tsc.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015
  1. #include <linux/kernel.h>
  2. #include <linux/sched.h>
  3. #include <linux/init.h>
  4. #include <linux/module.h>
  5. #include <linux/timer.h>
  6. #include <linux/acpi_pmtmr.h>
  7. #include <linux/cpufreq.h>
  8. #include <linux/delay.h>
  9. #include <linux/clocksource.h>
  10. #include <linux/percpu.h>
  11. #include <linux/timex.h>
  12. #include <asm/hpet.h>
  13. #include <asm/timer.h>
  14. #include <asm/vgtod.h>
  15. #include <asm/time.h>
  16. #include <asm/delay.h>
  17. #include <asm/hypervisor.h>
  18. #include <asm/nmi.h>
  19. #include <asm/x86_init.h>
  20. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  21. EXPORT_SYMBOL(cpu_khz);
  22. unsigned int __read_mostly tsc_khz;
  23. EXPORT_SYMBOL(tsc_khz);
  24. /*
  25. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  26. */
  27. static int __read_mostly tsc_unstable;
  28. /* native_sched_clock() is called before tsc_init(), so
  29. we must start with the TSC soft disabled to prevent
  30. erroneous rdtsc usage on !cpu_has_tsc processors */
  31. static int __read_mostly tsc_disabled = -1;
  32. int tsc_clocksource_reliable;
  33. /*
  34. * Scheduler clock - returns current time in nanosec units.
  35. */
  36. u64 native_sched_clock(void)
  37. {
  38. u64 this_offset;
  39. /*
  40. * Fall back to jiffies if there's no TSC available:
  41. * ( But note that we still use it if the TSC is marked
  42. * unstable. We do this because unlike Time Of Day,
  43. * the scheduler clock tolerates small errors and it's
  44. * very important for it to be as fast as the platform
  45. * can achieve it. )
  46. */
  47. if (unlikely(tsc_disabled)) {
  48. /* No locking but a rare wrong value is not a big deal: */
  49. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  50. }
  51. /* read the Time Stamp Counter: */
  52. rdtscll(this_offset);
  53. /* return the value in ns */
  54. return __cycles_2_ns(this_offset);
  55. }
  56. /* We need to define a real function for sched_clock, to override the
  57. weak default version */
  58. #ifdef CONFIG_PARAVIRT
  59. unsigned long long sched_clock(void)
  60. {
  61. return paravirt_sched_clock();
  62. }
  63. #else
  64. unsigned long long
  65. sched_clock(void) __attribute__((alias("native_sched_clock")));
  66. #endif
  67. int check_tsc_unstable(void)
  68. {
  69. return tsc_unstable;
  70. }
  71. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  72. #ifdef CONFIG_X86_TSC
  73. int __init notsc_setup(char *str)
  74. {
  75. printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
  76. "cannot disable TSC completely.\n");
  77. tsc_disabled = 1;
  78. return 1;
  79. }
  80. #else
  81. /*
  82. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  83. * in cpu/common.c
  84. */
  85. int __init notsc_setup(char *str)
  86. {
  87. setup_clear_cpu_cap(X86_FEATURE_TSC);
  88. return 1;
  89. }
  90. #endif
  91. __setup("notsc", notsc_setup);
  92. static int no_sched_irq_time;
  93. static int __init tsc_setup(char *str)
  94. {
  95. if (!strcmp(str, "reliable"))
  96. tsc_clocksource_reliable = 1;
  97. if (!strncmp(str, "noirqtime", 9))
  98. no_sched_irq_time = 1;
  99. return 1;
  100. }
  101. __setup("tsc=", tsc_setup);
  102. #define MAX_RETRIES 5
  103. #define SMI_TRESHOLD 50000
  104. /*
  105. * Read TSC and the reference counters. Take care of SMI disturbance
  106. */
  107. static u64 tsc_read_refs(u64 *p, int hpet)
  108. {
  109. u64 t1, t2;
  110. int i;
  111. for (i = 0; i < MAX_RETRIES; i++) {
  112. t1 = get_cycles();
  113. if (hpet)
  114. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  115. else
  116. *p = acpi_pm_read_early();
  117. t2 = get_cycles();
  118. if ((t2 - t1) < SMI_TRESHOLD)
  119. return t2;
  120. }
  121. return ULLONG_MAX;
  122. }
  123. /*
  124. * Calculate the TSC frequency from HPET reference
  125. */
  126. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  127. {
  128. u64 tmp;
  129. if (hpet2 < hpet1)
  130. hpet2 += 0x100000000ULL;
  131. hpet2 -= hpet1;
  132. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  133. do_div(tmp, 1000000);
  134. do_div(deltatsc, tmp);
  135. return (unsigned long) deltatsc;
  136. }
  137. /*
  138. * Calculate the TSC frequency from PMTimer reference
  139. */
  140. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  141. {
  142. u64 tmp;
  143. if (!pm1 && !pm2)
  144. return ULONG_MAX;
  145. if (pm2 < pm1)
  146. pm2 += (u64)ACPI_PM_OVRRUN;
  147. pm2 -= pm1;
  148. tmp = pm2 * 1000000000LL;
  149. do_div(tmp, PMTMR_TICKS_PER_SEC);
  150. do_div(deltatsc, tmp);
  151. return (unsigned long) deltatsc;
  152. }
  153. #define CAL_MS 10
  154. #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
  155. #define CAL_PIT_LOOPS 1000
  156. #define CAL2_MS 50
  157. #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
  158. #define CAL2_PIT_LOOPS 5000
  159. /*
  160. * Try to calibrate the TSC against the Programmable
  161. * Interrupt Timer and return the frequency of the TSC
  162. * in kHz.
  163. *
  164. * Return ULONG_MAX on failure to calibrate.
  165. */
  166. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  167. {
  168. u64 tsc, t1, t2, delta;
  169. unsigned long tscmin, tscmax;
  170. int pitcnt;
  171. /* Set the Gate high, disable speaker */
  172. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  173. /*
  174. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  175. * count mode), binary count. Set the latch register to 50ms
  176. * (LSB then MSB) to begin countdown.
  177. */
  178. outb(0xb0, 0x43);
  179. outb(latch & 0xff, 0x42);
  180. outb(latch >> 8, 0x42);
  181. tsc = t1 = t2 = get_cycles();
  182. pitcnt = 0;
  183. tscmax = 0;
  184. tscmin = ULONG_MAX;
  185. while ((inb(0x61) & 0x20) == 0) {
  186. t2 = get_cycles();
  187. delta = t2 - tsc;
  188. tsc = t2;
  189. if ((unsigned long) delta < tscmin)
  190. tscmin = (unsigned int) delta;
  191. if ((unsigned long) delta > tscmax)
  192. tscmax = (unsigned int) delta;
  193. pitcnt++;
  194. }
  195. /*
  196. * Sanity checks:
  197. *
  198. * If we were not able to read the PIT more than loopmin
  199. * times, then we have been hit by a massive SMI
  200. *
  201. * If the maximum is 10 times larger than the minimum,
  202. * then we got hit by an SMI as well.
  203. */
  204. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  205. return ULONG_MAX;
  206. /* Calculate the PIT value */
  207. delta = t2 - t1;
  208. do_div(delta, ms);
  209. return delta;
  210. }
  211. /*
  212. * This reads the current MSB of the PIT counter, and
  213. * checks if we are running on sufficiently fast and
  214. * non-virtualized hardware.
  215. *
  216. * Our expectations are:
  217. *
  218. * - the PIT is running at roughly 1.19MHz
  219. *
  220. * - each IO is going to take about 1us on real hardware,
  221. * but we allow it to be much faster (by a factor of 10) or
  222. * _slightly_ slower (ie we allow up to a 2us read+counter
  223. * update - anything else implies a unacceptably slow CPU
  224. * or PIT for the fast calibration to work.
  225. *
  226. * - with 256 PIT ticks to read the value, we have 214us to
  227. * see the same MSB (and overhead like doing a single TSC
  228. * read per MSB value etc).
  229. *
  230. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  231. * them each to take about a microsecond on real hardware.
  232. * So we expect a count value of around 100. But we'll be
  233. * generous, and accept anything over 50.
  234. *
  235. * - if the PIT is stuck, and we see *many* more reads, we
  236. * return early (and the next caller of pit_expect_msb()
  237. * then consider it a failure when they don't see the
  238. * next expected value).
  239. *
  240. * These expectations mean that we know that we have seen the
  241. * transition from one expected value to another with a fairly
  242. * high accuracy, and we didn't miss any events. We can thus
  243. * use the TSC value at the transitions to calculate a pretty
  244. * good value for the TSC frequencty.
  245. */
  246. static inline int pit_verify_msb(unsigned char val)
  247. {
  248. /* Ignore LSB */
  249. inb(0x42);
  250. return inb(0x42) == val;
  251. }
  252. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  253. {
  254. int count;
  255. u64 tsc = 0, prev_tsc = 0;
  256. for (count = 0; count < 50000; count++) {
  257. if (!pit_verify_msb(val))
  258. break;
  259. prev_tsc = tsc;
  260. tsc = get_cycles();
  261. }
  262. *deltap = get_cycles() - prev_tsc;
  263. *tscp = tsc;
  264. /*
  265. * We require _some_ success, but the quality control
  266. * will be based on the error terms on the TSC values.
  267. */
  268. return count > 5;
  269. }
  270. /*
  271. * How many MSB values do we want to see? We aim for
  272. * a maximum error rate of 500ppm (in practice the
  273. * real error is much smaller), but refuse to spend
  274. * more than 50ms on it.
  275. */
  276. #define MAX_QUICK_PIT_MS 50
  277. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  278. static unsigned long quick_pit_calibrate(void)
  279. {
  280. int i;
  281. u64 tsc, delta;
  282. unsigned long d1, d2;
  283. /* Set the Gate high, disable speaker */
  284. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  285. /*
  286. * Counter 2, mode 0 (one-shot), binary count
  287. *
  288. * NOTE! Mode 2 decrements by two (and then the
  289. * output is flipped each time, giving the same
  290. * final output frequency as a decrement-by-one),
  291. * so mode 0 is much better when looking at the
  292. * individual counts.
  293. */
  294. outb(0xb0, 0x43);
  295. /* Start at 0xffff */
  296. outb(0xff, 0x42);
  297. outb(0xff, 0x42);
  298. /*
  299. * The PIT starts counting at the next edge, so we
  300. * need to delay for a microsecond. The easiest way
  301. * to do that is to just read back the 16-bit counter
  302. * once from the PIT.
  303. */
  304. pit_verify_msb(0);
  305. if (pit_expect_msb(0xff, &tsc, &d1)) {
  306. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  307. if (!pit_expect_msb(0xff-i, &delta, &d2))
  308. break;
  309. /*
  310. * Iterate until the error is less than 500 ppm
  311. */
  312. delta -= tsc;
  313. if (d1+d2 >= delta >> 11)
  314. continue;
  315. /*
  316. * Check the PIT one more time to verify that
  317. * all TSC reads were stable wrt the PIT.
  318. *
  319. * This also guarantees serialization of the
  320. * last cycle read ('d2') in pit_expect_msb.
  321. */
  322. if (!pit_verify_msb(0xfe - i))
  323. break;
  324. goto success;
  325. }
  326. }
  327. printk("Fast TSC calibration failed\n");
  328. return 0;
  329. success:
  330. /*
  331. * Ok, if we get here, then we've seen the
  332. * MSB of the PIT decrement 'i' times, and the
  333. * error has shrunk to less than 500 ppm.
  334. *
  335. * As a result, we can depend on there not being
  336. * any odd delays anywhere, and the TSC reads are
  337. * reliable (within the error).
  338. *
  339. * kHz = ticks / time-in-seconds / 1000;
  340. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  341. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  342. */
  343. delta *= PIT_TICK_RATE;
  344. do_div(delta, i*256*1000);
  345. printk("Fast TSC calibration using PIT\n");
  346. return delta;
  347. }
  348. /**
  349. * native_calibrate_tsc - calibrate the tsc on boot
  350. */
  351. unsigned long native_calibrate_tsc(void)
  352. {
  353. u64 tsc1, tsc2, delta, ref1, ref2;
  354. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  355. unsigned long flags, latch, ms, fast_calibrate;
  356. int hpet = is_hpet_enabled(), i, loopmin;
  357. local_irq_save(flags);
  358. fast_calibrate = quick_pit_calibrate();
  359. local_irq_restore(flags);
  360. if (fast_calibrate)
  361. return fast_calibrate;
  362. /*
  363. * Run 5 calibration loops to get the lowest frequency value
  364. * (the best estimate). We use two different calibration modes
  365. * here:
  366. *
  367. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  368. * load a timeout of 50ms. We read the time right after we
  369. * started the timer and wait until the PIT count down reaches
  370. * zero. In each wait loop iteration we read the TSC and check
  371. * the delta to the previous read. We keep track of the min
  372. * and max values of that delta. The delta is mostly defined
  373. * by the IO time of the PIT access, so we can detect when a
  374. * SMI/SMM disturbance happened between the two reads. If the
  375. * maximum time is significantly larger than the minimum time,
  376. * then we discard the result and have another try.
  377. *
  378. * 2) Reference counter. If available we use the HPET or the
  379. * PMTIMER as a reference to check the sanity of that value.
  380. * We use separate TSC readouts and check inside of the
  381. * reference read for a SMI/SMM disturbance. We dicard
  382. * disturbed values here as well. We do that around the PIT
  383. * calibration delay loop as we have to wait for a certain
  384. * amount of time anyway.
  385. */
  386. /* Preset PIT loop values */
  387. latch = CAL_LATCH;
  388. ms = CAL_MS;
  389. loopmin = CAL_PIT_LOOPS;
  390. for (i = 0; i < 3; i++) {
  391. unsigned long tsc_pit_khz;
  392. /*
  393. * Read the start value and the reference count of
  394. * hpet/pmtimer when available. Then do the PIT
  395. * calibration, which will take at least 50ms, and
  396. * read the end value.
  397. */
  398. local_irq_save(flags);
  399. tsc1 = tsc_read_refs(&ref1, hpet);
  400. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  401. tsc2 = tsc_read_refs(&ref2, hpet);
  402. local_irq_restore(flags);
  403. /* Pick the lowest PIT TSC calibration so far */
  404. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  405. /* hpet or pmtimer available ? */
  406. if (ref1 == ref2)
  407. continue;
  408. /* Check, whether the sampling was disturbed by an SMI */
  409. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  410. continue;
  411. tsc2 = (tsc2 - tsc1) * 1000000LL;
  412. if (hpet)
  413. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  414. else
  415. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  416. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  417. /* Check the reference deviation */
  418. delta = ((u64) tsc_pit_min) * 100;
  419. do_div(delta, tsc_ref_min);
  420. /*
  421. * If both calibration results are inside a 10% window
  422. * then we can be sure, that the calibration
  423. * succeeded. We break out of the loop right away. We
  424. * use the reference value, as it is more precise.
  425. */
  426. if (delta >= 90 && delta <= 110) {
  427. printk(KERN_INFO
  428. "TSC: PIT calibration matches %s. %d loops\n",
  429. hpet ? "HPET" : "PMTIMER", i + 1);
  430. return tsc_ref_min;
  431. }
  432. /*
  433. * Check whether PIT failed more than once. This
  434. * happens in virtualized environments. We need to
  435. * give the virtual PC a slightly longer timeframe for
  436. * the HPET/PMTIMER to make the result precise.
  437. */
  438. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  439. latch = CAL2_LATCH;
  440. ms = CAL2_MS;
  441. loopmin = CAL2_PIT_LOOPS;
  442. }
  443. }
  444. /*
  445. * Now check the results.
  446. */
  447. if (tsc_pit_min == ULONG_MAX) {
  448. /* PIT gave no useful value */
  449. printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
  450. /* We don't have an alternative source, disable TSC */
  451. if (!hpet && !ref1 && !ref2) {
  452. printk("TSC: No reference (HPET/PMTIMER) available\n");
  453. return 0;
  454. }
  455. /* The alternative source failed as well, disable TSC */
  456. if (tsc_ref_min == ULONG_MAX) {
  457. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
  458. "failed.\n");
  459. return 0;
  460. }
  461. /* Use the alternative source */
  462. printk(KERN_INFO "TSC: using %s reference calibration\n",
  463. hpet ? "HPET" : "PMTIMER");
  464. return tsc_ref_min;
  465. }
  466. /* We don't have an alternative source, use the PIT calibration value */
  467. if (!hpet && !ref1 && !ref2) {
  468. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  469. return tsc_pit_min;
  470. }
  471. /* The alternative source failed, use the PIT calibration value */
  472. if (tsc_ref_min == ULONG_MAX) {
  473. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
  474. "Using PIT calibration\n");
  475. return tsc_pit_min;
  476. }
  477. /*
  478. * The calibration values differ too much. In doubt, we use
  479. * the PIT value as we know that there are PMTIMERs around
  480. * running at double speed. At least we let the user know:
  481. */
  482. printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
  483. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  484. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  485. return tsc_pit_min;
  486. }
  487. int recalibrate_cpu_khz(void)
  488. {
  489. #ifndef CONFIG_SMP
  490. unsigned long cpu_khz_old = cpu_khz;
  491. if (cpu_has_tsc) {
  492. tsc_khz = x86_platform.calibrate_tsc();
  493. cpu_khz = tsc_khz;
  494. cpu_data(0).loops_per_jiffy =
  495. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  496. cpu_khz_old, cpu_khz);
  497. return 0;
  498. } else
  499. return -ENODEV;
  500. #else
  501. return -ENODEV;
  502. #endif
  503. }
  504. EXPORT_SYMBOL(recalibrate_cpu_khz);
  505. /* Accelerators for sched_clock()
  506. * convert from cycles(64bits) => nanoseconds (64bits)
  507. * basic equation:
  508. * ns = cycles / (freq / ns_per_sec)
  509. * ns = cycles * (ns_per_sec / freq)
  510. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  511. * ns = cycles * (10^6 / cpu_khz)
  512. *
  513. * Then we use scaling math (suggested by george@mvista.com) to get:
  514. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  515. * ns = cycles * cyc2ns_scale / SC
  516. *
  517. * And since SC is a constant power of two, we can convert the div
  518. * into a shift.
  519. *
  520. * We can use khz divisor instead of mhz to keep a better precision, since
  521. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  522. * (mathieu.desnoyers@polymtl.ca)
  523. *
  524. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  525. */
  526. DEFINE_PER_CPU(unsigned long, cyc2ns);
  527. DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
  528. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  529. {
  530. unsigned long long tsc_now, ns_now, *offset;
  531. unsigned long flags, *scale;
  532. local_irq_save(flags);
  533. sched_clock_idle_sleep_event();
  534. scale = &per_cpu(cyc2ns, cpu);
  535. offset = &per_cpu(cyc2ns_offset, cpu);
  536. rdtscll(tsc_now);
  537. ns_now = __cycles_2_ns(tsc_now);
  538. if (cpu_khz) {
  539. *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
  540. *offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
  541. }
  542. sched_clock_idle_wakeup_event(0);
  543. local_irq_restore(flags);
  544. }
  545. static unsigned long long cyc2ns_suspend;
  546. void save_sched_clock_state(void)
  547. {
  548. if (!sched_clock_stable)
  549. return;
  550. cyc2ns_suspend = sched_clock();
  551. }
  552. /*
  553. * Even on processors with invariant TSC, TSC gets reset in some the
  554. * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
  555. * arbitrary value (still sync'd across cpu's) during resume from such sleep
  556. * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
  557. * that sched_clock() continues from the point where it was left off during
  558. * suspend.
  559. */
  560. void restore_sched_clock_state(void)
  561. {
  562. unsigned long long offset;
  563. unsigned long flags;
  564. int cpu;
  565. if (!sched_clock_stable)
  566. return;
  567. local_irq_save(flags);
  568. __this_cpu_write(cyc2ns_offset, 0);
  569. offset = cyc2ns_suspend - sched_clock();
  570. for_each_possible_cpu(cpu)
  571. per_cpu(cyc2ns_offset, cpu) = offset;
  572. local_irq_restore(flags);
  573. }
  574. #ifdef CONFIG_CPU_FREQ
  575. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  576. * changes.
  577. *
  578. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  579. * not that important because current Opteron setups do not support
  580. * scaling on SMP anyroads.
  581. *
  582. * Should fix up last_tsc too. Currently gettimeofday in the
  583. * first tick after the change will be slightly wrong.
  584. */
  585. static unsigned int ref_freq;
  586. static unsigned long loops_per_jiffy_ref;
  587. static unsigned long tsc_khz_ref;
  588. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  589. void *data)
  590. {
  591. struct cpufreq_freqs *freq = data;
  592. unsigned long *lpj;
  593. if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
  594. return 0;
  595. lpj = &boot_cpu_data.loops_per_jiffy;
  596. #ifdef CONFIG_SMP
  597. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  598. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  599. #endif
  600. if (!ref_freq) {
  601. ref_freq = freq->old;
  602. loops_per_jiffy_ref = *lpj;
  603. tsc_khz_ref = tsc_khz;
  604. }
  605. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  606. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  607. (val == CPUFREQ_RESUMECHANGE)) {
  608. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  609. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  610. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  611. mark_tsc_unstable("cpufreq changes");
  612. }
  613. set_cyc2ns_scale(tsc_khz, freq->cpu);
  614. return 0;
  615. }
  616. static struct notifier_block time_cpufreq_notifier_block = {
  617. .notifier_call = time_cpufreq_notifier
  618. };
  619. static int __init cpufreq_tsc(void)
  620. {
  621. if (!cpu_has_tsc)
  622. return 0;
  623. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  624. return 0;
  625. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  626. CPUFREQ_TRANSITION_NOTIFIER);
  627. return 0;
  628. }
  629. core_initcall(cpufreq_tsc);
  630. #endif /* CONFIG_CPU_FREQ */
  631. /* clocksource code */
  632. static struct clocksource clocksource_tsc;
  633. /*
  634. * We compare the TSC to the cycle_last value in the clocksource
  635. * structure to avoid a nasty time-warp. This can be observed in a
  636. * very small window right after one CPU updated cycle_last under
  637. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  638. * is smaller than the cycle_last reference value due to a TSC which
  639. * is slighty behind. This delta is nowhere else observable, but in
  640. * that case it results in a forward time jump in the range of hours
  641. * due to the unsigned delta calculation of the time keeping core
  642. * code, which is necessary to support wrapping clocksources like pm
  643. * timer.
  644. */
  645. static cycle_t read_tsc(struct clocksource *cs)
  646. {
  647. cycle_t ret = (cycle_t)get_cycles();
  648. return ret >= clocksource_tsc.cycle_last ?
  649. ret : clocksource_tsc.cycle_last;
  650. }
  651. static void resume_tsc(struct clocksource *cs)
  652. {
  653. clocksource_tsc.cycle_last = 0;
  654. }
  655. static struct clocksource clocksource_tsc = {
  656. .name = "tsc",
  657. .rating = 300,
  658. .read = read_tsc,
  659. .resume = resume_tsc,
  660. .mask = CLOCKSOURCE_MASK(64),
  661. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  662. CLOCK_SOURCE_MUST_VERIFY,
  663. #ifdef CONFIG_X86_64
  664. .archdata = { .vclock_mode = VCLOCK_TSC },
  665. #endif
  666. };
  667. void mark_tsc_unstable(char *reason)
  668. {
  669. if (!tsc_unstable) {
  670. tsc_unstable = 1;
  671. sched_clock_stable = 0;
  672. disable_sched_clock_irqtime();
  673. printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
  674. /* Change only the rating, when not registered */
  675. if (clocksource_tsc.mult)
  676. clocksource_mark_unstable(&clocksource_tsc);
  677. else {
  678. clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
  679. clocksource_tsc.rating = 0;
  680. }
  681. }
  682. }
  683. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  684. static void __init check_system_tsc_reliable(void)
  685. {
  686. #ifdef CONFIG_MGEODE_LX
  687. /* RTSC counts during suspend */
  688. #define RTSC_SUSP 0x100
  689. unsigned long res_low, res_high;
  690. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  691. /* Geode_LX - the OLPC CPU has a very reliable TSC */
  692. if (res_low & RTSC_SUSP)
  693. tsc_clocksource_reliable = 1;
  694. #endif
  695. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  696. tsc_clocksource_reliable = 1;
  697. }
  698. /*
  699. * Make an educated guess if the TSC is trustworthy and synchronized
  700. * over all CPUs.
  701. */
  702. __cpuinit int unsynchronized_tsc(void)
  703. {
  704. if (!cpu_has_tsc || tsc_unstable)
  705. return 1;
  706. #ifdef CONFIG_SMP
  707. if (apic_is_clustered_box())
  708. return 1;
  709. #endif
  710. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  711. return 0;
  712. if (tsc_clocksource_reliable)
  713. return 0;
  714. /*
  715. * Intel systems are normally all synchronized.
  716. * Exceptions must mark TSC as unstable:
  717. */
  718. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  719. /* assume multi socket systems are not synchronized: */
  720. if (num_possible_cpus() > 1)
  721. return 1;
  722. }
  723. return 0;
  724. }
  725. static void tsc_refine_calibration_work(struct work_struct *work);
  726. static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
  727. /**
  728. * tsc_refine_calibration_work - Further refine tsc freq calibration
  729. * @work - ignored.
  730. *
  731. * This functions uses delayed work over a period of a
  732. * second to further refine the TSC freq value. Since this is
  733. * timer based, instead of loop based, we don't block the boot
  734. * process while this longer calibration is done.
  735. *
  736. * If there are any calibration anomalies (too many SMIs, etc),
  737. * or the refined calibration is off by 1% of the fast early
  738. * calibration, we throw out the new calibration and use the
  739. * early calibration.
  740. */
  741. static void tsc_refine_calibration_work(struct work_struct *work)
  742. {
  743. static u64 tsc_start = -1, ref_start;
  744. static int hpet;
  745. u64 tsc_stop, ref_stop, delta;
  746. unsigned long freq;
  747. /* Don't bother refining TSC on unstable systems */
  748. if (check_tsc_unstable())
  749. goto out;
  750. /*
  751. * Since the work is started early in boot, we may be
  752. * delayed the first time we expire. So set the workqueue
  753. * again once we know timers are working.
  754. */
  755. if (tsc_start == -1) {
  756. /*
  757. * Only set hpet once, to avoid mixing hardware
  758. * if the hpet becomes enabled later.
  759. */
  760. hpet = is_hpet_enabled();
  761. schedule_delayed_work(&tsc_irqwork, HZ);
  762. tsc_start = tsc_read_refs(&ref_start, hpet);
  763. return;
  764. }
  765. tsc_stop = tsc_read_refs(&ref_stop, hpet);
  766. /* hpet or pmtimer available ? */
  767. if (ref_start == ref_stop)
  768. goto out;
  769. /* Check, whether the sampling was disturbed by an SMI */
  770. if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
  771. goto out;
  772. delta = tsc_stop - tsc_start;
  773. delta *= 1000000LL;
  774. if (hpet)
  775. freq = calc_hpet_ref(delta, ref_start, ref_stop);
  776. else
  777. freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
  778. /* Make sure we're within 1% */
  779. if (abs(tsc_khz - freq) > tsc_khz/100)
  780. goto out;
  781. tsc_khz = freq;
  782. printk(KERN_INFO "Refined TSC clocksource calibration: "
  783. "%lu.%03lu MHz.\n", (unsigned long)tsc_khz / 1000,
  784. (unsigned long)tsc_khz % 1000);
  785. out:
  786. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  787. }
  788. static int __init init_tsc_clocksource(void)
  789. {
  790. if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
  791. return 0;
  792. if (tsc_clocksource_reliable)
  793. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  794. /* lower the rating if we already know its unstable: */
  795. if (check_tsc_unstable()) {
  796. clocksource_tsc.rating = 0;
  797. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  798. }
  799. schedule_delayed_work(&tsc_irqwork, 0);
  800. return 0;
  801. }
  802. /*
  803. * We use device_initcall here, to ensure we run after the hpet
  804. * is fully initialized, which may occur at fs_initcall time.
  805. */
  806. device_initcall(init_tsc_clocksource);
  807. void __init tsc_init(void)
  808. {
  809. u64 lpj;
  810. int cpu;
  811. x86_init.timers.tsc_pre_init();
  812. if (!cpu_has_tsc)
  813. return;
  814. tsc_khz = x86_platform.calibrate_tsc();
  815. cpu_khz = tsc_khz;
  816. if (!tsc_khz) {
  817. mark_tsc_unstable("could not calculate TSC khz");
  818. return;
  819. }
  820. printk("Detected %lu.%03lu MHz processor.\n",
  821. (unsigned long)cpu_khz / 1000,
  822. (unsigned long)cpu_khz % 1000);
  823. /*
  824. * Secondary CPUs do not run through tsc_init(), so set up
  825. * all the scale factors for all CPUs, assuming the same
  826. * speed as the bootup CPU. (cpufreq notifiers will fix this
  827. * up if their speed diverges)
  828. */
  829. for_each_possible_cpu(cpu)
  830. set_cyc2ns_scale(cpu_khz, cpu);
  831. if (tsc_disabled > 0)
  832. return;
  833. /* now allow native_sched_clock() to use rdtsc */
  834. tsc_disabled = 0;
  835. if (!no_sched_irq_time)
  836. enable_sched_clock_irqtime();
  837. lpj = ((u64)tsc_khz * 1000);
  838. do_div(lpj, HZ);
  839. lpj_fine = lpj;
  840. use_tsc_delay();
  841. if (unsynchronized_tsc())
  842. mark_tsc_unstable("TSCs unsynchronized");
  843. check_system_tsc_reliable();
  844. }
  845. #ifdef CONFIG_SMP
  846. /*
  847. * If we have a constant TSC and are using the TSC for the delay loop,
  848. * we can skip clock calibration if another cpu in the same socket has already
  849. * been calibrated. This assumes that CONSTANT_TSC applies to all
  850. * cpus in the socket - this should be a safe assumption.
  851. */
  852. unsigned long __cpuinit calibrate_delay_is_known(void)
  853. {
  854. int i, cpu = smp_processor_id();
  855. if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
  856. return 0;
  857. for_each_online_cpu(i)
  858. if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
  859. return cpu_data(i).loops_per_jiffy;
  860. return 0;
  861. }
  862. #endif