common.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322
  1. #include <linux/bootmem.h>
  2. #include <linux/linkage.h>
  3. #include <linux/bitops.h>
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/string.h>
  8. #include <linux/delay.h>
  9. #include <linux/sched.h>
  10. #include <linux/init.h>
  11. #include <linux/kgdb.h>
  12. #include <linux/smp.h>
  13. #include <linux/io.h>
  14. #include <asm/stackprotector.h>
  15. #include <asm/perf_event.h>
  16. #include <asm/mmu_context.h>
  17. #include <asm/archrandom.h>
  18. #include <asm/hypervisor.h>
  19. #include <asm/processor.h>
  20. #include <asm/sections.h>
  21. #include <linux/topology.h>
  22. #include <linux/cpumask.h>
  23. #include <asm/pgtable.h>
  24. #include <linux/atomic.h>
  25. #include <asm/proto.h>
  26. #include <asm/setup.h>
  27. #include <asm/apic.h>
  28. #include <asm/desc.h>
  29. #include <asm/i387.h>
  30. #include <asm/mtrr.h>
  31. #include <linux/numa.h>
  32. #include <asm/asm.h>
  33. #include <asm/cpu.h>
  34. #include <asm/mce.h>
  35. #include <asm/msr.h>
  36. #include <asm/pat.h>
  37. #ifdef CONFIG_X86_LOCAL_APIC
  38. #include <asm/uv/uv.h>
  39. #endif
  40. #include "cpu.h"
  41. /* all of these masks are initialized in setup_cpu_local_masks() */
  42. cpumask_var_t cpu_initialized_mask;
  43. cpumask_var_t cpu_callout_mask;
  44. cpumask_var_t cpu_callin_mask;
  45. /* representing cpus for which sibling maps can be computed */
  46. cpumask_var_t cpu_sibling_setup_mask;
  47. /* correctly size the local cpu masks */
  48. void __init setup_cpu_local_masks(void)
  49. {
  50. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  51. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  52. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  53. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  54. }
  55. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  56. {
  57. #ifdef CONFIG_X86_64
  58. cpu_detect_cache_sizes(c);
  59. #else
  60. /* Not much we can do here... */
  61. /* Check if at least it has cpuid */
  62. if (c->cpuid_level == -1) {
  63. /* No cpuid. It must be an ancient CPU */
  64. if (c->x86 == 4)
  65. strcpy(c->x86_model_id, "486");
  66. else if (c->x86 == 3)
  67. strcpy(c->x86_model_id, "386");
  68. }
  69. #endif
  70. }
  71. static const struct cpu_dev __cpuinitconst default_cpu = {
  72. .c_init = default_init,
  73. .c_vendor = "Unknown",
  74. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  75. };
  76. static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
  77. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  78. #ifdef CONFIG_X86_64
  79. /*
  80. * We need valid kernel segments for data and code in long mode too
  81. * IRET will check the segment types kkeil 2000/10/28
  82. * Also sysret mandates a special GDT layout
  83. *
  84. * TLS descriptors are currently at a different place compared to i386.
  85. * Hopefully nobody expects them at a fixed place (Wine?)
  86. */
  87. [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
  88. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
  89. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
  90. [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
  91. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
  92. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
  93. #else
  94. [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
  95. [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  96. [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
  97. [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
  98. /*
  99. * Segments used for calling PnP BIOS have byte granularity.
  100. * They code segments and data segments have fixed 64k limits,
  101. * the transfer segment sizes are set at run time.
  102. */
  103. /* 32-bit code */
  104. [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  105. /* 16-bit code */
  106. [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  107. /* 16-bit data */
  108. [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
  109. /* 16-bit data */
  110. [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
  111. /* 16-bit data */
  112. [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
  113. /*
  114. * The APM segments have byte granularity and their bases
  115. * are set at run time. All have 64k limits.
  116. */
  117. /* 32-bit code */
  118. [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
  119. /* 16-bit code */
  120. [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
  121. /* data */
  122. [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
  123. [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  124. [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
  125. GDT_STACK_CANARY_INIT
  126. #endif
  127. } };
  128. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  129. static int __init x86_xsave_setup(char *s)
  130. {
  131. setup_clear_cpu_cap(X86_FEATURE_XSAVE);
  132. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  133. return 1;
  134. }
  135. __setup("noxsave", x86_xsave_setup);
  136. static int __init x86_xsaveopt_setup(char *s)
  137. {
  138. setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
  139. return 1;
  140. }
  141. __setup("noxsaveopt", x86_xsaveopt_setup);
  142. #ifdef CONFIG_X86_32
  143. static int cachesize_override __cpuinitdata = -1;
  144. static int disable_x86_serial_nr __cpuinitdata = 1;
  145. static int __init cachesize_setup(char *str)
  146. {
  147. get_option(&str, &cachesize_override);
  148. return 1;
  149. }
  150. __setup("cachesize=", cachesize_setup);
  151. static int __init x86_fxsr_setup(char *s)
  152. {
  153. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  154. setup_clear_cpu_cap(X86_FEATURE_XMM);
  155. return 1;
  156. }
  157. __setup("nofxsr", x86_fxsr_setup);
  158. static int __init x86_sep_setup(char *s)
  159. {
  160. setup_clear_cpu_cap(X86_FEATURE_SEP);
  161. return 1;
  162. }
  163. __setup("nosep", x86_sep_setup);
  164. /* Standard macro to see if a specific flag is changeable */
  165. static inline int flag_is_changeable_p(u32 flag)
  166. {
  167. u32 f1, f2;
  168. /*
  169. * Cyrix and IDT cpus allow disabling of CPUID
  170. * so the code below may return different results
  171. * when it is executed before and after enabling
  172. * the CPUID. Add "volatile" to not allow gcc to
  173. * optimize the subsequent calls to this function.
  174. */
  175. asm volatile ("pushfl \n\t"
  176. "pushfl \n\t"
  177. "popl %0 \n\t"
  178. "movl %0, %1 \n\t"
  179. "xorl %2, %0 \n\t"
  180. "pushl %0 \n\t"
  181. "popfl \n\t"
  182. "pushfl \n\t"
  183. "popl %0 \n\t"
  184. "popfl \n\t"
  185. : "=&r" (f1), "=&r" (f2)
  186. : "ir" (flag));
  187. return ((f1^f2) & flag) != 0;
  188. }
  189. /* Probe for the CPUID instruction */
  190. static int __cpuinit have_cpuid_p(void)
  191. {
  192. return flag_is_changeable_p(X86_EFLAGS_ID);
  193. }
  194. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  195. {
  196. unsigned long lo, hi;
  197. if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
  198. return;
  199. /* Disable processor serial number: */
  200. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  201. lo |= 0x200000;
  202. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  203. printk(KERN_NOTICE "CPU serial number disabled.\n");
  204. clear_cpu_cap(c, X86_FEATURE_PN);
  205. /* Disabling the serial number may affect the cpuid level */
  206. c->cpuid_level = cpuid_eax(0);
  207. }
  208. static int __init x86_serial_nr_setup(char *s)
  209. {
  210. disable_x86_serial_nr = 0;
  211. return 1;
  212. }
  213. __setup("serialnumber", x86_serial_nr_setup);
  214. #else
  215. static inline int flag_is_changeable_p(u32 flag)
  216. {
  217. return 1;
  218. }
  219. /* Probe for the CPUID instruction */
  220. static inline int have_cpuid_p(void)
  221. {
  222. return 1;
  223. }
  224. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  225. {
  226. }
  227. #endif
  228. static int disable_smep __cpuinitdata;
  229. static __init int setup_disable_smep(char *arg)
  230. {
  231. disable_smep = 1;
  232. return 1;
  233. }
  234. __setup("nosmep", setup_disable_smep);
  235. static __cpuinit void setup_smep(struct cpuinfo_x86 *c)
  236. {
  237. if (cpu_has(c, X86_FEATURE_SMEP)) {
  238. if (unlikely(disable_smep)) {
  239. setup_clear_cpu_cap(X86_FEATURE_SMEP);
  240. clear_in_cr4(X86_CR4_SMEP);
  241. } else
  242. set_in_cr4(X86_CR4_SMEP);
  243. }
  244. }
  245. /*
  246. * Some CPU features depend on higher CPUID levels, which may not always
  247. * be available due to CPUID level capping or broken virtualization
  248. * software. Add those features to this table to auto-disable them.
  249. */
  250. struct cpuid_dependent_feature {
  251. u32 feature;
  252. u32 level;
  253. };
  254. static const struct cpuid_dependent_feature __cpuinitconst
  255. cpuid_dependent_features[] = {
  256. { X86_FEATURE_MWAIT, 0x00000005 },
  257. { X86_FEATURE_DCA, 0x00000009 },
  258. { X86_FEATURE_XSAVE, 0x0000000d },
  259. { 0, 0 }
  260. };
  261. static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  262. {
  263. const struct cpuid_dependent_feature *df;
  264. for (df = cpuid_dependent_features; df->feature; df++) {
  265. if (!cpu_has(c, df->feature))
  266. continue;
  267. /*
  268. * Note: cpuid_level is set to -1 if unavailable, but
  269. * extended_extended_level is set to 0 if unavailable
  270. * and the legitimate extended levels are all negative
  271. * when signed; hence the weird messing around with
  272. * signs here...
  273. */
  274. if (!((s32)df->level < 0 ?
  275. (u32)df->level > (u32)c->extended_cpuid_level :
  276. (s32)df->level > (s32)c->cpuid_level))
  277. continue;
  278. clear_cpu_cap(c, df->feature);
  279. if (!warn)
  280. continue;
  281. printk(KERN_WARNING
  282. "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
  283. x86_cap_flags[df->feature], df->level);
  284. }
  285. }
  286. /*
  287. * Naming convention should be: <Name> [(<Codename>)]
  288. * This table only is used unless init_<vendor>() below doesn't set it;
  289. * in particular, if CPUID levels 0x80000002..4 are supported, this
  290. * isn't used
  291. */
  292. /* Look up CPU names by table lookup. */
  293. static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
  294. {
  295. const struct cpu_model_info *info;
  296. if (c->x86_model >= 16)
  297. return NULL; /* Range check */
  298. if (!this_cpu)
  299. return NULL;
  300. info = this_cpu->c_models;
  301. while (info && info->family) {
  302. if (info->family == c->x86)
  303. return info->model_names[c->x86_model];
  304. info++;
  305. }
  306. return NULL; /* Not found */
  307. }
  308. __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
  309. __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
  310. void load_percpu_segment(int cpu)
  311. {
  312. #ifdef CONFIG_X86_32
  313. loadsegment(fs, __KERNEL_PERCPU);
  314. #else
  315. loadsegment(gs, 0);
  316. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  317. #endif
  318. load_stack_canary_segment();
  319. }
  320. /*
  321. * Current gdt points %fs at the "master" per-cpu area: after this,
  322. * it's on the real one.
  323. */
  324. void switch_to_new_gdt(int cpu)
  325. {
  326. struct desc_ptr gdt_descr;
  327. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  328. gdt_descr.size = GDT_SIZE - 1;
  329. load_gdt(&gdt_descr);
  330. /* Reload the per-cpu base */
  331. load_percpu_segment(cpu);
  332. }
  333. static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
  334. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  335. {
  336. unsigned int *v;
  337. char *p, *q;
  338. if (c->extended_cpuid_level < 0x80000004)
  339. return;
  340. v = (unsigned int *)c->x86_model_id;
  341. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  342. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  343. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  344. c->x86_model_id[48] = 0;
  345. /*
  346. * Intel chips right-justify this string for some dumb reason;
  347. * undo that brain damage:
  348. */
  349. p = q = &c->x86_model_id[0];
  350. while (*p == ' ')
  351. p++;
  352. if (p != q) {
  353. while (*p)
  354. *q++ = *p++;
  355. while (q <= &c->x86_model_id[48])
  356. *q++ = '\0'; /* Zero-pad the rest */
  357. }
  358. }
  359. void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
  360. {
  361. unsigned int n, dummy, ebx, ecx, edx, l2size;
  362. n = c->extended_cpuid_level;
  363. if (n >= 0x80000005) {
  364. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  365. c->x86_cache_size = (ecx>>24) + (edx>>24);
  366. #ifdef CONFIG_X86_64
  367. /* On K8 L1 TLB is inclusive, so don't count it */
  368. c->x86_tlbsize = 0;
  369. #endif
  370. }
  371. if (n < 0x80000006) /* Some chips just has a large L1. */
  372. return;
  373. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  374. l2size = ecx >> 16;
  375. #ifdef CONFIG_X86_64
  376. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  377. #else
  378. /* do processor-specific cache resizing */
  379. if (this_cpu->c_size_cache)
  380. l2size = this_cpu->c_size_cache(c, l2size);
  381. /* Allow user to override all this if necessary. */
  382. if (cachesize_override != -1)
  383. l2size = cachesize_override;
  384. if (l2size == 0)
  385. return; /* Again, no L2 cache is possible */
  386. #endif
  387. c->x86_cache_size = l2size;
  388. }
  389. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  390. {
  391. #ifdef CONFIG_X86_HT
  392. u32 eax, ebx, ecx, edx;
  393. int index_msb, core_bits;
  394. static bool printed;
  395. if (!cpu_has(c, X86_FEATURE_HT))
  396. return;
  397. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  398. goto out;
  399. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  400. return;
  401. cpuid(1, &eax, &ebx, &ecx, &edx);
  402. smp_num_siblings = (ebx & 0xff0000) >> 16;
  403. if (smp_num_siblings == 1) {
  404. printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
  405. goto out;
  406. }
  407. if (smp_num_siblings <= 1)
  408. goto out;
  409. index_msb = get_count_order(smp_num_siblings);
  410. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  411. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  412. index_msb = get_count_order(smp_num_siblings);
  413. core_bits = get_count_order(c->x86_max_cores);
  414. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  415. ((1 << core_bits) - 1);
  416. out:
  417. if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
  418. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  419. c->phys_proc_id);
  420. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  421. c->cpu_core_id);
  422. printed = 1;
  423. }
  424. #endif
  425. }
  426. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  427. {
  428. char *v = c->x86_vendor_id;
  429. int i;
  430. for (i = 0; i < X86_VENDOR_NUM; i++) {
  431. if (!cpu_devs[i])
  432. break;
  433. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  434. (cpu_devs[i]->c_ident[1] &&
  435. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  436. this_cpu = cpu_devs[i];
  437. c->x86_vendor = this_cpu->c_x86_vendor;
  438. return;
  439. }
  440. }
  441. printk_once(KERN_ERR
  442. "CPU: vendor_id '%s' unknown, using generic init.\n" \
  443. "CPU: Your system may be unstable.\n", v);
  444. c->x86_vendor = X86_VENDOR_UNKNOWN;
  445. this_cpu = &default_cpu;
  446. }
  447. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  448. {
  449. /* Get vendor name */
  450. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  451. (unsigned int *)&c->x86_vendor_id[0],
  452. (unsigned int *)&c->x86_vendor_id[8],
  453. (unsigned int *)&c->x86_vendor_id[4]);
  454. c->x86 = 4;
  455. /* Intel-defined flags: level 0x00000001 */
  456. if (c->cpuid_level >= 0x00000001) {
  457. u32 junk, tfms, cap0, misc;
  458. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  459. c->x86 = (tfms >> 8) & 0xf;
  460. c->x86_model = (tfms >> 4) & 0xf;
  461. c->x86_mask = tfms & 0xf;
  462. if (c->x86 == 0xf)
  463. c->x86 += (tfms >> 20) & 0xff;
  464. if (c->x86 >= 0x6)
  465. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  466. if (cap0 & (1<<19)) {
  467. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  468. c->x86_cache_alignment = c->x86_clflush_size;
  469. }
  470. }
  471. }
  472. void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  473. {
  474. u32 tfms, xlvl;
  475. u32 ebx;
  476. /* Intel-defined flags: level 0x00000001 */
  477. if (c->cpuid_level >= 0x00000001) {
  478. u32 capability, excap;
  479. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  480. c->x86_capability[0] = capability;
  481. c->x86_capability[4] = excap;
  482. }
  483. /* Additional Intel-defined flags: level 0x00000007 */
  484. if (c->cpuid_level >= 0x00000007) {
  485. u32 eax, ebx, ecx, edx;
  486. cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
  487. c->x86_capability[9] = ebx;
  488. }
  489. /* AMD-defined flags: level 0x80000001 */
  490. xlvl = cpuid_eax(0x80000000);
  491. c->extended_cpuid_level = xlvl;
  492. if ((xlvl & 0xffff0000) == 0x80000000) {
  493. if (xlvl >= 0x80000001) {
  494. c->x86_capability[1] = cpuid_edx(0x80000001);
  495. c->x86_capability[6] = cpuid_ecx(0x80000001);
  496. }
  497. }
  498. if (c->extended_cpuid_level >= 0x80000008) {
  499. u32 eax = cpuid_eax(0x80000008);
  500. c->x86_virt_bits = (eax >> 8) & 0xff;
  501. c->x86_phys_bits = eax & 0xff;
  502. }
  503. #ifdef CONFIG_X86_32
  504. else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
  505. c->x86_phys_bits = 36;
  506. #endif
  507. if (c->extended_cpuid_level >= 0x80000007)
  508. c->x86_power = cpuid_edx(0x80000007);
  509. init_scattered_cpuid_features(c);
  510. }
  511. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  512. {
  513. #ifdef CONFIG_X86_32
  514. int i;
  515. /*
  516. * First of all, decide if this is a 486 or higher
  517. * It's a 486 if we can modify the AC flag
  518. */
  519. if (flag_is_changeable_p(X86_EFLAGS_AC))
  520. c->x86 = 4;
  521. else
  522. c->x86 = 3;
  523. for (i = 0; i < X86_VENDOR_NUM; i++)
  524. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  525. c->x86_vendor_id[0] = 0;
  526. cpu_devs[i]->c_identify(c);
  527. if (c->x86_vendor_id[0]) {
  528. get_cpu_vendor(c);
  529. break;
  530. }
  531. }
  532. #endif
  533. }
  534. /*
  535. * Do minimum CPU detection early.
  536. * Fields really needed: vendor, cpuid_level, family, model, mask,
  537. * cache alignment.
  538. * The others are not touched to avoid unwanted side effects.
  539. *
  540. * WARNING: this function is only called on the BP. Don't add code here
  541. * that is supposed to run on all CPUs.
  542. */
  543. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  544. {
  545. #ifdef CONFIG_X86_64
  546. c->x86_clflush_size = 64;
  547. c->x86_phys_bits = 36;
  548. c->x86_virt_bits = 48;
  549. #else
  550. c->x86_clflush_size = 32;
  551. c->x86_phys_bits = 32;
  552. c->x86_virt_bits = 32;
  553. #endif
  554. c->x86_cache_alignment = c->x86_clflush_size;
  555. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  556. c->extended_cpuid_level = 0;
  557. if (!have_cpuid_p())
  558. identify_cpu_without_cpuid(c);
  559. /* cyrix could have cpuid enabled via c_identify()*/
  560. if (!have_cpuid_p())
  561. return;
  562. cpu_detect(c);
  563. get_cpu_vendor(c);
  564. get_cpu_cap(c);
  565. if (this_cpu->c_early_init)
  566. this_cpu->c_early_init(c);
  567. c->cpu_index = 0;
  568. filter_cpuid_features(c, false);
  569. setup_smep(c);
  570. if (this_cpu->c_bsp_init)
  571. this_cpu->c_bsp_init(c);
  572. }
  573. void __init early_cpu_init(void)
  574. {
  575. const struct cpu_dev *const *cdev;
  576. int count = 0;
  577. #ifdef CONFIG_PROCESSOR_SELECT
  578. printk(KERN_INFO "KERNEL supported cpus:\n");
  579. #endif
  580. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  581. const struct cpu_dev *cpudev = *cdev;
  582. if (count >= X86_VENDOR_NUM)
  583. break;
  584. cpu_devs[count] = cpudev;
  585. count++;
  586. #ifdef CONFIG_PROCESSOR_SELECT
  587. {
  588. unsigned int j;
  589. for (j = 0; j < 2; j++) {
  590. if (!cpudev->c_ident[j])
  591. continue;
  592. printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
  593. cpudev->c_ident[j]);
  594. }
  595. }
  596. #endif
  597. }
  598. early_identify_cpu(&boot_cpu_data);
  599. }
  600. /*
  601. * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
  602. * unfortunately, that's not true in practice because of early VIA
  603. * chips and (more importantly) broken virtualizers that are not easy
  604. * to detect. In the latter case it doesn't even *fail* reliably, so
  605. * probing for it doesn't even work. Disable it completely on 32-bit
  606. * unless we can find a reliable way to detect all the broken cases.
  607. * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
  608. */
  609. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  610. {
  611. #ifdef CONFIG_X86_32
  612. clear_cpu_cap(c, X86_FEATURE_NOPL);
  613. #else
  614. set_cpu_cap(c, X86_FEATURE_NOPL);
  615. #endif
  616. }
  617. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  618. {
  619. c->extended_cpuid_level = 0;
  620. if (!have_cpuid_p())
  621. identify_cpu_without_cpuid(c);
  622. /* cyrix could have cpuid enabled via c_identify()*/
  623. if (!have_cpuid_p())
  624. return;
  625. cpu_detect(c);
  626. get_cpu_vendor(c);
  627. get_cpu_cap(c);
  628. if (c->cpuid_level >= 0x00000001) {
  629. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  630. #ifdef CONFIG_X86_32
  631. # ifdef CONFIG_X86_HT
  632. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  633. # else
  634. c->apicid = c->initial_apicid;
  635. # endif
  636. #endif
  637. c->phys_proc_id = c->initial_apicid;
  638. }
  639. setup_smep(c);
  640. get_model_name(c); /* Default name */
  641. detect_nopl(c);
  642. }
  643. /*
  644. * This does the hard work of actually picking apart the CPU stuff...
  645. */
  646. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  647. {
  648. int i;
  649. c->loops_per_jiffy = loops_per_jiffy;
  650. c->x86_cache_size = -1;
  651. c->x86_vendor = X86_VENDOR_UNKNOWN;
  652. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  653. c->x86_vendor_id[0] = '\0'; /* Unset */
  654. c->x86_model_id[0] = '\0'; /* Unset */
  655. c->x86_max_cores = 1;
  656. c->x86_coreid_bits = 0;
  657. #ifdef CONFIG_X86_64
  658. c->x86_clflush_size = 64;
  659. c->x86_phys_bits = 36;
  660. c->x86_virt_bits = 48;
  661. #else
  662. c->cpuid_level = -1; /* CPUID not detected */
  663. c->x86_clflush_size = 32;
  664. c->x86_phys_bits = 32;
  665. c->x86_virt_bits = 32;
  666. #endif
  667. c->x86_cache_alignment = c->x86_clflush_size;
  668. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  669. generic_identify(c);
  670. if (this_cpu->c_identify)
  671. this_cpu->c_identify(c);
  672. /* Clear/Set all flags overriden by options, after probe */
  673. for (i = 0; i < NCAPINTS; i++) {
  674. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  675. c->x86_capability[i] |= cpu_caps_set[i];
  676. }
  677. #ifdef CONFIG_X86_64
  678. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  679. #endif
  680. /*
  681. * Vendor-specific initialization. In this section we
  682. * canonicalize the feature flags, meaning if there are
  683. * features a certain CPU supports which CPUID doesn't
  684. * tell us, CPUID claiming incorrect flags, or other bugs,
  685. * we handle them here.
  686. *
  687. * At the end of this section, c->x86_capability better
  688. * indicate the features this CPU genuinely supports!
  689. */
  690. if (this_cpu->c_init)
  691. this_cpu->c_init(c);
  692. /* Disable the PN if appropriate */
  693. squash_the_stupid_serial_number(c);
  694. /*
  695. * The vendor-specific functions might have changed features.
  696. * Now we do "generic changes."
  697. */
  698. /* Filter out anything that depends on CPUID levels we don't have */
  699. filter_cpuid_features(c, true);
  700. /* If the model name is still unset, do table lookup. */
  701. if (!c->x86_model_id[0]) {
  702. const char *p;
  703. p = table_lookup_model(c);
  704. if (p)
  705. strcpy(c->x86_model_id, p);
  706. else
  707. /* Last resort... */
  708. sprintf(c->x86_model_id, "%02x/%02x",
  709. c->x86, c->x86_model);
  710. }
  711. #ifdef CONFIG_X86_64
  712. detect_ht(c);
  713. #endif
  714. init_hypervisor(c);
  715. x86_init_rdrand(c);
  716. /*
  717. * Clear/Set all flags overriden by options, need do it
  718. * before following smp all cpus cap AND.
  719. */
  720. for (i = 0; i < NCAPINTS; i++) {
  721. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  722. c->x86_capability[i] |= cpu_caps_set[i];
  723. }
  724. /*
  725. * On SMP, boot_cpu_data holds the common feature set between
  726. * all CPUs; so make sure that we indicate which features are
  727. * common between the CPUs. The first time this routine gets
  728. * executed, c == &boot_cpu_data.
  729. */
  730. if (c != &boot_cpu_data) {
  731. /* AND the already accumulated flags with these */
  732. for (i = 0; i < NCAPINTS; i++)
  733. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  734. }
  735. /* Init Machine Check Exception if available. */
  736. mcheck_cpu_init(c);
  737. select_idle_routine(c);
  738. #ifdef CONFIG_NUMA
  739. numa_add_cpu(smp_processor_id());
  740. #endif
  741. }
  742. #ifdef CONFIG_X86_64
  743. static void vgetcpu_set_mode(void)
  744. {
  745. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  746. vgetcpu_mode = VGETCPU_RDTSCP;
  747. else
  748. vgetcpu_mode = VGETCPU_LSL;
  749. }
  750. #endif
  751. void __init identify_boot_cpu(void)
  752. {
  753. identify_cpu(&boot_cpu_data);
  754. init_amd_e400_c1e_mask();
  755. #ifdef CONFIG_X86_32
  756. sysenter_setup();
  757. enable_sep_cpu();
  758. #else
  759. vgetcpu_set_mode();
  760. #endif
  761. }
  762. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  763. {
  764. BUG_ON(c == &boot_cpu_data);
  765. identify_cpu(c);
  766. #ifdef CONFIG_X86_32
  767. enable_sep_cpu();
  768. #endif
  769. mtrr_ap_init();
  770. }
  771. struct msr_range {
  772. unsigned min;
  773. unsigned max;
  774. };
  775. static const struct msr_range msr_range_array[] __cpuinitconst = {
  776. { 0x00000000, 0x00000418},
  777. { 0xc0000000, 0xc000040b},
  778. { 0xc0010000, 0xc0010142},
  779. { 0xc0011000, 0xc001103b},
  780. };
  781. static void __cpuinit print_cpu_msr(void)
  782. {
  783. unsigned index_min, index_max;
  784. unsigned index;
  785. u64 val;
  786. int i;
  787. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  788. index_min = msr_range_array[i].min;
  789. index_max = msr_range_array[i].max;
  790. for (index = index_min; index < index_max; index++) {
  791. if (rdmsrl_amd_safe(index, &val))
  792. continue;
  793. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  794. }
  795. }
  796. }
  797. static int show_msr __cpuinitdata;
  798. static __init int setup_show_msr(char *arg)
  799. {
  800. int num;
  801. get_option(&arg, &num);
  802. if (num > 0)
  803. show_msr = num;
  804. return 1;
  805. }
  806. __setup("show_msr=", setup_show_msr);
  807. static __init int setup_noclflush(char *arg)
  808. {
  809. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  810. return 1;
  811. }
  812. __setup("noclflush", setup_noclflush);
  813. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  814. {
  815. const char *vendor = NULL;
  816. if (c->x86_vendor < X86_VENDOR_NUM) {
  817. vendor = this_cpu->c_vendor;
  818. } else {
  819. if (c->cpuid_level >= 0)
  820. vendor = c->x86_vendor_id;
  821. }
  822. if (vendor && !strstr(c->x86_model_id, vendor))
  823. printk(KERN_CONT "%s ", vendor);
  824. if (c->x86_model_id[0])
  825. printk(KERN_CONT "%s", c->x86_model_id);
  826. else
  827. printk(KERN_CONT "%d86", c->x86);
  828. if (c->x86_mask || c->cpuid_level >= 0)
  829. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  830. else
  831. printk(KERN_CONT "\n");
  832. #ifdef CONFIG_SMP
  833. if (c->cpu_index < show_msr)
  834. print_cpu_msr();
  835. #else
  836. if (show_msr)
  837. print_cpu_msr();
  838. #endif
  839. }
  840. static __init int setup_disablecpuid(char *arg)
  841. {
  842. int bit;
  843. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  844. setup_clear_cpu_cap(bit);
  845. else
  846. return 0;
  847. return 1;
  848. }
  849. __setup("clearcpuid=", setup_disablecpuid);
  850. #ifdef CONFIG_X86_64
  851. struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
  852. struct desc_ptr nmi_idt_descr = { NR_VECTORS * 16 - 1,
  853. (unsigned long) nmi_idt_table };
  854. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  855. irq_stack_union) __aligned(PAGE_SIZE);
  856. /*
  857. * The following four percpu variables are hot. Align current_task to
  858. * cacheline size such that all four fall in the same cacheline.
  859. */
  860. DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
  861. &init_task;
  862. EXPORT_PER_CPU_SYMBOL(current_task);
  863. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  864. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  865. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  866. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  867. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  868. DEFINE_PER_CPU(unsigned int, irq_count) = -1;
  869. /*
  870. * Special IST stacks which the CPU switches to when it calls
  871. * an IST-marked descriptor entry. Up to 7 stacks (hardware
  872. * limit), all of them are 4K, except the debug stack which
  873. * is 8K.
  874. */
  875. static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
  876. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  877. [DEBUG_STACK - 1] = DEBUG_STKSZ
  878. };
  879. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  880. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
  881. /* May not be marked __init: used by software suspend */
  882. void syscall_init(void)
  883. {
  884. /*
  885. * LSTAR and STAR live in a bit strange symbiosis.
  886. * They both write to the same internal register. STAR allows to
  887. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  888. */
  889. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  890. wrmsrl(MSR_LSTAR, system_call);
  891. wrmsrl(MSR_CSTAR, ignore_sysret);
  892. #ifdef CONFIG_IA32_EMULATION
  893. syscall32_cpu_init();
  894. #endif
  895. /* Flags to clear on syscall */
  896. wrmsrl(MSR_SYSCALL_MASK,
  897. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  898. }
  899. unsigned long kernel_eflags;
  900. /*
  901. * Copies of the original ist values from the tss are only accessed during
  902. * debugging, no special alignment required.
  903. */
  904. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  905. static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
  906. DEFINE_PER_CPU(int, debug_stack_usage);
  907. int is_debug_stack(unsigned long addr)
  908. {
  909. return __get_cpu_var(debug_stack_usage) ||
  910. (addr <= __get_cpu_var(debug_stack_addr) &&
  911. addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
  912. }
  913. void debug_stack_set_zero(void)
  914. {
  915. load_idt((const struct desc_ptr *)&nmi_idt_descr);
  916. }
  917. void debug_stack_reset(void)
  918. {
  919. load_idt((const struct desc_ptr *)&idt_descr);
  920. }
  921. #else /* CONFIG_X86_64 */
  922. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  923. EXPORT_PER_CPU_SYMBOL(current_task);
  924. #ifdef CONFIG_CC_STACKPROTECTOR
  925. DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
  926. #endif
  927. /* Make sure %fs and %gs are initialized properly in idle threads */
  928. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  929. {
  930. memset(regs, 0, sizeof(struct pt_regs));
  931. regs->fs = __KERNEL_PERCPU;
  932. regs->gs = __KERNEL_STACK_CANARY;
  933. return regs;
  934. }
  935. #endif /* CONFIG_X86_64 */
  936. /*
  937. * Clear all 6 debug registers:
  938. */
  939. static void clear_all_debug_regs(void)
  940. {
  941. int i;
  942. for (i = 0; i < 8; i++) {
  943. /* Ignore db4, db5 */
  944. if ((i == 4) || (i == 5))
  945. continue;
  946. set_debugreg(0, i);
  947. }
  948. }
  949. #ifdef CONFIG_KGDB
  950. /*
  951. * Restore debug regs if using kgdbwait and you have a kernel debugger
  952. * connection established.
  953. */
  954. static void dbg_restore_debug_regs(void)
  955. {
  956. if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
  957. arch_kgdb_ops.correct_hw_break();
  958. }
  959. #else /* ! CONFIG_KGDB */
  960. #define dbg_restore_debug_regs()
  961. #endif /* ! CONFIG_KGDB */
  962. /*
  963. * Prints an error where the NUMA and configured core-number mismatch and the
  964. * platform didn't override this to fix it up
  965. */
  966. void __cpuinit x86_default_fixup_cpu_id(struct cpuinfo_x86 *c, int node)
  967. {
  968. pr_err("NUMA core number %d differs from configured core number %d\n", node, c->phys_proc_id);
  969. }
  970. /*
  971. * cpu_init() initializes state that is per-CPU. Some data is already
  972. * initialized (naturally) in the bootstrap process, such as the GDT
  973. * and IDT. We reload them nevertheless, this function acts as a
  974. * 'CPU state barrier', nothing should get across.
  975. * A lot of state is already set up in PDA init for 64 bit
  976. */
  977. #ifdef CONFIG_X86_64
  978. void __cpuinit cpu_init(void)
  979. {
  980. struct orig_ist *oist;
  981. struct task_struct *me;
  982. struct tss_struct *t;
  983. unsigned long v;
  984. int cpu;
  985. int i;
  986. cpu = stack_smp_processor_id();
  987. t = &per_cpu(init_tss, cpu);
  988. oist = &per_cpu(orig_ist, cpu);
  989. #ifdef CONFIG_NUMA
  990. if (cpu != 0 && percpu_read(numa_node) == 0 &&
  991. early_cpu_to_node(cpu) != NUMA_NO_NODE)
  992. set_numa_node(early_cpu_to_node(cpu));
  993. #endif
  994. me = current;
  995. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  996. panic("CPU#%d already initialized!\n", cpu);
  997. pr_debug("Initializing CPU#%d\n", cpu);
  998. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  999. /*
  1000. * Initialize the per-CPU GDT with the boot GDT,
  1001. * and set up the GDT descriptor:
  1002. */
  1003. switch_to_new_gdt(cpu);
  1004. loadsegment(fs, 0);
  1005. load_idt((const struct desc_ptr *)&idt_descr);
  1006. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  1007. syscall_init();
  1008. wrmsrl(MSR_FS_BASE, 0);
  1009. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  1010. barrier();
  1011. x86_configure_nx();
  1012. if (cpu != 0)
  1013. enable_x2apic();
  1014. /*
  1015. * set up and load the per-CPU TSS
  1016. */
  1017. if (!oist->ist[0]) {
  1018. char *estacks = per_cpu(exception_stacks, cpu);
  1019. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  1020. estacks += exception_stack_sizes[v];
  1021. oist->ist[v] = t->x86_tss.ist[v] =
  1022. (unsigned long)estacks;
  1023. if (v == DEBUG_STACK-1)
  1024. per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
  1025. }
  1026. }
  1027. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1028. /*
  1029. * <= is required because the CPU will access up to
  1030. * 8 bits beyond the end of the IO permission bitmap.
  1031. */
  1032. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  1033. t->io_bitmap[i] = ~0UL;
  1034. atomic_inc(&init_mm.mm_count);
  1035. me->active_mm = &init_mm;
  1036. BUG_ON(me->mm);
  1037. enter_lazy_tlb(&init_mm, me);
  1038. load_sp0(t, &current->thread);
  1039. set_tss_desc(cpu, t);
  1040. load_TR_desc();
  1041. load_LDT(&init_mm.context);
  1042. clear_all_debug_regs();
  1043. dbg_restore_debug_regs();
  1044. fpu_init();
  1045. xsave_init();
  1046. raw_local_save_flags(kernel_eflags);
  1047. if (is_uv_system())
  1048. uv_cpu_init();
  1049. }
  1050. #else
  1051. void __cpuinit cpu_init(void)
  1052. {
  1053. int cpu = smp_processor_id();
  1054. struct task_struct *curr = current;
  1055. struct tss_struct *t = &per_cpu(init_tss, cpu);
  1056. struct thread_struct *thread = &curr->thread;
  1057. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  1058. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  1059. for (;;)
  1060. local_irq_enable();
  1061. }
  1062. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  1063. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  1064. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  1065. load_idt(&idt_descr);
  1066. switch_to_new_gdt(cpu);
  1067. /*
  1068. * Set up and load the per-CPU TSS and LDT
  1069. */
  1070. atomic_inc(&init_mm.mm_count);
  1071. curr->active_mm = &init_mm;
  1072. BUG_ON(curr->mm);
  1073. enter_lazy_tlb(&init_mm, curr);
  1074. load_sp0(t, thread);
  1075. set_tss_desc(cpu, t);
  1076. load_TR_desc();
  1077. load_LDT(&init_mm.context);
  1078. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1079. #ifdef CONFIG_DOUBLEFAULT
  1080. /* Set up doublefault TSS pointer in the GDT */
  1081. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  1082. #endif
  1083. clear_all_debug_regs();
  1084. dbg_restore_debug_regs();
  1085. fpu_init();
  1086. xsave_init();
  1087. }
  1088. #endif