fault.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Derived from "arch/i386/mm/fault.c"
  6. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  7. *
  8. * Modified by Cort Dougan and Paul Mackerras.
  9. *
  10. * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. */
  17. #include <linux/signal.h>
  18. #include <linux/sched.h>
  19. #include <linux/kernel.h>
  20. #include <linux/errno.h>
  21. #include <linux/string.h>
  22. #include <linux/types.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/mman.h>
  25. #include <linux/mm.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/kprobes.h>
  30. #include <linux/kdebug.h>
  31. #include <linux/perf_event.h>
  32. #include <linux/magic.h>
  33. #include <linux/ratelimit.h>
  34. #include <asm/firmware.h>
  35. #include <asm/page.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/mmu.h>
  38. #include <asm/mmu_context.h>
  39. #include <asm/system.h>
  40. #include <asm/uaccess.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/siginfo.h>
  43. #include <mm/mmu_decl.h>
  44. #include "icswx.h"
  45. #ifdef CONFIG_KPROBES
  46. static inline int notify_page_fault(struct pt_regs *regs)
  47. {
  48. int ret = 0;
  49. /* kprobe_running() needs smp_processor_id() */
  50. if (!user_mode(regs)) {
  51. preempt_disable();
  52. if (kprobe_running() && kprobe_fault_handler(regs, 11))
  53. ret = 1;
  54. preempt_enable();
  55. }
  56. return ret;
  57. }
  58. #else
  59. static inline int notify_page_fault(struct pt_regs *regs)
  60. {
  61. return 0;
  62. }
  63. #endif
  64. /*
  65. * Check whether the instruction at regs->nip is a store using
  66. * an update addressing form which will update r1.
  67. */
  68. static int store_updates_sp(struct pt_regs *regs)
  69. {
  70. unsigned int inst;
  71. if (get_user(inst, (unsigned int __user *)regs->nip))
  72. return 0;
  73. /* check for 1 in the rA field */
  74. if (((inst >> 16) & 0x1f) != 1)
  75. return 0;
  76. /* check major opcode */
  77. switch (inst >> 26) {
  78. case 37: /* stwu */
  79. case 39: /* stbu */
  80. case 45: /* sthu */
  81. case 53: /* stfsu */
  82. case 55: /* stfdu */
  83. return 1;
  84. case 62: /* std or stdu */
  85. return (inst & 3) == 1;
  86. case 31:
  87. /* check minor opcode */
  88. switch ((inst >> 1) & 0x3ff) {
  89. case 181: /* stdux */
  90. case 183: /* stwux */
  91. case 247: /* stbux */
  92. case 439: /* sthux */
  93. case 695: /* stfsux */
  94. case 759: /* stfdux */
  95. return 1;
  96. }
  97. }
  98. return 0;
  99. }
  100. /*
  101. * For 600- and 800-family processors, the error_code parameter is DSISR
  102. * for a data fault, SRR1 for an instruction fault. For 400-family processors
  103. * the error_code parameter is ESR for a data fault, 0 for an instruction
  104. * fault.
  105. * For 64-bit processors, the error_code parameter is
  106. * - DSISR for a non-SLB data access fault,
  107. * - SRR1 & 0x08000000 for a non-SLB instruction access fault
  108. * - 0 any SLB fault.
  109. *
  110. * The return value is 0 if the fault was handled, or the signal
  111. * number if this is a kernel fault that can't be handled here.
  112. */
  113. int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
  114. unsigned long error_code)
  115. {
  116. struct vm_area_struct * vma;
  117. struct mm_struct *mm = current->mm;
  118. siginfo_t info;
  119. int code = SEGV_MAPERR;
  120. int is_write = 0, ret;
  121. int trap = TRAP(regs);
  122. int is_exec = trap == 0x400;
  123. #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
  124. /*
  125. * Fortunately the bit assignments in SRR1 for an instruction
  126. * fault and DSISR for a data fault are mostly the same for the
  127. * bits we are interested in. But there are some bits which
  128. * indicate errors in DSISR but can validly be set in SRR1.
  129. */
  130. if (trap == 0x400)
  131. error_code &= 0x48200000;
  132. else
  133. is_write = error_code & DSISR_ISSTORE;
  134. #else
  135. is_write = error_code & ESR_DST;
  136. #endif /* CONFIG_4xx || CONFIG_BOOKE */
  137. #ifdef CONFIG_PPC_ICSWX
  138. /*
  139. * we need to do this early because this "data storage
  140. * interrupt" does not update the DAR/DEAR so we don't want to
  141. * look at it
  142. */
  143. if (error_code & ICSWX_DSI_UCT) {
  144. int ret;
  145. ret = acop_handle_fault(regs, address, error_code);
  146. if (ret)
  147. return ret;
  148. }
  149. #endif
  150. if (notify_page_fault(regs))
  151. return 0;
  152. if (unlikely(debugger_fault_handler(regs)))
  153. return 0;
  154. /* On a kernel SLB miss we can only check for a valid exception entry */
  155. if (!user_mode(regs) && (address >= TASK_SIZE))
  156. return SIGSEGV;
  157. #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
  158. defined(CONFIG_PPC_BOOK3S_64))
  159. if (error_code & DSISR_DABRMATCH) {
  160. /* DABR match */
  161. do_dabr(regs, address, error_code);
  162. return 0;
  163. }
  164. #endif
  165. if (in_atomic() || mm == NULL) {
  166. if (!user_mode(regs))
  167. return SIGSEGV;
  168. /* in_atomic() in user mode is really bad,
  169. as is current->mm == NULL. */
  170. printk(KERN_EMERG "Page fault in user mode with "
  171. "in_atomic() = %d mm = %p\n", in_atomic(), mm);
  172. printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
  173. regs->nip, regs->msr);
  174. die("Weird page fault", regs, SIGSEGV);
  175. }
  176. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
  177. /* When running in the kernel we expect faults to occur only to
  178. * addresses in user space. All other faults represent errors in the
  179. * kernel and should generate an OOPS. Unfortunately, in the case of an
  180. * erroneous fault occurring in a code path which already holds mmap_sem
  181. * we will deadlock attempting to validate the fault against the
  182. * address space. Luckily the kernel only validly references user
  183. * space from well defined areas of code, which are listed in the
  184. * exceptions table.
  185. *
  186. * As the vast majority of faults will be valid we will only perform
  187. * the source reference check when there is a possibility of a deadlock.
  188. * Attempt to lock the address space, if we cannot we then validate the
  189. * source. If this is invalid we can skip the address space check,
  190. * thus avoiding the deadlock.
  191. */
  192. if (!down_read_trylock(&mm->mmap_sem)) {
  193. if (!user_mode(regs) && !search_exception_tables(regs->nip))
  194. goto bad_area_nosemaphore;
  195. down_read(&mm->mmap_sem);
  196. }
  197. vma = find_vma(mm, address);
  198. if (!vma)
  199. goto bad_area;
  200. if (vma->vm_start <= address)
  201. goto good_area;
  202. if (!(vma->vm_flags & VM_GROWSDOWN))
  203. goto bad_area;
  204. /*
  205. * N.B. The POWER/Open ABI allows programs to access up to
  206. * 288 bytes below the stack pointer.
  207. * The kernel signal delivery code writes up to about 1.5kB
  208. * below the stack pointer (r1) before decrementing it.
  209. * The exec code can write slightly over 640kB to the stack
  210. * before setting the user r1. Thus we allow the stack to
  211. * expand to 1MB without further checks.
  212. */
  213. if (address + 0x100000 < vma->vm_end) {
  214. /* get user regs even if this fault is in kernel mode */
  215. struct pt_regs *uregs = current->thread.regs;
  216. if (uregs == NULL)
  217. goto bad_area;
  218. /*
  219. * A user-mode access to an address a long way below
  220. * the stack pointer is only valid if the instruction
  221. * is one which would update the stack pointer to the
  222. * address accessed if the instruction completed,
  223. * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
  224. * (or the byte, halfword, float or double forms).
  225. *
  226. * If we don't check this then any write to the area
  227. * between the last mapped region and the stack will
  228. * expand the stack rather than segfaulting.
  229. */
  230. if (address + 2048 < uregs->gpr[1]
  231. && (!user_mode(regs) || !store_updates_sp(regs)))
  232. goto bad_area;
  233. }
  234. if (expand_stack(vma, address))
  235. goto bad_area;
  236. good_area:
  237. code = SEGV_ACCERR;
  238. #if defined(CONFIG_6xx)
  239. if (error_code & 0x95700000)
  240. /* an error such as lwarx to I/O controller space,
  241. address matching DABR, eciwx, etc. */
  242. goto bad_area;
  243. #endif /* CONFIG_6xx */
  244. #if defined(CONFIG_8xx)
  245. /* 8xx sometimes need to load a invalid/non-present TLBs.
  246. * These must be invalidated separately as linux mm don't.
  247. */
  248. if (error_code & 0x40000000) /* no translation? */
  249. _tlbil_va(address, 0, 0, 0);
  250. /* The MPC8xx seems to always set 0x80000000, which is
  251. * "undefined". Of those that can be set, this is the only
  252. * one which seems bad.
  253. */
  254. if (error_code & 0x10000000)
  255. /* Guarded storage error. */
  256. goto bad_area;
  257. #endif /* CONFIG_8xx */
  258. if (is_exec) {
  259. #ifdef CONFIG_PPC_STD_MMU
  260. /* Protection fault on exec go straight to failure on
  261. * Hash based MMUs as they either don't support per-page
  262. * execute permission, or if they do, it's handled already
  263. * at the hash level. This test would probably have to
  264. * be removed if we change the way this works to make hash
  265. * processors use the same I/D cache coherency mechanism
  266. * as embedded.
  267. */
  268. if (error_code & DSISR_PROTFAULT)
  269. goto bad_area;
  270. #endif /* CONFIG_PPC_STD_MMU */
  271. /*
  272. * Allow execution from readable areas if the MMU does not
  273. * provide separate controls over reading and executing.
  274. *
  275. * Note: That code used to not be enabled for 4xx/BookE.
  276. * It is now as I/D cache coherency for these is done at
  277. * set_pte_at() time and I see no reason why the test
  278. * below wouldn't be valid on those processors. This -may-
  279. * break programs compiled with a really old ABI though.
  280. */
  281. if (!(vma->vm_flags & VM_EXEC) &&
  282. (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
  283. !(vma->vm_flags & (VM_READ | VM_WRITE))))
  284. goto bad_area;
  285. /* a write */
  286. } else if (is_write) {
  287. if (!(vma->vm_flags & VM_WRITE))
  288. goto bad_area;
  289. /* a read */
  290. } else {
  291. /* protection fault */
  292. if (error_code & 0x08000000)
  293. goto bad_area;
  294. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  295. goto bad_area;
  296. }
  297. /*
  298. * If for any reason at all we couldn't handle the fault,
  299. * make sure we exit gracefully rather than endlessly redo
  300. * the fault.
  301. */
  302. ret = handle_mm_fault(mm, vma, address, is_write ? FAULT_FLAG_WRITE : 0);
  303. if (unlikely(ret & VM_FAULT_ERROR)) {
  304. if (ret & VM_FAULT_OOM)
  305. goto out_of_memory;
  306. else if (ret & VM_FAULT_SIGBUS)
  307. goto do_sigbus;
  308. BUG();
  309. }
  310. if (ret & VM_FAULT_MAJOR) {
  311. current->maj_flt++;
  312. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
  313. regs, address);
  314. #ifdef CONFIG_PPC_SMLPAR
  315. if (firmware_has_feature(FW_FEATURE_CMO)) {
  316. preempt_disable();
  317. get_lppaca()->page_ins += (1 << PAGE_FACTOR);
  318. preempt_enable();
  319. }
  320. #endif
  321. } else {
  322. current->min_flt++;
  323. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
  324. regs, address);
  325. }
  326. up_read(&mm->mmap_sem);
  327. return 0;
  328. bad_area:
  329. up_read(&mm->mmap_sem);
  330. bad_area_nosemaphore:
  331. /* User mode accesses cause a SIGSEGV */
  332. if (user_mode(regs)) {
  333. _exception(SIGSEGV, regs, code, address);
  334. return 0;
  335. }
  336. if (is_exec && (error_code & DSISR_PROTFAULT))
  337. printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
  338. " page (%lx) - exploit attempt? (uid: %d)\n",
  339. address, current_uid());
  340. return SIGSEGV;
  341. /*
  342. * We ran out of memory, or some other thing happened to us that made
  343. * us unable to handle the page fault gracefully.
  344. */
  345. out_of_memory:
  346. up_read(&mm->mmap_sem);
  347. if (!user_mode(regs))
  348. return SIGKILL;
  349. pagefault_out_of_memory();
  350. return 0;
  351. do_sigbus:
  352. up_read(&mm->mmap_sem);
  353. if (user_mode(regs)) {
  354. info.si_signo = SIGBUS;
  355. info.si_errno = 0;
  356. info.si_code = BUS_ADRERR;
  357. info.si_addr = (void __user *)address;
  358. force_sig_info(SIGBUS, &info, current);
  359. return 0;
  360. }
  361. return SIGBUS;
  362. }
  363. /*
  364. * bad_page_fault is called when we have a bad access from the kernel.
  365. * It is called from the DSI and ISI handlers in head.S and from some
  366. * of the procedures in traps.c.
  367. */
  368. void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
  369. {
  370. const struct exception_table_entry *entry;
  371. unsigned long *stackend;
  372. /* Are we prepared to handle this fault? */
  373. if ((entry = search_exception_tables(regs->nip)) != NULL) {
  374. regs->nip = entry->fixup;
  375. return;
  376. }
  377. /* kernel has accessed a bad area */
  378. switch (regs->trap) {
  379. case 0x300:
  380. case 0x380:
  381. printk(KERN_ALERT "Unable to handle kernel paging request for "
  382. "data at address 0x%08lx\n", regs->dar);
  383. break;
  384. case 0x400:
  385. case 0x480:
  386. printk(KERN_ALERT "Unable to handle kernel paging request for "
  387. "instruction fetch\n");
  388. break;
  389. default:
  390. printk(KERN_ALERT "Unable to handle kernel paging request for "
  391. "unknown fault\n");
  392. break;
  393. }
  394. printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
  395. regs->nip);
  396. stackend = end_of_stack(current);
  397. if (current != &init_task && *stackend != STACK_END_MAGIC)
  398. printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
  399. die("Kernel access of bad area", regs, sig);
  400. }