219. vmx->host_state.loaded = 1;
  1220. /*
  1221. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1222. * allow segment selectors with cpl > 0 or ti == 1.
  1223. */
  1224. vmx->host_state.ldt_sel = kvm_read_ldt();
  1225. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1226. savesegment(fs, vmx->host_state.fs_sel);
  1227. if (!(vmx->host_state.fs_sel & 7)) {
  1228. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1229. vmx->host_state.fs_reload_needed = 0;
  1230. } else {
  1231. vmcs_write16(HOST_FS_SELECTOR, 0);
  1232. vmx->host_state.fs_reload_needed = 1;
  1233. }
  1234. savesegment(gs, vmx->host_state.gs_sel);
  1235. if (!(vmx->host_state.gs_sel & 7))
  1236. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1237. else {
  1238. vmcs_write16(HOST_GS_SELECTOR, 0);
  1239. vmx->host_state.gs_ldt_reload_needed = 1;
  1240. }
  1241. #ifdef CONFIG_X86_64
  1242. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1243. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1244. #else
  1245. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1246. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1247. #endif
  1248. #ifdef CONFIG_X86_64
  1249. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1250. if (is_long_mode(&vmx->vcpu))
  1251. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1252. #endif
  1253. for (i = 0; i < vmx->save_nmsrs; ++i)
  1254. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1255. vmx->guest_msrs[i].data,
  1256. vmx->guest_msrs[i].mask);
  1257. }
  1258. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1259. {
  1260. if (!vmx->host_state.loaded)
  1261. return;
  1262. ++vmx->vcpu.stat.host_state_reload;
  1263. vmx->host_state.loaded = 0;
  1264. #ifdef CONFIG_X86_64
  1265. if (is_long_mode(&vmx->vcpu))
  1266. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1267. #endif
  1268. if (vmx->host_state.gs_ldt_reload_needed) {
  1269. kvm_load_ldt(vmx->host_state.ldt_sel);
  1270. #ifdef CONFIG_X86_64
  1271. load_gs_index(vmx->host_state.gs_sel);
  1272. #else
  1273. loadsegment(gs, vmx->host_state.gs_sel);
  1274. #endif
  1275. }
  1276. if (vmx->host_state.fs_reload_needed)
  1277. loadsegment(fs, vmx->host_state.fs_sel);
  1278. reload_tss();
  1279. #ifdef CONFIG_X86_64
  1280. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1281. #endif
  1282. if (current_thread_info()->status & TS_USEDFPU)
  1283. clts();
  1284. load_gdt(&__get_cpu_var(host_gdt));
  1285. }
  1286. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1287. {
  1288. preempt_disable();
  1289. __vmx_load_host_state(vmx);
  1290. preempt_enable();
  1291. }
  1292. /*
  1293. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1294. * vcpu mutex is already taken.
  1295. */
  1296. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1297. {
  1298. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1299. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1300. if (!vmm_exclusive)
  1301. kvm_cpu_vmxon(phys_addr);
  1302. else if (vmx->loaded_vmcs->cpu != cpu)
  1303. loaded_vmcs_clear(vmx->loaded_vmcs);
  1304. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1305. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1306. vmcs_load(vmx->loaded_vmcs->vmcs);
  1307. }
  1308. if (vmx->loaded_vmcs->cpu != cpu) {
  1309. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1310. unsigned long sysenter_esp;
  1311. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1312. local_irq_disable();
  1313. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1314. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1315. local_irq_enable();
  1316. /*
  1317. * Linux uses per-cpu TSS and GDT, so set these when switching
  1318. * processors.
  1319. */
  1320. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1321. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1322. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1323. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1324. vmx->loaded_vmcs->cpu = cpu;
  1325. }
  1326. }
  1327. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1328. {
  1329. __vmx_load_host_state(to_vmx(vcpu));
  1330. if (!vmm_exclusive) {
  1331. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1332. vcpu->cpu = -1;
  1333. kvm_cpu_vmxoff();
  1334. }
  1335. }
  1336. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1337. {
  1338. ulong cr0;
  1339. if (vcpu->fpu_active)
  1340. return;
  1341. vcpu->fpu_active = 1;
  1342. cr0 = vmcs_readl(GUEST_CR0);
  1343. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1344. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1345. vmcs_writel(GUEST_CR0, cr0);
  1346. update_exception_bitmap(vcpu);
  1347. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1348. if (is_guest_mode(vcpu))
  1349. vcpu->arch.cr0_guest_owned_bits &=
  1350. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1351. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1352. }
  1353. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1354. /*
  1355. * Return the cr0 value that a nested guest would read. This is a combination
  1356. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1357. * its hypervisor (cr0_read_shadow).
  1358. */
  1359. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1360. {
  1361. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1362. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1363. }
  1364. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1365. {
  1366. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1367. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1368. }
  1369. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1370. {
  1371. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1372. * set this *before* calling this function.
  1373. */
  1374. vmx_decache_cr0_guest_bits(vcpu);
  1375. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1376. update_exception_bitmap(vcpu);
  1377. vcpu->arch.cr0_guest_owned_bits = 0;
  1378. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1379. if (is_guest_mode(vcpu)) {
  1380. /*
  1381. * L1's specified read shadow might not contain the TS bit,
  1382. * so now that we turned on shadowing of this bit, we need to
  1383. * set this bit of the shadow. Like in nested_vmx_run we need
  1384. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1385. * up-to-date here because we just decached cr0.TS (and we'll
  1386. * only update vmcs12->guest_cr0 on nested exit).
  1387. */
  1388. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1389. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1390. (vcpu->arch.cr0 & X86_CR0_TS);
  1391. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1392. } else
  1393. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1394. }
  1395. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1396. {
  1397. unsigned long rflags, save_rflags;
  1398. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1399. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1400. rflags = vmcs_readl(GUEST_RFLAGS);
  1401. if (to_vmx(vcpu)->rmode.vm86_active) {
  1402. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1403. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1404. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1405. }
  1406. to_vmx(vcpu)->rflags = rflags;
  1407. }
  1408. return to_vmx(vcpu)->rflags;
  1409. }
  1410. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1411. {
  1412. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1413. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1414. to_vmx(vcpu)->rflags = rflags;
  1415. if (to_vmx(vcpu)->rmode.vm86_active) {
  1416. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1417. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1418. }
  1419. vmcs_writel(GUEST_RFLAGS, rflags);
  1420. }
  1421. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1422. {
  1423. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1424. int ret = 0;
  1425. if (interruptibility & GUEST_INTR_STATE_STI)
  1426. ret |= KVM_X86_SHADOW_INT_STI;
  1427. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1428. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1429. return ret & mask;
  1430. }
  1431. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1432. {
  1433. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1434. u32 interruptibility = interruptibility_old;
  1435. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1436. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1437. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1438. else if (mask & KVM_X86_SHADOW_INT_STI)
  1439. interruptibility |= GUEST_INTR_STATE_STI;
  1440. if ((interruptibility != interruptibility_old))
  1441. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1442. }
  1443. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1444. {
  1445. unsigned long rip;
  1446. rip = kvm_rip_read(vcpu);
  1447. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1448. kvm_rip_write(vcpu, rip);
  1449. /* skipping an emulated instruction also counts */
  1450. vmx_set_interrupt_shadow(vcpu, 0);
  1451. }
  1452. static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
  1453. {
  1454. /* Ensure that we clear the HLT state in the VMCS. We don't need to
  1455. * explicitly skip the instruction because if the HLT state is set, then
  1456. * the instruction is already executing and RIP has already been
  1457. * advanced. */
  1458. if (!yield_on_hlt &&
  1459. vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
  1460. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  1461. }
  1462. /*
  1463. * KVM wants to inject page-faults which it got to the guest. This function
  1464. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1465. * This function assumes it is called with the exit reason in vmcs02 being
  1466. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1467. * is running).
  1468. */
  1469. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1470. {
  1471. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1472. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1473. if (!(vmcs12->exception_bitmap & PF_VECTOR))
  1474. return 0;
  1475. nested_vmx_vmexit(vcpu);
  1476. return 1;
  1477. }
  1478. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1479. bool has_error_code, u32 error_code,
  1480. bool reinject)
  1481. {
  1482. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1483. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1484. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1485. nested_pf_handled(vcpu))
  1486. return;
  1487. if (has_error_code) {
  1488. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1489. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1490. }
  1491. if (vmx->rmode.vm86_active) {
  1492. int inc_eip = 0;
  1493. if (kvm_exception_is_soft(nr))
  1494. inc_eip = vcpu->arch.event_exit_inst_len;
  1495. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1496. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1497. return;
  1498. }
  1499. if (kvm_exception_is_soft(nr)) {
  1500. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1501. vmx->vcpu.arch.event_exit_inst_len);
  1502. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1503. } else
  1504. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1505. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1506. vmx_clear_hlt(vcpu);
  1507. }
  1508. static bool vmx_rdtscp_supported(void)
  1509. {
  1510. return cpu_has_vmx_rdtscp();
  1511. }
  1512. /*
  1513. * Swap MSR entry in host/guest MSR entry array.
  1514. */
  1515. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1516. {
  1517. struct shared_msr_entry tmp;
  1518. tmp = vmx->guest_msrs[to];
  1519. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1520. vmx->guest_msrs[from] = tmp;
  1521. }
  1522. /*
  1523. * Set up the vmcs to automatically save and restore system
  1524. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1525. * mode, as fiddling with msrs is very expensive.
  1526. */
  1527. static void setup_msrs(struct vcpu_vmx *vmx)
  1528. {
  1529. int save_nmsrs, index;
  1530. unsigned long *msr_bitmap;
  1531. save_nmsrs = 0;
  1532. #ifdef CONFIG_X86_64
  1533. if (is_long_mode(&vmx->vcpu)) {
  1534. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1535. if (index >= 0)
  1536. move_msr_up(vmx, index, save_nmsrs++);
  1537. index = __find_msr_index(vmx, MSR_LSTAR);
  1538. if (index >= 0)
  1539. move_msr_up(vmx, index, save_nmsrs++);
  1540. index = __find_msr_index(vmx, MSR_CSTAR);
  1541. if (index >= 0)
  1542. move_msr_up(vmx, index, save_nmsrs++);
  1543. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1544. if (index >= 0 && vmx->rdtscp_enabled)
  1545. move_msr_up(vmx, index, save_nmsrs++);
  1546. /*
  1547. * MSR_STAR is only needed on long mode guests, and only
  1548. * if efer.sce is enabled.
  1549. */
  1550. index = __find_msr_index(vmx, MSR_STAR);
  1551. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1552. move_msr_up(vmx, index, save_nmsrs++);
  1553. }
  1554. #endif
  1555. index = __find_msr_index(vmx, MSR_EFER);
  1556. if (index >= 0 && update_transition_efer(vmx, index))
  1557. move_msr_up(vmx, index, save_nmsrs++);
  1558. vmx->save_nmsrs = save_nmsrs;
  1559. if (cpu_has_vmx_msr_bitmap()) {
  1560. if (is_long_mode(&vmx->vcpu))
  1561. msr_bitmap = vmx_msr_bitmap_longmode;
  1562. else
  1563. msr_bitmap = vmx_msr_bitmap_legacy;
  1564. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1565. }
  1566. }
  1567. /*
  1568. * reads and returns guest's timestamp counter "register"
  1569. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1570. */
  1571. static u64 guest_read_tsc(void)
  1572. {
  1573. u64 host_tsc, tsc_offset;
  1574. rdtscll(host_tsc);
  1575. tsc_offset = vmcs_read64(TSC_OFFSET);
  1576. return host_tsc + tsc_offset;
  1577. }
  1578. /*
  1579. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1580. * counter, even if a nested guest (L2) is currently running.
  1581. */
  1582. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
  1583. {
  1584. u64 host_tsc, tsc_offset;
  1585. rdtscll(host_tsc);
  1586. tsc_offset = is_guest_mode(vcpu) ?
  1587. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1588. vmcs_read64(TSC_OFFSET);
  1589. return host_tsc + tsc_offset;
  1590. }
  1591. /*
  1592. * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
  1593. * ioctl. In this case the call-back should update internal vmx state to make
  1594. * the changes effective.
  1595. */
  1596. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
  1597. {
  1598. /* Nothing to do here */
  1599. }
  1600. /*
  1601. * writes 'offset' into guest's timestamp counter offset register
  1602. */
  1603. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1604. {
  1605. if (is_guest_mode(vcpu)) {
  1606. /*
  1607. * We're here if L1 chose not to trap WRMSR to TSC. According
  1608. * to the spec, this should set L1's TSC; The offset that L1
  1609. * set for L2 remains unchanged, and still needs to be added
  1610. * to the newly set TSC to get L2's TSC.
  1611. */
  1612. struct vmcs12 *vmcs12;
  1613. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1614. /* recalculate vmcs02.TSC_OFFSET: */
  1615. vmcs12 = get_vmcs12(vcpu);
  1616. vmcs_write64(TSC_OFFSET, offset +
  1617. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1618. vmcs12->tsc_offset : 0));
  1619. } else {
  1620. vmcs_write64(TSC_OFFSET, offset);
  1621. }
  1622. }
  1623. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
  1624. {
  1625. u64 offset = vmcs_read64(TSC_OFFSET);
  1626. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1627. if (is_guest_mode(vcpu)) {
  1628. /* Even when running L2, the adjustment needs to apply to L1 */
  1629. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1630. }
  1631. }
  1632. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1633. {
  1634. return target_tsc - native_read_tsc();
  1635. }
  1636. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1637. {
  1638. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1639. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1640. }
  1641. /*
  1642. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1643. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1644. * all guests if the "nested" module option is off, and can also be disabled
  1645. * for a single guest by disabling its VMX cpuid bit.
  1646. */
  1647. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1648. {
  1649. return nested && guest_cpuid_has_vmx(vcpu);
  1650. }
  1651. /*
  1652. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1653. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1654. * The same values should also be used to verify that vmcs12 control fields are
  1655. * valid during nested entry from L1 to L2.
  1656. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1657. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1658. * bit in the high half is on if the corresponding bit in the control field
  1659. * may be on. See also vmx_control_verify().
  1660. * TODO: allow these variables to be modified (downgraded) by module options
  1661. * or other means.
  1662. */
  1663. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1664. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1665. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1666. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1667. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1668. static __init void nested_vmx_setup_ctls_msrs(void)
  1669. {
  1670. /*
  1671. * Note that as a general rule, the high half of the MSRs (bits in
  1672. * the control fields which may be 1) should be initialized by the
  1673. * intersection of the underlying hardware's MSR (i.e., features which
  1674. * can be supported) and the list of features we want to expose -
  1675. * because they are known to be properly supported in our code.
  1676. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1677. * be set to 0, meaning that L1 may turn off any of these bits. The
  1678. * reason is that if one of these bits is necessary, it will appear
  1679. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1680. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1681. * nested_vmx_exit_handled() will not pass related exits to L1.
  1682. * These rules have exceptions below.
  1683. */
  1684. /* pin-based controls */
  1685. /*
  1686. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1687. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1688. */
  1689. nested_vmx_pinbased_ctls_low = 0x16 ;
  1690. nested_vmx_pinbased_ctls_high = 0x16 |
  1691. PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
  1692. PIN_BASED_VIRTUAL_NMIS;
  1693. /* exit controls */
  1694. nested_vmx_exit_ctls_low = 0;
  1695. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1696. #ifdef CONFIG_X86_64
  1697. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1698. #else
  1699. nested_vmx_exit_ctls_high = 0;
  1700. #endif
  1701. /* entry controls */
  1702. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1703. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1704. nested_vmx_entry_ctls_low = 0;
  1705. nested_vmx_entry_ctls_high &=
  1706. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1707. /* cpu-based controls */
  1708. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1709. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1710. nested_vmx_procbased_ctls_low = 0;
  1711. nested_vmx_procbased_ctls_high &=
  1712. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1713. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1714. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1715. CPU_BASED_CR3_STORE_EXITING |
  1716. #ifdef CONFIG_X86_64
  1717. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1718. #endif
  1719. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1720. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1721. CPU_BASED_RDPMC_EXITING |
  1722. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1723. /*
  1724. * We can allow some features even when not supported by the
  1725. * hardware. For example, L1 can specify an MSR bitmap - and we
  1726. * can use it to avoid exits to L1 - even when L0 runs L2
  1727. * without MSR bitmaps.
  1728. */
  1729. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1730. /* secondary cpu-based controls */
  1731. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1732. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1733. nested_vmx_secondary_ctls_low = 0;
  1734. nested_vmx_secondary_ctls_high &=
  1735. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1736. }
  1737. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1738. {
  1739. /*
  1740. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1741. */
  1742. return ((control & high) | low) == control;
  1743. }
  1744. static inline u64 vmx_control_msr(u32 low, u32 high)
  1745. {
  1746. return low | ((u64)high << 32);
  1747. }
  1748. /*
  1749. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1750. * also let it use VMX-specific MSRs.
  1751. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1752. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1753. * like all other MSRs).
  1754. */
  1755. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1756. {
  1757. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1758. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1759. /*
  1760. * According to the spec, processors which do not support VMX
  1761. * should throw a #GP(0) when VMX capability MSRs are read.
  1762. */
  1763. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1764. return 1;
  1765. }
  1766. switch (msr_index) {
  1767. case MSR_IA32_FEATURE_CONTROL:
  1768. *pdata = 0;
  1769. break;
  1770. case MSR_IA32_VMX_BASIC:
  1771. /*
  1772. * This MSR reports some information about VMX support. We
  1773. * should return information about the VMX we emulate for the
  1774. * guest, and the VMCS structure we give it - not about the
  1775. * VMX support of the underlying hardware.
  1776. */
  1777. *pdata = VMCS12_REVISION |
  1778. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1779. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1780. break;
  1781. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1782. case MSR_IA32_VMX_PINBASED_CTLS:
  1783. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1784. nested_vmx_pinbased_ctls_high);
  1785. break;
  1786. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1787. case MSR_IA32_VMX_PROCBASED_CTLS:
  1788. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1789. nested_vmx_procbased_ctls_high);
  1790. break;
  1791. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1792. case MSR_IA32_VMX_EXIT_CTLS:
  1793. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1794. nested_vmx_exit_ctls_high);
  1795. break;
  1796. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1797. case MSR_IA32_VMX_ENTRY_CTLS:
  1798. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1799. nested_vmx_entry_ctls_high);
  1800. break;
  1801. case MSR_IA32_VMX_MISC:
  1802. *pdata = 0;
  1803. break;
  1804. /*
  1805. * These MSRs specify bits which the guest must keep fixed (on or off)
  1806. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1807. * We picked the standard core2 setting.
  1808. */
  1809. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1810. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1811. case MSR_IA32_VMX_CR0_FIXED0:
  1812. *pdata = VMXON_CR0_ALWAYSON;
  1813. break;
  1814. case MSR_IA32_VMX_CR0_FIXED1:
  1815. *pdata = -1ULL;
  1816. break;
  1817. case MSR_IA32_VMX_CR4_FIXED0:
  1818. *pdata = VMXON_CR4_ALWAYSON;
  1819. break;
  1820. case MSR_IA32_VMX_CR4_FIXED1:
  1821. *pdata = -1ULL;
  1822. break;
  1823. case MSR_IA32_VMX_VMCS_ENUM:
  1824. *pdata = 0x1f;
  1825. break;
  1826. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1827. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1828. nested_vmx_secondary_ctls_high);
  1829. break;
  1830. case MSR_IA32_VMX_EPT_VPID_CAP:
  1831. /* Currently, no nested ept or nested vpid */
  1832. *pdata = 0;
  1833. break;
  1834. default:
  1835. return 0;
  1836. }
  1837. return 1;
  1838. }
  1839. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1840. {
  1841. if (!nested_vmx_allowed(vcpu))
  1842. return 0;
  1843. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1844. /* TODO: the right thing. */
  1845. return 1;
  1846. /*
  1847. * No need to treat VMX capability MSRs specially: If we don't handle
  1848. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1849. */
  1850. return 0;
  1851. }
  1852. /*
  1853. * Reads an msr value (of 'msr_index') into 'pdata'.
  1854. * Returns 0 on success, non-0 otherwise.
  1855. * Assumes vcpu_load() was already called.
  1856. */
  1857. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1858. {
  1859. u64 data;
  1860. struct shared_msr_entry *msr;
  1861. if (!pdata) {
  1862. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1863. return -EINVAL;
  1864. }
  1865. switch (msr_index) {
  1866. #ifdef CONFIG_X86_64
  1867. case MSR_FS_BASE:
  1868. data = vmcs_readl(GUEST_FS_BASE);
  1869. break;
  1870. case MSR_GS_BASE:
  1871. data = vmcs_readl(GUEST_GS_BASE);
  1872. break;
  1873. case MSR_KERNEL_GS_BASE:
  1874. vmx_load_host_state(to_vmx(vcpu));
  1875. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1876. break;
  1877. #endif
  1878. case MSR_EFER:
  1879. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1880. case MSR_IA32_TSC:
  1881. data = guest_read_tsc();
  1882. break;
  1883. case MSR_IA32_SYSENTER_CS:
  1884. data = vmcs_read32(GUEST_SYSENTER_CS);
  1885. break;
  1886. case MSR_IA32_SYSENTER_EIP:
  1887. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1888. break;
  1889. case MSR_IA32_SYSENTER_ESP:
  1890. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1891. break;
  1892. case MSR_TSC_AUX:
  1893. if (!to_vmx(vcpu)->rdtscp_enabled)
  1894. return 1;
  1895. /* Otherwise falls through */
  1896. default:
  1897. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  1898. return 0;
  1899. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1900. if (msr) {
  1901. data = msr->data;
  1902. break;
  1903. }
  1904. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1905. }
  1906. *pdata = data;
  1907. return 0;
  1908. }
  1909. /*
  1910. * Writes msr value into into the appropriate "register".
  1911. * Returns 0 on success, non-0 otherwise.
  1912. * Assumes vcpu_load() was already called.
  1913. */
  1914. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1915. {
  1916. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1917. struct shared_msr_entry *msr;
  1918. int ret = 0;
  1919. switch (msr_index) {
  1920. case MSR_EFER:
  1921. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1922. break;
  1923. #ifdef CONFIG_X86_64
  1924. case MSR_FS_BASE:
  1925. vmx_segment_cache_clear(vmx);
  1926. vmcs_writel(GUEST_FS_BASE, data);
  1927. break;
  1928. case MSR_GS_BASE:
  1929. vmx_segment_cache_clear(vmx);
  1930. vmcs_writel(GUEST_GS_BASE, data);
  1931. break;
  1932. case MSR_KERNEL_GS_BASE:
  1933. vmx_load_host_state(vmx);
  1934. vmx->msr_guest_kernel_gs_base = data;
  1935. break;
  1936. #endif
  1937. case MSR_IA32_SYSENTER_CS:
  1938. vmcs_write32(GUEST_SYSENTER_CS, data);
  1939. break;
  1940. case MSR_IA32_SYSENTER_EIP:
  1941. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1942. break;
  1943. case MSR_IA32_SYSENTER_ESP:
  1944. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1945. break;
  1946. case MSR_IA32_TSC:
  1947. kvm_write_tsc(vcpu, data);
  1948. break;
  1949. case MSR_IA32_CR_PAT:
  1950. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1951. vmcs_write64(GUEST_IA32_PAT, data);
  1952. vcpu->arch.pat = data;
  1953. break;
  1954. }
  1955. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1956. break;
  1957. case MSR_TSC_AUX:
  1958. if (!vmx->rdtscp_enabled)
  1959. return 1;
  1960. /* Check reserved bit, higher 32 bits should be zero */
  1961. if ((data >> 32) != 0)
  1962. return 1;
  1963. /* Otherwise falls through */
  1964. default:
  1965. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  1966. break;
  1967. msr = find_msr_entry(vmx, msr_index);
  1968. if (msr) {
  1969. msr->data = data;
  1970. break;
  1971. }
  1972. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1973. }
  1974. return ret;
  1975. }
  1976. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1977. {
  1978. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1979. switch (reg) {
  1980. case VCPU_REGS_RSP:
  1981. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1982. break;
  1983. case VCPU_REGS_RIP:
  1984. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1985. break;
  1986. case VCPU_EXREG_PDPTR:
  1987. if (enable_ept)
  1988. ept_save_pdptrs(vcpu);
  1989. break;
  1990. default:
  1991. break;
  1992. }
  1993. }
  1994. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1995. {
  1996. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1997. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1998. else
  1999. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2000. update_exception_bitmap(vcpu);
  2001. }
  2002. static __init int cpu_has_kvm_support(void)
  2003. {
  2004. return cpu_has_vmx();
  2005. }
  2006. static __init int vmx_disabled_by_bios(void)
  2007. {
  2008. u64 msr;
  2009. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  2010. if (msr & FEATURE_CONTROL_LOCKED) {
  2011. /* launched w/ TXT and VMX disabled */
  2012. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2013. && tboot_enabled())
  2014. return 1;
  2015. /* launched w/o TXT and VMX only enabled w/ TXT */
  2016. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2017. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2018. && !tboot_enabled()) {
  2019. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  2020. "activate TXT before enabling KVM\n");
  2021. return 1;
  2022. }
  2023. /* launched w/o TXT and VMX disabled */
  2024. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2025. && !tboot_enabled())
  2026. return 1;
  2027. }
  2028. return 0;
  2029. }
  2030. static void kvm_cpu_vmxon(u64 addr)
  2031. {
  2032. asm volatile (ASM_VMX_VMXON_RAX
  2033. : : "a"(&addr), "m"(addr)
  2034. : "memory", "cc");
  2035. }
  2036. static int hardware_enable(void *garbage)
  2037. {
  2038. int cpu = raw_smp_processor_id();
  2039. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  2040. u64 old, test_bits;
  2041. if (read_cr4() & X86_CR4_VMXE)
  2042. return -EBUSY;
  2043. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  2044. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  2045. test_bits = FEATURE_CONTROL_LOCKED;
  2046. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2047. if (tboot_enabled())
  2048. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2049. if ((old & test_bits) != test_bits) {
  2050. /* enable and lock */
  2051. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2052. }
  2053. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2054. if (vmm_exclusive) {
  2055. kvm_cpu_vmxon(phys_addr);
  2056. ept_sync_global();
  2057. }
  2058. store_gdt(&__get_cpu_var(host_gdt));
  2059. return 0;
  2060. }
  2061. static void vmclear_local_loaded_vmcss(void)
  2062. {
  2063. int cpu = raw_smp_processor_id();
  2064. struct loaded_vmcs *v, *n;
  2065. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2066. loaded_vmcss_on_cpu_link)
  2067. __loaded_vmcs_clear(v);
  2068. }
  2069. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2070. * tricks.
  2071. */
  2072. static void kvm_cpu_vmxoff(void)
  2073. {
  2074. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2075. }
  2076. static void hardware_disable(void *garbage)
  2077. {
  2078. if (vmm_exclusive) {
  2079. vmclear_local_loaded_vmcss();
  2080. kvm_cpu_vmxoff();
  2081. }
  2082. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2083. }
  2084. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2085. u32 msr, u32 *result)
  2086. {
  2087. u32 vmx_msr_low, vmx_msr_high;
  2088. u32 ctl = ctl_min | ctl_opt;
  2089. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2090. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2091. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2092. /* Ensure minimum (required) set of control bits are supported. */
  2093. if (ctl_min & ~ctl)
  2094. return -EIO;
  2095. *result = ctl;
  2096. return 0;
  2097. }
  2098. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2099. {
  2100. u32 vmx_msr_low, vmx_msr_high;
  2101. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2102. return vmx_msr_high & ctl;
  2103. }
  2104. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2105. {
  2106. u32 vmx_msr_low, vmx_msr_high;
  2107. u32 min, opt, min2, opt2;
  2108. u32 _pin_based_exec_control = 0;
  2109. u32 _cpu_based_exec_control = 0;
  2110. u32 _cpu_based_2nd_exec_control = 0;
  2111. u32 _vmexit_control = 0;
  2112. u32 _vmentry_control = 0;
  2113. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2114. opt = PIN_BASED_VIRTUAL_NMIS;
  2115. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2116. &_pin_based_exec_control) < 0)
  2117. return -EIO;
  2118. min =
  2119. #ifdef CONFIG_X86_64
  2120. CPU_BASED_CR8_LOAD_EXITING |
  2121. CPU_BASED_CR8_STORE_EXITING |
  2122. #endif
  2123. CPU_BASED_CR3_LOAD_EXITING |
  2124. CPU_BASED_CR3_STORE_EXITING |
  2125. CPU_BASED_USE_IO_BITMAPS |
  2126. CPU_BASED_MOV_DR_EXITING |
  2127. CPU_BASED_USE_TSC_OFFSETING |
  2128. CPU_BASED_MWAIT_EXITING |
  2129. CPU_BASED_MONITOR_EXITING |
  2130. CPU_BASED_INVLPG_EXITING |
  2131. CPU_BASED_RDPMC_EXITING;
  2132. if (yield_on_hlt)
  2133. min |= CPU_BASED_HLT_EXITING;
  2134. opt = CPU_BASED_TPR_SHADOW |
  2135. CPU_BASED_USE_MSR_BITMAPS |
  2136. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2137. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2138. &_cpu_based_exec_control) < 0)
  2139. return -EIO;
  2140. #ifdef CONFIG_X86_64
  2141. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2142. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2143. ~CPU_BASED_CR8_STORE_EXITING;
  2144. #endif
  2145. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2146. min2 = 0;
  2147. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2148. SECONDARY_EXEC_WBINVD_EXITING |
  2149. SECONDARY_EXEC_ENABLE_VPID |
  2150. SECONDARY_EXEC_ENABLE_EPT |
  2151. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2152. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2153. SECONDARY_EXEC_RDTSCP;
  2154. if (adjust_vmx_controls(min2, opt2,
  2155. MSR_IA32_VMX_PROCBASED_CTLS2,
  2156. &_cpu_based_2nd_exec_control) < 0)
  2157. return -EIO;
  2158. }
  2159. #ifndef CONFIG_X86_64
  2160. if (!(_cpu_based_2nd_exec_control &
  2161. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2162. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2163. #endif
  2164. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2165. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2166. enabled */
  2167. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2168. CPU_BASED_CR3_STORE_EXITING |
  2169. CPU_BASED_INVLPG_EXITING);
  2170. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2171. vmx_capability.ept, vmx_capability.vpid);
  2172. }
  2173. min = 0;
  2174. #ifdef CONFIG_X86_64
  2175. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2176. #endif
  2177. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2178. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2179. &_vmexit_control) < 0)
  2180. return -EIO;
  2181. min = 0;
  2182. opt = VM_ENTRY_LOAD_IA32_PAT;
  2183. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2184. &_vmentry_control) < 0)
  2185. return -EIO;
  2186. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2187. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2188. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2189. return -EIO;
  2190. #ifdef CONFIG_X86_64
  2191. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2192. if (vmx_msr_high & (1u<<16))
  2193. return -EIO;
  2194. #endif
  2195. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2196. if (((vmx_msr_high >> 18) & 15) != 6)
  2197. return -EIO;
  2198. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2199. vmcs_conf->order = get_order(vmcs_config.size);
  2200. vmcs_conf->revision_id = vmx_msr_low;
  2201. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2202. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2203. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2204. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2205. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2206. cpu_has_load_ia32_efer =
  2207. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2208. VM_ENTRY_LOAD_IA32_EFER)
  2209. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2210. VM_EXIT_LOAD_IA32_EFER);
  2211. cpu_has_load_perf_global_ctrl =
  2212. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2213. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
  2214. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2215. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  2216. /*
  2217. * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
  2218. * but due to arrata below it can't be used. Workaround is to use
  2219. * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
  2220. *
  2221. * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
  2222. *
  2223. * AAK155 (model 26)
  2224. * AAP115 (model 30)
  2225. * AAT100 (model 37)
  2226. * BC86,AAY89,BD102 (model 44)
  2227. * BA97 (model 46)
  2228. *
  2229. */
  2230. if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
  2231. switch (boot_cpu_data.x86_model) {
  2232. case 26:
  2233. case 30:
  2234. case 37:
  2235. case 44:
  2236. case 46:
  2237. cpu_has_load_perf_global_ctrl = false;
  2238. printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
  2239. "does not work properly. Using workaround\n");
  2240. break;
  2241. default:
  2242. break;
  2243. }
  2244. }
  2245. return 0;
  2246. }
  2247. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2248. {
  2249. int node = cpu_to_node(cpu);
  2250. struct page *pages;
  2251. struct vmcs *vmcs;
  2252. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2253. if (!pages)
  2254. return NULL;
  2255. vmcs = page_address(pages);
  2256. memset(vmcs, 0, vmcs_config.size);
  2257. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2258. return vmcs;
  2259. }
  2260. static struct vmcs *alloc_vmcs(void)
  2261. {
  2262. return alloc_vmcs_cpu(raw_smp_processor_id());
  2263. }
  2264. static void free_vmcs(struct vmcs *vmcs)
  2265. {
  2266. free_pages((unsigned long)vmcs, vmcs_config.order);
  2267. }
  2268. /*
  2269. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2270. */
  2271. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2272. {
  2273. if (!loaded_vmcs->vmcs)
  2274. return;
  2275. loaded_vmcs_clear(loaded_vmcs);
  2276. free_vmcs(loaded_vmcs->vmcs);
  2277. loaded_vmcs->vmcs = NULL;
  2278. }
  2279. static void free_kvm_area(void)
  2280. {
  2281. int cpu;
  2282. for_each_possible_cpu(cpu) {
  2283. free_vmcs(per_cpu(vmxarea, cpu));
  2284. per_cpu(vmxarea, cpu) = NULL;
  2285. }
  2286. }
  2287. static __init int alloc_kvm_area(void)
  2288. {
  2289. int cpu;
  2290. for_each_possible_cpu(cpu) {
  2291. struct vmcs *vmcs;
  2292. vmcs = alloc_vmcs_cpu(cpu);
  2293. if (!vmcs) {
  2294. free_kvm_area();
  2295. return -ENOMEM;
  2296. }
  2297. per_cpu(vmxarea, cpu) = vmcs;
  2298. }
  2299. return 0;
  2300. }
  2301. static __init int hardware_setup(void)
  2302. {
  2303. if (setup_vmcs_config(&vmcs_config) < 0)
  2304. return -EIO;
  2305. if (boot_cpu_has(X86_FEATURE_NX))
  2306. kvm_enable_efer_bits(EFER_NX);
  2307. if (!cpu_has_vmx_vpid())
  2308. enable_vpid = 0;
  2309. if (!cpu_has_vmx_ept() ||
  2310. !cpu_has_vmx_ept_4levels()) {
  2311. enable_ept = 0;
  2312. enable_unrestricted_guest = 0;
  2313. }
  2314. if (!cpu_has_vmx_unrestricted_guest())
  2315. enable_unrestricted_guest = 0;
  2316. if (!cpu_has_vmx_flexpriority())
  2317. flexpriority_enabled = 0;
  2318. if (!cpu_has_vmx_tpr_shadow())
  2319. kvm_x86_ops->update_cr8_intercept = NULL;
  2320. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2321. kvm_disable_largepages();
  2322. if (!cpu_has_vmx_ple())
  2323. ple_gap = 0;
  2324. if (nested)
  2325. nested_vmx_setup_ctls_msrs();
  2326. return alloc_kvm_area();
  2327. }
  2328. static __exit void hardware_unsetup(void)
  2329. {
  2330. free_kvm_area();
  2331. }
  2332. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  2333. {
  2334. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2335. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  2336. vmcs_write16(sf->selector, save->selector);
  2337. vmcs_writel(sf->base, save->base);
  2338. vmcs_write32(sf->limit, save->limit);
  2339. vmcs_write32(sf->ar_bytes, save->ar);
  2340. } else {
  2341. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  2342. << AR_DPL_SHIFT;
  2343. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  2344. }
  2345. }
  2346. static void enter_pmode(struct kvm_vcpu *vcpu)
  2347. {
  2348. unsigned long flags;
  2349. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2350. vmx->emulation_required = 1;
  2351. vmx->rmode.vm86_active = 0;
  2352. vmx_segment_cache_clear(vmx);
  2353. vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
  2354. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  2355. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  2356. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  2357. flags = vmcs_readl(GUEST_RFLAGS);
  2358. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2359. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2360. vmcs_writel(GUEST_RFLAGS, flags);
  2361. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2362. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2363. update_exception_bitmap(vcpu);
  2364. if (emulate_invalid_guest_state)
  2365. return;
  2366. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  2367. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  2368. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  2369. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  2370. vmx_segment_cache_clear(vmx);
  2371. vmcs_write16(GUEST_SS_SELECTOR, 0);
  2372. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  2373. vmcs_write16(GUEST_CS_SELECTOR,
  2374. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  2375. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  2376. }
  2377. static gva_t rmode_tss_base(struct kvm *kvm)
  2378. {
  2379. if (!kvm->arch.tss_addr) {
  2380. struct kvm_memslots *slots;
  2381. struct kvm_memory_slot *slot;
  2382. gfn_t base_gfn;
  2383. slots = kvm_memslots(kvm);
  2384. slot = id_to_memslot(slots, 0);
  2385. base_gfn = slot->base_gfn + slot->npages - 3;
  2386. return base_gfn << PAGE_SHIFT;
  2387. }
  2388. return kvm->arch.tss_addr;
  2389. }
  2390. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  2391. {
  2392. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2393. save->selector = vmcs_read16(sf->selector);
  2394. save->base = vmcs_readl(sf->base);
  2395. save->limit = vmcs_read32(sf->limit);
  2396. save->ar = vmcs_read32(sf->ar_bytes);
  2397. vmcs_write16(sf->selector, save->base >> 4);
  2398. vmcs_write32(sf->base, save->base & 0xffff0);
  2399. vmcs_write32(sf->limit, 0xffff);
  2400. vmcs_write32(sf->ar_bytes, 0xf3);
  2401. if (save->base & 0xf)
  2402. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  2403. " aligned when entering protected mode (seg=%d)",
  2404. seg);
  2405. }
  2406. static void enter_rmode(struct kvm_vcpu *vcpu)
  2407. {
  2408. unsigned long flags;
  2409. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2410. if (enable_unrestricted_guest)
  2411. return;
  2412. vmx->emulation_required = 1;
  2413. vmx->rmode.vm86_active = 1;
  2414. /*
  2415. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2416. * vcpu. Call it here with phys address pointing 16M below 4G.
  2417. */
  2418. if (!vcpu->kvm->arch.tss_addr) {
  2419. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2420. "called before entering vcpu\n");
  2421. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  2422. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  2423. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2424. }
  2425. vmx_segment_cache_clear(vmx);
  2426. vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
  2427. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  2428. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  2429. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  2430. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2431. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2432. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2433. flags = vmcs_readl(GUEST_RFLAGS);
  2434. vmx->rmode.save_rflags = flags;
  2435. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2436. vmcs_writel(GUEST_RFLAGS, flags);
  2437. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2438. update_exception_bitmap(vcpu);
  2439. if (emulate_invalid_guest_state)
  2440. goto continue_rmode;
  2441. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  2442. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  2443. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  2444. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  2445. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  2446. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  2447. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  2448. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  2449. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  2450. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  2451. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  2452. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  2453. continue_rmode:
  2454. kvm_mmu_reset_context(vcpu);
  2455. }
  2456. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2457. {
  2458. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2459. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2460. if (!msr)
  2461. return;
  2462. /*
  2463. * Force kernel_gs_base reloading before EFER changes, as control
  2464. * of this msr depends on is_long_mode().
  2465. */
  2466. vmx_load_host_state(to_vmx(vcpu));
  2467. vcpu->arch.efer = efer;
  2468. if (efer & EFER_LMA) {
  2469. vmcs_write32(VM_ENTRY_CONTROLS,
  2470. vmcs_read32(VM_ENTRY_CONTROLS) |
  2471. VM_ENTRY_IA32E_MODE);
  2472. msr->data = efer;
  2473. } else {
  2474. vmcs_write32(VM_ENTRY_CONTROLS,
  2475. vmcs_read32(VM_ENTRY_CONTROLS) &
  2476. ~VM_ENTRY_IA32E_MODE);
  2477. msr->data = efer & ~EFER_LME;
  2478. }
  2479. setup_msrs(vmx);
  2480. }
  2481. #ifdef CONFIG_X86_64
  2482. static void enter_lmode(struct kvm_vcpu *vcpu)
  2483. {
  2484. u32 guest_tr_ar;
  2485. vmx_segment_cache_clear(to_vmx(vcpu));
  2486. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2487. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2488. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2489. __func__);
  2490. vmcs_write32(GUEST_TR_AR_BYTES,
  2491. (guest_tr_ar & ~AR_TYPE_MASK)
  2492. | AR_TYPE_BUSY_64_TSS);
  2493. }
  2494. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2495. }
  2496. static void exit_lmode(struct kvm_vcpu *vcpu)
  2497. {
  2498. vmcs_write32(VM_ENTRY_CONTROLS,
  2499. vmcs_read32(VM_ENTRY_CONTROLS)
  2500. & ~VM_ENTRY_IA32E_MODE);
  2501. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2502. }
  2503. #endif
  2504. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2505. {
  2506. vpid_sync_context(to_vmx(vcpu));
  2507. if (enable_ept) {
  2508. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2509. return;
  2510. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2511. }
  2512. }
  2513. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2514. {
  2515. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2516. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2517. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2518. }
  2519. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2520. {
  2521. if (enable_ept && is_paging(vcpu))
  2522. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2523. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2524. }
  2525. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2526. {
  2527. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2528. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2529. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2530. }
  2531. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2532. {
  2533. if (!test_bit(VCPU_EXREG_PDPTR,
  2534. (unsigned long *)&vcpu->arch.regs_dirty))
  2535. return;
  2536. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2537. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2538. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2539. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2540. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2541. }
  2542. }
  2543. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2544. {
  2545. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2546. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2547. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2548. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2549. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2550. }
  2551. __set_bit(VCPU_EXREG_PDPTR,
  2552. (unsigned long *)&vcpu->arch.regs_avail);
  2553. __set_bit(VCPU_EXREG_PDPTR,
  2554. (unsigned long *)&vcpu->arch.regs_dirty);
  2555. }
  2556. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2557. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2558. unsigned long cr0,
  2559. struct kvm_vcpu *vcpu)
  2560. {
  2561. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2562. vmx_decache_cr3(vcpu);
  2563. if (!(cr0 & X86_CR0_PG)) {
  2564. /* From paging/starting to nonpaging */
  2565. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2566. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2567. (CPU_BASED_CR3_LOAD_EXITING |
  2568. CPU_BASED_CR3_STORE_EXITING));
  2569. vcpu->arch.cr0 = cr0;
  2570. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2571. } else if (!is_paging(vcpu)) {
  2572. /* From nonpaging to paging */
  2573. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2574. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2575. ~(CPU_BASED_CR3_LOAD_EXITING |
  2576. CPU_BASED_CR3_STORE_EXITING));
  2577. vcpu->arch.cr0 = cr0;
  2578. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2579. }
  2580. if (!(cr0 & X86_CR0_WP))
  2581. *hw_cr0 &= ~X86_CR0_WP;
  2582. }
  2583. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2584. {
  2585. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2586. unsigned long hw_cr0;
  2587. if (enable_unrestricted_guest)
  2588. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  2589. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2590. else
  2591. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  2592. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2593. enter_pmode(vcpu);
  2594. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2595. enter_rmode(vcpu);
  2596. #ifdef CONFIG_X86_64
  2597. if (vcpu->arch.efer & EFER_LME) {
  2598. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2599. enter_lmode(vcpu);
  2600. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2601. exit_lmode(vcpu);
  2602. }
  2603. #endif
  2604. if (enable_ept)
  2605. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2606. if (!vcpu->fpu_active)
  2607. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2608. vmcs_writel(CR0_READ_SHADOW, cr0);
  2609. vmcs_writel(GUEST_CR0, hw_cr0);
  2610. vcpu->arch.cr0 = cr0;
  2611. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2612. }
  2613. static u64 construct_eptp(unsigned long root_hpa)
  2614. {
  2615. u64 eptp;
  2616. /* TODO write the value reading from MSR */
  2617. eptp = VMX_EPT_DEFAULT_MT |
  2618. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2619. eptp |= (root_hpa & PAGE_MASK);
  2620. return eptp;
  2621. }
  2622. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2623. {
  2624. unsigned long guest_cr3;
  2625. u64 eptp;
  2626. guest_cr3 = cr3;
  2627. if (enable_ept) {
  2628. eptp = construct_eptp(cr3);
  2629. vmcs_write64(EPT_POINTER, eptp);
  2630. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2631. vcpu->kvm->arch.ept_identity_map_addr;
  2632. ept_load_pdptrs(vcpu);
  2633. }
  2634. vmx_flush_tlb(vcpu);
  2635. vmcs_writel(GUEST_CR3, guest_cr3);
  2636. }
  2637. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2638. {
  2639. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2640. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2641. if (cr4 & X86_CR4_VMXE) {
  2642. /*
  2643. * To use VMXON (and later other VMX instructions), a guest
  2644. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2645. * So basically the check on whether to allow nested VMX
  2646. * is here.
  2647. */
  2648. if (!nested_vmx_allowed(vcpu))
  2649. return 1;
  2650. } else if (to_vmx(vcpu)->nested.vmxon)
  2651. return 1;
  2652. vcpu->arch.cr4 = cr4;
  2653. if (enable_ept) {
  2654. if (!is_paging(vcpu)) {
  2655. hw_cr4 &= ~X86_CR4_PAE;
  2656. hw_cr4 |= X86_CR4_PSE;
  2657. } else if (!(cr4 & X86_CR4_PAE)) {
  2658. hw_cr4 &= ~X86_CR4_PAE;
  2659. }
  2660. }
  2661. vmcs_writel(CR4_READ_SHADOW, cr4);
  2662. vmcs_writel(GUEST_CR4, hw_cr4);
  2663. return 0;
  2664. }
  2665. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2666. struct kvm_segment *var, int seg)
  2667. {
  2668. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2669. struct kvm_save_segment *save;
  2670. u32 ar;
  2671. if (vmx->rmode.vm86_active
  2672. && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
  2673. || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
  2674. || seg == VCPU_SREG_GS)
  2675. && !emulate_invalid_guest_state) {
  2676. switch (seg) {
  2677. case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
  2678. case VCPU_SREG_ES: save = &vmx->rmode.es; break;
  2679. case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
  2680. case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
  2681. case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
  2682. default: BUG();
  2683. }
  2684. var->selector = save->selector;
  2685. var->base = save->base;
  2686. var->limit = save->limit;
  2687. ar = save->ar;
  2688. if (seg == VCPU_SREG_TR
  2689. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2690. goto use_saved_rmode_seg;
  2691. }
  2692. var->base = vmx_read_guest_seg_base(vmx, seg);
  2693. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2694. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2695. ar = vmx_read_guest_seg_ar(vmx, seg);
  2696. use_saved_rmode_seg:
  2697. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  2698. ar = 0;
  2699. var->type = ar & 15;
  2700. var->s = (ar >> 4) & 1;
  2701. var->dpl = (ar >> 5) & 3;
  2702. var->present = (ar >> 7) & 1;
  2703. var->avl = (ar >> 12) & 1;
  2704. var->l = (ar >> 13) & 1;
  2705. var->db = (ar >> 14) & 1;
  2706. var->g = (ar >> 15) & 1;
  2707. var->unusable = (ar >> 16) & 1;
  2708. }
  2709. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2710. {
  2711. struct kvm_segment s;
  2712. if (to_vmx(vcpu)->rmode.vm86_active) {
  2713. vmx_get_segment(vcpu, &s, seg);
  2714. return s.base;
  2715. }
  2716. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2717. }
  2718. static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
  2719. {
  2720. if (!is_protmode(vcpu))
  2721. return 0;
  2722. if (!is_long_mode(vcpu)
  2723. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2724. return 3;
  2725. return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
  2726. }
  2727. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2728. {
  2729. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2730. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2731. to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
  2732. }
  2733. return to_vmx(vcpu)->cpl;
  2734. }
  2735. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2736. {
  2737. u32 ar;
  2738. if (var->unusable)
  2739. ar = 1 << 16;
  2740. else {
  2741. ar = var->type & 15;
  2742. ar |= (var->s & 1) << 4;
  2743. ar |= (var->dpl & 3) << 5;
  2744. ar |= (var->present & 1) << 7;
  2745. ar |= (var->avl & 1) << 12;
  2746. ar |= (var->l & 1) << 13;
  2747. ar |= (var->db & 1) << 14;
  2748. ar |= (var->g & 1) << 15;
  2749. }
  2750. if (ar == 0) /* a 0 value means unusable */
  2751. ar = AR_UNUSABLE_MASK;
  2752. return ar;
  2753. }
  2754. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2755. struct kvm_segment *var, int seg)
  2756. {
  2757. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2758. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2759. u32 ar;
  2760. vmx_segment_cache_clear(vmx);
  2761. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  2762. vmcs_write16(sf->selector, var->selector);
  2763. vmx->rmode.tr.selector = var->selector;
  2764. vmx->rmode.tr.base = var->base;
  2765. vmx->rmode.tr.limit = var->limit;
  2766. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  2767. return;
  2768. }
  2769. vmcs_writel(sf->base, var->base);
  2770. vmcs_write32(sf->limit, var->limit);
  2771. vmcs_write16(sf->selector, var->selector);
  2772. if (vmx->rmode.vm86_active && var->s) {
  2773. /*
  2774. * Hack real-mode segments into vm86 compatibility.
  2775. */
  2776. if (var->base == 0xffff0000 && var->selector == 0xf000)
  2777. vmcs_writel(sf->base, 0xf0000);
  2778. ar = 0xf3;
  2779. } else
  2780. ar = vmx_segment_access_rights(var);
  2781. /*
  2782. * Fix the "Accessed" bit in AR field of segment registers for older
  2783. * qemu binaries.
  2784. * IA32 arch specifies that at the time of processor reset the
  2785. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2786. * is setting it to 0 in the usedland code. This causes invalid guest
  2787. * state vmexit when "unrestricted guest" mode is turned on.
  2788. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2789. * tree. Newer qemu binaries with that qemu fix would not need this
  2790. * kvm hack.
  2791. */
  2792. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2793. ar |= 0x1; /* Accessed */
  2794. vmcs_write32(sf->ar_bytes, ar);
  2795. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2796. }
  2797. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2798. {
  2799. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2800. *db = (ar >> 14) & 1;
  2801. *l = (ar >> 13) & 1;
  2802. }
  2803. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2804. {
  2805. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2806. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2807. }
  2808. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2809. {
  2810. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2811. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2812. }
  2813. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2814. {
  2815. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2816. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2817. }
  2818. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2819. {
  2820. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2821. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2822. }
  2823. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2824. {
  2825. struct kvm_segment var;
  2826. u32 ar;
  2827. vmx_get_segment(vcpu, &var, seg);
  2828. ar = vmx_segment_access_rights(&var);
  2829. if (var.base != (var.selector << 4))
  2830. return false;
  2831. if (var.limit != 0xffff)
  2832. return false;
  2833. if (ar != 0xf3)
  2834. return false;
  2835. return true;
  2836. }
  2837. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2838. {
  2839. struct kvm_segment cs;
  2840. unsigned int cs_rpl;
  2841. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2842. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2843. if (cs.unusable)
  2844. return false;
  2845. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2846. return false;
  2847. if (!cs.s)
  2848. return false;
  2849. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2850. if (cs.dpl > cs_rpl)
  2851. return false;
  2852. } else {
  2853. if (cs.dpl != cs_rpl)
  2854. return false;
  2855. }
  2856. if (!cs.present)
  2857. return false;
  2858. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2859. return true;
  2860. }
  2861. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2862. {
  2863. struct kvm_segment ss;
  2864. unsigned int ss_rpl;
  2865. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2866. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2867. if (ss.unusable)
  2868. return true;
  2869. if (ss.type != 3 && ss.type != 7)
  2870. return false;
  2871. if (!ss.s)
  2872. return false;
  2873. if (ss.dpl != ss_rpl) /* DPL != RPL */
  2874. return false;
  2875. if (!ss.present)
  2876. return false;
  2877. return true;
  2878. }
  2879. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2880. {
  2881. struct kvm_segment var;
  2882. unsigned int rpl;
  2883. vmx_get_segment(vcpu, &var, seg);
  2884. rpl = var.selector & SELECTOR_RPL_MASK;
  2885. if (var.unusable)
  2886. return true;
  2887. if (!var.s)
  2888. return false;
  2889. if (!var.present)
  2890. return false;
  2891. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  2892. if (var.dpl < rpl) /* DPL < RPL */
  2893. return false;
  2894. }
  2895. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  2896. * rights flags
  2897. */
  2898. return true;
  2899. }
  2900. static bool tr_valid(struct kvm_vcpu *vcpu)
  2901. {
  2902. struct kvm_segment tr;
  2903. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  2904. if (tr.unusable)
  2905. return false;
  2906. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2907. return false;
  2908. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  2909. return false;
  2910. if (!tr.present)
  2911. return false;
  2912. return true;
  2913. }
  2914. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  2915. {
  2916. struct kvm_segment ldtr;
  2917. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  2918. if (ldtr.unusable)
  2919. return true;
  2920. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2921. return false;
  2922. if (ldtr.type != 2)
  2923. return false;
  2924. if (!ldtr.present)
  2925. return false;
  2926. return true;
  2927. }
  2928. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  2929. {
  2930. struct kvm_segment cs, ss;
  2931. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2932. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2933. return ((cs.selector & SELECTOR_RPL_MASK) ==
  2934. (ss.selector & SELECTOR_RPL_MASK));
  2935. }
  2936. /*
  2937. * Check if guest state is valid. Returns true if valid, false if
  2938. * not.
  2939. * We assume that registers are always usable
  2940. */
  2941. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  2942. {
  2943. /* real mode guest state checks */
  2944. if (!is_protmode(vcpu)) {
  2945. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  2946. return false;
  2947. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  2948. return false;
  2949. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  2950. return false;
  2951. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  2952. return false;
  2953. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  2954. return false;
  2955. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  2956. return false;
  2957. } else {
  2958. /* protected mode guest state checks */
  2959. if (!cs_ss_rpl_check(vcpu))
  2960. return false;
  2961. if (!code_segment_valid(vcpu))
  2962. return false;
  2963. if (!stack_segment_valid(vcpu))
  2964. return false;
  2965. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  2966. return false;
  2967. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  2968. return false;
  2969. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  2970. return false;
  2971. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  2972. return false;
  2973. if (!tr_valid(vcpu))
  2974. return false;
  2975. if (!ldtr_valid(vcpu))
  2976. return false;
  2977. }
  2978. /* TODO:
  2979. * - Add checks on RIP
  2980. * - Add checks on RFLAGS
  2981. */
  2982. return true;
  2983. }
  2984. static int init_rmode_tss(struct kvm *kvm)
  2985. {
  2986. gfn_t fn;
  2987. u16 data = 0;
  2988. int r, idx, ret = 0;
  2989. idx = srcu_read_lock(&kvm->srcu);
  2990. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  2991. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2992. if (r < 0)
  2993. goto out;
  2994. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  2995. r = kvm_write_guest_page(kvm, fn++, &data,
  2996. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  2997. if (r < 0)
  2998. goto out;
  2999. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  3000. if (r < 0)
  3001. goto out;
  3002. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3003. if (r < 0)
  3004. goto out;
  3005. data = ~0;
  3006. r = kvm_write_guest_page(kvm, fn, &data,
  3007. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  3008. sizeof(u8));
  3009. if (r < 0)
  3010. goto out;
  3011. ret = 1;
  3012. out:
  3013. srcu_read_unlock(&kvm->srcu, idx);
  3014. return ret;
  3015. }
  3016. static int init_rmode_identity_map(struct kvm *kvm)
  3017. {
  3018. int i, idx, r, ret;
  3019. pfn_t identity_map_pfn;
  3020. u32 tmp;
  3021. if (!enable_ept)
  3022. return 1;
  3023. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  3024. printk(KERN_ERR "EPT: identity-mapping pagetable "
  3025. "haven't been allocated!\n");
  3026. return 0;
  3027. }
  3028. if (likely(kvm->arch.ept_identity_pagetable_done))
  3029. return 1;
  3030. ret = 0;
  3031. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  3032. idx = srcu_read_lock(&kvm->srcu);
  3033. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  3034. if (r < 0)
  3035. goto out;
  3036. /* Set up identity-mapping pagetable for EPT in real mode */
  3037. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  3038. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  3039. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  3040. r = kvm_write_guest_page(kvm, identity_map_pfn,
  3041. &tmp, i * sizeof(tmp), sizeof(tmp));
  3042. if (r < 0)
  3043. goto out;
  3044. }
  3045. kvm->arch.ept_identity_pagetable_done = true;
  3046. ret = 1;
  3047. out:
  3048. srcu_read_unlock(&kvm->srcu, idx);
  3049. return ret;
  3050. }
  3051. static void seg_setup(int seg)
  3052. {
  3053. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3054. unsigned int ar;
  3055. vmcs_write16(sf->selector, 0);
  3056. vmcs_writel(sf->base, 0);
  3057. vmcs_write32(sf->limit, 0xffff);
  3058. if (enable_unrestricted_guest) {
  3059. ar = 0x93;
  3060. if (seg == VCPU_SREG_CS)
  3061. ar |= 0x08; /* code segment */
  3062. } else
  3063. ar = 0xf3;
  3064. vmcs_write32(sf->ar_bytes, ar);
  3065. }
  3066. static int alloc_apic_access_page(struct kvm *kvm)
  3067. {
  3068. struct kvm_userspace_memory_region kvm_userspace_mem;
  3069. int r = 0;
  3070. mutex_lock(&kvm->slots_lock);
  3071. if (kvm->arch.apic_access_page)
  3072. goto out;
  3073. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  3074. kvm_userspace_mem.flags = 0;
  3075. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  3076. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3077. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  3078. if (r)
  3079. goto out;
  3080. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  3081. out:
  3082. mutex_unlock(&kvm->slots_lock);
  3083. return r;
  3084. }
  3085. static int alloc_identity_pagetable(struct kvm *kvm)
  3086. {
  3087. struct kvm_userspace_memory_region kvm_userspace_mem;
  3088. int r = 0;
  3089. mutex_lock(&kvm->slots_lock);
  3090. if (kvm->arch.ept_identity_pagetable)
  3091. goto out;
  3092. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3093. kvm_userspace_mem.flags = 0;
  3094. kvm_userspace_mem.guest_phys_addr =
  3095. kvm->arch.ept_identity_map_addr;
  3096. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3097. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  3098. if (r)
  3099. goto out;
  3100. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  3101. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3102. out:
  3103. mutex_unlock(&kvm->slots_lock);
  3104. return r;
  3105. }
  3106. static void allocate_vpid(struct vcpu_vmx *vmx)
  3107. {
  3108. int vpid;
  3109. vmx->vpid = 0;
  3110. if (!enable_vpid)
  3111. return;
  3112. spin_lock(&vmx_vpid_lock);
  3113. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3114. if (vpid < VMX_NR_VPIDS) {
  3115. vmx->vpid = vpid;
  3116. __set_bit(vpid, vmx_vpid_bitmap);
  3117. }
  3118. spin_unlock(&vmx_vpid_lock);
  3119. }
  3120. static void free_vpid(struct vcpu_vmx *vmx)
  3121. {
  3122. if (!enable_vpid)
  3123. return;
  3124. spin_lock(&vmx_vpid_lock);
  3125. if (vmx->vpid != 0)
  3126. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3127. spin_unlock(&vmx_vpid_lock);
  3128. }
  3129. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  3130. {
  3131. int f = sizeof(unsigned long);
  3132. if (!cpu_has_vmx_msr_bitmap())
  3133. return;
  3134. /*
  3135. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3136. * have the write-low and read-high bitmap offsets the wrong way round.
  3137. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3138. */
  3139. if (msr <= 0x1fff) {
  3140. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  3141. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  3142. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3143. msr &= 0x1fff;
  3144. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  3145. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  3146. }
  3147. }
  3148. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3149. {
  3150. if (!longmode_only)
  3151. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  3152. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  3153. }
  3154. /*
  3155. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3156. * will not change in the lifetime of the guest.
  3157. * Note that host-state that does change is set elsewhere. E.g., host-state
  3158. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3159. */
  3160. static void vmx_set_constant_host_state(void)
  3161. {
  3162. u32 low32, high32;
  3163. unsigned long tmpl;
  3164. struct desc_ptr dt;
  3165. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  3166. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3167. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3168. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3169. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3170. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3171. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3172. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3173. native_store_idt(&dt);
  3174. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3175. asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
  3176. vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
  3177. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3178. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3179. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3180. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3181. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3182. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3183. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3184. }
  3185. }
  3186. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3187. {
  3188. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3189. if (enable_ept)
  3190. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3191. if (is_guest_mode(&vmx->vcpu))
  3192. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3193. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3194. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3195. }
  3196. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3197. {
  3198. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3199. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3200. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3201. #ifdef CONFIG_X86_64
  3202. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3203. CPU_BASED_CR8_LOAD_EXITING;
  3204. #endif
  3205. }
  3206. if (!enable_ept)
  3207. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3208. CPU_BASED_CR3_LOAD_EXITING |
  3209. CPU_BASED_INVLPG_EXITING;
  3210. return exec_control;
  3211. }
  3212. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3213. {
  3214. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3215. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3216. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3217. if (vmx->vpid == 0)
  3218. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3219. if (!enable_ept) {
  3220. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3221. enable_unrestricted_guest = 0;
  3222. }
  3223. if (!enable_unrestricted_guest)
  3224. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3225. if (!ple_gap)
  3226. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3227. return exec_control;
  3228. }
  3229. static void ept_set_mmio_spte_mask(void)
  3230. {
  3231. /*
  3232. * EPT Misconfigurations can be generated if the value of bits 2:0
  3233. * of an EPT paging-structure entry is 110b (write/execute).
  3234. * Also, magic bits (0xffull << 49) is set to quickly identify mmio
  3235. * spte.
  3236. */
  3237. kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
  3238. }
  3239. /*
  3240. * Sets up the vmcs for emulated real mode.
  3241. */
  3242. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3243. {
  3244. #ifdef CONFIG_X86_64
  3245. unsigned long a;
  3246. #endif
  3247. int i;
  3248. /* I/O */
  3249. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3250. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3251. if (cpu_has_vmx_msr_bitmap())
  3252. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3253. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3254. /* Control */
  3255. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3256. vmcs_config.pin_based_exec_ctrl);
  3257. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3258. if (cpu_has_secondary_exec_ctrls()) {
  3259. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3260. vmx_secondary_exec_control(vmx));
  3261. }
  3262. if (ple_gap) {
  3263. vmcs_write32(PLE_GAP, ple_gap);
  3264. vmcs_write32(PLE_WINDOW, ple_window);
  3265. }
  3266. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3267. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3268. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3269. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3270. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3271. vmx_set_constant_host_state();
  3272. #ifdef CONFIG_X86_64
  3273. rdmsrl(MSR_FS_BASE, a);
  3274. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3275. rdmsrl(MSR_GS_BASE, a);
  3276. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3277. #else
  3278. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3279. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3280. #endif
  3281. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3282. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3283. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3284. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3285. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3286. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3287. u32 msr_low, msr_high;
  3288. u64 host_pat;
  3289. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3290. host_pat = msr_low | ((u64) msr_high << 32);
  3291. /* Write the default value follow host pat */
  3292. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3293. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3294. vmx->vcpu.arch.pat = host_pat;
  3295. }
  3296. for (i = 0; i < NR_VMX_MSR; ++i) {
  3297. u32 index = vmx_msr_index[i];
  3298. u32 data_low, data_high;
  3299. int j = vmx->nmsrs;
  3300. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3301. continue;
  3302. if (wrmsr_safe(index, data_low, data_high) < 0)
  3303. continue;
  3304. vmx->guest_msrs[j].index = i;
  3305. vmx->guest_msrs[j].data = 0;
  3306. vmx->guest_msrs[j].mask = -1ull;
  3307. ++vmx->nmsrs;
  3308. }
  3309. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3310. /* 22.2.1, 20.8.1 */
  3311. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3312. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3313. set_cr4_guest_host_mask(vmx);
  3314. kvm_write_tsc(&vmx->vcpu, 0);
  3315. return 0;
  3316. }
  3317. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3318. {
  3319. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3320. u64 msr;
  3321. int ret;
  3322. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3323. vmx->rmode.vm86_active = 0;
  3324. vmx->soft_vnmi_blocked = 0;
  3325. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3326. kvm_set_cr8(&vmx->vcpu, 0);
  3327. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3328. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3329. msr |= MSR_IA32_APICBASE_BSP;
  3330. kvm_set_apic_base(&vmx->vcpu, msr);
  3331. ret = fx_init(&vmx->vcpu);
  3332. if (ret != 0)
  3333. goto out;
  3334. vmx_segment_cache_clear(vmx);
  3335. seg_setup(VCPU_SREG_CS);
  3336. /*
  3337. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  3338. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  3339. */
  3340. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  3341. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3342. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  3343. } else {
  3344. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  3345. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  3346. }
  3347. seg_setup(VCPU_SREG_DS);
  3348. seg_setup(VCPU_SREG_ES);
  3349. seg_setup(VCPU_SREG_FS);
  3350. seg_setup(VCPU_SREG_GS);
  3351. seg_setup(VCPU_SREG_SS);
  3352. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3353. vmcs_writel(GUEST_TR_BASE, 0);
  3354. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3355. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3356. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3357. vmcs_writel(GUEST_LDTR_BASE, 0);
  3358. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3359. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3360. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3361. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3362. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3363. vmcs_writel(GUEST_RFLAGS, 0x02);
  3364. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3365. kvm_rip_write(vcpu, 0xfff0);
  3366. else
  3367. kvm_rip_write(vcpu, 0);
  3368. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  3369. vmcs_writel(GUEST_DR7, 0x400);
  3370. vmcs_writel(GUEST_GDTR_BASE, 0);
  3371. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3372. vmcs_writel(GUEST_IDTR_BASE, 0);
  3373. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3374. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3375. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3376. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3377. /* Special registers */
  3378. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3379. setup_msrs(vmx);
  3380. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3381. if (cpu_has_vmx_tpr_shadow()) {
  3382. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3383. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3384. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3385. __pa(vmx->vcpu.arch.apic->regs));
  3386. vmcs_write32(TPR_THRESHOLD, 0);
  3387. }
  3388. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3389. vmcs_write64(APIC_ACCESS_ADDR,
  3390. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3391. if (vmx->vpid != 0)
  3392. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3393. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3394. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3395. vmx_set_cr4(&vmx->vcpu, 0);
  3396. vmx_set_efer(&vmx->vcpu, 0);
  3397. vmx_fpu_activate(&vmx->vcpu);
  3398. update_exception_bitmap(&vmx->vcpu);
  3399. vpid_sync_context(vmx);
  3400. ret = 0;
  3401. /* HACK: Don't enable emulation on guest boot/reset */
  3402. vmx->emulation_required = 0;
  3403. out:
  3404. return ret;
  3405. }
  3406. /*
  3407. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3408. * For most existing hypervisors, this will always return true.
  3409. */
  3410. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3411. {
  3412. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3413. PIN_BASED_EXT_INTR_MASK;
  3414. }
  3415. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3416. {
  3417. u32 cpu_based_vm_exec_control;
  3418. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3419. /*
  3420. * We get here if vmx_interrupt_allowed() said we can't
  3421. * inject to L1 now because L2 must run. Ask L2 to exit
  3422. * right after entry, so we can inject to L1 more promptly.
  3423. */
  3424. kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
  3425. return;
  3426. }
  3427. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3428. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3429. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3430. }
  3431. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3432. {
  3433. u32 cpu_based_vm_exec_control;
  3434. if (!cpu_has_virtual_nmis()) {
  3435. enable_irq_window(vcpu);
  3436. return;
  3437. }
  3438. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3439. enable_irq_window(vcpu);
  3440. return;
  3441. }
  3442. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3443. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3444. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3445. }
  3446. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3447. {
  3448. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3449. uint32_t intr;
  3450. int irq = vcpu->arch.interrupt.nr;
  3451. trace_kvm_inj_virq(irq);
  3452. ++vcpu->stat.irq_injections;
  3453. if (vmx->rmode.vm86_active) {
  3454. int inc_eip = 0;
  3455. if (vcpu->arch.interrupt.soft)
  3456. inc_eip = vcpu->arch.event_exit_inst_len;
  3457. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3458. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3459. return;
  3460. }
  3461. intr = irq | INTR_INFO_VALID_MASK;
  3462. if (vcpu->arch.interrupt.soft) {
  3463. intr |= INTR_TYPE_SOFT_INTR;
  3464. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3465. vmx->vcpu.arch.event_exit_inst_len);
  3466. } else
  3467. intr |= INTR_TYPE_EXT_INTR;
  3468. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3469. vmx_clear_hlt(vcpu);
  3470. }
  3471. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3472. {
  3473. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3474. if (is_guest_mode(vcpu))
  3475. return;
  3476. if (!cpu_has_virtual_nmis()) {
  3477. /*
  3478. * Tracking the NMI-blocked state in software is built upon
  3479. * finding the next open IRQ window. This, in turn, depends on
  3480. * well-behaving guests: They have to keep IRQs disabled at
  3481. * least as long as the NMI handler runs. Otherwise we may
  3482. * cause NMI nesting, maybe breaking the guest. But as this is
  3483. * highly unlikely, we can live with the residual risk.
  3484. */
  3485. vmx->soft_vnmi_blocked = 1;
  3486. vmx->vnmi_blocked_time = 0;
  3487. }
  3488. ++vcpu->stat.nmi_injections;
  3489. vmx->nmi_known_unmasked = false;
  3490. if (vmx->rmode.vm86_active) {
  3491. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3492. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3493. return;
  3494. }
  3495. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3496. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3497. vmx_clear_hlt(vcpu);
  3498. }
  3499. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3500. {
  3501. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3502. return 0;
  3503. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3504. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3505. | GUEST_INTR_STATE_NMI));
  3506. }
  3507. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3508. {
  3509. if (!cpu_has_virtual_nmis())
  3510. return to_vmx(vcpu)->soft_vnmi_blocked;
  3511. if (to_vmx(vcpu)->nmi_known_unmasked)
  3512. return false;
  3513. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3514. }
  3515. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3516. {
  3517. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3518. if (!cpu_has_virtual_nmis()) {
  3519. if (vmx->soft_vnmi_blocked != masked) {
  3520. vmx->soft_vnmi_blocked = masked;
  3521. vmx->vnmi_blocked_time = 0;
  3522. }
  3523. } else {
  3524. vmx->nmi_known_unmasked = !masked;
  3525. if (masked)
  3526. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3527. GUEST_INTR_STATE_NMI);
  3528. else
  3529. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3530. GUEST_INTR_STATE_NMI);
  3531. }
  3532. }
  3533. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3534. {
  3535. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3536. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3537. if (to_vmx(vcpu)->nested.nested_run_pending ||
  3538. (vmcs12->idt_vectoring_info_field &
  3539. VECTORING_INFO_VALID_MASK))
  3540. return 0;
  3541. nested_vmx_vmexit(vcpu);
  3542. vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
  3543. vmcs12->vm_exit_intr_info = 0;
  3544. /* fall through to normal code, but now in L1, not L2 */
  3545. }
  3546. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3547. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3548. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3549. }
  3550. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3551. {
  3552. int ret;
  3553. struct kvm_userspace_memory_region tss_mem = {
  3554. .slot = TSS_PRIVATE_MEMSLOT,
  3555. .guest_phys_addr = addr,
  3556. .memory_size = PAGE_SIZE * 3,
  3557. .flags = 0,
  3558. };
  3559. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  3560. if (ret)
  3561. return ret;
  3562. kvm->arch.tss_addr = addr;
  3563. if (!init_rmode_tss(kvm))
  3564. return -ENOMEM;
  3565. return 0;
  3566. }
  3567. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3568. int vec, u32 err_code)
  3569. {
  3570. /*
  3571. * Instruction with address size override prefix opcode 0x67
  3572. * Cause the #SS fault with 0 error code in VM86 mode.
  3573. */
  3574. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  3575. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  3576. return 1;
  3577. /*
  3578. * Forward all other exceptions that are valid in real mode.
  3579. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3580. * the required debugging infrastructure rework.
  3581. */
  3582. switch (vec) {
  3583. case DB_VECTOR:
  3584. if (vcpu->guest_debug &
  3585. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3586. return 0;
  3587. kvm_queue_exception(vcpu, vec);
  3588. return 1;
  3589. case BP_VECTOR:
  3590. /*
  3591. * Update instruction length as we may reinject the exception
  3592. * from user space while in guest debugging mode.
  3593. */
  3594. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3595. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3596. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3597. return 0;
  3598. /* fall through */
  3599. case DE_VECTOR:
  3600. case OF_VECTOR:
  3601. case BR_VECTOR:
  3602. case UD_VECTOR:
  3603. case DF_VECTOR:
  3604. case SS_VECTOR:
  3605. case GP_VECTOR:
  3606. case MF_VECTOR:
  3607. kvm_queue_exception(vcpu, vec);
  3608. return 1;
  3609. }
  3610. return 0;
  3611. }
  3612. /*
  3613. * Trigger machine check on the host. We assume all the MSRs are already set up
  3614. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3615. * We pass a fake environment to the machine check handler because we want
  3616. * the guest to be always treated like user space, no matter what context
  3617. * it used internally.
  3618. */
  3619. static void kvm_machine_check(void)
  3620. {
  3621. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3622. struct pt_regs regs = {
  3623. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3624. .flags = X86_EFLAGS_IF,
  3625. };
  3626. do_machine_check(&regs, 0);
  3627. #endif
  3628. }
  3629. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3630. {
  3631. /* already handled by vcpu_run */
  3632. return 1;
  3633. }
  3634. static int handle_exception(struct kvm_vcpu *vcpu)
  3635. {
  3636. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3637. struct kvm_run *kvm_run = vcpu->run;
  3638. u32 intr_info, ex_no, error_code;
  3639. unsigned long cr2, rip, dr6;
  3640. u32 vect_info;
  3641. enum emulation_result er;
  3642. vect_info = vmx->idt_vectoring_info;
  3643. intr_info = vmx->exit_intr_info;
  3644. if (is_machine_check(intr_info))
  3645. return handle_machine_check(vcpu);
  3646. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3647. !is_page_fault(intr_info)) {
  3648. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3649. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3650. vcpu->run->internal.ndata = 2;
  3651. vcpu->run->internal.data[0] = vect_info;
  3652. vcpu->run->internal.data[1] = intr_info;
  3653. return 0;
  3654. }
  3655. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3656. return 1; /* already handled by vmx_vcpu_run() */
  3657. if (is_no_device(intr_info)) {
  3658. vmx_fpu_activate(vcpu);
  3659. return 1;
  3660. }
  3661. if (is_invalid_opcode(intr_info)) {
  3662. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3663. if (er != EMULATE_DONE)
  3664. kvm_queue_exception(vcpu, UD_VECTOR);
  3665. return 1;
  3666. }
  3667. error_code = 0;
  3668. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3669. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3670. if (is_page_fault(intr_info)) {
  3671. /* EPT won't cause page fault directly */
  3672. BUG_ON(enable_ept);
  3673. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3674. trace_kvm_page_fault(cr2, error_code);
  3675. if (kvm_event_needs_reinjection(vcpu))
  3676. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3677. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3678. }
  3679. if (vmx->rmode.vm86_active &&
  3680. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  3681. error_code)) {
  3682. if (vcpu->arch.halt_request) {
  3683. vcpu->arch.halt_request = 0;
  3684. return kvm_emulate_halt(vcpu);
  3685. }
  3686. return 1;
  3687. }
  3688. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3689. switch (ex_no) {
  3690. case DB_VECTOR:
  3691. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3692. if (!(vcpu->guest_debug &
  3693. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3694. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3695. kvm_queue_exception(vcpu, DB_VECTOR);
  3696. return 1;
  3697. }
  3698. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3699. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3700. /* fall through */
  3701. case BP_VECTOR:
  3702. /*
  3703. * Update instruction length as we may reinject #BP from
  3704. * user space while in guest debugging mode. Reading it for
  3705. * #DB as well causes no harm, it is not used in that case.
  3706. */
  3707. vmx->vcpu.arch.event_exit_inst_len =
  3708. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3709. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3710. rip = kvm_rip_read(vcpu);
  3711. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3712. kvm_run->debug.arch.exception = ex_no;
  3713. break;
  3714. default:
  3715. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3716. kvm_run->ex.exception = ex_no;
  3717. kvm_run->ex.error_code = error_code;
  3718. break;
  3719. }
  3720. return 0;
  3721. }
  3722. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3723. {
  3724. ++vcpu->stat.irq_exits;
  3725. return 1;
  3726. }
  3727. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3728. {
  3729. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3730. return 0;
  3731. }
  3732. static int handle_io(struct kvm_vcpu *vcpu)
  3733. {
  3734. unsigned long exit_qualification;
  3735. int size, in, string;
  3736. unsigned port;
  3737. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3738. string = (exit_qualification & 16) != 0;
  3739. in = (exit_qualification & 8) != 0;
  3740. ++vcpu->stat.io_exits;
  3741. if (string || in)
  3742. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3743. port = exit_qualification >> 16;
  3744. size = (exit_qualification & 7) + 1;
  3745. skip_emulated_instruction(vcpu);
  3746. return kvm_fast_pio_out(vcpu, size, port);
  3747. }
  3748. static void
  3749. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3750. {
  3751. /*
  3752. * Patch in the VMCALL instruction:
  3753. */
  3754. hypercall[0] = 0x0f;
  3755. hypercall[1] = 0x01;
  3756. hypercall[2] = 0xc1;
  3757. }
  3758. /* called to set cr0 as approriate for a mov-to-cr0 exit. */
  3759. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  3760. {
  3761. if (to_vmx(vcpu)->nested.vmxon &&
  3762. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  3763. return 1;
  3764. if (is_guest_mode(vcpu)) {
  3765. /*
  3766. * We get here when L2 changed cr0 in a way that did not change
  3767. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  3768. * but did change L0 shadowed bits. This can currently happen
  3769. * with the TS bit: L0 may want to leave TS on (for lazy fpu
  3770. * loading) while pretending to allow the guest to change it.
  3771. */
  3772. if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
  3773. (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
  3774. return 1;
  3775. vmcs_writel(CR0_READ_SHADOW, val);
  3776. return 0;
  3777. } else
  3778. return kvm_set_cr0(vcpu, val);
  3779. }
  3780. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  3781. {
  3782. if (is_guest_mode(vcpu)) {
  3783. if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
  3784. (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
  3785. return 1;
  3786. vmcs_writel(CR4_READ_SHADOW, val);
  3787. return 0;
  3788. } else
  3789. return kvm_set_cr4(vcpu, val);
  3790. }
  3791. /* called to set cr0 as approriate for clts instruction exit. */
  3792. static void handle_clts(struct kvm_vcpu *vcpu)
  3793. {
  3794. if (is_guest_mode(vcpu)) {
  3795. /*
  3796. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  3797. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  3798. * just pretend it's off (also in arch.cr0 for fpu_activate).
  3799. */
  3800. vmcs_writel(CR0_READ_SHADOW,
  3801. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  3802. vcpu->arch.cr0 &= ~X86_CR0_TS;
  3803. } else
  3804. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3805. }
  3806. static int handle_cr(struct kvm_vcpu *vcpu)
  3807. {
  3808. unsigned long exit_qualification, val;
  3809. int cr;
  3810. int reg;
  3811. int err;
  3812. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3813. cr = exit_qualification & 15;
  3814. reg = (exit_qualification >> 8) & 15;
  3815. switch ((exit_qualification >> 4) & 3) {
  3816. case 0: /* mov to cr */
  3817. val = kvm_register_read(vcpu, reg);
  3818. trace_kvm_cr_write(cr, val);
  3819. switch (cr) {
  3820. case 0:
  3821. err = handle_set_cr0(vcpu, val);
  3822. kvm_complete_insn_gp(vcpu, err);
  3823. return 1;
  3824. case 3:
  3825. err = kvm_set_cr3(vcpu, val);
  3826. kvm_complete_insn_gp(vcpu, err);
  3827. return 1;
  3828. case 4:
  3829. err = handle_set_cr4(vcpu, val);
  3830. kvm_complete_insn_gp(vcpu, err);
  3831. return 1;
  3832. case 8: {
  3833. u8 cr8_prev = kvm_get_cr8(vcpu);
  3834. u8 cr8 = kvm_register_read(vcpu, reg);
  3835. err = kvm_set_cr8(vcpu, cr8);
  3836. kvm_complete_insn_gp(vcpu, err);
  3837. if (irqchip_in_kernel(vcpu->kvm))
  3838. return 1;
  3839. if (cr8_prev <= cr8)
  3840. return 1;
  3841. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  3842. return 0;
  3843. }
  3844. };
  3845. break;
  3846. case 2: /* clts */
  3847. handle_clts(vcpu);
  3848. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  3849. skip_emulated_instruction(vcpu);
  3850. vmx_fpu_activate(vcpu);
  3851. return 1;
  3852. case 1: /*mov from cr*/
  3853. switch (cr) {
  3854. case 3:
  3855. val = kvm_read_cr3(vcpu);
  3856. kvm_register_write(vcpu, reg, val);
  3857. trace_kvm_cr_read(cr, val);
  3858. skip_emulated_instruction(vcpu);
  3859. return 1;
  3860. case 8:
  3861. val = kvm_get_cr8(vcpu);
  3862. kvm_register_write(vcpu, reg, val);
  3863. trace_kvm_cr_read(cr, val);
  3864. skip_emulated_instruction(vcpu);
  3865. return 1;
  3866. }
  3867. break;
  3868. case 3: /* lmsw */
  3869. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  3870. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  3871. kvm_lmsw(vcpu, val);
  3872. skip_emulated_instruction(vcpu);
  3873. return 1;
  3874. default:
  3875. break;
  3876. }
  3877. vcpu->run->exit_reason = 0;
  3878. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  3879. (int)(exit_qualification >> 4) & 3, cr);
  3880. return 0;
  3881. }
  3882. static int handle_dr(struct kvm_vcpu *vcpu)
  3883. {
  3884. unsigned long exit_qualification;
  3885. int dr, reg;
  3886. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  3887. if (!kvm_require_cpl(vcpu, 0))
  3888. return 1;
  3889. dr = vmcs_readl(GUEST_DR7);
  3890. if (dr & DR7_GD) {
  3891. /*
  3892. * As the vm-exit takes precedence over the debug trap, we
  3893. * need to emulate the latter, either for the host or the
  3894. * guest debugging itself.
  3895. */
  3896. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  3897. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  3898. vcpu->run->debug.arch.dr7 = dr;
  3899. vcpu->run->debug.arch.pc =
  3900. vmcs_readl(GUEST_CS_BASE) +
  3901. vmcs_readl(GUEST_RIP);
  3902. vcpu->run->debug.arch.exception = DB_VECTOR;
  3903. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  3904. return 0;
  3905. } else {
  3906. vcpu->arch.dr7 &= ~DR7_GD;
  3907. vcpu->arch.dr6 |= DR6_BD;
  3908. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  3909. kvm_queue_exception(vcpu, DB_VECTOR);
  3910. return 1;
  3911. }
  3912. }
  3913. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3914. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  3915. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  3916. if (exit_qualification & TYPE_MOV_FROM_DR) {
  3917. unsigned long val;
  3918. if (!kvm_get_dr(vcpu, dr, &val))
  3919. kvm_register_write(vcpu, reg, val);
  3920. } else
  3921. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  3922. skip_emulated_instruction(vcpu);
  3923. return 1;
  3924. }
  3925. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  3926. {
  3927. vmcs_writel(GUEST_DR7, val);
  3928. }
  3929. static int handle_cpuid(struct kvm_vcpu *vcpu)
  3930. {
  3931. kvm_emulate_cpuid(vcpu);
  3932. return 1;
  3933. }
  3934. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  3935. {
  3936. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3937. u64 data;
  3938. if (vmx_get_msr(vcpu, ecx, &data)) {
  3939. trace_kvm_msr_read_ex(ecx);
  3940. kvm_inject_gp(vcpu, 0);
  3941. return 1;
  3942. }
  3943. trace_kvm_msr_read(ecx, data);
  3944. /* FIXME: handling of bits 32:63 of rax, rdx */
  3945. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  3946. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  3947. skip_emulated_instruction(vcpu);
  3948. return 1;
  3949. }
  3950. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  3951. {
  3952. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3953. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  3954. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  3955. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  3956. trace_kvm_msr_write_ex(ecx, data);
  3957. kvm_inject_gp(vcpu, 0);
  3958. return 1;
  3959. }
  3960. trace_kvm_msr_write(ecx, data);
  3961. skip_emulated_instruction(vcpu);
  3962. return 1;
  3963. }
  3964. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  3965. {
  3966. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3967. return 1;
  3968. }
  3969. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  3970. {
  3971. u32 cpu_based_vm_exec_control;
  3972. /* clear pending irq */
  3973. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3974. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  3975. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3976. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3977. ++vcpu->stat.irq_window_exits;
  3978. /*
  3979. * If the user space waits to inject interrupts, exit as soon as
  3980. * possible
  3981. */
  3982. if (!irqchip_in_kernel(vcpu->kvm) &&
  3983. vcpu->run->request_interrupt_window &&
  3984. !kvm_cpu_has_interrupt(vcpu)) {
  3985. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  3986. return 0;
  3987. }
  3988. return 1;
  3989. }
  3990. static int handle_halt(struct kvm_vcpu *vcpu)
  3991. {
  3992. skip_emulated_instruction(vcpu);
  3993. return kvm_emulate_halt(vcpu);
  3994. }
  3995. static int handle_vmcall(struct kvm_vcpu *vcpu)
  3996. {
  3997. skip_emulated_instruction(vcpu);
  3998. kvm_emulate_hypercall(vcpu);
  3999. return 1;
  4000. }
  4001. static int handle_invd(struct kvm_vcpu *vcpu)
  4002. {
  4003. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4004. }
  4005. static int handle_invlpg(struct kvm_vcpu *vcpu)
  4006. {
  4007. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4008. kvm_mmu_invlpg(vcpu, exit_qualification);
  4009. skip_emulated_instruction(vcpu);
  4010. return 1;
  4011. }
  4012. static int handle_rdpmc(struct kvm_vcpu *vcpu)
  4013. {
  4014. int err;
  4015. err = kvm_rdpmc(vcpu);
  4016. kvm_complete_insn_gp(vcpu, err);
  4017. return 1;
  4018. }
  4019. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  4020. {
  4021. skip_emulated_instruction(vcpu);
  4022. kvm_emulate_wbinvd(vcpu);
  4023. return 1;
  4024. }
  4025. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  4026. {
  4027. u64 new_bv = kvm_read_edx_eax(vcpu);
  4028. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4029. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  4030. skip_emulated_instruction(vcpu);
  4031. return 1;
  4032. }
  4033. static int handle_apic_access(struct kvm_vcpu *vcpu)
  4034. {
  4035. if (likely(fasteoi)) {
  4036. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4037. int access_type, offset;
  4038. access_type = exit_qualification & APIC_ACCESS_TYPE;
  4039. offset = exit_qualification & APIC_ACCESS_OFFSET;
  4040. /*
  4041. * Sane guest uses MOV to write EOI, with written value
  4042. * not cared. So make a short-circuit here by avoiding
  4043. * heavy instruction emulation.
  4044. */
  4045. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  4046. (offset == APIC_EOI)) {
  4047. kvm_lapic_set_eoi(vcpu);
  4048. skip_emulated_instruction(vcpu);
  4049. return 1;
  4050. }
  4051. }
  4052. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4053. }
  4054. static int handle_task_switch(struct kvm_vcpu *vcpu)
  4055. {
  4056. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4057. unsigned long exit_qualification;
  4058. bool has_error_code = false;
  4059. u32 error_code = 0;
  4060. u16 tss_selector;
  4061. int reason, type, idt_v;
  4062. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  4063. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  4064. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4065. reason = (u32)exit_qualification >> 30;
  4066. if (reason == TASK_SWITCH_GATE && idt_v) {
  4067. switch (type) {
  4068. case INTR_TYPE_NMI_INTR:
  4069. vcpu->arch.nmi_injected = false;
  4070. vmx_set_nmi_mask(vcpu, true);
  4071. break;
  4072. case INTR_TYPE_EXT_INTR:
  4073. case INTR_TYPE_SOFT_INTR:
  4074. kvm_clear_interrupt_queue(vcpu);
  4075. break;
  4076. case INTR_TYPE_HARD_EXCEPTION:
  4077. if (vmx->idt_vectoring_info &
  4078. VECTORING_INFO_DELIVER_CODE_MASK) {
  4079. has_error_code = true;
  4080. error_code =
  4081. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  4082. }
  4083. /* fall through */
  4084. case INTR_TYPE_SOFT_EXCEPTION:
  4085. kvm_clear_exception_queue(vcpu);
  4086. break;
  4087. default:
  4088. break;
  4089. }
  4090. }
  4091. tss_selector = exit_qualification;
  4092. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4093. type != INTR_TYPE_EXT_INTR &&
  4094. type != INTR_TYPE_NMI_INTR))
  4095. skip_emulated_instruction(vcpu);
  4096. if (kvm_task_switch(vcpu, tss_selector, reason,
  4097. has_error_code, error_code) == EMULATE_FAIL) {
  4098. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4099. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4100. vcpu->run->internal.ndata = 0;
  4101. return 0;
  4102. }
  4103. /* clear all local breakpoint enable flags */
  4104. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4105. /*
  4106. * TODO: What about debug traps on tss switch?
  4107. * Are we supposed to inject them and update dr6?
  4108. */
  4109. return 1;
  4110. }
  4111. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4112. {
  4113. unsigned long exit_qualification;
  4114. gpa_t gpa;
  4115. int gla_validity;
  4116. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4117. if (exit_qualification & (1 << 6)) {
  4118. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  4119. return -EINVAL;
  4120. }
  4121. gla_validity = (exit_qualification >> 7) & 0x3;
  4122. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4123. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4124. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4125. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4126. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4127. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4128. (long unsigned int)exit_qualification);
  4129. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4130. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4131. return 0;
  4132. }
  4133. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4134. trace_kvm_page_fault(gpa, exit_qualification);
  4135. return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
  4136. }
  4137. static u64 ept_rsvd_mask(u64 spte, int level)
  4138. {
  4139. int i;
  4140. u64 mask = 0;
  4141. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4142. mask |= (1ULL << i);
  4143. if (level > 2)
  4144. /* bits 7:3 reserved */
  4145. mask |= 0xf8;
  4146. else if (level == 2) {
  4147. if (spte & (1ULL << 7))
  4148. /* 2MB ref, bits 20:12 reserved */
  4149. mask |= 0x1ff000;
  4150. else
  4151. /* bits 6:3 reserved */
  4152. mask |= 0x78;
  4153. }
  4154. return mask;
  4155. }
  4156. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4157. int level)
  4158. {
  4159. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4160. /* 010b (write-only) */
  4161. WARN_ON((spte & 0x7) == 0x2);
  4162. /* 110b (write/execute) */
  4163. WARN_ON((spte & 0x7) == 0x6);
  4164. /* 100b (execute-only) and value not supported by logical processor */
  4165. if (!cpu_has_vmx_ept_execute_only())
  4166. WARN_ON((spte & 0x7) == 0x4);
  4167. /* not 000b */
  4168. if ((spte & 0x7)) {
  4169. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4170. if (rsvd_bits != 0) {
  4171. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4172. __func__, rsvd_bits);
  4173. WARN_ON(1);
  4174. }
  4175. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4176. u64 ept_mem_type = (spte & 0x38) >> 3;
  4177. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4178. ept_mem_type == 7) {
  4179. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4180. __func__, ept_mem_type);
  4181. WARN_ON(1);
  4182. }
  4183. }
  4184. }
  4185. }
  4186. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4187. {
  4188. u64 sptes[4];
  4189. int nr_sptes, i, ret;
  4190. gpa_t gpa;
  4191. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4192. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4193. if (likely(ret == 1))
  4194. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4195. EMULATE_DONE;
  4196. if (unlikely(!ret))
  4197. return 1;
  4198. /* It is the real ept misconfig */
  4199. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4200. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4201. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4202. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4203. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4204. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4205. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4206. return 0;
  4207. }
  4208. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4209. {
  4210. u32 cpu_based_vm_exec_control;
  4211. /* clear pending NMI */
  4212. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4213. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4214. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4215. ++vcpu->stat.nmi_window_exits;
  4216. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4217. return 1;
  4218. }
  4219. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4220. {
  4221. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4222. enum emulation_result err = EMULATE_DONE;
  4223. int ret = 1;
  4224. u32 cpu_exec_ctrl;
  4225. bool intr_window_requested;
  4226. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4227. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4228. while (!guest_state_valid(vcpu)) {
  4229. if (intr_window_requested
  4230. && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
  4231. return handle_interrupt_window(&vmx->vcpu);
  4232. err = emulate_instruction(vcpu, 0);
  4233. if (err == EMULATE_DO_MMIO) {
  4234. ret = 0;
  4235. goto out;
  4236. }
  4237. if (err != EMULATE_DONE)
  4238. return 0;
  4239. if (signal_pending(current))
  4240. goto out;
  4241. if (need_resched())
  4242. schedule();
  4243. }
  4244. vmx->emulation_required = 0;
  4245. out:
  4246. return ret;
  4247. }
  4248. /*
  4249. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4250. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4251. */
  4252. static int handle_pause(struct kvm_vcpu *vcpu)
  4253. {
  4254. skip_emulated_instruction(vcpu);
  4255. kvm_vcpu_on_spin(vcpu);
  4256. return 1;
  4257. }
  4258. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4259. {
  4260. kvm_queue_exception(vcpu, UD_VECTOR);
  4261. return 1;
  4262. }
  4263. /*
  4264. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4265. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4266. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4267. * allows keeping them loaded on the processor, and in the future will allow
  4268. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4269. * every entry if they never change.
  4270. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4271. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4272. *
  4273. * The following functions allocate and free a vmcs02 in this pool.
  4274. */
  4275. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4276. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4277. {
  4278. struct vmcs02_list *item;
  4279. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4280. if (item->vmptr == vmx->nested.current_vmptr) {
  4281. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4282. return &item->vmcs02;
  4283. }
  4284. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4285. /* Recycle the least recently used VMCS. */
  4286. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4287. struct vmcs02_list, list);
  4288. item->vmptr = vmx->nested.current_vmptr;
  4289. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4290. return &item->vmcs02;
  4291. }
  4292. /* Create a new VMCS */
  4293. item = (struct vmcs02_list *)
  4294. kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4295. if (!item)
  4296. return NULL;
  4297. item->vmcs02.vmcs = alloc_vmcs();
  4298. if (!item->vmcs02.vmcs) {
  4299. kfree(item);
  4300. return NULL;
  4301. }
  4302. loaded_vmcs_init(&item->vmcs02);
  4303. item->vmptr = vmx->nested.current_vmptr;
  4304. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4305. vmx->nested.vmcs02_num++;
  4306. return &item->vmcs02;
  4307. }
  4308. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4309. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4310. {
  4311. struct vmcs02_list *item;
  4312. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4313. if (item->vmptr == vmptr) {
  4314. free_loaded_vmcs(&item->vmcs02);
  4315. list_del(&item->list);
  4316. kfree(item);
  4317. vmx->nested.vmcs02_num--;
  4318. return;
  4319. }
  4320. }
  4321. /*
  4322. * Free all VMCSs saved for this vcpu, except the one pointed by
  4323. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4324. * currently used, if running L2), and vmcs01 when running L2.
  4325. */
  4326. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4327. {
  4328. struct vmcs02_list *item, *n;
  4329. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4330. if (vmx->loaded_vmcs != &item->vmcs02)
  4331. free_loaded_vmcs(&item->vmcs02);
  4332. list_del(&item->list);
  4333. kfree(item);
  4334. }
  4335. vmx->nested.vmcs02_num = 0;
  4336. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4337. free_loaded_vmcs(&vmx->vmcs01);
  4338. }
  4339. /*
  4340. * Emulate the VMXON instruction.
  4341. * Currently, we just remember that VMX is active, and do not save or even
  4342. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4343. * do not currently need to store anything in that guest-allocated memory
  4344. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4345. * argument is different from the VMXON pointer (which the spec says they do).
  4346. */
  4347. static int handle_vmon(struct kvm_vcpu *vcpu)
  4348. {
  4349. struct kvm_segment cs;
  4350. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4351. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4352. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4353. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4354. * Otherwise, we should fail with #UD. We test these now:
  4355. */
  4356. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4357. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4358. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4359. kvm_queue_exception(vcpu, UD_VECTOR);
  4360. return 1;
  4361. }
  4362. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4363. if (is_long_mode(vcpu) && !cs.l) {
  4364. kvm_queue_exception(vcpu, UD_VECTOR);
  4365. return 1;
  4366. }
  4367. if (vmx_get_cpl(vcpu)) {
  4368. kvm_inject_gp(vcpu, 0);
  4369. return 1;
  4370. }
  4371. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4372. vmx->nested.vmcs02_num = 0;
  4373. vmx->nested.vmxon = true;
  4374. skip_emulated_instruction(vcpu);
  4375. return 1;
  4376. }
  4377. /*
  4378. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4379. * for running VMX instructions (except VMXON, whose prerequisites are
  4380. * slightly different). It also specifies what exception to inject otherwise.
  4381. */
  4382. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4383. {
  4384. struct kvm_segment cs;
  4385. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4386. if (!vmx->nested.vmxon) {
  4387. kvm_queue_exception(vcpu, UD_VECTOR);
  4388. return 0;
  4389. }
  4390. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4391. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4392. (is_long_mode(vcpu) && !cs.l)) {
  4393. kvm_queue_exception(vcpu, UD_VECTOR);
  4394. return 0;
  4395. }
  4396. if (vmx_get_cpl(vcpu)) {
  4397. kvm_inject_gp(vcpu, 0);
  4398. return 0;
  4399. }
  4400. return 1;
  4401. }
  4402. /*
  4403. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4404. * just stops using VMX.
  4405. */
  4406. static void free_nested(struct vcpu_vmx *vmx)
  4407. {
  4408. if (!vmx->nested.vmxon)
  4409. return;
  4410. vmx->nested.vmxon = false;
  4411. if (vmx->nested.current_vmptr != -1ull) {
  4412. kunmap(vmx->nested.current_vmcs12_page);
  4413. nested_release_page(vmx->nested.current_vmcs12_page);
  4414. vmx->nested.current_vmptr = -1ull;
  4415. vmx->nested.current_vmcs12 = NULL;
  4416. }
  4417. /* Unpin physical memory we referred to in current vmcs02 */
  4418. if (vmx->nested.apic_access_page) {
  4419. nested_release_page(vmx->nested.apic_access_page);
  4420. vmx->nested.apic_access_page = 0;
  4421. }
  4422. nested_free_all_saved_vmcss(vmx);
  4423. }
  4424. /* Emulate the VMXOFF instruction */
  4425. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4426. {
  4427. if (!nested_vmx_check_permission(vcpu))
  4428. return 1;
  4429. free_nested(to_vmx(vcpu));
  4430. skip_emulated_instruction(vcpu);
  4431. return 1;
  4432. }
  4433. /*
  4434. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4435. * exit caused by such an instruction (run by a guest hypervisor).
  4436. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4437. * #UD or #GP.
  4438. */
  4439. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4440. unsigned long exit_qualification,
  4441. u32 vmx_instruction_info, gva_t *ret)
  4442. {
  4443. /*
  4444. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4445. * Execution", on an exit, vmx_instruction_info holds most of the
  4446. * addressing components of the operand. Only the displacement part
  4447. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4448. * For how an actual address is calculated from all these components,
  4449. * refer to Vol. 1, "Operand Addressing".
  4450. */
  4451. int scaling = vmx_instruction_info & 3;
  4452. int addr_size = (vmx_instruction_info >> 7) & 7;
  4453. bool is_reg = vmx_instruction_info & (1u << 10);
  4454. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4455. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4456. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4457. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4458. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4459. if (is_reg) {
  4460. kvm_queue_exception(vcpu, UD_VECTOR);
  4461. return 1;
  4462. }
  4463. /* Addr = segment_base + offset */
  4464. /* offset = base + [index * scale] + displacement */
  4465. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4466. if (base_is_valid)
  4467. *ret += kvm_register_read(vcpu, base_reg);
  4468. if (index_is_valid)
  4469. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4470. *ret += exit_qualification; /* holds the displacement */
  4471. if (addr_size == 1) /* 32 bit */
  4472. *ret &= 0xffffffff;
  4473. /*
  4474. * TODO: throw #GP (and return 1) in various cases that the VM*
  4475. * instructions require it - e.g., offset beyond segment limit,
  4476. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4477. * address, and so on. Currently these are not checked.
  4478. */
  4479. return 0;
  4480. }
  4481. /*
  4482. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4483. * set the success or error code of an emulated VMX instruction, as specified
  4484. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4485. */
  4486. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4487. {
  4488. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4489. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4490. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4491. }
  4492. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4493. {
  4494. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4495. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4496. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4497. | X86_EFLAGS_CF);
  4498. }
  4499. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4500. u32 vm_instruction_error)
  4501. {
  4502. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4503. /*
  4504. * failValid writes the error number to the current VMCS, which
  4505. * can't be done there isn't a current VMCS.
  4506. */
  4507. nested_vmx_failInvalid(vcpu);
  4508. return;
  4509. }
  4510. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4511. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4512. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4513. | X86_EFLAGS_ZF);
  4514. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4515. }
  4516. /* Emulate the VMCLEAR instruction */
  4517. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4518. {
  4519. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4520. gva_t gva;
  4521. gpa_t vmptr;
  4522. struct vmcs12 *vmcs12;
  4523. struct page *page;
  4524. struct x86_exception e;
  4525. if (!nested_vmx_check_permission(vcpu))
  4526. return 1;
  4527. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4528. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4529. return 1;
  4530. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4531. sizeof(vmptr), &e)) {
  4532. kvm_inject_page_fault(vcpu, &e);
  4533. return 1;
  4534. }
  4535. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4536. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4537. skip_emulated_instruction(vcpu);
  4538. return 1;
  4539. }
  4540. if (vmptr == vmx->nested.current_vmptr) {
  4541. kunmap(vmx->nested.current_vmcs12_page);
  4542. nested_release_page(vmx->nested.current_vmcs12_page);
  4543. vmx->nested.current_vmptr = -1ull;
  4544. vmx->nested.current_vmcs12 = NULL;
  4545. }
  4546. page = nested_get_page(vcpu, vmptr);
  4547. if (page == NULL) {
  4548. /*
  4549. * For accurate processor emulation, VMCLEAR beyond available
  4550. * physical memory should do nothing at all. However, it is
  4551. * possible that a nested vmx bug, not a guest hypervisor bug,
  4552. * resulted in this case, so let's shut down before doing any
  4553. * more damage:
  4554. */
  4555. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4556. return 1;
  4557. }
  4558. vmcs12 = kmap(page);
  4559. vmcs12->launch_state = 0;
  4560. kunmap(page);
  4561. nested_release_page(page);
  4562. nested_free_vmcs02(vmx, vmptr);
  4563. skip_emulated_instruction(vcpu);
  4564. nested_vmx_succeed(vcpu);
  4565. return 1;
  4566. }
  4567. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4568. /* Emulate the VMLAUNCH instruction */
  4569. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4570. {
  4571. return nested_vmx_run(vcpu, true);
  4572. }
  4573. /* Emulate the VMRESUME instruction */
  4574. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4575. {
  4576. return nested_vmx_run(vcpu, false);
  4577. }
  4578. enum vmcs_field_type {
  4579. VMCS_FIELD_TYPE_U16 = 0,
  4580. VMCS_FIELD_TYPE_U64 = 1,
  4581. VMCS_FIELD_TYPE_U32 = 2,
  4582. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4583. };
  4584. static inline int vmcs_field_type(unsigned long field)
  4585. {
  4586. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4587. return VMCS_FIELD_TYPE_U32;
  4588. return (field >> 13) & 0x3 ;
  4589. }
  4590. static inline int vmcs_field_readonly(unsigned long field)
  4591. {
  4592. return (((field >> 10) & 0x3) == 1);
  4593. }
  4594. /*
  4595. * Read a vmcs12 field. Since these can have varying lengths and we return
  4596. * one type, we chose the biggest type (u64) and zero-extend the return value
  4597. * to that size. Note that the caller, handle_vmread, might need to use only
  4598. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4599. * 64-bit fields are to be returned).
  4600. */
  4601. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4602. unsigned long field, u64 *ret)
  4603. {
  4604. short offset = vmcs_field_to_offset(field);
  4605. char *p;
  4606. if (offset < 0)
  4607. return 0;
  4608. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4609. switch (vmcs_field_type(field)) {
  4610. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4611. *ret = *((natural_width *)p);
  4612. return 1;
  4613. case VMCS_FIELD_TYPE_U16:
  4614. *ret = *((u16 *)p);
  4615. return 1;
  4616. case VMCS_FIELD_TYPE_U32:
  4617. *ret = *((u32 *)p);
  4618. return 1;
  4619. case VMCS_FIELD_TYPE_U64:
  4620. *ret = *((u64 *)p);
  4621. return 1;
  4622. default:
  4623. return 0; /* can never happen. */
  4624. }
  4625. }
  4626. /*
  4627. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4628. * used before) all generate the same failure when it is missing.
  4629. */
  4630. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4631. {
  4632. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4633. if (vmx->nested.current_vmptr == -1ull) {
  4634. nested_vmx_failInvalid(vcpu);
  4635. skip_emulated_instruction(vcpu);
  4636. return 0;
  4637. }
  4638. return 1;
  4639. }
  4640. static int handle_vmread(struct kvm_vcpu *vcpu)
  4641. {
  4642. unsigned long field;
  4643. u64 field_value;
  4644. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4645. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4646. gva_t gva = 0;
  4647. if (!nested_vmx_check_permission(vcpu) ||
  4648. !nested_vmx_check_vmcs12(vcpu))
  4649. return 1;
  4650. /* Decode instruction info and find the field to read */
  4651. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4652. /* Read the field, zero-extended to a u64 field_value */
  4653. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4654. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4655. skip_emulated_instruction(vcpu);
  4656. return 1;
  4657. }
  4658. /*
  4659. * Now copy part of this value to register or memory, as requested.
  4660. * Note that the number of bits actually copied is 32 or 64 depending
  4661. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4662. */
  4663. if (vmx_instruction_info & (1u << 10)) {
  4664. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4665. field_value);
  4666. } else {
  4667. if (get_vmx_mem_address(vcpu, exit_qualification,
  4668. vmx_instruction_info, &gva))
  4669. return 1;
  4670. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4671. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4672. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4673. }
  4674. nested_vmx_succeed(vcpu);
  4675. skip_emulated_instruction(vcpu);
  4676. return 1;
  4677. }
  4678. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4679. {
  4680. unsigned long field;
  4681. gva_t gva;
  4682. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4683. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4684. char *p;
  4685. short offset;
  4686. /* The value to write might be 32 or 64 bits, depending on L1's long
  4687. * mode, and eventually we need to write that into a field of several
  4688. * possible lengths. The code below first zero-extends the value to 64
  4689. * bit (field_value), and then copies only the approriate number of
  4690. * bits into the vmcs12 field.
  4691. */
  4692. u64 field_value = 0;
  4693. struct x86_exception e;
  4694. if (!nested_vmx_check_permission(vcpu) ||
  4695. !nested_vmx_check_vmcs12(vcpu))
  4696. return 1;
  4697. if (vmx_instruction_info & (1u << 10))
  4698. field_value = kvm_register_read(vcpu,
  4699. (((vmx_instruction_info) >> 3) & 0xf));
  4700. else {
  4701. if (get_vmx_mem_address(vcpu, exit_qualification,
  4702. vmx_instruction_info, &gva))
  4703. return 1;
  4704. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4705. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4706. kvm_inject_page_fault(vcpu, &e);
  4707. return 1;
  4708. }
  4709. }
  4710. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4711. if (vmcs_field_readonly(field)) {
  4712. nested_vmx_failValid(vcpu,
  4713. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4714. skip_emulated_instruction(vcpu);
  4715. return 1;
  4716. }
  4717. offset = vmcs_field_to_offset(field);
  4718. if (offset < 0) {
  4719. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4720. skip_emulated_instruction(vcpu);
  4721. return 1;
  4722. }
  4723. p = ((char *) get_vmcs12(vcpu)) + offset;
  4724. switch (vmcs_field_type(field)) {
  4725. case VMCS_FIELD_TYPE_U16:
  4726. *(u16 *)p = field_value;
  4727. break;
  4728. case VMCS_FIELD_TYPE_U32:
  4729. *(u32 *)p = field_value;
  4730. break;
  4731. case VMCS_FIELD_TYPE_U64:
  4732. *(u64 *)p = field_value;
  4733. break;
  4734. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4735. *(natural_width *)p = field_value;
  4736. break;
  4737. default:
  4738. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4739. skip_emulated_instruction(vcpu);
  4740. return 1;
  4741. }
  4742. nested_vmx_succeed(vcpu);
  4743. skip_emulated_instruction(vcpu);
  4744. return 1;
  4745. }
  4746. /* Emulate the VMPTRLD instruction */
  4747. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  4748. {
  4749. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4750. gva_t gva;
  4751. gpa_t vmptr;
  4752. struct x86_exception e;
  4753. if (!nested_vmx_check_permission(vcpu))
  4754. return 1;
  4755. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4756. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4757. return 1;
  4758. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4759. sizeof(vmptr), &e)) {
  4760. kvm_inject_page_fault(vcpu, &e);
  4761. return 1;
  4762. }
  4763. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4764. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  4765. skip_emulated_instruction(vcpu);
  4766. return 1;
  4767. }
  4768. if (vmx->nested.current_vmptr != vmptr) {
  4769. struct vmcs12 *new_vmcs12;
  4770. struct page *page;
  4771. page = nested_get_page(vcpu, vmptr);
  4772. if (page == NULL) {
  4773. nested_vmx_failInvalid(vcpu);
  4774. skip_emulated_instruction(vcpu);
  4775. return 1;
  4776. }
  4777. new_vmcs12 = kmap(page);
  4778. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  4779. kunmap(page);
  4780. nested_release_page_clean(page);
  4781. nested_vmx_failValid(vcpu,
  4782. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  4783. skip_emulated_instruction(vcpu);
  4784. return 1;
  4785. }
  4786. if (vmx->nested.current_vmptr != -1ull) {
  4787. kunmap(vmx->nested.current_vmcs12_page);
  4788. nested_release_page(vmx->nested.current_vmcs12_page);
  4789. }
  4790. vmx->nested.current_vmptr = vmptr;
  4791. vmx->nested.current_vmcs12 = new_vmcs12;
  4792. vmx->nested.current_vmcs12_page = page;
  4793. }
  4794. nested_vmx_succeed(vcpu);
  4795. skip_emulated_instruction(vcpu);
  4796. return 1;
  4797. }
  4798. /* Emulate the VMPTRST instruction */
  4799. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  4800. {
  4801. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4802. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4803. gva_t vmcs_gva;
  4804. struct x86_exception e;
  4805. if (!nested_vmx_check_permission(vcpu))
  4806. return 1;
  4807. if (get_vmx_mem_address(vcpu, exit_qualification,
  4808. vmx_instruction_info, &vmcs_gva))
  4809. return 1;
  4810. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  4811. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  4812. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  4813. sizeof(u64), &e)) {
  4814. kvm_inject_page_fault(vcpu, &e);
  4815. return 1;
  4816. }
  4817. nested_vmx_succeed(vcpu);
  4818. skip_emulated_instruction(vcpu);
  4819. return 1;
  4820. }
  4821. /*
  4822. * The exit handlers return 1 if the exit was handled fully and guest execution
  4823. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  4824. * to be done to userspace and return 0.
  4825. */
  4826. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  4827. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  4828. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  4829. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  4830. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  4831. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  4832. [EXIT_REASON_CR_ACCESS] = handle_cr,
  4833. [EXIT_REASON_DR_ACCESS] = handle_dr,
  4834. [EXIT_REASON_CPUID] = handle_cpuid,
  4835. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  4836. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  4837. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  4838. [EXIT_REASON_HLT] = handle_halt,
  4839. [EXIT_REASON_INVD] = handle_invd,
  4840. [EXIT_REASON_INVLPG] = handle_invlpg,
  4841. [EXIT_REASON_RDPMC] = handle_rdpmc,
  4842. [EXIT_REASON_VMCALL] = handle_vmcall,
  4843. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  4844. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  4845. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  4846. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  4847. [EXIT_REASON_VMREAD] = handle_vmread,
  4848. [EXIT_REASON_VMRESUME] = handle_vmresume,
  4849. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  4850. [EXIT_REASON_VMOFF] = handle_vmoff,
  4851. [EXIT_REASON_VMON] = handle_vmon,
  4852. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  4853. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  4854. [EXIT_REASON_WBINVD] = handle_wbinvd,
  4855. [EXIT_REASON_XSETBV] = handle_xsetbv,
  4856. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  4857. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  4858. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  4859. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  4860. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  4861. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  4862. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  4863. };
  4864. static const int kvm_vmx_max_exit_handlers =
  4865. ARRAY_SIZE(kvm_vmx_exit_handlers);
  4866. /*
  4867. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  4868. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  4869. * disinterest in the current event (read or write a specific MSR) by using an
  4870. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  4871. */
  4872. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  4873. struct vmcs12 *vmcs12, u32 exit_reason)
  4874. {
  4875. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  4876. gpa_t bitmap;
  4877. if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
  4878. return 1;
  4879. /*
  4880. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  4881. * for the four combinations of read/write and low/high MSR numbers.
  4882. * First we need to figure out which of the four to use:
  4883. */
  4884. bitmap = vmcs12->msr_bitmap;
  4885. if (exit_reason == EXIT_REASON_MSR_WRITE)
  4886. bitmap += 2048;
  4887. if (msr_index >= 0xc0000000) {
  4888. msr_index -= 0xc0000000;
  4889. bitmap += 1024;
  4890. }
  4891. /* Then read the msr_index'th bit from this bitmap: */
  4892. if (msr_index < 1024*8) {
  4893. unsigned char b;
  4894. kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
  4895. return 1 & (b >> (msr_index & 7));
  4896. } else
  4897. return 1; /* let L1 handle the wrong parameter */
  4898. }
  4899. /*
  4900. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  4901. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  4902. * intercept (via guest_host_mask etc.) the current event.
  4903. */
  4904. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  4905. struct vmcs12 *vmcs12)
  4906. {
  4907. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4908. int cr = exit_qualification & 15;
  4909. int reg = (exit_qualification >> 8) & 15;
  4910. unsigned long val = kvm_register_read(vcpu, reg);
  4911. switch ((exit_qualification >> 4) & 3) {
  4912. case 0: /* mov to cr */
  4913. switch (cr) {
  4914. case 0:
  4915. if (vmcs12->cr0_guest_host_mask &
  4916. (val ^ vmcs12->cr0_read_shadow))
  4917. return 1;
  4918. break;
  4919. case 3:
  4920. if ((vmcs12->cr3_target_count >= 1 &&
  4921. vmcs12->cr3_target_value0 == val) ||
  4922. (vmcs12->cr3_target_count >= 2 &&
  4923. vmcs12->cr3_target_value1 == val) ||
  4924. (vmcs12->cr3_target_count >= 3 &&
  4925. vmcs12->cr3_target_value2 == val) ||
  4926. (vmcs12->cr3_target_count >= 4 &&
  4927. vmcs12->cr3_target_value3 == val))
  4928. return 0;
  4929. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  4930. return 1;
  4931. break;
  4932. case 4:
  4933. if (vmcs12->cr4_guest_host_mask &
  4934. (vmcs12->cr4_read_shadow ^ val))
  4935. return 1;
  4936. break;
  4937. case 8:
  4938. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  4939. return 1;
  4940. break;
  4941. }
  4942. break;
  4943. case 2: /* clts */
  4944. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  4945. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  4946. return 1;
  4947. break;
  4948. case 1: /* mov from cr */
  4949. switch (cr) {
  4950. case 3:
  4951. if (vmcs12->cpu_based_vm_exec_control &
  4952. CPU_BASED_CR3_STORE_EXITING)
  4953. return 1;
  4954. break;
  4955. case 8:
  4956. if (vmcs12->cpu_based_vm_exec_control &
  4957. CPU_BASED_CR8_STORE_EXITING)
  4958. return 1;
  4959. break;
  4960. }
  4961. break;
  4962. case 3: /* lmsw */
  4963. /*
  4964. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  4965. * cr0. Other attempted changes are ignored, with no exit.
  4966. */
  4967. if (vmcs12->cr0_guest_host_mask & 0xe &
  4968. (val ^ vmcs12->cr0_read_shadow))
  4969. return 1;
  4970. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  4971. !(vmcs12->cr0_read_shadow & 0x1) &&
  4972. (val & 0x1))
  4973. return 1;
  4974. break;
  4975. }
  4976. return 0;
  4977. }
  4978. /*
  4979. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  4980. * should handle it ourselves in L0 (and then continue L2). Only call this
  4981. * when in is_guest_mode (L2).
  4982. */
  4983. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  4984. {
  4985. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  4986. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  4987. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4988. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  4989. if (vmx->nested.nested_run_pending)
  4990. return 0;
  4991. if (unlikely(vmx->fail)) {
  4992. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  4993. vmcs_read32(VM_INSTRUCTION_ERROR));
  4994. return 1;
  4995. }
  4996. switch (exit_reason) {
  4997. case EXIT_REASON_EXCEPTION_NMI:
  4998. if (!is_exception(intr_info))
  4999. return 0;
  5000. else if (is_page_fault(intr_info))
  5001. return enable_ept;
  5002. return vmcs12->exception_bitmap &
  5003. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  5004. case EXIT_REASON_EXTERNAL_INTERRUPT:
  5005. return 0;
  5006. case EXIT_REASON_TRIPLE_FAULT:
  5007. return 1;
  5008. case EXIT_REASON_PENDING_INTERRUPT:
  5009. case EXIT_REASON_NMI_WINDOW:
  5010. /*
  5011. * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
  5012. * (aka Interrupt Window Exiting) only when L1 turned it on,
  5013. * so if we got a PENDING_INTERRUPT exit, this must be for L1.
  5014. * Same for NMI Window Exiting.
  5015. */
  5016. return 1;
  5017. case EXIT_REASON_TASK_SWITCH:
  5018. return 1;
  5019. case EXIT_REASON_CPUID:
  5020. return 1;
  5021. case EXIT_REASON_HLT:
  5022. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  5023. case EXIT_REASON_INVD:
  5024. return 1;
  5025. case EXIT_REASON_INVLPG:
  5026. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  5027. case EXIT_REASON_RDPMC:
  5028. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  5029. case EXIT_REASON_RDTSC:
  5030. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  5031. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  5032. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  5033. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  5034. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  5035. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  5036. /*
  5037. * VMX instructions trap unconditionally. This allows L1 to
  5038. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  5039. */
  5040. return 1;
  5041. case EXIT_REASON_CR_ACCESS:
  5042. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  5043. case EXIT_REASON_DR_ACCESS:
  5044. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  5045. case EXIT_REASON_IO_INSTRUCTION:
  5046. /* TODO: support IO bitmaps */
  5047. return 1;
  5048. case EXIT_REASON_MSR_READ:
  5049. case EXIT_REASON_MSR_WRITE:
  5050. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  5051. case EXIT_REASON_INVALID_STATE:
  5052. return 1;
  5053. case EXIT_REASON_MWAIT_INSTRUCTION:
  5054. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  5055. case EXIT_REASON_MONITOR_INSTRUCTION:
  5056. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  5057. case EXIT_REASON_PAUSE_INSTRUCTION:
  5058. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  5059. nested_cpu_has2(vmcs12,
  5060. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  5061. case EXIT_REASON_MCE_DURING_VMENTRY:
  5062. return 0;
  5063. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  5064. return 1;
  5065. case EXIT_REASON_APIC_ACCESS:
  5066. return nested_cpu_has2(vmcs12,
  5067. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  5068. case EXIT_REASON_EPT_VIOLATION:
  5069. case EXIT_REASON_EPT_MISCONFIG:
  5070. return 0;
  5071. case EXIT_REASON_WBINVD:
  5072. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  5073. case EXIT_REASON_XSETBV:
  5074. return 1;
  5075. default:
  5076. return 1;
  5077. }
  5078. }
  5079. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  5080. {
  5081. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  5082. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  5083. }
  5084. /*
  5085. * The guest has exited. See if we can fix it or if we need userspace
  5086. * assistance.
  5087. */
  5088. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  5089. {
  5090. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5091. u32 exit_reason = vmx->exit_reason;
  5092. u32 vectoring_info = vmx->idt_vectoring_info;
  5093. /* If guest state is invalid, start emulating */
  5094. if (vmx->emulation_required && emulate_invalid_guest_state)
  5095. return handle_invalid_guest_state(vcpu);
  5096. /*
  5097. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  5098. * we did not inject a still-pending event to L1 now because of
  5099. * nested_run_pending, we need to re-enable this bit.
  5100. */
  5101. if (vmx->nested.nested_run_pending)
  5102. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5103. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  5104. exit_reason == EXIT_REASON_VMRESUME))
  5105. vmx->nested.nested_run_pending = 1;
  5106. else
  5107. vmx->nested.nested_run_pending = 0;
  5108. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5109. nested_vmx_vmexit(vcpu);
  5110. return 1;
  5111. }
  5112. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5113. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5114. vcpu->run->fail_entry.hardware_entry_failure_reason
  5115. = exit_reason;
  5116. return 0;
  5117. }
  5118. if (unlikely(vmx->fail)) {
  5119. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5120. vcpu->run->fail_entry.hardware_entry_failure_reason
  5121. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5122. return 0;
  5123. }
  5124. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5125. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5126. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5127. exit_reason != EXIT_REASON_TASK_SWITCH))
  5128. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  5129. "(0x%x) and exit reason is 0x%x\n",
  5130. __func__, vectoring_info, exit_reason);
  5131. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5132. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5133. get_vmcs12(vcpu), vcpu)))) {
  5134. if (vmx_interrupt_allowed(vcpu)) {
  5135. vmx->soft_vnmi_blocked = 0;
  5136. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5137. vcpu->arch.nmi_pending) {
  5138. /*
  5139. * This CPU don't support us in finding the end of an
  5140. * NMI-blocked window if the guest runs with IRQs
  5141. * disabled. So we pull the trigger after 1 s of
  5142. * futile waiting, but inform the user about this.
  5143. */
  5144. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5145. "state on VCPU %d after 1 s timeout\n",
  5146. __func__, vcpu->vcpu_id);
  5147. vmx->soft_vnmi_blocked = 0;
  5148. }
  5149. }
  5150. if (exit_reason < kvm_vmx_max_exit_handlers
  5151. && kvm_vmx_exit_handlers[exit_reason])
  5152. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5153. else {
  5154. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5155. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5156. }
  5157. return 0;
  5158. }
  5159. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5160. {
  5161. if (irr == -1 || tpr < irr) {
  5162. vmcs_write32(TPR_THRESHOLD, 0);
  5163. return;
  5164. }
  5165. vmcs_write32(TPR_THRESHOLD, irr);
  5166. }
  5167. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5168. {
  5169. u32 exit_intr_info;
  5170. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5171. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5172. return;
  5173. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5174. exit_intr_info = vmx->exit_intr_info;
  5175. /* Handle machine checks before interrupts are enabled */
  5176. if (is_machine_check(exit_intr_info))
  5177. kvm_machine_check();
  5178. /* We need to handle NMIs before interrupts are enabled */
  5179. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5180. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5181. kvm_before_handle_nmi(&vmx->vcpu);
  5182. asm("int $2");
  5183. kvm_after_handle_nmi(&vmx->vcpu);
  5184. }
  5185. }
  5186. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5187. {
  5188. u32 exit_intr_info;
  5189. bool unblock_nmi;
  5190. u8 vector;
  5191. bool idtv_info_valid;
  5192. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5193. if (cpu_has_virtual_nmis()) {
  5194. if (vmx->nmi_known_unmasked)
  5195. return;
  5196. /*
  5197. * Can't use vmx->exit_intr_info since we're not sure what
  5198. * the exit reason is.
  5199. */
  5200. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5201. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5202. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5203. /*
  5204. * SDM 3: 27.7.1.2 (September 2008)
  5205. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5206. * a guest IRET fault.
  5207. * SDM 3: 23.2.2 (September 2008)
  5208. * Bit 12 is undefined in any of the following cases:
  5209. * If the VM exit sets the valid bit in the IDT-vectoring
  5210. * information field.
  5211. * If the VM exit is due to a double fault.
  5212. */
  5213. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5214. vector != DF_VECTOR && !idtv_info_valid)
  5215. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5216. GUEST_INTR_STATE_NMI);
  5217. else
  5218. vmx->nmi_known_unmasked =
  5219. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5220. & GUEST_INTR_STATE_NMI);
  5221. } else if (unlikely(vmx->soft_vnmi_blocked))
  5222. vmx->vnmi_blocked_time +=
  5223. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5224. }
  5225. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  5226. u32 idt_vectoring_info,
  5227. int instr_len_field,
  5228. int error_code_field)
  5229. {
  5230. u8 vector;
  5231. int type;
  5232. bool idtv_info_valid;
  5233. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5234. vmx->vcpu.arch.nmi_injected = false;
  5235. kvm_clear_exception_queue(&vmx->vcpu);
  5236. kvm_clear_interrupt_queue(&vmx->vcpu);
  5237. if (!idtv_info_valid)
  5238. return;
  5239. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  5240. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5241. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5242. switch (type) {
  5243. case INTR_TYPE_NMI_INTR:
  5244. vmx->vcpu.arch.nmi_injected = true;
  5245. /*
  5246. * SDM 3: 27.7.1.2 (September 2008)
  5247. * Clear bit "block by NMI" before VM entry if a NMI
  5248. * delivery faulted.
  5249. */
  5250. vmx_set_nmi_mask(&vmx->vcpu, false);
  5251. break;
  5252. case INTR_TYPE_SOFT_EXCEPTION:
  5253. vmx->vcpu.arch.event_exit_inst_len =
  5254. vmcs_read32(instr_len_field);
  5255. /* fall through */
  5256. case INTR_TYPE_HARD_EXCEPTION:
  5257. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  5258. u32 err = vmcs_read32(error_code_field);
  5259. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  5260. } else
  5261. kvm_queue_exception(&vmx->vcpu, vector);
  5262. break;
  5263. case INTR_TYPE_SOFT_INTR:
  5264. vmx->vcpu.arch.event_exit_inst_len =
  5265. vmcs_read32(instr_len_field);
  5266. /* fall through */
  5267. case INTR_TYPE_EXT_INTR:
  5268. kvm_queue_interrupt(&vmx->vcpu, vector,
  5269. type == INTR_TYPE_SOFT_INTR);
  5270. break;
  5271. default:
  5272. break;
  5273. }
  5274. }
  5275. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  5276. {
  5277. if (is_guest_mode(&vmx->vcpu))
  5278. return;
  5279. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  5280. VM_EXIT_INSTRUCTION_LEN,
  5281. IDT_VECTORING_ERROR_CODE);
  5282. }
  5283. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  5284. {
  5285. if (is_guest_mode(vcpu))
  5286. return;
  5287. __vmx_complete_interrupts(to_vmx(vcpu),
  5288. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  5289. VM_ENTRY_INSTRUCTION_LEN,
  5290. VM_ENTRY_EXCEPTION_ERROR_CODE);
  5291. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  5292. }
  5293. static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
  5294. {
  5295. int i, nr_msrs;
  5296. struct perf_guest_switch_msr *msrs;
  5297. msrs = perf_guest_get_msrs(&nr_msrs);
  5298. if (!msrs)
  5299. return;
  5300. for (i = 0; i < nr_msrs; i++)
  5301. if (msrs[i].host == msrs[i].guest)
  5302. clear_atomic_switch_msr(vmx, msrs[i].msr);
  5303. else
  5304. add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
  5305. msrs[i].host);
  5306. }
  5307. #ifdef CONFIG_X86_64
  5308. #define R "r"
  5309. #define Q "q"
  5310. #else
  5311. #define R "e"
  5312. #define Q "l"
  5313. #endif
  5314. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  5315. {
  5316. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5317. if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
  5318. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5319. if (vmcs12->idt_vectoring_info_field &
  5320. VECTORING_INFO_VALID_MASK) {
  5321. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5322. vmcs12->idt_vectoring_info_field);
  5323. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5324. vmcs12->vm_exit_instruction_len);
  5325. if (vmcs12->idt_vectoring_info_field &
  5326. VECTORING_INFO_DELIVER_CODE_MASK)
  5327. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5328. vmcs12->idt_vectoring_error_code);
  5329. }
  5330. }
  5331. /* Record the guest's net vcpu time for enforced NMI injections. */
  5332. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  5333. vmx->entry_time = ktime_get();
  5334. /* Don't enter VMX if guest state is invalid, let the exit handler
  5335. start emulation until we arrive back to a valid state */
  5336. if (vmx->emulation_required && emulate_invalid_guest_state)
  5337. return;
  5338. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  5339. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  5340. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  5341. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  5342. /* When single-stepping over STI and MOV SS, we must clear the
  5343. * corresponding interruptibility bits in the guest state. Otherwise
  5344. * vmentry fails as it then expects bit 14 (BS) in pending debug
  5345. * exceptions being set, but that's not correct for the guest debugging
  5346. * case. */
  5347. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5348. vmx_set_interrupt_shadow(vcpu, 0);
  5349. atomic_switch_perf_msrs(vmx);
  5350. vmx->__launched = vmx->loaded_vmcs->launched;
  5351. asm(
  5352. /* Store host registers */
  5353. "push %%"R"dx; push %%"R"bp;"
  5354. "push %%"R"cx \n\t" /* placeholder for guest rcx */
  5355. "push %%"R"cx \n\t"
  5356. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  5357. "je 1f \n\t"
  5358. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  5359. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  5360. "1: \n\t"
  5361. /* Reload cr2 if changed */
  5362. "mov %c[cr2](%0), %%"R"ax \n\t"
  5363. "mov %%cr2, %%"R"dx \n\t"
  5364. "cmp %%"R"ax, %%"R"dx \n\t"
  5365. "je 2f \n\t"
  5366. "mov %%"R"ax, %%cr2 \n\t"
  5367. "2: \n\t"
  5368. /* Check if vmlaunch of vmresume is needed */
  5369. "cmpl $0, %c[launched](%0) \n\t"
  5370. /* Load guest registers. Don't clobber flags. */
  5371. "mov %c[rax](%0), %%"R"ax \n\t"
  5372. "mov %c[rbx](%0), %%"R"bx \n\t"
  5373. "mov %c[rdx](%0), %%"R"dx \n\t"
  5374. "mov %c[rsi](%0), %%"R"si \n\t"
  5375. "mov %c[rdi](%0), %%"R"di \n\t"
  5376. "mov %c[rbp](%0), %%"R"bp \n\t"
  5377. #ifdef CONFIG_X86_64
  5378. "mov %c[r8](%0), %%r8 \n\t"
  5379. "mov %c[r9](%0), %%r9 \n\t"
  5380. "mov %c[r10](%0), %%r10 \n\t"
  5381. "mov %c[r11](%0), %%r11 \n\t"
  5382. "mov %c[r12](%0), %%r12 \n\t"
  5383. "mov %c[r13](%0), %%r13 \n\t"
  5384. "mov %c[r14](%0), %%r14 \n\t"
  5385. "mov %c[r15](%0), %%r15 \n\t"
  5386. #endif
  5387. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  5388. /* Enter guest mode */
  5389. "jne .Llaunched \n\t"
  5390. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  5391. "jmp .Lkvm_vmx_return \n\t"
  5392. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  5393. ".Lkvm_vmx_return: "
  5394. /* Save guest registers, load host registers, keep flags */
  5395. "mov %0, %c[wordsize](%%"R"sp) \n\t"
  5396. "pop %0 \n\t"
  5397. "mov %%"R"ax, %c[rax](%0) \n\t"
  5398. "mov %%"R"bx, %c[rbx](%0) \n\t"
  5399. "pop"Q" %c[rcx](%0) \n\t"
  5400. "mov %%"R"dx, %c[rdx](%0) \n\t"
  5401. "mov %%"R"si, %c[rsi](%0) \n\t"
  5402. "mov %%"R"di, %c[rdi](%0) \n\t"
  5403. "mov %%"R"bp, %c[rbp](%0) \n\t"
  5404. #ifdef CONFIG_X86_64
  5405. "mov %%r8, %c[r8](%0) \n\t"
  5406. "mov %%r9, %c[r9](%0) \n\t"
  5407. "mov %%r10, %c[r10](%0) \n\t"
  5408. "mov %%r11, %c[r11](%0) \n\t"
  5409. "mov %%r12, %c[r12](%0) \n\t"
  5410. "mov %%r13, %c[r13](%0) \n\t"
  5411. "mov %%r14, %c[r14](%0) \n\t"
  5412. "mov %%r15, %c[r15](%0) \n\t"
  5413. #endif
  5414. "mov %%cr2, %%"R"ax \n\t"
  5415. "mov %%"R"ax, %c[cr2](%0) \n\t"
  5416. "pop %%"R"bp; pop %%"R"dx \n\t"
  5417. "setbe %c[fail](%0) \n\t"
  5418. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  5419. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  5420. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  5421. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  5422. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  5423. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  5424. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  5425. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  5426. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  5427. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  5428. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  5429. #ifdef CONFIG_X86_64
  5430. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  5431. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  5432. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  5433. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  5434. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  5435. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  5436. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  5437. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  5438. #endif
  5439. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  5440. [wordsize]"i"(sizeof(ulong))
  5441. : "cc", "memory"
  5442. , R"ax", R"bx", R"di", R"si"
  5443. #ifdef CONFIG_X86_64
  5444. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  5445. #endif
  5446. );
  5447. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  5448. | (1 << VCPU_EXREG_RFLAGS)
  5449. | (1 << VCPU_EXREG_CPL)
  5450. | (1 << VCPU_EXREG_PDPTR)
  5451. | (1 << VCPU_EXREG_SEGMENTS)
  5452. | (1 << VCPU_EXREG_CR3));
  5453. vcpu->arch.regs_dirty = 0;
  5454. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5455. if (is_guest_mode(vcpu)) {
  5456. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5457. vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
  5458. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  5459. vmcs12->idt_vectoring_error_code =
  5460. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5461. vmcs12->vm_exit_instruction_len =
  5462. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5463. }
  5464. }
  5465. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  5466. vmx->loaded_vmcs->launched = 1;
  5467. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  5468. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  5469. vmx_complete_atomic_exit(vmx);
  5470. vmx_recover_nmi_blocking(vmx);
  5471. vmx_complete_interrupts(vmx);
  5472. }
  5473. #undef R
  5474. #undef Q
  5475. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  5476. {
  5477. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5478. free_vpid(vmx);
  5479. free_nested(vmx);
  5480. free_loaded_vmcs(vmx->loaded_vmcs);
  5481. kfree(vmx->guest_msrs);
  5482. kvm_vcpu_uninit(vcpu);
  5483. kmem_cache_free(kvm_vcpu_cache, vmx);
  5484. }
  5485. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  5486. {
  5487. int err;
  5488. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  5489. int cpu;
  5490. if (!vmx)
  5491. return ERR_PTR(-ENOMEM);
  5492. allocate_vpid(vmx);
  5493. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  5494. if (err)
  5495. goto free_vcpu;
  5496. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  5497. err = -ENOMEM;
  5498. if (!vmx->guest_msrs) {
  5499. goto uninit_vcpu;
  5500. }
  5501. vmx->loaded_vmcs = &vmx->vmcs01;
  5502. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  5503. if (!vmx->loaded_vmcs->vmcs)
  5504. goto free_msrs;
  5505. if (!vmm_exclusive)
  5506. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  5507. loaded_vmcs_init(vmx->loaded_vmcs);
  5508. if (!vmm_exclusive)
  5509. kvm_cpu_vmxoff();
  5510. cpu = get_cpu();
  5511. vmx_vcpu_load(&vmx->vcpu, cpu);
  5512. vmx->vcpu.cpu = cpu;
  5513. err = vmx_vcpu_setup(vmx);
  5514. vmx_vcpu_put(&vmx->vcpu);
  5515. put_cpu();
  5516. if (err)
  5517. goto free_vmcs;
  5518. if (vm_need_virtualize_apic_accesses(kvm))
  5519. err = alloc_apic_access_page(kvm);
  5520. if (err)
  5521. goto free_vmcs;
  5522. if (enable_ept) {
  5523. if (!kvm->arch.ept_identity_map_addr)
  5524. kvm->arch.ept_identity_map_addr =
  5525. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  5526. err = -ENOMEM;
  5527. if (alloc_identity_pagetable(kvm) != 0)
  5528. goto free_vmcs;
  5529. if (!init_rmode_identity_map(kvm))
  5530. goto free_vmcs;
  5531. }
  5532. vmx->nested.current_vmptr = -1ull;
  5533. vmx->nested.current_vmcs12 = NULL;
  5534. return &vmx->vcpu;
  5535. free_vmcs:
  5536. free_vmcs(vmx->loaded_vmcs->vmcs);
  5537. free_msrs:
  5538. kfree(vmx->guest_msrs);
  5539. uninit_vcpu:
  5540. kvm_vcpu_uninit(&vmx->vcpu);
  5541. free_vcpu:
  5542. free_vpid(vmx);
  5543. kmem_cache_free(kvm_vcpu_cache, vmx);
  5544. return ERR_PTR(err);
  5545. }
  5546. static void __init vmx_check_processor_compat(void *rtn)
  5547. {
  5548. struct vmcs_config vmcs_conf;
  5549. *(int *)rtn = 0;
  5550. if (setup_vmcs_config(&vmcs_conf) < 0)
  5551. *(int *)rtn = -EIO;
  5552. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  5553. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  5554. smp_processor_id());
  5555. *(int *)rtn = -EIO;
  5556. }
  5557. }
  5558. static int get_ept_level(void)
  5559. {
  5560. return VMX_EPT_DEFAULT_GAW + 1;
  5561. }
  5562. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  5563. {
  5564. u64 ret;
  5565. /* For VT-d and EPT combination
  5566. * 1. MMIO: always map as UC
  5567. * 2. EPT with VT-d:
  5568. * a. VT-d without snooping control feature: can't guarantee the
  5569. * result, try to trust guest.
  5570. * b. VT-d with snooping control feature: snooping control feature of
  5571. * VT-d engine can guarantee the cache correctness. Just set it
  5572. * to WB to keep consistent with host. So the same as item 3.
  5573. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  5574. * consistent with host MTRR
  5575. */
  5576. if (is_mmio)
  5577. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  5578. else if (vcpu->kvm->arch.iommu_domain &&
  5579. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5580. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5581. VMX_EPT_MT_EPTE_SHIFT;
  5582. else
  5583. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5584. | VMX_EPT_IPAT_BIT;
  5585. return ret;
  5586. }
  5587. static int vmx_get_lpage_level(void)
  5588. {
  5589. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5590. return PT_DIRECTORY_LEVEL;
  5591. else
  5592. /* For shadow and EPT supported 1GB page */
  5593. return PT_PDPE_LEVEL;
  5594. }
  5595. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5596. {
  5597. struct kvm_cpuid_entry2 *best;
  5598. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5599. u32 exec_control;
  5600. vmx->rdtscp_enabled = false;
  5601. if (vmx_rdtscp_supported()) {
  5602. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5603. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5604. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5605. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5606. vmx->rdtscp_enabled = true;
  5607. else {
  5608. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5609. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5610. exec_control);
  5611. }
  5612. }
  5613. }
  5614. }
  5615. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  5616. {
  5617. if (func == 1 && nested)
  5618. entry->ecx |= bit(X86_FEATURE_VMX);
  5619. }
  5620. /*
  5621. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  5622. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  5623. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  5624. * guest in a way that will both be appropriate to L1's requests, and our
  5625. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  5626. * function also has additional necessary side-effects, like setting various
  5627. * vcpu->arch fields.
  5628. */
  5629. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5630. {
  5631. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5632. u32 exec_control;
  5633. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  5634. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  5635. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  5636. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  5637. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  5638. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  5639. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  5640. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  5641. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  5642. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  5643. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  5644. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  5645. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  5646. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  5647. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  5648. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  5649. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  5650. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  5651. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  5652. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  5653. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  5654. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  5655. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  5656. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  5657. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  5658. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  5659. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  5660. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  5661. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  5662. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  5663. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  5664. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  5665. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  5666. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  5667. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  5668. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  5669. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  5670. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5671. vmcs12->vm_entry_intr_info_field);
  5672. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5673. vmcs12->vm_entry_exception_error_code);
  5674. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5675. vmcs12->vm_entry_instruction_len);
  5676. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  5677. vmcs12->guest_interruptibility_info);
  5678. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  5679. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  5680. vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
  5681. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  5682. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  5683. vmcs12->guest_pending_dbg_exceptions);
  5684. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  5685. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  5686. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  5687. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  5688. (vmcs_config.pin_based_exec_ctrl |
  5689. vmcs12->pin_based_vm_exec_control));
  5690. /*
  5691. * Whether page-faults are trapped is determined by a combination of
  5692. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  5693. * If enable_ept, L0 doesn't care about page faults and we should
  5694. * set all of these to L1's desires. However, if !enable_ept, L0 does
  5695. * care about (at least some) page faults, and because it is not easy
  5696. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  5697. * to exit on each and every L2 page fault. This is done by setting
  5698. * MASK=MATCH=0 and (see below) EB.PF=1.
  5699. * Note that below we don't need special code to set EB.PF beyond the
  5700. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  5701. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  5702. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  5703. *
  5704. * A problem with this approach (when !enable_ept) is that L1 may be
  5705. * injected with more page faults than it asked for. This could have
  5706. * caused problems, but in practice existing hypervisors don't care.
  5707. * To fix this, we will need to emulate the PFEC checking (on the L1
  5708. * page tables), using walk_addr(), when injecting PFs to L1.
  5709. */
  5710. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  5711. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  5712. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  5713. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  5714. if (cpu_has_secondary_exec_ctrls()) {
  5715. u32 exec_control = vmx_secondary_exec_control(vmx);
  5716. if (!vmx->rdtscp_enabled)
  5717. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5718. /* Take the following fields only from vmcs12 */
  5719. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5720. if (nested_cpu_has(vmcs12,
  5721. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  5722. exec_control |= vmcs12->secondary_vm_exec_control;
  5723. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  5724. /*
  5725. * Translate L1 physical address to host physical
  5726. * address for vmcs02. Keep the page pinned, so this
  5727. * physical address remains valid. We keep a reference
  5728. * to it so we can release it later.
  5729. */
  5730. if (vmx->nested.apic_access_page) /* shouldn't happen */
  5731. nested_release_page(vmx->nested.apic_access_page);
  5732. vmx->nested.apic_access_page =
  5733. nested_get_page(vcpu, vmcs12->apic_access_addr);
  5734. /*
  5735. * If translation failed, no matter: This feature asks
  5736. * to exit when accessing the given address, and if it
  5737. * can never be accessed, this feature won't do
  5738. * anything anyway.
  5739. */
  5740. if (!vmx->nested.apic_access_page)
  5741. exec_control &=
  5742. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5743. else
  5744. vmcs_write64(APIC_ACCESS_ADDR,
  5745. page_to_phys(vmx->nested.apic_access_page));
  5746. }
  5747. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5748. }
  5749. /*
  5750. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  5751. * Some constant fields are set here by vmx_set_constant_host_state().
  5752. * Other fields are different per CPU, and will be set later when
  5753. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  5754. */
  5755. vmx_set_constant_host_state();
  5756. /*
  5757. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  5758. * entry, but only if the current (host) sp changed from the value
  5759. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  5760. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  5761. * here we just force the write to happen on entry.
  5762. */
  5763. vmx->host_rsp = 0;
  5764. exec_control = vmx_exec_control(vmx); /* L0's desires */
  5765. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  5766. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  5767. exec_control &= ~CPU_BASED_TPR_SHADOW;
  5768. exec_control |= vmcs12->cpu_based_vm_exec_control;
  5769. /*
  5770. * Merging of IO and MSR bitmaps not currently supported.
  5771. * Rather, exit every time.
  5772. */
  5773. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  5774. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  5775. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  5776. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  5777. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  5778. * bitwise-or of what L1 wants to trap for L2, and what we want to
  5779. * trap. Note that CR0.TS also needs updating - we do this later.
  5780. */
  5781. update_exception_bitmap(vcpu);
  5782. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  5783. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5784. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  5785. vmcs_write32(VM_EXIT_CONTROLS,
  5786. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  5787. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  5788. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  5789. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  5790. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  5791. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  5792. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  5793. set_cr4_guest_host_mask(vmx);
  5794. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  5795. vmcs_write64(TSC_OFFSET,
  5796. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  5797. else
  5798. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  5799. if (enable_vpid) {
  5800. /*
  5801. * Trivially support vpid by letting L2s share their parent
  5802. * L1's vpid. TODO: move to a more elaborate solution, giving
  5803. * each L2 its own vpid and exposing the vpid feature to L1.
  5804. */
  5805. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  5806. vmx_flush_tlb(vcpu);
  5807. }
  5808. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  5809. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  5810. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  5811. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5812. else
  5813. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  5814. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  5815. vmx_set_efer(vcpu, vcpu->arch.efer);
  5816. /*
  5817. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  5818. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  5819. * The CR0_READ_SHADOW is what L2 should have expected to read given
  5820. * the specifications by L1; It's not enough to take
  5821. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  5822. * have more bits than L1 expected.
  5823. */
  5824. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  5825. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  5826. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  5827. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  5828. /* shadow page tables on either EPT or shadow page tables */
  5829. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  5830. kvm_mmu_reset_context(vcpu);
  5831. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  5832. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  5833. }
  5834. /*
  5835. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  5836. * for running an L2 nested guest.
  5837. */
  5838. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  5839. {
  5840. struct vmcs12 *vmcs12;
  5841. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5842. int cpu;
  5843. struct loaded_vmcs *vmcs02;
  5844. if (!nested_vmx_check_permission(vcpu) ||
  5845. !nested_vmx_check_vmcs12(vcpu))
  5846. return 1;
  5847. skip_emulated_instruction(vcpu);
  5848. vmcs12 = get_vmcs12(vcpu);
  5849. /*
  5850. * The nested entry process starts with enforcing various prerequisites
  5851. * on vmcs12 as required by the Intel SDM, and act appropriately when
  5852. * they fail: As the SDM explains, some conditions should cause the
  5853. * instruction to fail, while others will cause the instruction to seem
  5854. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  5855. * To speed up the normal (success) code path, we should avoid checking
  5856. * for misconfigurations which will anyway be caught by the processor
  5857. * when using the merged vmcs02.
  5858. */
  5859. if (vmcs12->launch_state == launch) {
  5860. nested_vmx_failValid(vcpu,
  5861. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  5862. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  5863. return 1;
  5864. }
  5865. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  5866. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  5867. /*TODO: Also verify bits beyond physical address width are 0*/
  5868. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5869. return 1;
  5870. }
  5871. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  5872. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  5873. /*TODO: Also verify bits beyond physical address width are 0*/
  5874. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5875. return 1;
  5876. }
  5877. if (vmcs12->vm_entry_msr_load_count > 0 ||
  5878. vmcs12->vm_exit_msr_load_count > 0 ||
  5879. vmcs12->vm_exit_msr_store_count > 0) {
  5880. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  5881. __func__);
  5882. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5883. return 1;
  5884. }
  5885. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  5886. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  5887. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  5888. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  5889. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  5890. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  5891. !vmx_control_verify(vmcs12->vm_exit_controls,
  5892. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  5893. !vmx_control_verify(vmcs12->vm_entry_controls,
  5894. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  5895. {
  5896. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5897. return 1;
  5898. }
  5899. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5900. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5901. nested_vmx_failValid(vcpu,
  5902. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  5903. return 1;
  5904. }
  5905. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5906. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5907. nested_vmx_entry_failure(vcpu, vmcs12,
  5908. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  5909. return 1;
  5910. }
  5911. if (vmcs12->vmcs_link_pointer != -1ull) {
  5912. nested_vmx_entry_failure(vcpu, vmcs12,
  5913. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  5914. return 1;
  5915. }
  5916. /*
  5917. * We're finally done with prerequisite checking, and can start with
  5918. * the nested entry.
  5919. */
  5920. vmcs02 = nested_get_current_vmcs02(vmx);
  5921. if (!vmcs02)
  5922. return -ENOMEM;
  5923. enter_guest_mode(vcpu);
  5924. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  5925. cpu = get_cpu();
  5926. vmx->loaded_vmcs = vmcs02;
  5927. vmx_vcpu_put(vcpu);
  5928. vmx_vcpu_load(vcpu, cpu);
  5929. vcpu->cpu = cpu;
  5930. put_cpu();
  5931. vmcs12->launch_state = 1;
  5932. prepare_vmcs02(vcpu, vmcs12);
  5933. /*
  5934. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  5935. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  5936. * returned as far as L1 is concerned. It will only return (and set
  5937. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  5938. */
  5939. return 1;
  5940. }
  5941. /*
  5942. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  5943. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  5944. * This function returns the new value we should put in vmcs12.guest_cr0.
  5945. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  5946. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  5947. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  5948. * didn't trap the bit, because if L1 did, so would L0).
  5949. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  5950. * been modified by L2, and L1 knows it. So just leave the old value of
  5951. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  5952. * isn't relevant, because if L0 traps this bit it can set it to anything.
  5953. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  5954. * changed these bits, and therefore they need to be updated, but L0
  5955. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  5956. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  5957. */
  5958. static inline unsigned long
  5959. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5960. {
  5961. return
  5962. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  5963. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  5964. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  5965. vcpu->arch.cr0_guest_owned_bits));
  5966. }
  5967. static inline unsigned long
  5968. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5969. {
  5970. return
  5971. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  5972. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  5973. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  5974. vcpu->arch.cr4_guest_owned_bits));
  5975. }
  5976. /*
  5977. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  5978. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  5979. * and this function updates it to reflect the changes to the guest state while
  5980. * L2 was running (and perhaps made some exits which were handled directly by L0
  5981. * without going back to L1), and to reflect the exit reason.
  5982. * Note that we do not have to copy here all VMCS fields, just those that
  5983. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  5984. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  5985. * which already writes to vmcs12 directly.
  5986. */
  5987. void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5988. {
  5989. /* update guest state fields: */
  5990. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  5991. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  5992. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  5993. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  5994. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  5995. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  5996. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  5997. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  5998. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  5999. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  6000. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  6001. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  6002. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  6003. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  6004. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  6005. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  6006. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  6007. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  6008. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  6009. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  6010. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  6011. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  6012. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  6013. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  6014. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  6015. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  6016. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  6017. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  6018. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  6019. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  6020. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  6021. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  6022. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  6023. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  6024. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  6025. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  6026. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  6027. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  6028. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  6029. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  6030. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  6031. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  6032. vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
  6033. vmcs12->guest_interruptibility_info =
  6034. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  6035. vmcs12->guest_pending_dbg_exceptions =
  6036. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  6037. /* TODO: These cannot have changed unless we have MSR bitmaps and
  6038. * the relevant bit asks not to trap the change */
  6039. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  6040. if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
  6041. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  6042. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  6043. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  6044. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  6045. /* update exit information fields: */
  6046. vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
  6047. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  6048. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6049. vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  6050. vmcs12->idt_vectoring_info_field =
  6051. vmcs_read32(IDT_VECTORING_INFO_FIELD);
  6052. vmcs12->idt_vectoring_error_code =
  6053. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  6054. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  6055. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  6056. /* clear vm-entry fields which are to be cleared on exit */
  6057. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
  6058. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  6059. }
  6060. /*
  6061. * A part of what we need to when the nested L2 guest exits and we want to
  6062. * run its L1 parent, is to reset L1's guest state to the host state specified
  6063. * in vmcs12.
  6064. * This function is to be called not only on normal nested exit, but also on
  6065. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  6066. * Failures During or After Loading Guest State").
  6067. * This function should be called when the active VMCS is L1's (vmcs01).
  6068. */
  6069. void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6070. {
  6071. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  6072. vcpu->arch.efer = vmcs12->host_ia32_efer;
  6073. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  6074. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6075. else
  6076. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6077. vmx_set_efer(vcpu, vcpu->arch.efer);
  6078. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  6079. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  6080. /*
  6081. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  6082. * actually changed, because it depends on the current state of
  6083. * fpu_active (which may have changed).
  6084. * Note that vmx_set_cr0 refers to efer set above.
  6085. */
  6086. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  6087. /*
  6088. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  6089. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  6090. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  6091. */
  6092. update_exception_bitmap(vcpu);
  6093. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  6094. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6095. /*
  6096. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  6097. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  6098. */
  6099. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  6100. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  6101. /* shadow page tables on either EPT or shadow page tables */
  6102. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  6103. kvm_mmu_reset_context(vcpu);
  6104. if (enable_vpid) {
  6105. /*
  6106. * Trivially support vpid by letting L2s share their parent
  6107. * L1's vpid. TODO: move to a more elaborate solution, giving
  6108. * each L2 its own vpid and exposing the vpid feature to L1.
  6109. */
  6110. vmx_flush_tlb(vcpu);
  6111. }
  6112. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  6113. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  6114. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  6115. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  6116. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  6117. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  6118. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  6119. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  6120. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  6121. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  6122. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  6123. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  6124. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  6125. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  6126. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6127. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6128. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6129. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6130. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6131. vmcs12->host_ia32_perf_global_ctrl);
  6132. }
  6133. /*
  6134. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6135. * and modify vmcs12 to make it see what it would expect to see there if
  6136. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6137. */
  6138. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6139. {
  6140. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6141. int cpu;
  6142. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6143. leave_guest_mode(vcpu);
  6144. prepare_vmcs12(vcpu, vmcs12);
  6145. cpu = get_cpu();
  6146. vmx->loaded_vmcs = &vmx->vmcs01;
  6147. vmx_vcpu_put(vcpu);
  6148. vmx_vcpu_load(vcpu, cpu);
  6149. vcpu->cpu = cpu;
  6150. put_cpu();
  6151. /* if no vmcs02 cache requested, remove the one we used */
  6152. if (VMCS02_POOL_SIZE == 0)
  6153. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  6154. load_vmcs12_host_state(vcpu, vmcs12);
  6155. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  6156. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6157. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  6158. vmx->host_rsp = 0;
  6159. /* Unpin physical memory we referred to in vmcs02 */
  6160. if (vmx->nested.apic_access_page) {
  6161. nested_release_page(vmx->nested.apic_access_page);
  6162. vmx->nested.apic_access_page = 0;
  6163. }
  6164. /*
  6165. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  6166. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  6167. * success or failure flag accordingly.
  6168. */
  6169. if (unlikely(vmx->fail)) {
  6170. vmx->fail = 0;
  6171. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  6172. } else
  6173. nested_vmx_succeed(vcpu);
  6174. }
  6175. /*
  6176. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  6177. * 23.7 "VM-entry failures during or after loading guest state" (this also
  6178. * lists the acceptable exit-reason and exit-qualification parameters).
  6179. * It should only be called before L2 actually succeeded to run, and when
  6180. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  6181. */
  6182. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  6183. struct vmcs12 *vmcs12,
  6184. u32 reason, unsigned long qualification)
  6185. {
  6186. load_vmcs12_host_state(vcpu, vmcs12);
  6187. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  6188. vmcs12->exit_qualification = qualification;
  6189. nested_vmx_succeed(vcpu);
  6190. }
  6191. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  6192. struct x86_instruction_info *info,
  6193. enum x86_intercept_stage stage)
  6194. {
  6195. return X86EMUL_CONTINUE;
  6196. }
  6197. static struct kvm_x86_ops vmx_x86_ops = {
  6198. .cpu_has_kvm_support = cpu_has_kvm_support,
  6199. .disabled_by_bios = vmx_disabled_by_bios,
  6200. .hardware_setup = hardware_setup,
  6201. .hardware_unsetup = hardware_unsetup,
  6202. .check_processor_compatibility = vmx_check_processor_compat,
  6203. .hardware_enable = hardware_enable,
  6204. .hardware_disable = hardware_disable,
  6205. .cpu_has_accelerated_tpr = report_flexpriority,
  6206. .vcpu_create = vmx_create_vcpu,
  6207. .vcpu_free = vmx_free_vcpu,
  6208. .vcpu_reset = vmx_vcpu_reset,
  6209. .prepare_guest_switch = vmx_save_host_state,
  6210. .vcpu_load = vmx_vcpu_load,
  6211. .vcpu_put = vmx_vcpu_put,
  6212. .set_guest_debug = set_guest_debug,
  6213. .get_msr = vmx_get_msr,
  6214. .set_msr = vmx_set_msr,
  6215. .get_segment_base = vmx_get_segment_base,
  6216. .get_segment = vmx_get_segment,
  6217. .set_segment = vmx_set_segment,
  6218. .get_cpl = vmx_get_cpl,
  6219. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  6220. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  6221. .decache_cr3 = vmx_decache_cr3,
  6222. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  6223. .set_cr0 = vmx_set_cr0,
  6224. .set_cr3 = vmx_set_cr3,
  6225. .set_cr4 = vmx_set_cr4,
  6226. .set_efer = vmx_set_efer,
  6227. .get_idt = vmx_get_idt,
  6228. .set_idt = vmx_set_idt,
  6229. .get_gdt = vmx_get_gdt,
  6230. .set_gdt = vmx_set_gdt,
  6231. .set_dr7 = vmx_set_dr7,
  6232. .cache_reg = vmx_cache_reg,
  6233. .get_rflags = vmx_get_rflags,
  6234. .set_rflags = vmx_set_rflags,
  6235. .fpu_activate = vmx_fpu_activate,
  6236. .fpu_deactivate = vmx_fpu_deactivate,
  6237. .tlb_flush = vmx_flush_tlb,
  6238. .run = vmx_vcpu_run,
  6239. .handle_exit = vmx_handle_exit,
  6240. .skip_emulated_instruction = skip_emulated_instruction,
  6241. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  6242. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  6243. .patch_hypercall = vmx_patch_hypercall,
  6244. .set_irq = vmx_inject_irq,
  6245. .set_nmi = vmx_inject_nmi,
  6246. .queue_exception = vmx_queue_exception,
  6247. .cancel_injection = vmx_cancel_injection,
  6248. .interrupt_allowed = vmx_interrupt_allowed,
  6249. .nmi_allowed = vmx_nmi_allowed,
  6250. .get_nmi_mask = vmx_get_nmi_mask,
  6251. .set_nmi_mask = vmx_set_nmi_mask,
  6252. .enable_nmi_window = enable_nmi_window,
  6253. .enable_irq_window = enable_irq_window,
  6254. .update_cr8_intercept = update_cr8_intercept,
  6255. .set_tss_addr = vmx_set_tss_addr,
  6256. .get_tdp_level = get_ept_level,
  6257. .get_mt_mask = vmx_get_mt_mask,
  6258. .get_exit_info = vmx_get_exit_info,
  6259. .get_lpage_level = vmx_get_lpage_level,
  6260. .cpuid_update = vmx_cpuid_update,
  6261. .rdtscp_supported = vmx_rdtscp_supported,
  6262. .set_supported_cpuid = vmx_set_supported_cpuid,
  6263. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  6264. .set_tsc_khz = vmx_set_tsc_khz,
  6265. .write_tsc_offset = vmx_write_tsc_offset,
  6266. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  6267. .compute_tsc_offset = vmx_compute_tsc_offset,
  6268. .read_l1_tsc = vmx_read_l1_tsc,
  6269. .set_tdp_cr3 = vmx_set_cr3,
  6270. .check_intercept = vmx_check_intercept,
  6271. };
  6272. static int __init vmx_init(void)
  6273. {
  6274. int r, i;
  6275. rdmsrl_safe(MSR_EFER, &host_efer);
  6276. for (i = 0; i < NR_VMX_MSR; ++i)
  6277. kvm_define_shared_msr(i, vmx_msr_index[i]);
  6278. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  6279. if (!vmx_io_bitmap_a)
  6280. return -ENOMEM;
  6281. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  6282. if (!vmx_io_bitmap_b) {
  6283. r = -ENOMEM;
  6284. goto out;
  6285. }
  6286. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  6287. if (!vmx_msr_bitmap_legacy) {
  6288. r = -ENOMEM;
  6289. goto out1;
  6290. }
  6291. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  6292. if (!vmx_msr_bitmap_longmode) {
  6293. r = -ENOMEM;
  6294. goto out2;
  6295. }
  6296. /*
  6297. * Allow direct access to the PC debug port (it is often used for I/O
  6298. * delays, but the vmexits simply slow things down).
  6299. */
  6300. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  6301. clear_bit(0x80, vmx_io_bitmap_a);
  6302. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  6303. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  6304. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  6305. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  6306. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  6307. __alignof__(struct vcpu_vmx), THIS_MODULE);
  6308. if (r)
  6309. goto out3;
  6310. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  6311. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  6312. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  6313. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  6314. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  6315. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  6316. if (enable_ept) {
  6317. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  6318. VMX_EPT_EXECUTABLE_MASK);
  6319. ept_set_mmio_spte_mask();
  6320. kvm_enable_tdp();
  6321. } else
  6322. kvm_disable_tdp();
  6323. return 0;
  6324. out3:
  6325. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6326. out2:
  6327. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6328. out1:
  6329. free_page((unsigned long)vmx_io_bitmap_b);
  6330. out:
  6331. free_page((unsigned long)vmx_io_bitmap_a);
  6332. return r;
  6333. }
  6334. static void __exit vmx_exit(void)
  6335. {
  6336. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6337. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6338. free_page((unsigned long)vmx_io_bitmap_b);
  6339. free_page((unsigned long)vmx_io_bitmap_a);
  6340. kvm_exit();
  6341. }
  6342. module_init(vmx_init)
  6343. module_exit(vmx_exit)