forcedeth.c 168 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,5,6 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Changelog:
  33. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  34. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  35. * Check all PCI BARs for the register window.
  36. * udelay added to mii_rw.
  37. * 0.03: 06 Oct 2003: Initialize dev->irq.
  38. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  39. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  40. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  41. * irq mask updated
  42. * 0.07: 14 Oct 2003: Further irq mask updates.
  43. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  44. * added into irq handler, NULL check for drain_ring.
  45. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  46. * requested interrupt sources.
  47. * 0.10: 20 Oct 2003: First cleanup for release.
  48. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  49. * MAC Address init fix, set_multicast cleanup.
  50. * 0.12: 23 Oct 2003: Cleanups for release.
  51. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  52. * Set link speed correctly. start rx before starting
  53. * tx (nv_start_rx sets the link speed).
  54. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  55. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  56. * open.
  57. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  58. * increased to 1628 bytes.
  59. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  60. * the tx length.
  61. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  62. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  63. * addresses, really stop rx if already running
  64. * in nv_start_rx, clean up a bit.
  65. * 0.20: 07 Dec 2003: alloc fixes
  66. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  67. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  68. * on close.
  69. * 0.23: 26 Jan 2004: various small cleanups
  70. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  71. * 0.25: 09 Mar 2004: wol support
  72. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  73. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  74. * added CK804/MCP04 device IDs, code fixes
  75. * for registers, link status and other minor fixes.
  76. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  77. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  78. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  79. * into nv_close, otherwise reenabling for wol can
  80. * cause DMA to kfree'd memory.
  81. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  82. * capabilities.
  83. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  84. * 0.33: 16 May 2005: Support for MCP51 added.
  85. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  86. * 0.35: 26 Jun 2005: Support for MCP55 added.
  87. * 0.36: 28 Jun 2005: Add jumbo frame support.
  88. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  89. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  90. * per-packet flags.
  91. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  92. * 0.40: 19 Jul 2005: Add support for mac address change.
  93. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  94. * of nv_remove
  95. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  96. * in the second (and later) nv_open call
  97. * 0.43: 10 Aug 2005: Add support for tx checksum.
  98. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  99. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  100. * 0.46: 20 Oct 2005: Add irq optimization modes.
  101. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  102. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  103. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  104. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  105. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  106. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  107. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  108. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  109. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  110. * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
  111. * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
  112. * 0.58: 30 Oct 2006: Added support for sideband management unit.
  113. * 0.59: 30 Oct 2006: Added support for recoverable error.
  114. * 0.60: 20 Jan 2007: Code optimizations for rings, rx & tx data paths, and stats.
  115. *
  116. * Known bugs:
  117. * We suspect that on some hardware no TX done interrupts are generated.
  118. * This means recovery from netif_stop_queue only happens if the hw timer
  119. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  120. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  121. * If your hardware reliably generates tx done interrupts, then you can remove
  122. * DEV_NEED_TIMERIRQ from the driver_data flags.
  123. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  124. * superfluous timer interrupts from the nic.
  125. */
  126. #ifdef CONFIG_FORCEDETH_NAPI
  127. #define DRIVERNAPI "-NAPI"
  128. #else
  129. #define DRIVERNAPI
  130. #endif
  131. #define FORCEDETH_VERSION "0.61"
  132. #define DRV_NAME "forcedeth"
  133. #include <linux/module.h>
  134. #include <linux/types.h>
  135. #include <linux/pci.h>
  136. #include <linux/interrupt.h>
  137. #include <linux/netdevice.h>
  138. #include <linux/etherdevice.h>
  139. #include <linux/delay.h>
  140. #include <linux/spinlock.h>
  141. #include <linux/ethtool.h>
  142. #include <linux/timer.h>
  143. #include <linux/skbuff.h>
  144. #include <linux/mii.h>
  145. #include <linux/random.h>
  146. #include <linux/init.h>
  147. #include <linux/if_vlan.h>
  148. #include <linux/dma-mapping.h>
  149. #include <asm/irq.h>
  150. #include <asm/io.h>
  151. #include <asm/uaccess.h>
  152. #include <asm/system.h>
  153. #if 0
  154. #define dprintk printk
  155. #else
  156. #define dprintk(x...) do { } while (0)
  157. #endif
  158. #define TX_WORK_PER_LOOP 64
  159. #define RX_WORK_PER_LOOP 64
  160. /*
  161. * Hardware access:
  162. */
  163. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  164. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  165. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  166. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  167. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  168. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  169. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  170. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  171. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  172. #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
  173. #define DEV_HAS_STATISTICS_V1 0x0400 /* device supports hw statistics version 1 */
  174. #define DEV_HAS_STATISTICS_V2 0x0800 /* device supports hw statistics version 2 */
  175. #define DEV_HAS_TEST_EXTENDED 0x1000 /* device supports extended diagnostic test */
  176. #define DEV_HAS_MGMT_UNIT 0x2000 /* device supports management unit */
  177. #define DEV_HAS_CORRECT_MACADDR 0x4000 /* device supports correct mac address order */
  178. enum {
  179. NvRegIrqStatus = 0x000,
  180. #define NVREG_IRQSTAT_MIIEVENT 0x040
  181. #define NVREG_IRQSTAT_MASK 0x81ff
  182. NvRegIrqMask = 0x004,
  183. #define NVREG_IRQ_RX_ERROR 0x0001
  184. #define NVREG_IRQ_RX 0x0002
  185. #define NVREG_IRQ_RX_NOBUF 0x0004
  186. #define NVREG_IRQ_TX_ERR 0x0008
  187. #define NVREG_IRQ_TX_OK 0x0010
  188. #define NVREG_IRQ_TIMER 0x0020
  189. #define NVREG_IRQ_LINK 0x0040
  190. #define NVREG_IRQ_RX_FORCED 0x0080
  191. #define NVREG_IRQ_TX_FORCED 0x0100
  192. #define NVREG_IRQ_RECOVER_ERROR 0x8000
  193. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  194. #define NVREG_IRQMASK_CPU 0x0060
  195. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  196. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  197. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  198. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  199. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  200. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  201. NvRegUnknownSetupReg6 = 0x008,
  202. #define NVREG_UNKSETUP6_VAL 3
  203. /*
  204. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  205. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  206. */
  207. NvRegPollingInterval = 0x00c,
  208. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  209. #define NVREG_POLL_DEFAULT_CPU 13
  210. NvRegMSIMap0 = 0x020,
  211. NvRegMSIMap1 = 0x024,
  212. NvRegMSIIrqMask = 0x030,
  213. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  214. NvRegMisc1 = 0x080,
  215. #define NVREG_MISC1_PAUSE_TX 0x01
  216. #define NVREG_MISC1_HD 0x02
  217. #define NVREG_MISC1_FORCE 0x3b0f3c
  218. NvRegMacReset = 0x3c,
  219. #define NVREG_MAC_RESET_ASSERT 0x0F3
  220. NvRegTransmitterControl = 0x084,
  221. #define NVREG_XMITCTL_START 0x01
  222. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  223. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  224. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  225. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  226. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  227. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  228. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  229. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  230. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  231. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  232. NvRegTransmitterStatus = 0x088,
  233. #define NVREG_XMITSTAT_BUSY 0x01
  234. NvRegPacketFilterFlags = 0x8c,
  235. #define NVREG_PFF_PAUSE_RX 0x08
  236. #define NVREG_PFF_ALWAYS 0x7F0000
  237. #define NVREG_PFF_PROMISC 0x80
  238. #define NVREG_PFF_MYADDR 0x20
  239. #define NVREG_PFF_LOOPBACK 0x10
  240. NvRegOffloadConfig = 0x90,
  241. #define NVREG_OFFLOAD_HOMEPHY 0x601
  242. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  243. NvRegReceiverControl = 0x094,
  244. #define NVREG_RCVCTL_START 0x01
  245. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  246. NvRegReceiverStatus = 0x98,
  247. #define NVREG_RCVSTAT_BUSY 0x01
  248. NvRegRandomSeed = 0x9c,
  249. #define NVREG_RNDSEED_MASK 0x00ff
  250. #define NVREG_RNDSEED_FORCE 0x7f00
  251. #define NVREG_RNDSEED_FORCE2 0x2d00
  252. #define NVREG_RNDSEED_FORCE3 0x7400
  253. NvRegTxDeferral = 0xA0,
  254. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  255. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  256. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  257. NvRegRxDeferral = 0xA4,
  258. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  259. NvRegMacAddrA = 0xA8,
  260. NvRegMacAddrB = 0xAC,
  261. NvRegMulticastAddrA = 0xB0,
  262. #define NVREG_MCASTADDRA_FORCE 0x01
  263. NvRegMulticastAddrB = 0xB4,
  264. NvRegMulticastMaskA = 0xB8,
  265. NvRegMulticastMaskB = 0xBC,
  266. NvRegPhyInterface = 0xC0,
  267. #define PHY_RGMII 0x10000000
  268. NvRegTxRingPhysAddr = 0x100,
  269. NvRegRxRingPhysAddr = 0x104,
  270. NvRegRingSizes = 0x108,
  271. #define NVREG_RINGSZ_TXSHIFT 0
  272. #define NVREG_RINGSZ_RXSHIFT 16
  273. NvRegTransmitPoll = 0x10c,
  274. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  275. NvRegLinkSpeed = 0x110,
  276. #define NVREG_LINKSPEED_FORCE 0x10000
  277. #define NVREG_LINKSPEED_10 1000
  278. #define NVREG_LINKSPEED_100 100
  279. #define NVREG_LINKSPEED_1000 50
  280. #define NVREG_LINKSPEED_MASK (0xFFF)
  281. NvRegUnknownSetupReg5 = 0x130,
  282. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  283. NvRegTxWatermark = 0x13c,
  284. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  285. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  286. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  287. NvRegTxRxControl = 0x144,
  288. #define NVREG_TXRXCTL_KICK 0x0001
  289. #define NVREG_TXRXCTL_BIT1 0x0002
  290. #define NVREG_TXRXCTL_BIT2 0x0004
  291. #define NVREG_TXRXCTL_IDLE 0x0008
  292. #define NVREG_TXRXCTL_RESET 0x0010
  293. #define NVREG_TXRXCTL_RXCHECK 0x0400
  294. #define NVREG_TXRXCTL_DESC_1 0
  295. #define NVREG_TXRXCTL_DESC_2 0x002100
  296. #define NVREG_TXRXCTL_DESC_3 0xc02200
  297. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  298. #define NVREG_TXRXCTL_VLANINS 0x00080
  299. NvRegTxRingPhysAddrHigh = 0x148,
  300. NvRegRxRingPhysAddrHigh = 0x14C,
  301. NvRegTxPauseFrame = 0x170,
  302. #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
  303. #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
  304. NvRegMIIStatus = 0x180,
  305. #define NVREG_MIISTAT_ERROR 0x0001
  306. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  307. #define NVREG_MIISTAT_MASK 0x000f
  308. #define NVREG_MIISTAT_MASK2 0x000f
  309. NvRegMIIMask = 0x184,
  310. #define NVREG_MII_LINKCHANGE 0x0008
  311. NvRegAdapterControl = 0x188,
  312. #define NVREG_ADAPTCTL_START 0x02
  313. #define NVREG_ADAPTCTL_LINKUP 0x04
  314. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  315. #define NVREG_ADAPTCTL_RUNNING 0x100000
  316. #define NVREG_ADAPTCTL_PHYSHIFT 24
  317. NvRegMIISpeed = 0x18c,
  318. #define NVREG_MIISPEED_BIT8 (1<<8)
  319. #define NVREG_MIIDELAY 5
  320. NvRegMIIControl = 0x190,
  321. #define NVREG_MIICTL_INUSE 0x08000
  322. #define NVREG_MIICTL_WRITE 0x00400
  323. #define NVREG_MIICTL_ADDRSHIFT 5
  324. NvRegMIIData = 0x194,
  325. NvRegWakeUpFlags = 0x200,
  326. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  327. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  328. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  329. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  330. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  331. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  332. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  333. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  334. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  335. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  336. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  337. NvRegPatternCRC = 0x204,
  338. NvRegPatternMask = 0x208,
  339. NvRegPowerCap = 0x268,
  340. #define NVREG_POWERCAP_D3SUPP (1<<30)
  341. #define NVREG_POWERCAP_D2SUPP (1<<26)
  342. #define NVREG_POWERCAP_D1SUPP (1<<25)
  343. NvRegPowerState = 0x26c,
  344. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  345. #define NVREG_POWERSTATE_VALID 0x0100
  346. #define NVREG_POWERSTATE_MASK 0x0003
  347. #define NVREG_POWERSTATE_D0 0x0000
  348. #define NVREG_POWERSTATE_D1 0x0001
  349. #define NVREG_POWERSTATE_D2 0x0002
  350. #define NVREG_POWERSTATE_D3 0x0003
  351. NvRegTxCnt = 0x280,
  352. NvRegTxZeroReXmt = 0x284,
  353. NvRegTxOneReXmt = 0x288,
  354. NvRegTxManyReXmt = 0x28c,
  355. NvRegTxLateCol = 0x290,
  356. NvRegTxUnderflow = 0x294,
  357. NvRegTxLossCarrier = 0x298,
  358. NvRegTxExcessDef = 0x29c,
  359. NvRegTxRetryErr = 0x2a0,
  360. NvRegRxFrameErr = 0x2a4,
  361. NvRegRxExtraByte = 0x2a8,
  362. NvRegRxLateCol = 0x2ac,
  363. NvRegRxRunt = 0x2b0,
  364. NvRegRxFrameTooLong = 0x2b4,
  365. NvRegRxOverflow = 0x2b8,
  366. NvRegRxFCSErr = 0x2bc,
  367. NvRegRxFrameAlignErr = 0x2c0,
  368. NvRegRxLenErr = 0x2c4,
  369. NvRegRxUnicast = 0x2c8,
  370. NvRegRxMulticast = 0x2cc,
  371. NvRegRxBroadcast = 0x2d0,
  372. NvRegTxDef = 0x2d4,
  373. NvRegTxFrame = 0x2d8,
  374. NvRegRxCnt = 0x2dc,
  375. NvRegTxPause = 0x2e0,
  376. NvRegRxPause = 0x2e4,
  377. NvRegRxDropFrame = 0x2e8,
  378. NvRegVlanControl = 0x300,
  379. #define NVREG_VLANCONTROL_ENABLE 0x2000
  380. NvRegMSIXMap0 = 0x3e0,
  381. NvRegMSIXMap1 = 0x3e4,
  382. NvRegMSIXIrqStatus = 0x3f0,
  383. NvRegPowerState2 = 0x600,
  384. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  385. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  386. };
  387. /* Big endian: should work, but is untested */
  388. struct ring_desc {
  389. __le32 buf;
  390. __le32 flaglen;
  391. };
  392. struct ring_desc_ex {
  393. __le32 bufhigh;
  394. __le32 buflow;
  395. __le32 txvlan;
  396. __le32 flaglen;
  397. };
  398. union ring_type {
  399. struct ring_desc* orig;
  400. struct ring_desc_ex* ex;
  401. };
  402. #define FLAG_MASK_V1 0xffff0000
  403. #define FLAG_MASK_V2 0xffffc000
  404. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  405. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  406. #define NV_TX_LASTPACKET (1<<16)
  407. #define NV_TX_RETRYERROR (1<<19)
  408. #define NV_TX_FORCED_INTERRUPT (1<<24)
  409. #define NV_TX_DEFERRED (1<<26)
  410. #define NV_TX_CARRIERLOST (1<<27)
  411. #define NV_TX_LATECOLLISION (1<<28)
  412. #define NV_TX_UNDERFLOW (1<<29)
  413. #define NV_TX_ERROR (1<<30)
  414. #define NV_TX_VALID (1<<31)
  415. #define NV_TX2_LASTPACKET (1<<29)
  416. #define NV_TX2_RETRYERROR (1<<18)
  417. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  418. #define NV_TX2_DEFERRED (1<<25)
  419. #define NV_TX2_CARRIERLOST (1<<26)
  420. #define NV_TX2_LATECOLLISION (1<<27)
  421. #define NV_TX2_UNDERFLOW (1<<28)
  422. /* error and valid are the same for both */
  423. #define NV_TX2_ERROR (1<<30)
  424. #define NV_TX2_VALID (1<<31)
  425. #define NV_TX2_TSO (1<<28)
  426. #define NV_TX2_TSO_SHIFT 14
  427. #define NV_TX2_TSO_MAX_SHIFT 14
  428. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  429. #define NV_TX2_CHECKSUM_L3 (1<<27)
  430. #define NV_TX2_CHECKSUM_L4 (1<<26)
  431. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  432. #define NV_RX_DESCRIPTORVALID (1<<16)
  433. #define NV_RX_MISSEDFRAME (1<<17)
  434. #define NV_RX_SUBSTRACT1 (1<<18)
  435. #define NV_RX_ERROR1 (1<<23)
  436. #define NV_RX_ERROR2 (1<<24)
  437. #define NV_RX_ERROR3 (1<<25)
  438. #define NV_RX_ERROR4 (1<<26)
  439. #define NV_RX_CRCERR (1<<27)
  440. #define NV_RX_OVERFLOW (1<<28)
  441. #define NV_RX_FRAMINGERR (1<<29)
  442. #define NV_RX_ERROR (1<<30)
  443. #define NV_RX_AVAIL (1<<31)
  444. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  445. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  446. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  447. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  448. #define NV_RX2_DESCRIPTORVALID (1<<29)
  449. #define NV_RX2_SUBSTRACT1 (1<<25)
  450. #define NV_RX2_ERROR1 (1<<18)
  451. #define NV_RX2_ERROR2 (1<<19)
  452. #define NV_RX2_ERROR3 (1<<20)
  453. #define NV_RX2_ERROR4 (1<<21)
  454. #define NV_RX2_CRCERR (1<<22)
  455. #define NV_RX2_OVERFLOW (1<<23)
  456. #define NV_RX2_FRAMINGERR (1<<24)
  457. /* error and avail are the same for both */
  458. #define NV_RX2_ERROR (1<<30)
  459. #define NV_RX2_AVAIL (1<<31)
  460. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  461. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  462. /* Miscelaneous hardware related defines: */
  463. #define NV_PCI_REGSZ_VER1 0x270
  464. #define NV_PCI_REGSZ_VER2 0x2d4
  465. #define NV_PCI_REGSZ_VER3 0x604
  466. /* various timeout delays: all in usec */
  467. #define NV_TXRX_RESET_DELAY 4
  468. #define NV_TXSTOP_DELAY1 10
  469. #define NV_TXSTOP_DELAY1MAX 500000
  470. #define NV_TXSTOP_DELAY2 100
  471. #define NV_RXSTOP_DELAY1 10
  472. #define NV_RXSTOP_DELAY1MAX 500000
  473. #define NV_RXSTOP_DELAY2 100
  474. #define NV_SETUP5_DELAY 5
  475. #define NV_SETUP5_DELAYMAX 50000
  476. #define NV_POWERUP_DELAY 5
  477. #define NV_POWERUP_DELAYMAX 5000
  478. #define NV_MIIBUSY_DELAY 50
  479. #define NV_MIIPHY_DELAY 10
  480. #define NV_MIIPHY_DELAYMAX 10000
  481. #define NV_MAC_RESET_DELAY 64
  482. #define NV_WAKEUPPATTERNS 5
  483. #define NV_WAKEUPMASKENTRIES 4
  484. /* General driver defaults */
  485. #define NV_WATCHDOG_TIMEO (5*HZ)
  486. #define RX_RING_DEFAULT 128
  487. #define TX_RING_DEFAULT 256
  488. #define RX_RING_MIN 128
  489. #define TX_RING_MIN 64
  490. #define RING_MAX_DESC_VER_1 1024
  491. #define RING_MAX_DESC_VER_2_3 16384
  492. /* rx/tx mac addr + type + vlan + align + slack*/
  493. #define NV_RX_HEADERS (64)
  494. /* even more slack. */
  495. #define NV_RX_ALLOC_PAD (64)
  496. /* maximum mtu size */
  497. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  498. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  499. #define OOM_REFILL (1+HZ/20)
  500. #define POLL_WAIT (1+HZ/100)
  501. #define LINK_TIMEOUT (3*HZ)
  502. #define STATS_INTERVAL (10*HZ)
  503. /*
  504. * desc_ver values:
  505. * The nic supports three different descriptor types:
  506. * - DESC_VER_1: Original
  507. * - DESC_VER_2: support for jumbo frames.
  508. * - DESC_VER_3: 64-bit format.
  509. */
  510. #define DESC_VER_1 1
  511. #define DESC_VER_2 2
  512. #define DESC_VER_3 3
  513. /* PHY defines */
  514. #define PHY_OUI_MARVELL 0x5043
  515. #define PHY_OUI_CICADA 0x03f1
  516. #define PHY_OUI_VITESSE 0x01c1
  517. #define PHY_OUI_REALTEK 0x0732
  518. #define PHYID1_OUI_MASK 0x03ff
  519. #define PHYID1_OUI_SHFT 6
  520. #define PHYID2_OUI_MASK 0xfc00
  521. #define PHYID2_OUI_SHFT 10
  522. #define PHYID2_MODEL_MASK 0x03f0
  523. #define PHY_MODEL_MARVELL_E3016 0x220
  524. #define PHY_MARVELL_E3016_INITMASK 0x0300
  525. #define PHY_CICADA_INIT1 0x0f000
  526. #define PHY_CICADA_INIT2 0x0e00
  527. #define PHY_CICADA_INIT3 0x01000
  528. #define PHY_CICADA_INIT4 0x0200
  529. #define PHY_CICADA_INIT5 0x0004
  530. #define PHY_CICADA_INIT6 0x02000
  531. #define PHY_VITESSE_INIT_REG1 0x1f
  532. #define PHY_VITESSE_INIT_REG2 0x10
  533. #define PHY_VITESSE_INIT_REG3 0x11
  534. #define PHY_VITESSE_INIT_REG4 0x12
  535. #define PHY_VITESSE_INIT_MSK1 0xc
  536. #define PHY_VITESSE_INIT_MSK2 0x0180
  537. #define PHY_VITESSE_INIT1 0x52b5
  538. #define PHY_VITESSE_INIT2 0xaf8a
  539. #define PHY_VITESSE_INIT3 0x8
  540. #define PHY_VITESSE_INIT4 0x8f8a
  541. #define PHY_VITESSE_INIT5 0xaf86
  542. #define PHY_VITESSE_INIT6 0x8f86
  543. #define PHY_VITESSE_INIT7 0xaf82
  544. #define PHY_VITESSE_INIT8 0x0100
  545. #define PHY_VITESSE_INIT9 0x8f82
  546. #define PHY_VITESSE_INIT10 0x0
  547. #define PHY_REALTEK_INIT_REG1 0x1f
  548. #define PHY_REALTEK_INIT_REG2 0x19
  549. #define PHY_REALTEK_INIT_REG3 0x13
  550. #define PHY_REALTEK_INIT1 0x0000
  551. #define PHY_REALTEK_INIT2 0x8e00
  552. #define PHY_REALTEK_INIT3 0x0001
  553. #define PHY_REALTEK_INIT4 0xad17
  554. #define PHY_GIGABIT 0x0100
  555. #define PHY_TIMEOUT 0x1
  556. #define PHY_ERROR 0x2
  557. #define PHY_100 0x1
  558. #define PHY_1000 0x2
  559. #define PHY_HALF 0x100
  560. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  561. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  562. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  563. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  564. #define NV_PAUSEFRAME_RX_REQ 0x0010
  565. #define NV_PAUSEFRAME_TX_REQ 0x0020
  566. #define NV_PAUSEFRAME_AUTONEG 0x0040
  567. /* MSI/MSI-X defines */
  568. #define NV_MSI_X_MAX_VECTORS 8
  569. #define NV_MSI_X_VECTORS_MASK 0x000f
  570. #define NV_MSI_CAPABLE 0x0010
  571. #define NV_MSI_X_CAPABLE 0x0020
  572. #define NV_MSI_ENABLED 0x0040
  573. #define NV_MSI_X_ENABLED 0x0080
  574. #define NV_MSI_X_VECTOR_ALL 0x0
  575. #define NV_MSI_X_VECTOR_RX 0x0
  576. #define NV_MSI_X_VECTOR_TX 0x1
  577. #define NV_MSI_X_VECTOR_OTHER 0x2
  578. /* statistics */
  579. struct nv_ethtool_str {
  580. char name[ETH_GSTRING_LEN];
  581. };
  582. static const struct nv_ethtool_str nv_estats_str[] = {
  583. { "tx_bytes" },
  584. { "tx_zero_rexmt" },
  585. { "tx_one_rexmt" },
  586. { "tx_many_rexmt" },
  587. { "tx_late_collision" },
  588. { "tx_fifo_errors" },
  589. { "tx_carrier_errors" },
  590. { "tx_excess_deferral" },
  591. { "tx_retry_error" },
  592. { "rx_frame_error" },
  593. { "rx_extra_byte" },
  594. { "rx_late_collision" },
  595. { "rx_runt" },
  596. { "rx_frame_too_long" },
  597. { "rx_over_errors" },
  598. { "rx_crc_errors" },
  599. { "rx_frame_align_error" },
  600. { "rx_length_error" },
  601. { "rx_unicast" },
  602. { "rx_multicast" },
  603. { "rx_broadcast" },
  604. { "rx_packets" },
  605. { "rx_errors_total" },
  606. { "tx_errors_total" },
  607. /* version 2 stats */
  608. { "tx_deferral" },
  609. { "tx_packets" },
  610. { "rx_bytes" },
  611. { "tx_pause" },
  612. { "rx_pause" },
  613. { "rx_drop_frame" }
  614. };
  615. struct nv_ethtool_stats {
  616. u64 tx_bytes;
  617. u64 tx_zero_rexmt;
  618. u64 tx_one_rexmt;
  619. u64 tx_many_rexmt;
  620. u64 tx_late_collision;
  621. u64 tx_fifo_errors;
  622. u64 tx_carrier_errors;
  623. u64 tx_excess_deferral;
  624. u64 tx_retry_error;
  625. u64 rx_frame_error;
  626. u64 rx_extra_byte;
  627. u64 rx_late_collision;
  628. u64 rx_runt;
  629. u64 rx_frame_too_long;
  630. u64 rx_over_errors;
  631. u64 rx_crc_errors;
  632. u64 rx_frame_align_error;
  633. u64 rx_length_error;
  634. u64 rx_unicast;
  635. u64 rx_multicast;
  636. u64 rx_broadcast;
  637. u64 rx_packets;
  638. u64 rx_errors_total;
  639. u64 tx_errors_total;
  640. /* version 2 stats */
  641. u64 tx_deferral;
  642. u64 tx_packets;
  643. u64 rx_bytes;
  644. u64 tx_pause;
  645. u64 rx_pause;
  646. u64 rx_drop_frame;
  647. };
  648. #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  649. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  650. /* diagnostics */
  651. #define NV_TEST_COUNT_BASE 3
  652. #define NV_TEST_COUNT_EXTENDED 4
  653. static const struct nv_ethtool_str nv_etests_str[] = {
  654. { "link (online/offline)" },
  655. { "register (offline) " },
  656. { "interrupt (offline) " },
  657. { "loopback (offline) " }
  658. };
  659. struct register_test {
  660. __le32 reg;
  661. __le32 mask;
  662. };
  663. static const struct register_test nv_registers_test[] = {
  664. { NvRegUnknownSetupReg6, 0x01 },
  665. { NvRegMisc1, 0x03c },
  666. { NvRegOffloadConfig, 0x03ff },
  667. { NvRegMulticastAddrA, 0xffffffff },
  668. { NvRegTxWatermark, 0x0ff },
  669. { NvRegWakeUpFlags, 0x07777 },
  670. { 0,0 }
  671. };
  672. struct nv_skb_map {
  673. struct sk_buff *skb;
  674. dma_addr_t dma;
  675. unsigned int dma_len;
  676. };
  677. /*
  678. * SMP locking:
  679. * All hardware access under dev->priv->lock, except the performance
  680. * critical parts:
  681. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  682. * by the arch code for interrupts.
  683. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  684. * needs dev->priv->lock :-(
  685. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  686. */
  687. /* in dev: base, irq */
  688. struct fe_priv {
  689. spinlock_t lock;
  690. struct net_device *dev;
  691. struct napi_struct napi;
  692. /* General data:
  693. * Locking: spin_lock(&np->lock); */
  694. struct nv_ethtool_stats estats;
  695. int in_shutdown;
  696. u32 linkspeed;
  697. int duplex;
  698. int autoneg;
  699. int fixed_mode;
  700. int phyaddr;
  701. int wolenabled;
  702. unsigned int phy_oui;
  703. unsigned int phy_model;
  704. u16 gigabit;
  705. int intr_test;
  706. int recover_error;
  707. /* General data: RO fields */
  708. dma_addr_t ring_addr;
  709. struct pci_dev *pci_dev;
  710. u32 orig_mac[2];
  711. u32 irqmask;
  712. u32 desc_ver;
  713. u32 txrxctl_bits;
  714. u32 vlanctl_bits;
  715. u32 driver_data;
  716. u32 register_size;
  717. int rx_csum;
  718. u32 mac_in_use;
  719. void __iomem *base;
  720. /* rx specific fields.
  721. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  722. */
  723. union ring_type get_rx, put_rx, first_rx, last_rx;
  724. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  725. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  726. struct nv_skb_map *rx_skb;
  727. union ring_type rx_ring;
  728. unsigned int rx_buf_sz;
  729. unsigned int pkt_limit;
  730. struct timer_list oom_kick;
  731. struct timer_list nic_poll;
  732. struct timer_list stats_poll;
  733. u32 nic_poll_irq;
  734. int rx_ring_size;
  735. /* media detection workaround.
  736. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  737. */
  738. int need_linktimer;
  739. unsigned long link_timeout;
  740. /*
  741. * tx specific fields.
  742. */
  743. union ring_type get_tx, put_tx, first_tx, last_tx;
  744. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  745. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  746. struct nv_skb_map *tx_skb;
  747. union ring_type tx_ring;
  748. u32 tx_flags;
  749. int tx_ring_size;
  750. int tx_stop;
  751. /* vlan fields */
  752. struct vlan_group *vlangrp;
  753. /* msi/msi-x fields */
  754. u32 msi_flags;
  755. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  756. /* flow control */
  757. u32 pause_flags;
  758. };
  759. /*
  760. * Maximum number of loops until we assume that a bit in the irq mask
  761. * is stuck. Overridable with module param.
  762. */
  763. static int max_interrupt_work = 5;
  764. /*
  765. * Optimization can be either throuput mode or cpu mode
  766. *
  767. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  768. * CPU Mode: Interrupts are controlled by a timer.
  769. */
  770. enum {
  771. NV_OPTIMIZATION_MODE_THROUGHPUT,
  772. NV_OPTIMIZATION_MODE_CPU
  773. };
  774. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  775. /*
  776. * Poll interval for timer irq
  777. *
  778. * This interval determines how frequent an interrupt is generated.
  779. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  780. * Min = 0, and Max = 65535
  781. */
  782. static int poll_interval = -1;
  783. /*
  784. * MSI interrupts
  785. */
  786. enum {
  787. NV_MSI_INT_DISABLED,
  788. NV_MSI_INT_ENABLED
  789. };
  790. static int msi = NV_MSI_INT_ENABLED;
  791. /*
  792. * MSIX interrupts
  793. */
  794. enum {
  795. NV_MSIX_INT_DISABLED,
  796. NV_MSIX_INT_ENABLED
  797. };
  798. static int msix = NV_MSIX_INT_DISABLED;
  799. /*
  800. * DMA 64bit
  801. */
  802. enum {
  803. NV_DMA_64BIT_DISABLED,
  804. NV_DMA_64BIT_ENABLED
  805. };
  806. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  807. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  808. {
  809. return netdev_priv(dev);
  810. }
  811. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  812. {
  813. return ((struct fe_priv *)netdev_priv(dev))->base;
  814. }
  815. static inline void pci_push(u8 __iomem *base)
  816. {
  817. /* force out pending posted writes */
  818. readl(base);
  819. }
  820. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  821. {
  822. return le32_to_cpu(prd->flaglen)
  823. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  824. }
  825. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  826. {
  827. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  828. }
  829. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  830. int delay, int delaymax, const char *msg)
  831. {
  832. u8 __iomem *base = get_hwbase(dev);
  833. pci_push(base);
  834. do {
  835. udelay(delay);
  836. delaymax -= delay;
  837. if (delaymax < 0) {
  838. if (msg)
  839. printk(msg);
  840. return 1;
  841. }
  842. } while ((readl(base + offset) & mask) != target);
  843. return 0;
  844. }
  845. #define NV_SETUP_RX_RING 0x01
  846. #define NV_SETUP_TX_RING 0x02
  847. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  848. {
  849. struct fe_priv *np = get_nvpriv(dev);
  850. u8 __iomem *base = get_hwbase(dev);
  851. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  852. if (rxtx_flags & NV_SETUP_RX_RING) {
  853. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  854. }
  855. if (rxtx_flags & NV_SETUP_TX_RING) {
  856. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  857. }
  858. } else {
  859. if (rxtx_flags & NV_SETUP_RX_RING) {
  860. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  861. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  862. }
  863. if (rxtx_flags & NV_SETUP_TX_RING) {
  864. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  865. writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  866. }
  867. }
  868. }
  869. static void free_rings(struct net_device *dev)
  870. {
  871. struct fe_priv *np = get_nvpriv(dev);
  872. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  873. if (np->rx_ring.orig)
  874. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  875. np->rx_ring.orig, np->ring_addr);
  876. } else {
  877. if (np->rx_ring.ex)
  878. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  879. np->rx_ring.ex, np->ring_addr);
  880. }
  881. if (np->rx_skb)
  882. kfree(np->rx_skb);
  883. if (np->tx_skb)
  884. kfree(np->tx_skb);
  885. }
  886. static int using_multi_irqs(struct net_device *dev)
  887. {
  888. struct fe_priv *np = get_nvpriv(dev);
  889. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  890. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  891. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  892. return 0;
  893. else
  894. return 1;
  895. }
  896. static void nv_enable_irq(struct net_device *dev)
  897. {
  898. struct fe_priv *np = get_nvpriv(dev);
  899. if (!using_multi_irqs(dev)) {
  900. if (np->msi_flags & NV_MSI_X_ENABLED)
  901. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  902. else
  903. enable_irq(np->pci_dev->irq);
  904. } else {
  905. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  906. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  907. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  908. }
  909. }
  910. static void nv_disable_irq(struct net_device *dev)
  911. {
  912. struct fe_priv *np = get_nvpriv(dev);
  913. if (!using_multi_irqs(dev)) {
  914. if (np->msi_flags & NV_MSI_X_ENABLED)
  915. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  916. else
  917. disable_irq(np->pci_dev->irq);
  918. } else {
  919. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  920. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  921. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  922. }
  923. }
  924. /* In MSIX mode, a write to irqmask behaves as XOR */
  925. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  926. {
  927. u8 __iomem *base = get_hwbase(dev);
  928. writel(mask, base + NvRegIrqMask);
  929. }
  930. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  931. {
  932. struct fe_priv *np = get_nvpriv(dev);
  933. u8 __iomem *base = get_hwbase(dev);
  934. if (np->msi_flags & NV_MSI_X_ENABLED) {
  935. writel(mask, base + NvRegIrqMask);
  936. } else {
  937. if (np->msi_flags & NV_MSI_ENABLED)
  938. writel(0, base + NvRegMSIIrqMask);
  939. writel(0, base + NvRegIrqMask);
  940. }
  941. }
  942. #define MII_READ (-1)
  943. /* mii_rw: read/write a register on the PHY.
  944. *
  945. * Caller must guarantee serialization
  946. */
  947. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  948. {
  949. u8 __iomem *base = get_hwbase(dev);
  950. u32 reg;
  951. int retval;
  952. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  953. reg = readl(base + NvRegMIIControl);
  954. if (reg & NVREG_MIICTL_INUSE) {
  955. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  956. udelay(NV_MIIBUSY_DELAY);
  957. }
  958. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  959. if (value != MII_READ) {
  960. writel(value, base + NvRegMIIData);
  961. reg |= NVREG_MIICTL_WRITE;
  962. }
  963. writel(reg, base + NvRegMIIControl);
  964. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  965. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  966. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  967. dev->name, miireg, addr);
  968. retval = -1;
  969. } else if (value != MII_READ) {
  970. /* it was a write operation - fewer failures are detectable */
  971. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  972. dev->name, value, miireg, addr);
  973. retval = 0;
  974. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  975. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  976. dev->name, miireg, addr);
  977. retval = -1;
  978. } else {
  979. retval = readl(base + NvRegMIIData);
  980. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  981. dev->name, miireg, addr, retval);
  982. }
  983. return retval;
  984. }
  985. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  986. {
  987. struct fe_priv *np = netdev_priv(dev);
  988. u32 miicontrol;
  989. unsigned int tries = 0;
  990. miicontrol = BMCR_RESET | bmcr_setup;
  991. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  992. return -1;
  993. }
  994. /* wait for 500ms */
  995. msleep(500);
  996. /* must wait till reset is deasserted */
  997. while (miicontrol & BMCR_RESET) {
  998. msleep(10);
  999. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1000. /* FIXME: 100 tries seem excessive */
  1001. if (tries++ > 100)
  1002. return -1;
  1003. }
  1004. return 0;
  1005. }
  1006. static int phy_init(struct net_device *dev)
  1007. {
  1008. struct fe_priv *np = get_nvpriv(dev);
  1009. u8 __iomem *base = get_hwbase(dev);
  1010. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1011. /* phy errata for E3016 phy */
  1012. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1013. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1014. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1015. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1016. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1017. return PHY_ERROR;
  1018. }
  1019. }
  1020. if (np->phy_oui == PHY_OUI_REALTEK) {
  1021. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1022. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1023. return PHY_ERROR;
  1024. }
  1025. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1026. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1027. return PHY_ERROR;
  1028. }
  1029. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1030. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1031. return PHY_ERROR;
  1032. }
  1033. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1034. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1035. return PHY_ERROR;
  1036. }
  1037. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1038. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1039. return PHY_ERROR;
  1040. }
  1041. }
  1042. /* set advertise register */
  1043. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1044. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1045. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1046. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1047. return PHY_ERROR;
  1048. }
  1049. /* get phy interface type */
  1050. phyinterface = readl(base + NvRegPhyInterface);
  1051. /* see if gigabit phy */
  1052. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1053. if (mii_status & PHY_GIGABIT) {
  1054. np->gigabit = PHY_GIGABIT;
  1055. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1056. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1057. if (phyinterface & PHY_RGMII)
  1058. mii_control_1000 |= ADVERTISE_1000FULL;
  1059. else
  1060. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1061. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1062. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1063. return PHY_ERROR;
  1064. }
  1065. }
  1066. else
  1067. np->gigabit = 0;
  1068. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1069. mii_control |= BMCR_ANENABLE;
  1070. /* reset the phy
  1071. * (certain phys need bmcr to be setup with reset)
  1072. */
  1073. if (phy_reset(dev, mii_control)) {
  1074. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1075. return PHY_ERROR;
  1076. }
  1077. /* phy vendor specific configuration */
  1078. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1079. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1080. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1081. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1082. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1083. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1084. return PHY_ERROR;
  1085. }
  1086. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1087. phy_reserved |= PHY_CICADA_INIT5;
  1088. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1089. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1090. return PHY_ERROR;
  1091. }
  1092. }
  1093. if (np->phy_oui == PHY_OUI_CICADA) {
  1094. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1095. phy_reserved |= PHY_CICADA_INIT6;
  1096. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1097. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1098. return PHY_ERROR;
  1099. }
  1100. }
  1101. if (np->phy_oui == PHY_OUI_VITESSE) {
  1102. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1103. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1104. return PHY_ERROR;
  1105. }
  1106. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1107. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1108. return PHY_ERROR;
  1109. }
  1110. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1111. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1112. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1113. return PHY_ERROR;
  1114. }
  1115. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1116. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1117. phy_reserved |= PHY_VITESSE_INIT3;
  1118. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1119. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1120. return PHY_ERROR;
  1121. }
  1122. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1123. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1124. return PHY_ERROR;
  1125. }
  1126. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1127. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1128. return PHY_ERROR;
  1129. }
  1130. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1131. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1132. phy_reserved |= PHY_VITESSE_INIT3;
  1133. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1134. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1135. return PHY_ERROR;
  1136. }
  1137. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1138. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1139. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1140. return PHY_ERROR;
  1141. }
  1142. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1143. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1144. return PHY_ERROR;
  1145. }
  1146. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1147. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1148. return PHY_ERROR;
  1149. }
  1150. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1151. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1152. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1153. return PHY_ERROR;
  1154. }
  1155. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1156. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1157. phy_reserved |= PHY_VITESSE_INIT8;
  1158. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1159. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1160. return PHY_ERROR;
  1161. }
  1162. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1163. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1164. return PHY_ERROR;
  1165. }
  1166. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1167. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1168. return PHY_ERROR;
  1169. }
  1170. }
  1171. if (np->phy_oui == PHY_OUI_REALTEK) {
  1172. /* reset could have cleared these out, set them back */
  1173. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1174. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1175. return PHY_ERROR;
  1176. }
  1177. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1178. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1179. return PHY_ERROR;
  1180. }
  1181. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1182. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1183. return PHY_ERROR;
  1184. }
  1185. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1186. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1187. return PHY_ERROR;
  1188. }
  1189. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1190. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1191. return PHY_ERROR;
  1192. }
  1193. }
  1194. /* some phys clear out pause advertisment on reset, set it back */
  1195. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1196. /* restart auto negotiation */
  1197. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1198. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1199. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1200. return PHY_ERROR;
  1201. }
  1202. return 0;
  1203. }
  1204. static void nv_start_rx(struct net_device *dev)
  1205. {
  1206. struct fe_priv *np = netdev_priv(dev);
  1207. u8 __iomem *base = get_hwbase(dev);
  1208. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1209. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1210. /* Already running? Stop it. */
  1211. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1212. rx_ctrl &= ~NVREG_RCVCTL_START;
  1213. writel(rx_ctrl, base + NvRegReceiverControl);
  1214. pci_push(base);
  1215. }
  1216. writel(np->linkspeed, base + NvRegLinkSpeed);
  1217. pci_push(base);
  1218. rx_ctrl |= NVREG_RCVCTL_START;
  1219. if (np->mac_in_use)
  1220. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1221. writel(rx_ctrl, base + NvRegReceiverControl);
  1222. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1223. dev->name, np->duplex, np->linkspeed);
  1224. pci_push(base);
  1225. }
  1226. static void nv_stop_rx(struct net_device *dev)
  1227. {
  1228. struct fe_priv *np = netdev_priv(dev);
  1229. u8 __iomem *base = get_hwbase(dev);
  1230. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1231. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1232. if (!np->mac_in_use)
  1233. rx_ctrl &= ~NVREG_RCVCTL_START;
  1234. else
  1235. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1236. writel(rx_ctrl, base + NvRegReceiverControl);
  1237. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1238. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1239. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1240. udelay(NV_RXSTOP_DELAY2);
  1241. if (!np->mac_in_use)
  1242. writel(0, base + NvRegLinkSpeed);
  1243. }
  1244. static void nv_start_tx(struct net_device *dev)
  1245. {
  1246. struct fe_priv *np = netdev_priv(dev);
  1247. u8 __iomem *base = get_hwbase(dev);
  1248. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1249. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1250. tx_ctrl |= NVREG_XMITCTL_START;
  1251. if (np->mac_in_use)
  1252. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1253. writel(tx_ctrl, base + NvRegTransmitterControl);
  1254. pci_push(base);
  1255. }
  1256. static void nv_stop_tx(struct net_device *dev)
  1257. {
  1258. struct fe_priv *np = netdev_priv(dev);
  1259. u8 __iomem *base = get_hwbase(dev);
  1260. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1261. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1262. if (!np->mac_in_use)
  1263. tx_ctrl &= ~NVREG_XMITCTL_START;
  1264. else
  1265. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1266. writel(tx_ctrl, base + NvRegTransmitterControl);
  1267. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1268. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1269. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1270. udelay(NV_TXSTOP_DELAY2);
  1271. if (!np->mac_in_use)
  1272. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1273. base + NvRegTransmitPoll);
  1274. }
  1275. static void nv_txrx_reset(struct net_device *dev)
  1276. {
  1277. struct fe_priv *np = netdev_priv(dev);
  1278. u8 __iomem *base = get_hwbase(dev);
  1279. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1280. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1281. pci_push(base);
  1282. udelay(NV_TXRX_RESET_DELAY);
  1283. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1284. pci_push(base);
  1285. }
  1286. static void nv_mac_reset(struct net_device *dev)
  1287. {
  1288. struct fe_priv *np = netdev_priv(dev);
  1289. u8 __iomem *base = get_hwbase(dev);
  1290. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1291. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1292. pci_push(base);
  1293. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1294. pci_push(base);
  1295. udelay(NV_MAC_RESET_DELAY);
  1296. writel(0, base + NvRegMacReset);
  1297. pci_push(base);
  1298. udelay(NV_MAC_RESET_DELAY);
  1299. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1300. pci_push(base);
  1301. }
  1302. static void nv_get_hw_stats(struct net_device *dev)
  1303. {
  1304. struct fe_priv *np = netdev_priv(dev);
  1305. u8 __iomem *base = get_hwbase(dev);
  1306. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1307. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1308. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1309. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1310. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1311. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1312. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1313. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1314. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1315. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1316. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1317. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1318. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1319. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1320. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1321. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1322. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1323. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1324. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1325. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1326. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1327. np->estats.rx_packets =
  1328. np->estats.rx_unicast +
  1329. np->estats.rx_multicast +
  1330. np->estats.rx_broadcast;
  1331. np->estats.rx_errors_total =
  1332. np->estats.rx_crc_errors +
  1333. np->estats.rx_over_errors +
  1334. np->estats.rx_frame_error +
  1335. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1336. np->estats.rx_late_collision +
  1337. np->estats.rx_runt +
  1338. np->estats.rx_frame_too_long;
  1339. np->estats.tx_errors_total =
  1340. np->estats.tx_late_collision +
  1341. np->estats.tx_fifo_errors +
  1342. np->estats.tx_carrier_errors +
  1343. np->estats.tx_excess_deferral +
  1344. np->estats.tx_retry_error;
  1345. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1346. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1347. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1348. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1349. np->estats.tx_pause += readl(base + NvRegTxPause);
  1350. np->estats.rx_pause += readl(base + NvRegRxPause);
  1351. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1352. }
  1353. }
  1354. /*
  1355. * nv_get_stats: dev->get_stats function
  1356. * Get latest stats value from the nic.
  1357. * Called with read_lock(&dev_base_lock) held for read -
  1358. * only synchronized against unregister_netdevice.
  1359. */
  1360. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1361. {
  1362. struct fe_priv *np = netdev_priv(dev);
  1363. /* If the nic supports hw counters then retrieve latest values */
  1364. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
  1365. nv_get_hw_stats(dev);
  1366. /* copy to net_device stats */
  1367. dev->stats.tx_bytes = np->estats.tx_bytes;
  1368. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1369. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1370. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1371. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1372. dev->stats.rx_errors = np->estats.rx_errors_total;
  1373. dev->stats.tx_errors = np->estats.tx_errors_total;
  1374. }
  1375. return &dev->stats;
  1376. }
  1377. /*
  1378. * nv_alloc_rx: fill rx ring entries.
  1379. * Return 1 if the allocations for the skbs failed and the
  1380. * rx engine is without Available descriptors
  1381. */
  1382. static int nv_alloc_rx(struct net_device *dev)
  1383. {
  1384. struct fe_priv *np = netdev_priv(dev);
  1385. struct ring_desc* less_rx;
  1386. less_rx = np->get_rx.orig;
  1387. if (less_rx-- == np->first_rx.orig)
  1388. less_rx = np->last_rx.orig;
  1389. while (np->put_rx.orig != less_rx) {
  1390. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1391. if (skb) {
  1392. np->put_rx_ctx->skb = skb;
  1393. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1394. skb->data,
  1395. skb_tailroom(skb),
  1396. PCI_DMA_FROMDEVICE);
  1397. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1398. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1399. wmb();
  1400. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1401. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1402. np->put_rx.orig = np->first_rx.orig;
  1403. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1404. np->put_rx_ctx = np->first_rx_ctx;
  1405. } else {
  1406. return 1;
  1407. }
  1408. }
  1409. return 0;
  1410. }
  1411. static int nv_alloc_rx_optimized(struct net_device *dev)
  1412. {
  1413. struct fe_priv *np = netdev_priv(dev);
  1414. struct ring_desc_ex* less_rx;
  1415. less_rx = np->get_rx.ex;
  1416. if (less_rx-- == np->first_rx.ex)
  1417. less_rx = np->last_rx.ex;
  1418. while (np->put_rx.ex != less_rx) {
  1419. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1420. if (skb) {
  1421. np->put_rx_ctx->skb = skb;
  1422. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1423. skb->data,
  1424. skb_tailroom(skb),
  1425. PCI_DMA_FROMDEVICE);
  1426. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1427. np->put_rx.ex->bufhigh = cpu_to_le64(np->put_rx_ctx->dma) >> 32;
  1428. np->put_rx.ex->buflow = cpu_to_le64(np->put_rx_ctx->dma) & 0x0FFFFFFFF;
  1429. wmb();
  1430. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1431. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1432. np->put_rx.ex = np->first_rx.ex;
  1433. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1434. np->put_rx_ctx = np->first_rx_ctx;
  1435. } else {
  1436. return 1;
  1437. }
  1438. }
  1439. return 0;
  1440. }
  1441. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1442. #ifdef CONFIG_FORCEDETH_NAPI
  1443. static void nv_do_rx_refill(unsigned long data)
  1444. {
  1445. struct net_device *dev = (struct net_device *) data;
  1446. struct fe_priv *np = netdev_priv(dev);
  1447. /* Just reschedule NAPI rx processing */
  1448. netif_rx_schedule(dev, &np->napi);
  1449. }
  1450. #else
  1451. static void nv_do_rx_refill(unsigned long data)
  1452. {
  1453. struct net_device *dev = (struct net_device *) data;
  1454. struct fe_priv *np = netdev_priv(dev);
  1455. int retcode;
  1456. if (!using_multi_irqs(dev)) {
  1457. if (np->msi_flags & NV_MSI_X_ENABLED)
  1458. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1459. else
  1460. disable_irq(np->pci_dev->irq);
  1461. } else {
  1462. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1463. }
  1464. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1465. retcode = nv_alloc_rx(dev);
  1466. else
  1467. retcode = nv_alloc_rx_optimized(dev);
  1468. if (retcode) {
  1469. spin_lock_irq(&np->lock);
  1470. if (!np->in_shutdown)
  1471. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1472. spin_unlock_irq(&np->lock);
  1473. }
  1474. if (!using_multi_irqs(dev)) {
  1475. if (np->msi_flags & NV_MSI_X_ENABLED)
  1476. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1477. else
  1478. enable_irq(np->pci_dev->irq);
  1479. } else {
  1480. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1481. }
  1482. }
  1483. #endif
  1484. static void nv_init_rx(struct net_device *dev)
  1485. {
  1486. struct fe_priv *np = netdev_priv(dev);
  1487. int i;
  1488. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1489. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1490. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1491. else
  1492. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1493. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1494. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1495. for (i = 0; i < np->rx_ring_size; i++) {
  1496. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1497. np->rx_ring.orig[i].flaglen = 0;
  1498. np->rx_ring.orig[i].buf = 0;
  1499. } else {
  1500. np->rx_ring.ex[i].flaglen = 0;
  1501. np->rx_ring.ex[i].txvlan = 0;
  1502. np->rx_ring.ex[i].bufhigh = 0;
  1503. np->rx_ring.ex[i].buflow = 0;
  1504. }
  1505. np->rx_skb[i].skb = NULL;
  1506. np->rx_skb[i].dma = 0;
  1507. }
  1508. }
  1509. static void nv_init_tx(struct net_device *dev)
  1510. {
  1511. struct fe_priv *np = netdev_priv(dev);
  1512. int i;
  1513. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1514. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1515. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1516. else
  1517. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1518. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1519. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1520. for (i = 0; i < np->tx_ring_size; i++) {
  1521. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1522. np->tx_ring.orig[i].flaglen = 0;
  1523. np->tx_ring.orig[i].buf = 0;
  1524. } else {
  1525. np->tx_ring.ex[i].flaglen = 0;
  1526. np->tx_ring.ex[i].txvlan = 0;
  1527. np->tx_ring.ex[i].bufhigh = 0;
  1528. np->tx_ring.ex[i].buflow = 0;
  1529. }
  1530. np->tx_skb[i].skb = NULL;
  1531. np->tx_skb[i].dma = 0;
  1532. }
  1533. }
  1534. static int nv_init_ring(struct net_device *dev)
  1535. {
  1536. struct fe_priv *np = netdev_priv(dev);
  1537. nv_init_tx(dev);
  1538. nv_init_rx(dev);
  1539. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1540. return nv_alloc_rx(dev);
  1541. else
  1542. return nv_alloc_rx_optimized(dev);
  1543. }
  1544. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1545. {
  1546. struct fe_priv *np = netdev_priv(dev);
  1547. if (tx_skb->dma) {
  1548. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1549. tx_skb->dma_len,
  1550. PCI_DMA_TODEVICE);
  1551. tx_skb->dma = 0;
  1552. }
  1553. if (tx_skb->skb) {
  1554. dev_kfree_skb_any(tx_skb->skb);
  1555. tx_skb->skb = NULL;
  1556. return 1;
  1557. } else {
  1558. return 0;
  1559. }
  1560. }
  1561. static void nv_drain_tx(struct net_device *dev)
  1562. {
  1563. struct fe_priv *np = netdev_priv(dev);
  1564. unsigned int i;
  1565. for (i = 0; i < np->tx_ring_size; i++) {
  1566. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1567. np->tx_ring.orig[i].flaglen = 0;
  1568. np->tx_ring.orig[i].buf = 0;
  1569. } else {
  1570. np->tx_ring.ex[i].flaglen = 0;
  1571. np->tx_ring.ex[i].txvlan = 0;
  1572. np->tx_ring.ex[i].bufhigh = 0;
  1573. np->tx_ring.ex[i].buflow = 0;
  1574. }
  1575. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1576. dev->stats.tx_dropped++;
  1577. }
  1578. }
  1579. static void nv_drain_rx(struct net_device *dev)
  1580. {
  1581. struct fe_priv *np = netdev_priv(dev);
  1582. int i;
  1583. for (i = 0; i < np->rx_ring_size; i++) {
  1584. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1585. np->rx_ring.orig[i].flaglen = 0;
  1586. np->rx_ring.orig[i].buf = 0;
  1587. } else {
  1588. np->rx_ring.ex[i].flaglen = 0;
  1589. np->rx_ring.ex[i].txvlan = 0;
  1590. np->rx_ring.ex[i].bufhigh = 0;
  1591. np->rx_ring.ex[i].buflow = 0;
  1592. }
  1593. wmb();
  1594. if (np->rx_skb[i].skb) {
  1595. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1596. (skb_end_pointer(np->rx_skb[i].skb) -
  1597. np->rx_skb[i].skb->data),
  1598. PCI_DMA_FROMDEVICE);
  1599. dev_kfree_skb(np->rx_skb[i].skb);
  1600. np->rx_skb[i].skb = NULL;
  1601. }
  1602. }
  1603. }
  1604. static void drain_ring(struct net_device *dev)
  1605. {
  1606. nv_drain_tx(dev);
  1607. nv_drain_rx(dev);
  1608. }
  1609. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1610. {
  1611. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1612. }
  1613. /*
  1614. * nv_start_xmit: dev->hard_start_xmit function
  1615. * Called with netif_tx_lock held.
  1616. */
  1617. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1618. {
  1619. struct fe_priv *np = netdev_priv(dev);
  1620. u32 tx_flags = 0;
  1621. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1622. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1623. unsigned int i;
  1624. u32 offset = 0;
  1625. u32 bcnt;
  1626. u32 size = skb->len-skb->data_len;
  1627. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1628. u32 empty_slots;
  1629. struct ring_desc* put_tx;
  1630. struct ring_desc* start_tx;
  1631. struct ring_desc* prev_tx;
  1632. struct nv_skb_map* prev_tx_ctx;
  1633. /* add fragments to entries count */
  1634. for (i = 0; i < fragments; i++) {
  1635. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1636. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1637. }
  1638. empty_slots = nv_get_empty_tx_slots(np);
  1639. if (unlikely(empty_slots <= entries)) {
  1640. spin_lock_irq(&np->lock);
  1641. netif_stop_queue(dev);
  1642. np->tx_stop = 1;
  1643. spin_unlock_irq(&np->lock);
  1644. return NETDEV_TX_BUSY;
  1645. }
  1646. start_tx = put_tx = np->put_tx.orig;
  1647. /* setup the header buffer */
  1648. do {
  1649. prev_tx = put_tx;
  1650. prev_tx_ctx = np->put_tx_ctx;
  1651. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1652. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1653. PCI_DMA_TODEVICE);
  1654. np->put_tx_ctx->dma_len = bcnt;
  1655. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1656. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1657. tx_flags = np->tx_flags;
  1658. offset += bcnt;
  1659. size -= bcnt;
  1660. if (unlikely(put_tx++ == np->last_tx.orig))
  1661. put_tx = np->first_tx.orig;
  1662. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1663. np->put_tx_ctx = np->first_tx_ctx;
  1664. } while (size);
  1665. /* setup the fragments */
  1666. for (i = 0; i < fragments; i++) {
  1667. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1668. u32 size = frag->size;
  1669. offset = 0;
  1670. do {
  1671. prev_tx = put_tx;
  1672. prev_tx_ctx = np->put_tx_ctx;
  1673. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1674. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1675. PCI_DMA_TODEVICE);
  1676. np->put_tx_ctx->dma_len = bcnt;
  1677. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1678. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1679. offset += bcnt;
  1680. size -= bcnt;
  1681. if (unlikely(put_tx++ == np->last_tx.orig))
  1682. put_tx = np->first_tx.orig;
  1683. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1684. np->put_tx_ctx = np->first_tx_ctx;
  1685. } while (size);
  1686. }
  1687. /* set last fragment flag */
  1688. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1689. /* save skb in this slot's context area */
  1690. prev_tx_ctx->skb = skb;
  1691. if (skb_is_gso(skb))
  1692. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1693. else
  1694. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1695. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1696. spin_lock_irq(&np->lock);
  1697. /* set tx flags */
  1698. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1699. np->put_tx.orig = put_tx;
  1700. spin_unlock_irq(&np->lock);
  1701. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1702. dev->name, entries, tx_flags_extra);
  1703. {
  1704. int j;
  1705. for (j=0; j<64; j++) {
  1706. if ((j%16) == 0)
  1707. dprintk("\n%03x:", j);
  1708. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1709. }
  1710. dprintk("\n");
  1711. }
  1712. dev->trans_start = jiffies;
  1713. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1714. return NETDEV_TX_OK;
  1715. }
  1716. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  1717. {
  1718. struct fe_priv *np = netdev_priv(dev);
  1719. u32 tx_flags = 0;
  1720. u32 tx_flags_extra;
  1721. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1722. unsigned int i;
  1723. u32 offset = 0;
  1724. u32 bcnt;
  1725. u32 size = skb->len-skb->data_len;
  1726. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1727. u32 empty_slots;
  1728. struct ring_desc_ex* put_tx;
  1729. struct ring_desc_ex* start_tx;
  1730. struct ring_desc_ex* prev_tx;
  1731. struct nv_skb_map* prev_tx_ctx;
  1732. /* add fragments to entries count */
  1733. for (i = 0; i < fragments; i++) {
  1734. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1735. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1736. }
  1737. empty_slots = nv_get_empty_tx_slots(np);
  1738. if (unlikely(empty_slots <= entries)) {
  1739. spin_lock_irq(&np->lock);
  1740. netif_stop_queue(dev);
  1741. np->tx_stop = 1;
  1742. spin_unlock_irq(&np->lock);
  1743. return NETDEV_TX_BUSY;
  1744. }
  1745. start_tx = put_tx = np->put_tx.ex;
  1746. /* setup the header buffer */
  1747. do {
  1748. prev_tx = put_tx;
  1749. prev_tx_ctx = np->put_tx_ctx;
  1750. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1751. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1752. PCI_DMA_TODEVICE);
  1753. np->put_tx_ctx->dma_len = bcnt;
  1754. put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
  1755. put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
  1756. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1757. tx_flags = NV_TX2_VALID;
  1758. offset += bcnt;
  1759. size -= bcnt;
  1760. if (unlikely(put_tx++ == np->last_tx.ex))
  1761. put_tx = np->first_tx.ex;
  1762. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1763. np->put_tx_ctx = np->first_tx_ctx;
  1764. } while (size);
  1765. /* setup the fragments */
  1766. for (i = 0; i < fragments; i++) {
  1767. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1768. u32 size = frag->size;
  1769. offset = 0;
  1770. do {
  1771. prev_tx = put_tx;
  1772. prev_tx_ctx = np->put_tx_ctx;
  1773. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1774. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1775. PCI_DMA_TODEVICE);
  1776. np->put_tx_ctx->dma_len = bcnt;
  1777. put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
  1778. put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
  1779. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1780. offset += bcnt;
  1781. size -= bcnt;
  1782. if (unlikely(put_tx++ == np->last_tx.ex))
  1783. put_tx = np->first_tx.ex;
  1784. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1785. np->put_tx_ctx = np->first_tx_ctx;
  1786. } while (size);
  1787. }
  1788. /* set last fragment flag */
  1789. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  1790. /* save skb in this slot's context area */
  1791. prev_tx_ctx->skb = skb;
  1792. if (skb_is_gso(skb))
  1793. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1794. else
  1795. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1796. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1797. /* vlan tag */
  1798. if (likely(!np->vlangrp)) {
  1799. start_tx->txvlan = 0;
  1800. } else {
  1801. if (vlan_tx_tag_present(skb))
  1802. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  1803. else
  1804. start_tx->txvlan = 0;
  1805. }
  1806. spin_lock_irq(&np->lock);
  1807. /* set tx flags */
  1808. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1809. np->put_tx.ex = put_tx;
  1810. spin_unlock_irq(&np->lock);
  1811. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  1812. dev->name, entries, tx_flags_extra);
  1813. {
  1814. int j;
  1815. for (j=0; j<64; j++) {
  1816. if ((j%16) == 0)
  1817. dprintk("\n%03x:", j);
  1818. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1819. }
  1820. dprintk("\n");
  1821. }
  1822. dev->trans_start = jiffies;
  1823. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1824. return NETDEV_TX_OK;
  1825. }
  1826. /*
  1827. * nv_tx_done: check for completed packets, release the skbs.
  1828. *
  1829. * Caller must own np->lock.
  1830. */
  1831. static void nv_tx_done(struct net_device *dev)
  1832. {
  1833. struct fe_priv *np = netdev_priv(dev);
  1834. u32 flags;
  1835. struct ring_desc* orig_get_tx = np->get_tx.orig;
  1836. while ((np->get_tx.orig != np->put_tx.orig) &&
  1837. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  1838. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  1839. dev->name, flags);
  1840. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1841. np->get_tx_ctx->dma_len,
  1842. PCI_DMA_TODEVICE);
  1843. np->get_tx_ctx->dma = 0;
  1844. if (np->desc_ver == DESC_VER_1) {
  1845. if (flags & NV_TX_LASTPACKET) {
  1846. if (flags & NV_TX_ERROR) {
  1847. if (flags & NV_TX_UNDERFLOW)
  1848. dev->stats.tx_fifo_errors++;
  1849. if (flags & NV_TX_CARRIERLOST)
  1850. dev->stats.tx_carrier_errors++;
  1851. dev->stats.tx_errors++;
  1852. } else {
  1853. dev->stats.tx_packets++;
  1854. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1855. }
  1856. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1857. np->get_tx_ctx->skb = NULL;
  1858. }
  1859. } else {
  1860. if (flags & NV_TX2_LASTPACKET) {
  1861. if (flags & NV_TX2_ERROR) {
  1862. if (flags & NV_TX2_UNDERFLOW)
  1863. dev->stats.tx_fifo_errors++;
  1864. if (flags & NV_TX2_CARRIERLOST)
  1865. dev->stats.tx_carrier_errors++;
  1866. dev->stats.tx_errors++;
  1867. } else {
  1868. dev->stats.tx_packets++;
  1869. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1870. }
  1871. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1872. np->get_tx_ctx->skb = NULL;
  1873. }
  1874. }
  1875. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  1876. np->get_tx.orig = np->first_tx.orig;
  1877. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1878. np->get_tx_ctx = np->first_tx_ctx;
  1879. }
  1880. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  1881. np->tx_stop = 0;
  1882. netif_wake_queue(dev);
  1883. }
  1884. }
  1885. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  1886. {
  1887. struct fe_priv *np = netdev_priv(dev);
  1888. u32 flags;
  1889. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  1890. while ((np->get_tx.ex != np->put_tx.ex) &&
  1891. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  1892. (limit-- > 0)) {
  1893. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  1894. dev->name, flags);
  1895. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1896. np->get_tx_ctx->dma_len,
  1897. PCI_DMA_TODEVICE);
  1898. np->get_tx_ctx->dma = 0;
  1899. if (flags & NV_TX2_LASTPACKET) {
  1900. if (!(flags & NV_TX2_ERROR))
  1901. dev->stats.tx_packets++;
  1902. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1903. np->get_tx_ctx->skb = NULL;
  1904. }
  1905. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  1906. np->get_tx.ex = np->first_tx.ex;
  1907. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1908. np->get_tx_ctx = np->first_tx_ctx;
  1909. }
  1910. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  1911. np->tx_stop = 0;
  1912. netif_wake_queue(dev);
  1913. }
  1914. }
  1915. /*
  1916. * nv_tx_timeout: dev->tx_timeout function
  1917. * Called with netif_tx_lock held.
  1918. */
  1919. static void nv_tx_timeout(struct net_device *dev)
  1920. {
  1921. struct fe_priv *np = netdev_priv(dev);
  1922. u8 __iomem *base = get_hwbase(dev);
  1923. u32 status;
  1924. if (np->msi_flags & NV_MSI_X_ENABLED)
  1925. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1926. else
  1927. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1928. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1929. {
  1930. int i;
  1931. printk(KERN_INFO "%s: Ring at %lx\n",
  1932. dev->name, (unsigned long)np->ring_addr);
  1933. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1934. for (i=0;i<=np->register_size;i+= 32) {
  1935. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1936. i,
  1937. readl(base + i + 0), readl(base + i + 4),
  1938. readl(base + i + 8), readl(base + i + 12),
  1939. readl(base + i + 16), readl(base + i + 20),
  1940. readl(base + i + 24), readl(base + i + 28));
  1941. }
  1942. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1943. for (i=0;i<np->tx_ring_size;i+= 4) {
  1944. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1945. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1946. i,
  1947. le32_to_cpu(np->tx_ring.orig[i].buf),
  1948. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  1949. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  1950. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  1951. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  1952. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  1953. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  1954. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  1955. } else {
  1956. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1957. i,
  1958. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  1959. le32_to_cpu(np->tx_ring.ex[i].buflow),
  1960. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  1961. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  1962. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  1963. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  1964. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  1965. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  1966. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  1967. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  1968. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  1969. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  1970. }
  1971. }
  1972. }
  1973. spin_lock_irq(&np->lock);
  1974. /* 1) stop tx engine */
  1975. nv_stop_tx(dev);
  1976. /* 2) check that the packets were not sent already: */
  1977. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1978. nv_tx_done(dev);
  1979. else
  1980. nv_tx_done_optimized(dev, np->tx_ring_size);
  1981. /* 3) if there are dead entries: clear everything */
  1982. if (np->get_tx_ctx != np->put_tx_ctx) {
  1983. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1984. nv_drain_tx(dev);
  1985. nv_init_tx(dev);
  1986. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1987. }
  1988. netif_wake_queue(dev);
  1989. /* 4) restart tx engine */
  1990. nv_start_tx(dev);
  1991. spin_unlock_irq(&np->lock);
  1992. }
  1993. /*
  1994. * Called when the nic notices a mismatch between the actual data len on the
  1995. * wire and the len indicated in the 802 header
  1996. */
  1997. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1998. {
  1999. int hdrlen; /* length of the 802 header */
  2000. int protolen; /* length as stored in the proto field */
  2001. /* 1) calculate len according to header */
  2002. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2003. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2004. hdrlen = VLAN_HLEN;
  2005. } else {
  2006. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2007. hdrlen = ETH_HLEN;
  2008. }
  2009. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2010. dev->name, datalen, protolen, hdrlen);
  2011. if (protolen > ETH_DATA_LEN)
  2012. return datalen; /* Value in proto field not a len, no checks possible */
  2013. protolen += hdrlen;
  2014. /* consistency checks: */
  2015. if (datalen > ETH_ZLEN) {
  2016. if (datalen >= protolen) {
  2017. /* more data on wire than in 802 header, trim of
  2018. * additional data.
  2019. */
  2020. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2021. dev->name, protolen);
  2022. return protolen;
  2023. } else {
  2024. /* less data on wire than mentioned in header.
  2025. * Discard the packet.
  2026. */
  2027. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2028. dev->name);
  2029. return -1;
  2030. }
  2031. } else {
  2032. /* short packet. Accept only if 802 values are also short */
  2033. if (protolen > ETH_ZLEN) {
  2034. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2035. dev->name);
  2036. return -1;
  2037. }
  2038. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2039. dev->name, datalen);
  2040. return datalen;
  2041. }
  2042. }
  2043. static int nv_rx_process(struct net_device *dev, int limit)
  2044. {
  2045. struct fe_priv *np = netdev_priv(dev);
  2046. u32 flags;
  2047. int rx_work = 0;
  2048. struct sk_buff *skb;
  2049. int len;
  2050. while((np->get_rx.orig != np->put_rx.orig) &&
  2051. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2052. (rx_work < limit)) {
  2053. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2054. dev->name, flags);
  2055. /*
  2056. * the packet is for us - immediately tear down the pci mapping.
  2057. * TODO: check if a prefetch of the first cacheline improves
  2058. * the performance.
  2059. */
  2060. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2061. np->get_rx_ctx->dma_len,
  2062. PCI_DMA_FROMDEVICE);
  2063. skb = np->get_rx_ctx->skb;
  2064. np->get_rx_ctx->skb = NULL;
  2065. {
  2066. int j;
  2067. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2068. for (j=0; j<64; j++) {
  2069. if ((j%16) == 0)
  2070. dprintk("\n%03x:", j);
  2071. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2072. }
  2073. dprintk("\n");
  2074. }
  2075. /* look at what we actually got: */
  2076. if (np->desc_ver == DESC_VER_1) {
  2077. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2078. len = flags & LEN_MASK_V1;
  2079. if (unlikely(flags & NV_RX_ERROR)) {
  2080. if (flags & NV_RX_ERROR4) {
  2081. len = nv_getlen(dev, skb->data, len);
  2082. if (len < 0) {
  2083. dev->stats.rx_errors++;
  2084. dev_kfree_skb(skb);
  2085. goto next_pkt;
  2086. }
  2087. }
  2088. /* framing errors are soft errors */
  2089. else if (flags & NV_RX_FRAMINGERR) {
  2090. if (flags & NV_RX_SUBSTRACT1) {
  2091. len--;
  2092. }
  2093. }
  2094. /* the rest are hard errors */
  2095. else {
  2096. if (flags & NV_RX_MISSEDFRAME)
  2097. dev->stats.rx_missed_errors++;
  2098. if (flags & NV_RX_CRCERR)
  2099. dev->stats.rx_crc_errors++;
  2100. if (flags & NV_RX_OVERFLOW)
  2101. dev->stats.rx_over_errors++;
  2102. dev->stats.rx_errors++;
  2103. dev_kfree_skb(skb);
  2104. goto next_pkt;
  2105. }
  2106. }
  2107. } else {
  2108. dev_kfree_skb(skb);
  2109. goto next_pkt;
  2110. }
  2111. } else {
  2112. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2113. len = flags & LEN_MASK_V2;
  2114. if (unlikely(flags & NV_RX2_ERROR)) {
  2115. if (flags & NV_RX2_ERROR4) {
  2116. len = nv_getlen(dev, skb->data, len);
  2117. if (len < 0) {
  2118. dev->stats.rx_errors++;
  2119. dev_kfree_skb(skb);
  2120. goto next_pkt;
  2121. }
  2122. }
  2123. /* framing errors are soft errors */
  2124. else if (flags & NV_RX2_FRAMINGERR) {
  2125. if (flags & NV_RX2_SUBSTRACT1) {
  2126. len--;
  2127. }
  2128. }
  2129. /* the rest are hard errors */
  2130. else {
  2131. if (flags & NV_RX2_CRCERR)
  2132. dev->stats.rx_crc_errors++;
  2133. if (flags & NV_RX2_OVERFLOW)
  2134. dev->stats.rx_over_errors++;
  2135. dev->stats.rx_errors++;
  2136. dev_kfree_skb(skb);
  2137. goto next_pkt;
  2138. }
  2139. }
  2140. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
  2141. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2142. } else {
  2143. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
  2144. (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
  2145. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2146. }
  2147. }
  2148. } else {
  2149. dev_kfree_skb(skb);
  2150. goto next_pkt;
  2151. }
  2152. }
  2153. /* got a valid packet - forward it to the network core */
  2154. skb_put(skb, len);
  2155. skb->protocol = eth_type_trans(skb, dev);
  2156. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2157. dev->name, len, skb->protocol);
  2158. #ifdef CONFIG_FORCEDETH_NAPI
  2159. netif_receive_skb(skb);
  2160. #else
  2161. netif_rx(skb);
  2162. #endif
  2163. dev->last_rx = jiffies;
  2164. dev->stats.rx_packets++;
  2165. dev->stats.rx_bytes += len;
  2166. next_pkt:
  2167. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2168. np->get_rx.orig = np->first_rx.orig;
  2169. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2170. np->get_rx_ctx = np->first_rx_ctx;
  2171. rx_work++;
  2172. }
  2173. return rx_work;
  2174. }
  2175. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2176. {
  2177. struct fe_priv *np = netdev_priv(dev);
  2178. u32 flags;
  2179. u32 vlanflags = 0;
  2180. int rx_work = 0;
  2181. struct sk_buff *skb;
  2182. int len;
  2183. while((np->get_rx.ex != np->put_rx.ex) &&
  2184. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2185. (rx_work < limit)) {
  2186. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2187. dev->name, flags);
  2188. /*
  2189. * the packet is for us - immediately tear down the pci mapping.
  2190. * TODO: check if a prefetch of the first cacheline improves
  2191. * the performance.
  2192. */
  2193. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2194. np->get_rx_ctx->dma_len,
  2195. PCI_DMA_FROMDEVICE);
  2196. skb = np->get_rx_ctx->skb;
  2197. np->get_rx_ctx->skb = NULL;
  2198. {
  2199. int j;
  2200. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2201. for (j=0; j<64; j++) {
  2202. if ((j%16) == 0)
  2203. dprintk("\n%03x:", j);
  2204. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2205. }
  2206. dprintk("\n");
  2207. }
  2208. /* look at what we actually got: */
  2209. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2210. len = flags & LEN_MASK_V2;
  2211. if (unlikely(flags & NV_RX2_ERROR)) {
  2212. if (flags & NV_RX2_ERROR4) {
  2213. len = nv_getlen(dev, skb->data, len);
  2214. if (len < 0) {
  2215. dev_kfree_skb(skb);
  2216. goto next_pkt;
  2217. }
  2218. }
  2219. /* framing errors are soft errors */
  2220. else if (flags & NV_RX2_FRAMINGERR) {
  2221. if (flags & NV_RX2_SUBSTRACT1) {
  2222. len--;
  2223. }
  2224. }
  2225. /* the rest are hard errors */
  2226. else {
  2227. dev_kfree_skb(skb);
  2228. goto next_pkt;
  2229. }
  2230. }
  2231. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
  2232. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2233. } else {
  2234. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
  2235. (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
  2236. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2237. }
  2238. }
  2239. /* got a valid packet - forward it to the network core */
  2240. skb_put(skb, len);
  2241. skb->protocol = eth_type_trans(skb, dev);
  2242. prefetch(skb->data);
  2243. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2244. dev->name, len, skb->protocol);
  2245. if (likely(!np->vlangrp)) {
  2246. #ifdef CONFIG_FORCEDETH_NAPI
  2247. netif_receive_skb(skb);
  2248. #else
  2249. netif_rx(skb);
  2250. #endif
  2251. } else {
  2252. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2253. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2254. #ifdef CONFIG_FORCEDETH_NAPI
  2255. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2256. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2257. #else
  2258. vlan_hwaccel_rx(skb, np->vlangrp,
  2259. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2260. #endif
  2261. } else {
  2262. #ifdef CONFIG_FORCEDETH_NAPI
  2263. netif_receive_skb(skb);
  2264. #else
  2265. netif_rx(skb);
  2266. #endif
  2267. }
  2268. }
  2269. dev->last_rx = jiffies;
  2270. dev->stats.rx_packets++;
  2271. dev->stats.rx_bytes += len;
  2272. } else {
  2273. dev_kfree_skb(skb);
  2274. }
  2275. next_pkt:
  2276. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2277. np->get_rx.ex = np->first_rx.ex;
  2278. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2279. np->get_rx_ctx = np->first_rx_ctx;
  2280. rx_work++;
  2281. }
  2282. return rx_work;
  2283. }
  2284. static void set_bufsize(struct net_device *dev)
  2285. {
  2286. struct fe_priv *np = netdev_priv(dev);
  2287. if (dev->mtu <= ETH_DATA_LEN)
  2288. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2289. else
  2290. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2291. }
  2292. /*
  2293. * nv_change_mtu: dev->change_mtu function
  2294. * Called with dev_base_lock held for read.
  2295. */
  2296. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2297. {
  2298. struct fe_priv *np = netdev_priv(dev);
  2299. int old_mtu;
  2300. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2301. return -EINVAL;
  2302. old_mtu = dev->mtu;
  2303. dev->mtu = new_mtu;
  2304. /* return early if the buffer sizes will not change */
  2305. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2306. return 0;
  2307. if (old_mtu == new_mtu)
  2308. return 0;
  2309. /* synchronized against open : rtnl_lock() held by caller */
  2310. if (netif_running(dev)) {
  2311. u8 __iomem *base = get_hwbase(dev);
  2312. /*
  2313. * It seems that the nic preloads valid ring entries into an
  2314. * internal buffer. The procedure for flushing everything is
  2315. * guessed, there is probably a simpler approach.
  2316. * Changing the MTU is a rare event, it shouldn't matter.
  2317. */
  2318. nv_disable_irq(dev);
  2319. netif_tx_lock_bh(dev);
  2320. spin_lock(&np->lock);
  2321. /* stop engines */
  2322. nv_stop_rx(dev);
  2323. nv_stop_tx(dev);
  2324. nv_txrx_reset(dev);
  2325. /* drain rx queue */
  2326. nv_drain_rx(dev);
  2327. nv_drain_tx(dev);
  2328. /* reinit driver view of the rx queue */
  2329. set_bufsize(dev);
  2330. if (nv_init_ring(dev)) {
  2331. if (!np->in_shutdown)
  2332. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2333. }
  2334. /* reinit nic view of the rx queue */
  2335. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2336. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2337. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2338. base + NvRegRingSizes);
  2339. pci_push(base);
  2340. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2341. pci_push(base);
  2342. /* restart rx engine */
  2343. nv_start_rx(dev);
  2344. nv_start_tx(dev);
  2345. spin_unlock(&np->lock);
  2346. netif_tx_unlock_bh(dev);
  2347. nv_enable_irq(dev);
  2348. }
  2349. return 0;
  2350. }
  2351. static void nv_copy_mac_to_hw(struct net_device *dev)
  2352. {
  2353. u8 __iomem *base = get_hwbase(dev);
  2354. u32 mac[2];
  2355. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2356. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2357. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2358. writel(mac[0], base + NvRegMacAddrA);
  2359. writel(mac[1], base + NvRegMacAddrB);
  2360. }
  2361. /*
  2362. * nv_set_mac_address: dev->set_mac_address function
  2363. * Called with rtnl_lock() held.
  2364. */
  2365. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2366. {
  2367. struct fe_priv *np = netdev_priv(dev);
  2368. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2369. if (!is_valid_ether_addr(macaddr->sa_data))
  2370. return -EADDRNOTAVAIL;
  2371. /* synchronized against open : rtnl_lock() held by caller */
  2372. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2373. if (netif_running(dev)) {
  2374. netif_tx_lock_bh(dev);
  2375. spin_lock_irq(&np->lock);
  2376. /* stop rx engine */
  2377. nv_stop_rx(dev);
  2378. /* set mac address */
  2379. nv_copy_mac_to_hw(dev);
  2380. /* restart rx engine */
  2381. nv_start_rx(dev);
  2382. spin_unlock_irq(&np->lock);
  2383. netif_tx_unlock_bh(dev);
  2384. } else {
  2385. nv_copy_mac_to_hw(dev);
  2386. }
  2387. return 0;
  2388. }
  2389. /*
  2390. * nv_set_multicast: dev->set_multicast function
  2391. * Called with netif_tx_lock held.
  2392. */
  2393. static void nv_set_multicast(struct net_device *dev)
  2394. {
  2395. struct fe_priv *np = netdev_priv(dev);
  2396. u8 __iomem *base = get_hwbase(dev);
  2397. u32 addr[2];
  2398. u32 mask[2];
  2399. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2400. memset(addr, 0, sizeof(addr));
  2401. memset(mask, 0, sizeof(mask));
  2402. if (dev->flags & IFF_PROMISC) {
  2403. pff |= NVREG_PFF_PROMISC;
  2404. } else {
  2405. pff |= NVREG_PFF_MYADDR;
  2406. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2407. u32 alwaysOff[2];
  2408. u32 alwaysOn[2];
  2409. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2410. if (dev->flags & IFF_ALLMULTI) {
  2411. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2412. } else {
  2413. struct dev_mc_list *walk;
  2414. walk = dev->mc_list;
  2415. while (walk != NULL) {
  2416. u32 a, b;
  2417. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  2418. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  2419. alwaysOn[0] &= a;
  2420. alwaysOff[0] &= ~a;
  2421. alwaysOn[1] &= b;
  2422. alwaysOff[1] &= ~b;
  2423. walk = walk->next;
  2424. }
  2425. }
  2426. addr[0] = alwaysOn[0];
  2427. addr[1] = alwaysOn[1];
  2428. mask[0] = alwaysOn[0] | alwaysOff[0];
  2429. mask[1] = alwaysOn[1] | alwaysOff[1];
  2430. }
  2431. }
  2432. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2433. pff |= NVREG_PFF_ALWAYS;
  2434. spin_lock_irq(&np->lock);
  2435. nv_stop_rx(dev);
  2436. writel(addr[0], base + NvRegMulticastAddrA);
  2437. writel(addr[1], base + NvRegMulticastAddrB);
  2438. writel(mask[0], base + NvRegMulticastMaskA);
  2439. writel(mask[1], base + NvRegMulticastMaskB);
  2440. writel(pff, base + NvRegPacketFilterFlags);
  2441. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2442. dev->name);
  2443. nv_start_rx(dev);
  2444. spin_unlock_irq(&np->lock);
  2445. }
  2446. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2447. {
  2448. struct fe_priv *np = netdev_priv(dev);
  2449. u8 __iomem *base = get_hwbase(dev);
  2450. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2451. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2452. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2453. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2454. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2455. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2456. } else {
  2457. writel(pff, base + NvRegPacketFilterFlags);
  2458. }
  2459. }
  2460. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2461. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2462. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2463. writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
  2464. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2465. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2466. } else {
  2467. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2468. writel(regmisc, base + NvRegMisc1);
  2469. }
  2470. }
  2471. }
  2472. /**
  2473. * nv_update_linkspeed: Setup the MAC according to the link partner
  2474. * @dev: Network device to be configured
  2475. *
  2476. * The function queries the PHY and checks if there is a link partner.
  2477. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2478. * set to 10 MBit HD.
  2479. *
  2480. * The function returns 0 if there is no link partner and 1 if there is
  2481. * a good link partner.
  2482. */
  2483. static int nv_update_linkspeed(struct net_device *dev)
  2484. {
  2485. struct fe_priv *np = netdev_priv(dev);
  2486. u8 __iomem *base = get_hwbase(dev);
  2487. int adv = 0;
  2488. int lpa = 0;
  2489. int adv_lpa, adv_pause, lpa_pause;
  2490. int newls = np->linkspeed;
  2491. int newdup = np->duplex;
  2492. int mii_status;
  2493. int retval = 0;
  2494. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2495. /* BMSR_LSTATUS is latched, read it twice:
  2496. * we want the current value.
  2497. */
  2498. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2499. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2500. if (!(mii_status & BMSR_LSTATUS)) {
  2501. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2502. dev->name);
  2503. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2504. newdup = 0;
  2505. retval = 0;
  2506. goto set_speed;
  2507. }
  2508. if (np->autoneg == 0) {
  2509. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2510. dev->name, np->fixed_mode);
  2511. if (np->fixed_mode & LPA_100FULL) {
  2512. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2513. newdup = 1;
  2514. } else if (np->fixed_mode & LPA_100HALF) {
  2515. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2516. newdup = 0;
  2517. } else if (np->fixed_mode & LPA_10FULL) {
  2518. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2519. newdup = 1;
  2520. } else {
  2521. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2522. newdup = 0;
  2523. }
  2524. retval = 1;
  2525. goto set_speed;
  2526. }
  2527. /* check auto negotiation is complete */
  2528. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2529. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2530. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2531. newdup = 0;
  2532. retval = 0;
  2533. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2534. goto set_speed;
  2535. }
  2536. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2537. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2538. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2539. dev->name, adv, lpa);
  2540. retval = 1;
  2541. if (np->gigabit == PHY_GIGABIT) {
  2542. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2543. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2544. if ((control_1000 & ADVERTISE_1000FULL) &&
  2545. (status_1000 & LPA_1000FULL)) {
  2546. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2547. dev->name);
  2548. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2549. newdup = 1;
  2550. goto set_speed;
  2551. }
  2552. }
  2553. /* FIXME: handle parallel detection properly */
  2554. adv_lpa = lpa & adv;
  2555. if (adv_lpa & LPA_100FULL) {
  2556. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2557. newdup = 1;
  2558. } else if (adv_lpa & LPA_100HALF) {
  2559. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2560. newdup = 0;
  2561. } else if (adv_lpa & LPA_10FULL) {
  2562. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2563. newdup = 1;
  2564. } else if (adv_lpa & LPA_10HALF) {
  2565. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2566. newdup = 0;
  2567. } else {
  2568. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2569. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2570. newdup = 0;
  2571. }
  2572. set_speed:
  2573. if (np->duplex == newdup && np->linkspeed == newls)
  2574. return retval;
  2575. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2576. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2577. np->duplex = newdup;
  2578. np->linkspeed = newls;
  2579. if (np->gigabit == PHY_GIGABIT) {
  2580. phyreg = readl(base + NvRegRandomSeed);
  2581. phyreg &= ~(0x3FF00);
  2582. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2583. phyreg |= NVREG_RNDSEED_FORCE3;
  2584. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2585. phyreg |= NVREG_RNDSEED_FORCE2;
  2586. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2587. phyreg |= NVREG_RNDSEED_FORCE;
  2588. writel(phyreg, base + NvRegRandomSeed);
  2589. }
  2590. phyreg = readl(base + NvRegPhyInterface);
  2591. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2592. if (np->duplex == 0)
  2593. phyreg |= PHY_HALF;
  2594. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2595. phyreg |= PHY_100;
  2596. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2597. phyreg |= PHY_1000;
  2598. writel(phyreg, base + NvRegPhyInterface);
  2599. if (phyreg & PHY_RGMII) {
  2600. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2601. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2602. else
  2603. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2604. } else {
  2605. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2606. }
  2607. writel(txreg, base + NvRegTxDeferral);
  2608. if (np->desc_ver == DESC_VER_1) {
  2609. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2610. } else {
  2611. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2612. txreg = NVREG_TX_WM_DESC2_3_1000;
  2613. else
  2614. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2615. }
  2616. writel(txreg, base + NvRegTxWatermark);
  2617. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2618. base + NvRegMisc1);
  2619. pci_push(base);
  2620. writel(np->linkspeed, base + NvRegLinkSpeed);
  2621. pci_push(base);
  2622. pause_flags = 0;
  2623. /* setup pause frame */
  2624. if (np->duplex != 0) {
  2625. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2626. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2627. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2628. switch (adv_pause) {
  2629. case ADVERTISE_PAUSE_CAP:
  2630. if (lpa_pause & LPA_PAUSE_CAP) {
  2631. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2632. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2633. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2634. }
  2635. break;
  2636. case ADVERTISE_PAUSE_ASYM:
  2637. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2638. {
  2639. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2640. }
  2641. break;
  2642. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2643. if (lpa_pause & LPA_PAUSE_CAP)
  2644. {
  2645. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2646. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2647. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2648. }
  2649. if (lpa_pause == LPA_PAUSE_ASYM)
  2650. {
  2651. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2652. }
  2653. break;
  2654. }
  2655. } else {
  2656. pause_flags = np->pause_flags;
  2657. }
  2658. }
  2659. nv_update_pause(dev, pause_flags);
  2660. return retval;
  2661. }
  2662. static void nv_linkchange(struct net_device *dev)
  2663. {
  2664. if (nv_update_linkspeed(dev)) {
  2665. if (!netif_carrier_ok(dev)) {
  2666. netif_carrier_on(dev);
  2667. printk(KERN_INFO "%s: link up.\n", dev->name);
  2668. nv_start_rx(dev);
  2669. }
  2670. } else {
  2671. if (netif_carrier_ok(dev)) {
  2672. netif_carrier_off(dev);
  2673. printk(KERN_INFO "%s: link down.\n", dev->name);
  2674. nv_stop_rx(dev);
  2675. }
  2676. }
  2677. }
  2678. static void nv_link_irq(struct net_device *dev)
  2679. {
  2680. u8 __iomem *base = get_hwbase(dev);
  2681. u32 miistat;
  2682. miistat = readl(base + NvRegMIIStatus);
  2683. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2684. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2685. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2686. nv_linkchange(dev);
  2687. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2688. }
  2689. static irqreturn_t nv_nic_irq(int foo, void *data)
  2690. {
  2691. struct net_device *dev = (struct net_device *) data;
  2692. struct fe_priv *np = netdev_priv(dev);
  2693. u8 __iomem *base = get_hwbase(dev);
  2694. u32 events;
  2695. int i;
  2696. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2697. for (i=0; ; i++) {
  2698. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2699. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2700. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2701. } else {
  2702. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2703. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2704. }
  2705. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2706. if (!(events & np->irqmask))
  2707. break;
  2708. spin_lock(&np->lock);
  2709. nv_tx_done(dev);
  2710. spin_unlock(&np->lock);
  2711. #ifdef CONFIG_FORCEDETH_NAPI
  2712. if (events & NVREG_IRQ_RX_ALL) {
  2713. netif_rx_schedule(dev, &np->napi);
  2714. /* Disable furthur receive irq's */
  2715. spin_lock(&np->lock);
  2716. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2717. if (np->msi_flags & NV_MSI_X_ENABLED)
  2718. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2719. else
  2720. writel(np->irqmask, base + NvRegIrqMask);
  2721. spin_unlock(&np->lock);
  2722. }
  2723. #else
  2724. if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
  2725. if (unlikely(nv_alloc_rx(dev))) {
  2726. spin_lock(&np->lock);
  2727. if (!np->in_shutdown)
  2728. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2729. spin_unlock(&np->lock);
  2730. }
  2731. }
  2732. #endif
  2733. if (unlikely(events & NVREG_IRQ_LINK)) {
  2734. spin_lock(&np->lock);
  2735. nv_link_irq(dev);
  2736. spin_unlock(&np->lock);
  2737. }
  2738. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2739. spin_lock(&np->lock);
  2740. nv_linkchange(dev);
  2741. spin_unlock(&np->lock);
  2742. np->link_timeout = jiffies + LINK_TIMEOUT;
  2743. }
  2744. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2745. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2746. dev->name, events);
  2747. }
  2748. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2749. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2750. dev->name, events);
  2751. }
  2752. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2753. spin_lock(&np->lock);
  2754. /* disable interrupts on the nic */
  2755. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2756. writel(0, base + NvRegIrqMask);
  2757. else
  2758. writel(np->irqmask, base + NvRegIrqMask);
  2759. pci_push(base);
  2760. if (!np->in_shutdown) {
  2761. np->nic_poll_irq = np->irqmask;
  2762. np->recover_error = 1;
  2763. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2764. }
  2765. spin_unlock(&np->lock);
  2766. break;
  2767. }
  2768. if (unlikely(i > max_interrupt_work)) {
  2769. spin_lock(&np->lock);
  2770. /* disable interrupts on the nic */
  2771. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2772. writel(0, base + NvRegIrqMask);
  2773. else
  2774. writel(np->irqmask, base + NvRegIrqMask);
  2775. pci_push(base);
  2776. if (!np->in_shutdown) {
  2777. np->nic_poll_irq = np->irqmask;
  2778. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2779. }
  2780. spin_unlock(&np->lock);
  2781. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2782. break;
  2783. }
  2784. }
  2785. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2786. return IRQ_RETVAL(i);
  2787. }
  2788. /**
  2789. * All _optimized functions are used to help increase performance
  2790. * (reduce CPU and increase throughput). They use descripter version 3,
  2791. * compiler directives, and reduce memory accesses.
  2792. */
  2793. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  2794. {
  2795. struct net_device *dev = (struct net_device *) data;
  2796. struct fe_priv *np = netdev_priv(dev);
  2797. u8 __iomem *base = get_hwbase(dev);
  2798. u32 events;
  2799. int i;
  2800. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  2801. for (i=0; ; i++) {
  2802. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2803. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2804. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2805. } else {
  2806. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2807. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2808. }
  2809. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2810. if (!(events & np->irqmask))
  2811. break;
  2812. spin_lock(&np->lock);
  2813. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2814. spin_unlock(&np->lock);
  2815. #ifdef CONFIG_FORCEDETH_NAPI
  2816. if (events & NVREG_IRQ_RX_ALL) {
  2817. netif_rx_schedule(dev, &np->napi);
  2818. /* Disable furthur receive irq's */
  2819. spin_lock(&np->lock);
  2820. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2821. if (np->msi_flags & NV_MSI_X_ENABLED)
  2822. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2823. else
  2824. writel(np->irqmask, base + NvRegIrqMask);
  2825. spin_unlock(&np->lock);
  2826. }
  2827. #else
  2828. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  2829. if (unlikely(nv_alloc_rx_optimized(dev))) {
  2830. spin_lock(&np->lock);
  2831. if (!np->in_shutdown)
  2832. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2833. spin_unlock(&np->lock);
  2834. }
  2835. }
  2836. #endif
  2837. if (unlikely(events & NVREG_IRQ_LINK)) {
  2838. spin_lock(&np->lock);
  2839. nv_link_irq(dev);
  2840. spin_unlock(&np->lock);
  2841. }
  2842. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2843. spin_lock(&np->lock);
  2844. nv_linkchange(dev);
  2845. spin_unlock(&np->lock);
  2846. np->link_timeout = jiffies + LINK_TIMEOUT;
  2847. }
  2848. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2849. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2850. dev->name, events);
  2851. }
  2852. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2853. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2854. dev->name, events);
  2855. }
  2856. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2857. spin_lock(&np->lock);
  2858. /* disable interrupts on the nic */
  2859. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2860. writel(0, base + NvRegIrqMask);
  2861. else
  2862. writel(np->irqmask, base + NvRegIrqMask);
  2863. pci_push(base);
  2864. if (!np->in_shutdown) {
  2865. np->nic_poll_irq = np->irqmask;
  2866. np->recover_error = 1;
  2867. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2868. }
  2869. spin_unlock(&np->lock);
  2870. break;
  2871. }
  2872. if (unlikely(i > max_interrupt_work)) {
  2873. spin_lock(&np->lock);
  2874. /* disable interrupts on the nic */
  2875. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2876. writel(0, base + NvRegIrqMask);
  2877. else
  2878. writel(np->irqmask, base + NvRegIrqMask);
  2879. pci_push(base);
  2880. if (!np->in_shutdown) {
  2881. np->nic_poll_irq = np->irqmask;
  2882. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2883. }
  2884. spin_unlock(&np->lock);
  2885. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2886. break;
  2887. }
  2888. }
  2889. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  2890. return IRQ_RETVAL(i);
  2891. }
  2892. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  2893. {
  2894. struct net_device *dev = (struct net_device *) data;
  2895. struct fe_priv *np = netdev_priv(dev);
  2896. u8 __iomem *base = get_hwbase(dev);
  2897. u32 events;
  2898. int i;
  2899. unsigned long flags;
  2900. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  2901. for (i=0; ; i++) {
  2902. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  2903. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  2904. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  2905. if (!(events & np->irqmask))
  2906. break;
  2907. spin_lock_irqsave(&np->lock, flags);
  2908. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2909. spin_unlock_irqrestore(&np->lock, flags);
  2910. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2911. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2912. dev->name, events);
  2913. }
  2914. if (unlikely(i > max_interrupt_work)) {
  2915. spin_lock_irqsave(&np->lock, flags);
  2916. /* disable interrupts on the nic */
  2917. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  2918. pci_push(base);
  2919. if (!np->in_shutdown) {
  2920. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  2921. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2922. }
  2923. spin_unlock_irqrestore(&np->lock, flags);
  2924. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  2925. break;
  2926. }
  2927. }
  2928. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  2929. return IRQ_RETVAL(i);
  2930. }
  2931. #ifdef CONFIG_FORCEDETH_NAPI
  2932. static int nv_napi_poll(struct napi_struct *napi, int budget)
  2933. {
  2934. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  2935. struct net_device *dev = np->dev;
  2936. u8 __iomem *base = get_hwbase(dev);
  2937. unsigned long flags;
  2938. int pkts, retcode;
  2939. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2940. pkts = nv_rx_process(dev, budget);
  2941. retcode = nv_alloc_rx(dev);
  2942. } else {
  2943. pkts = nv_rx_process_optimized(dev, budget);
  2944. retcode = nv_alloc_rx_optimized(dev);
  2945. }
  2946. if (retcode) {
  2947. spin_lock_irqsave(&np->lock, flags);
  2948. if (!np->in_shutdown)
  2949. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2950. spin_unlock_irqrestore(&np->lock, flags);
  2951. }
  2952. if (pkts < budget) {
  2953. /* re-enable receive interrupts */
  2954. spin_lock_irqsave(&np->lock, flags);
  2955. __netif_rx_complete(dev, napi);
  2956. np->irqmask |= NVREG_IRQ_RX_ALL;
  2957. if (np->msi_flags & NV_MSI_X_ENABLED)
  2958. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2959. else
  2960. writel(np->irqmask, base + NvRegIrqMask);
  2961. spin_unlock_irqrestore(&np->lock, flags);
  2962. }
  2963. return pkts;
  2964. }
  2965. #endif
  2966. #ifdef CONFIG_FORCEDETH_NAPI
  2967. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2968. {
  2969. struct net_device *dev = (struct net_device *) data;
  2970. struct fe_priv *np = netdev_priv(dev);
  2971. u8 __iomem *base = get_hwbase(dev);
  2972. u32 events;
  2973. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2974. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2975. if (events) {
  2976. netif_rx_schedule(dev, &np->napi);
  2977. /* disable receive interrupts on the nic */
  2978. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2979. pci_push(base);
  2980. }
  2981. return IRQ_HANDLED;
  2982. }
  2983. #else
  2984. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2985. {
  2986. struct net_device *dev = (struct net_device *) data;
  2987. struct fe_priv *np = netdev_priv(dev);
  2988. u8 __iomem *base = get_hwbase(dev);
  2989. u32 events;
  2990. int i;
  2991. unsigned long flags;
  2992. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  2993. for (i=0; ; i++) {
  2994. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2995. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2996. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  2997. if (!(events & np->irqmask))
  2998. break;
  2999. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3000. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3001. spin_lock_irqsave(&np->lock, flags);
  3002. if (!np->in_shutdown)
  3003. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3004. spin_unlock_irqrestore(&np->lock, flags);
  3005. }
  3006. }
  3007. if (unlikely(i > max_interrupt_work)) {
  3008. spin_lock_irqsave(&np->lock, flags);
  3009. /* disable interrupts on the nic */
  3010. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3011. pci_push(base);
  3012. if (!np->in_shutdown) {
  3013. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3014. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3015. }
  3016. spin_unlock_irqrestore(&np->lock, flags);
  3017. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3018. break;
  3019. }
  3020. }
  3021. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3022. return IRQ_RETVAL(i);
  3023. }
  3024. #endif
  3025. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3026. {
  3027. struct net_device *dev = (struct net_device *) data;
  3028. struct fe_priv *np = netdev_priv(dev);
  3029. u8 __iomem *base = get_hwbase(dev);
  3030. u32 events;
  3031. int i;
  3032. unsigned long flags;
  3033. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3034. for (i=0; ; i++) {
  3035. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3036. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3037. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3038. if (!(events & np->irqmask))
  3039. break;
  3040. /* check tx in case we reached max loop limit in tx isr */
  3041. spin_lock_irqsave(&np->lock, flags);
  3042. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3043. spin_unlock_irqrestore(&np->lock, flags);
  3044. if (events & NVREG_IRQ_LINK) {
  3045. spin_lock_irqsave(&np->lock, flags);
  3046. nv_link_irq(dev);
  3047. spin_unlock_irqrestore(&np->lock, flags);
  3048. }
  3049. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3050. spin_lock_irqsave(&np->lock, flags);
  3051. nv_linkchange(dev);
  3052. spin_unlock_irqrestore(&np->lock, flags);
  3053. np->link_timeout = jiffies + LINK_TIMEOUT;
  3054. }
  3055. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3056. spin_lock_irq(&np->lock);
  3057. /* disable interrupts on the nic */
  3058. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3059. pci_push(base);
  3060. if (!np->in_shutdown) {
  3061. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3062. np->recover_error = 1;
  3063. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3064. }
  3065. spin_unlock_irq(&np->lock);
  3066. break;
  3067. }
  3068. if (events & (NVREG_IRQ_UNKNOWN)) {
  3069. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3070. dev->name, events);
  3071. }
  3072. if (unlikely(i > max_interrupt_work)) {
  3073. spin_lock_irqsave(&np->lock, flags);
  3074. /* disable interrupts on the nic */
  3075. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3076. pci_push(base);
  3077. if (!np->in_shutdown) {
  3078. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3079. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3080. }
  3081. spin_unlock_irqrestore(&np->lock, flags);
  3082. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3083. break;
  3084. }
  3085. }
  3086. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3087. return IRQ_RETVAL(i);
  3088. }
  3089. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3090. {
  3091. struct net_device *dev = (struct net_device *) data;
  3092. struct fe_priv *np = netdev_priv(dev);
  3093. u8 __iomem *base = get_hwbase(dev);
  3094. u32 events;
  3095. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3096. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3097. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3098. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3099. } else {
  3100. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3101. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3102. }
  3103. pci_push(base);
  3104. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3105. if (!(events & NVREG_IRQ_TIMER))
  3106. return IRQ_RETVAL(0);
  3107. spin_lock(&np->lock);
  3108. np->intr_test = 1;
  3109. spin_unlock(&np->lock);
  3110. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3111. return IRQ_RETVAL(1);
  3112. }
  3113. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3114. {
  3115. u8 __iomem *base = get_hwbase(dev);
  3116. int i;
  3117. u32 msixmap = 0;
  3118. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3119. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3120. * the remaining 8 interrupts.
  3121. */
  3122. for (i = 0; i < 8; i++) {
  3123. if ((irqmask >> i) & 0x1) {
  3124. msixmap |= vector << (i << 2);
  3125. }
  3126. }
  3127. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3128. msixmap = 0;
  3129. for (i = 0; i < 8; i++) {
  3130. if ((irqmask >> (i + 8)) & 0x1) {
  3131. msixmap |= vector << (i << 2);
  3132. }
  3133. }
  3134. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3135. }
  3136. static int nv_request_irq(struct net_device *dev, int intr_test)
  3137. {
  3138. struct fe_priv *np = get_nvpriv(dev);
  3139. u8 __iomem *base = get_hwbase(dev);
  3140. int ret = 1;
  3141. int i;
  3142. irqreturn_t (*handler)(int foo, void *data);
  3143. if (intr_test) {
  3144. handler = nv_nic_irq_test;
  3145. } else {
  3146. if (np->desc_ver == DESC_VER_3)
  3147. handler = nv_nic_irq_optimized;
  3148. else
  3149. handler = nv_nic_irq;
  3150. }
  3151. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3152. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3153. np->msi_x_entry[i].entry = i;
  3154. }
  3155. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3156. np->msi_flags |= NV_MSI_X_ENABLED;
  3157. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3158. /* Request irq for rx handling */
  3159. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  3160. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3161. pci_disable_msix(np->pci_dev);
  3162. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3163. goto out_err;
  3164. }
  3165. /* Request irq for tx handling */
  3166. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  3167. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3168. pci_disable_msix(np->pci_dev);
  3169. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3170. goto out_free_rx;
  3171. }
  3172. /* Request irq for link and timer handling */
  3173. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  3174. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3175. pci_disable_msix(np->pci_dev);
  3176. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3177. goto out_free_tx;
  3178. }
  3179. /* map interrupts to their respective vector */
  3180. writel(0, base + NvRegMSIXMap0);
  3181. writel(0, base + NvRegMSIXMap1);
  3182. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3183. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3184. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3185. } else {
  3186. /* Request irq for all interrupts */
  3187. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3188. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3189. pci_disable_msix(np->pci_dev);
  3190. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3191. goto out_err;
  3192. }
  3193. /* map interrupts to vector 0 */
  3194. writel(0, base + NvRegMSIXMap0);
  3195. writel(0, base + NvRegMSIXMap1);
  3196. }
  3197. }
  3198. }
  3199. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3200. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3201. np->msi_flags |= NV_MSI_ENABLED;
  3202. dev->irq = np->pci_dev->irq;
  3203. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3204. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3205. pci_disable_msi(np->pci_dev);
  3206. np->msi_flags &= ~NV_MSI_ENABLED;
  3207. dev->irq = np->pci_dev->irq;
  3208. goto out_err;
  3209. }
  3210. /* map interrupts to vector 0 */
  3211. writel(0, base + NvRegMSIMap0);
  3212. writel(0, base + NvRegMSIMap1);
  3213. /* enable msi vector 0 */
  3214. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3215. }
  3216. }
  3217. if (ret != 0) {
  3218. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3219. goto out_err;
  3220. }
  3221. return 0;
  3222. out_free_tx:
  3223. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3224. out_free_rx:
  3225. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3226. out_err:
  3227. return 1;
  3228. }
  3229. static void nv_free_irq(struct net_device *dev)
  3230. {
  3231. struct fe_priv *np = get_nvpriv(dev);
  3232. int i;
  3233. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3234. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3235. free_irq(np->msi_x_entry[i].vector, dev);
  3236. }
  3237. pci_disable_msix(np->pci_dev);
  3238. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3239. } else {
  3240. free_irq(np->pci_dev->irq, dev);
  3241. if (np->msi_flags & NV_MSI_ENABLED) {
  3242. pci_disable_msi(np->pci_dev);
  3243. np->msi_flags &= ~NV_MSI_ENABLED;
  3244. }
  3245. }
  3246. }
  3247. static void nv_do_nic_poll(unsigned long data)
  3248. {
  3249. struct net_device *dev = (struct net_device *) data;
  3250. struct fe_priv *np = netdev_priv(dev);
  3251. u8 __iomem *base = get_hwbase(dev);
  3252. u32 mask = 0;
  3253. /*
  3254. * First disable irq(s) and then
  3255. * reenable interrupts on the nic, we have to do this before calling
  3256. * nv_nic_irq because that may decide to do otherwise
  3257. */
  3258. if (!using_multi_irqs(dev)) {
  3259. if (np->msi_flags & NV_MSI_X_ENABLED)
  3260. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3261. else
  3262. disable_irq_lockdep(np->pci_dev->irq);
  3263. mask = np->irqmask;
  3264. } else {
  3265. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3266. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3267. mask |= NVREG_IRQ_RX_ALL;
  3268. }
  3269. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3270. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3271. mask |= NVREG_IRQ_TX_ALL;
  3272. }
  3273. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3274. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3275. mask |= NVREG_IRQ_OTHER;
  3276. }
  3277. }
  3278. np->nic_poll_irq = 0;
  3279. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3280. if (np->recover_error) {
  3281. np->recover_error = 0;
  3282. printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
  3283. if (netif_running(dev)) {
  3284. netif_tx_lock_bh(dev);
  3285. spin_lock(&np->lock);
  3286. /* stop engines */
  3287. nv_stop_rx(dev);
  3288. nv_stop_tx(dev);
  3289. nv_txrx_reset(dev);
  3290. /* drain rx queue */
  3291. nv_drain_rx(dev);
  3292. nv_drain_tx(dev);
  3293. /* reinit driver view of the rx queue */
  3294. set_bufsize(dev);
  3295. if (nv_init_ring(dev)) {
  3296. if (!np->in_shutdown)
  3297. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3298. }
  3299. /* reinit nic view of the rx queue */
  3300. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3301. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3302. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3303. base + NvRegRingSizes);
  3304. pci_push(base);
  3305. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3306. pci_push(base);
  3307. /* restart rx engine */
  3308. nv_start_rx(dev);
  3309. nv_start_tx(dev);
  3310. spin_unlock(&np->lock);
  3311. netif_tx_unlock_bh(dev);
  3312. }
  3313. }
  3314. writel(mask, base + NvRegIrqMask);
  3315. pci_push(base);
  3316. if (!using_multi_irqs(dev)) {
  3317. if (np->desc_ver == DESC_VER_3)
  3318. nv_nic_irq_optimized(0, dev);
  3319. else
  3320. nv_nic_irq(0, dev);
  3321. if (np->msi_flags & NV_MSI_X_ENABLED)
  3322. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3323. else
  3324. enable_irq_lockdep(np->pci_dev->irq);
  3325. } else {
  3326. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3327. nv_nic_irq_rx(0, dev);
  3328. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3329. }
  3330. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3331. nv_nic_irq_tx(0, dev);
  3332. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3333. }
  3334. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3335. nv_nic_irq_other(0, dev);
  3336. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3337. }
  3338. }
  3339. }
  3340. #ifdef CONFIG_NET_POLL_CONTROLLER
  3341. static void nv_poll_controller(struct net_device *dev)
  3342. {
  3343. nv_do_nic_poll((unsigned long) dev);
  3344. }
  3345. #endif
  3346. static void nv_do_stats_poll(unsigned long data)
  3347. {
  3348. struct net_device *dev = (struct net_device *) data;
  3349. struct fe_priv *np = netdev_priv(dev);
  3350. nv_get_hw_stats(dev);
  3351. if (!np->in_shutdown)
  3352. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  3353. }
  3354. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3355. {
  3356. struct fe_priv *np = netdev_priv(dev);
  3357. strcpy(info->driver, DRV_NAME);
  3358. strcpy(info->version, FORCEDETH_VERSION);
  3359. strcpy(info->bus_info, pci_name(np->pci_dev));
  3360. }
  3361. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3362. {
  3363. struct fe_priv *np = netdev_priv(dev);
  3364. wolinfo->supported = WAKE_MAGIC;
  3365. spin_lock_irq(&np->lock);
  3366. if (np->wolenabled)
  3367. wolinfo->wolopts = WAKE_MAGIC;
  3368. spin_unlock_irq(&np->lock);
  3369. }
  3370. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3371. {
  3372. struct fe_priv *np = netdev_priv(dev);
  3373. u8 __iomem *base = get_hwbase(dev);
  3374. u32 flags = 0;
  3375. if (wolinfo->wolopts == 0) {
  3376. np->wolenabled = 0;
  3377. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3378. np->wolenabled = 1;
  3379. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3380. }
  3381. if (netif_running(dev)) {
  3382. spin_lock_irq(&np->lock);
  3383. writel(flags, base + NvRegWakeUpFlags);
  3384. spin_unlock_irq(&np->lock);
  3385. }
  3386. return 0;
  3387. }
  3388. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3389. {
  3390. struct fe_priv *np = netdev_priv(dev);
  3391. int adv;
  3392. spin_lock_irq(&np->lock);
  3393. ecmd->port = PORT_MII;
  3394. if (!netif_running(dev)) {
  3395. /* We do not track link speed / duplex setting if the
  3396. * interface is disabled. Force a link check */
  3397. if (nv_update_linkspeed(dev)) {
  3398. if (!netif_carrier_ok(dev))
  3399. netif_carrier_on(dev);
  3400. } else {
  3401. if (netif_carrier_ok(dev))
  3402. netif_carrier_off(dev);
  3403. }
  3404. }
  3405. if (netif_carrier_ok(dev)) {
  3406. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3407. case NVREG_LINKSPEED_10:
  3408. ecmd->speed = SPEED_10;
  3409. break;
  3410. case NVREG_LINKSPEED_100:
  3411. ecmd->speed = SPEED_100;
  3412. break;
  3413. case NVREG_LINKSPEED_1000:
  3414. ecmd->speed = SPEED_1000;
  3415. break;
  3416. }
  3417. ecmd->duplex = DUPLEX_HALF;
  3418. if (np->duplex)
  3419. ecmd->duplex = DUPLEX_FULL;
  3420. } else {
  3421. ecmd->speed = -1;
  3422. ecmd->duplex = -1;
  3423. }
  3424. ecmd->autoneg = np->autoneg;
  3425. ecmd->advertising = ADVERTISED_MII;
  3426. if (np->autoneg) {
  3427. ecmd->advertising |= ADVERTISED_Autoneg;
  3428. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3429. if (adv & ADVERTISE_10HALF)
  3430. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3431. if (adv & ADVERTISE_10FULL)
  3432. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3433. if (adv & ADVERTISE_100HALF)
  3434. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3435. if (adv & ADVERTISE_100FULL)
  3436. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3437. if (np->gigabit == PHY_GIGABIT) {
  3438. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3439. if (adv & ADVERTISE_1000FULL)
  3440. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3441. }
  3442. }
  3443. ecmd->supported = (SUPPORTED_Autoneg |
  3444. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3445. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3446. SUPPORTED_MII);
  3447. if (np->gigabit == PHY_GIGABIT)
  3448. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3449. ecmd->phy_address = np->phyaddr;
  3450. ecmd->transceiver = XCVR_EXTERNAL;
  3451. /* ignore maxtxpkt, maxrxpkt for now */
  3452. spin_unlock_irq(&np->lock);
  3453. return 0;
  3454. }
  3455. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3456. {
  3457. struct fe_priv *np = netdev_priv(dev);
  3458. if (ecmd->port != PORT_MII)
  3459. return -EINVAL;
  3460. if (ecmd->transceiver != XCVR_EXTERNAL)
  3461. return -EINVAL;
  3462. if (ecmd->phy_address != np->phyaddr) {
  3463. /* TODO: support switching between multiple phys. Should be
  3464. * trivial, but not enabled due to lack of test hardware. */
  3465. return -EINVAL;
  3466. }
  3467. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3468. u32 mask;
  3469. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3470. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3471. if (np->gigabit == PHY_GIGABIT)
  3472. mask |= ADVERTISED_1000baseT_Full;
  3473. if ((ecmd->advertising & mask) == 0)
  3474. return -EINVAL;
  3475. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3476. /* Note: autonegotiation disable, speed 1000 intentionally
  3477. * forbidden - noone should need that. */
  3478. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3479. return -EINVAL;
  3480. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3481. return -EINVAL;
  3482. } else {
  3483. return -EINVAL;
  3484. }
  3485. netif_carrier_off(dev);
  3486. if (netif_running(dev)) {
  3487. nv_disable_irq(dev);
  3488. netif_tx_lock_bh(dev);
  3489. spin_lock(&np->lock);
  3490. /* stop engines */
  3491. nv_stop_rx(dev);
  3492. nv_stop_tx(dev);
  3493. spin_unlock(&np->lock);
  3494. netif_tx_unlock_bh(dev);
  3495. }
  3496. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3497. int adv, bmcr;
  3498. np->autoneg = 1;
  3499. /* advertise only what has been requested */
  3500. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3501. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3502. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3503. adv |= ADVERTISE_10HALF;
  3504. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3505. adv |= ADVERTISE_10FULL;
  3506. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3507. adv |= ADVERTISE_100HALF;
  3508. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3509. adv |= ADVERTISE_100FULL;
  3510. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3511. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3512. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3513. adv |= ADVERTISE_PAUSE_ASYM;
  3514. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3515. if (np->gigabit == PHY_GIGABIT) {
  3516. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3517. adv &= ~ADVERTISE_1000FULL;
  3518. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3519. adv |= ADVERTISE_1000FULL;
  3520. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3521. }
  3522. if (netif_running(dev))
  3523. printk(KERN_INFO "%s: link down.\n", dev->name);
  3524. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3525. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3526. bmcr |= BMCR_ANENABLE;
  3527. /* reset the phy in order for settings to stick,
  3528. * and cause autoneg to start */
  3529. if (phy_reset(dev, bmcr)) {
  3530. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3531. return -EINVAL;
  3532. }
  3533. } else {
  3534. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3535. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3536. }
  3537. } else {
  3538. int adv, bmcr;
  3539. np->autoneg = 0;
  3540. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3541. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3542. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3543. adv |= ADVERTISE_10HALF;
  3544. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3545. adv |= ADVERTISE_10FULL;
  3546. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3547. adv |= ADVERTISE_100HALF;
  3548. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3549. adv |= ADVERTISE_100FULL;
  3550. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3551. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3552. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3553. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3554. }
  3555. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3556. adv |= ADVERTISE_PAUSE_ASYM;
  3557. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3558. }
  3559. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3560. np->fixed_mode = adv;
  3561. if (np->gigabit == PHY_GIGABIT) {
  3562. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3563. adv &= ~ADVERTISE_1000FULL;
  3564. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3565. }
  3566. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3567. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3568. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3569. bmcr |= BMCR_FULLDPLX;
  3570. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3571. bmcr |= BMCR_SPEED100;
  3572. if (np->phy_oui == PHY_OUI_MARVELL) {
  3573. /* reset the phy in order for forced mode settings to stick */
  3574. if (phy_reset(dev, bmcr)) {
  3575. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3576. return -EINVAL;
  3577. }
  3578. } else {
  3579. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3580. if (netif_running(dev)) {
  3581. /* Wait a bit and then reconfigure the nic. */
  3582. udelay(10);
  3583. nv_linkchange(dev);
  3584. }
  3585. }
  3586. }
  3587. if (netif_running(dev)) {
  3588. nv_start_rx(dev);
  3589. nv_start_tx(dev);
  3590. nv_enable_irq(dev);
  3591. }
  3592. return 0;
  3593. }
  3594. #define FORCEDETH_REGS_VER 1
  3595. static int nv_get_regs_len(struct net_device *dev)
  3596. {
  3597. struct fe_priv *np = netdev_priv(dev);
  3598. return np->register_size;
  3599. }
  3600. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3601. {
  3602. struct fe_priv *np = netdev_priv(dev);
  3603. u8 __iomem *base = get_hwbase(dev);
  3604. u32 *rbuf = buf;
  3605. int i;
  3606. regs->version = FORCEDETH_REGS_VER;
  3607. spin_lock_irq(&np->lock);
  3608. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3609. rbuf[i] = readl(base + i*sizeof(u32));
  3610. spin_unlock_irq(&np->lock);
  3611. }
  3612. static int nv_nway_reset(struct net_device *dev)
  3613. {
  3614. struct fe_priv *np = netdev_priv(dev);
  3615. int ret;
  3616. if (np->autoneg) {
  3617. int bmcr;
  3618. netif_carrier_off(dev);
  3619. if (netif_running(dev)) {
  3620. nv_disable_irq(dev);
  3621. netif_tx_lock_bh(dev);
  3622. spin_lock(&np->lock);
  3623. /* stop engines */
  3624. nv_stop_rx(dev);
  3625. nv_stop_tx(dev);
  3626. spin_unlock(&np->lock);
  3627. netif_tx_unlock_bh(dev);
  3628. printk(KERN_INFO "%s: link down.\n", dev->name);
  3629. }
  3630. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3631. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3632. bmcr |= BMCR_ANENABLE;
  3633. /* reset the phy in order for settings to stick*/
  3634. if (phy_reset(dev, bmcr)) {
  3635. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3636. return -EINVAL;
  3637. }
  3638. } else {
  3639. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3640. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3641. }
  3642. if (netif_running(dev)) {
  3643. nv_start_rx(dev);
  3644. nv_start_tx(dev);
  3645. nv_enable_irq(dev);
  3646. }
  3647. ret = 0;
  3648. } else {
  3649. ret = -EINVAL;
  3650. }
  3651. return ret;
  3652. }
  3653. static int nv_set_tso(struct net_device *dev, u32 value)
  3654. {
  3655. struct fe_priv *np = netdev_priv(dev);
  3656. if ((np->driver_data & DEV_HAS_CHECKSUM))
  3657. return ethtool_op_set_tso(dev, value);
  3658. else
  3659. return -EOPNOTSUPP;
  3660. }
  3661. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3662. {
  3663. struct fe_priv *np = netdev_priv(dev);
  3664. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3665. ring->rx_mini_max_pending = 0;
  3666. ring->rx_jumbo_max_pending = 0;
  3667. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3668. ring->rx_pending = np->rx_ring_size;
  3669. ring->rx_mini_pending = 0;
  3670. ring->rx_jumbo_pending = 0;
  3671. ring->tx_pending = np->tx_ring_size;
  3672. }
  3673. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3674. {
  3675. struct fe_priv *np = netdev_priv(dev);
  3676. u8 __iomem *base = get_hwbase(dev);
  3677. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3678. dma_addr_t ring_addr;
  3679. if (ring->rx_pending < RX_RING_MIN ||
  3680. ring->tx_pending < TX_RING_MIN ||
  3681. ring->rx_mini_pending != 0 ||
  3682. ring->rx_jumbo_pending != 0 ||
  3683. (np->desc_ver == DESC_VER_1 &&
  3684. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3685. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3686. (np->desc_ver != DESC_VER_1 &&
  3687. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3688. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3689. return -EINVAL;
  3690. }
  3691. /* allocate new rings */
  3692. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3693. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3694. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3695. &ring_addr);
  3696. } else {
  3697. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3698. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3699. &ring_addr);
  3700. }
  3701. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  3702. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  3703. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  3704. /* fall back to old rings */
  3705. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3706. if (rxtx_ring)
  3707. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3708. rxtx_ring, ring_addr);
  3709. } else {
  3710. if (rxtx_ring)
  3711. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3712. rxtx_ring, ring_addr);
  3713. }
  3714. if (rx_skbuff)
  3715. kfree(rx_skbuff);
  3716. if (tx_skbuff)
  3717. kfree(tx_skbuff);
  3718. goto exit;
  3719. }
  3720. if (netif_running(dev)) {
  3721. nv_disable_irq(dev);
  3722. netif_tx_lock_bh(dev);
  3723. spin_lock(&np->lock);
  3724. /* stop engines */
  3725. nv_stop_rx(dev);
  3726. nv_stop_tx(dev);
  3727. nv_txrx_reset(dev);
  3728. /* drain queues */
  3729. nv_drain_rx(dev);
  3730. nv_drain_tx(dev);
  3731. /* delete queues */
  3732. free_rings(dev);
  3733. }
  3734. /* set new values */
  3735. np->rx_ring_size = ring->rx_pending;
  3736. np->tx_ring_size = ring->tx_pending;
  3737. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3738. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3739. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3740. } else {
  3741. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3742. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3743. }
  3744. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  3745. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  3746. np->ring_addr = ring_addr;
  3747. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  3748. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  3749. if (netif_running(dev)) {
  3750. /* reinit driver view of the queues */
  3751. set_bufsize(dev);
  3752. if (nv_init_ring(dev)) {
  3753. if (!np->in_shutdown)
  3754. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3755. }
  3756. /* reinit nic view of the queues */
  3757. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3758. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3759. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3760. base + NvRegRingSizes);
  3761. pci_push(base);
  3762. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3763. pci_push(base);
  3764. /* restart engines */
  3765. nv_start_rx(dev);
  3766. nv_start_tx(dev);
  3767. spin_unlock(&np->lock);
  3768. netif_tx_unlock_bh(dev);
  3769. nv_enable_irq(dev);
  3770. }
  3771. return 0;
  3772. exit:
  3773. return -ENOMEM;
  3774. }
  3775. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3776. {
  3777. struct fe_priv *np = netdev_priv(dev);
  3778. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3779. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3780. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3781. }
  3782. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3783. {
  3784. struct fe_priv *np = netdev_priv(dev);
  3785. int adv, bmcr;
  3786. if ((!np->autoneg && np->duplex == 0) ||
  3787. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  3788. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  3789. dev->name);
  3790. return -EINVAL;
  3791. }
  3792. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  3793. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  3794. return -EINVAL;
  3795. }
  3796. netif_carrier_off(dev);
  3797. if (netif_running(dev)) {
  3798. nv_disable_irq(dev);
  3799. netif_tx_lock_bh(dev);
  3800. spin_lock(&np->lock);
  3801. /* stop engines */
  3802. nv_stop_rx(dev);
  3803. nv_stop_tx(dev);
  3804. spin_unlock(&np->lock);
  3805. netif_tx_unlock_bh(dev);
  3806. }
  3807. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  3808. if (pause->rx_pause)
  3809. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  3810. if (pause->tx_pause)
  3811. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  3812. if (np->autoneg && pause->autoneg) {
  3813. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  3814. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3815. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3816. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3817. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3818. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3819. adv |= ADVERTISE_PAUSE_ASYM;
  3820. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3821. if (netif_running(dev))
  3822. printk(KERN_INFO "%s: link down.\n", dev->name);
  3823. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3824. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3825. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3826. } else {
  3827. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3828. if (pause->rx_pause)
  3829. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3830. if (pause->tx_pause)
  3831. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3832. if (!netif_running(dev))
  3833. nv_update_linkspeed(dev);
  3834. else
  3835. nv_update_pause(dev, np->pause_flags);
  3836. }
  3837. if (netif_running(dev)) {
  3838. nv_start_rx(dev);
  3839. nv_start_tx(dev);
  3840. nv_enable_irq(dev);
  3841. }
  3842. return 0;
  3843. }
  3844. static u32 nv_get_rx_csum(struct net_device *dev)
  3845. {
  3846. struct fe_priv *np = netdev_priv(dev);
  3847. return (np->rx_csum) != 0;
  3848. }
  3849. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  3850. {
  3851. struct fe_priv *np = netdev_priv(dev);
  3852. u8 __iomem *base = get_hwbase(dev);
  3853. int retcode = 0;
  3854. if (np->driver_data & DEV_HAS_CHECKSUM) {
  3855. if (data) {
  3856. np->rx_csum = 1;
  3857. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3858. } else {
  3859. np->rx_csum = 0;
  3860. /* vlan is dependent on rx checksum offload */
  3861. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  3862. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  3863. }
  3864. if (netif_running(dev)) {
  3865. spin_lock_irq(&np->lock);
  3866. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3867. spin_unlock_irq(&np->lock);
  3868. }
  3869. } else {
  3870. return -EINVAL;
  3871. }
  3872. return retcode;
  3873. }
  3874. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  3875. {
  3876. struct fe_priv *np = netdev_priv(dev);
  3877. if (np->driver_data & DEV_HAS_CHECKSUM)
  3878. return ethtool_op_set_tx_hw_csum(dev, data);
  3879. else
  3880. return -EOPNOTSUPP;
  3881. }
  3882. static int nv_set_sg(struct net_device *dev, u32 data)
  3883. {
  3884. struct fe_priv *np = netdev_priv(dev);
  3885. if (np->driver_data & DEV_HAS_CHECKSUM)
  3886. return ethtool_op_set_sg(dev, data);
  3887. else
  3888. return -EOPNOTSUPP;
  3889. }
  3890. static int nv_get_sset_count(struct net_device *dev, int sset)
  3891. {
  3892. struct fe_priv *np = netdev_priv(dev);
  3893. switch (sset) {
  3894. case ETH_SS_TEST:
  3895. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  3896. return NV_TEST_COUNT_EXTENDED;
  3897. else
  3898. return NV_TEST_COUNT_BASE;
  3899. case ETH_SS_STATS:
  3900. if (np->driver_data & DEV_HAS_STATISTICS_V1)
  3901. return NV_DEV_STATISTICS_V1_COUNT;
  3902. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  3903. return NV_DEV_STATISTICS_V2_COUNT;
  3904. else
  3905. return 0;
  3906. default:
  3907. return -EOPNOTSUPP;
  3908. }
  3909. }
  3910. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  3911. {
  3912. struct fe_priv *np = netdev_priv(dev);
  3913. /* update stats */
  3914. nv_do_stats_poll((unsigned long)dev);
  3915. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  3916. }
  3917. static int nv_link_test(struct net_device *dev)
  3918. {
  3919. struct fe_priv *np = netdev_priv(dev);
  3920. int mii_status;
  3921. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3922. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3923. /* check phy link status */
  3924. if (!(mii_status & BMSR_LSTATUS))
  3925. return 0;
  3926. else
  3927. return 1;
  3928. }
  3929. static int nv_register_test(struct net_device *dev)
  3930. {
  3931. u8 __iomem *base = get_hwbase(dev);
  3932. int i = 0;
  3933. u32 orig_read, new_read;
  3934. do {
  3935. orig_read = readl(base + nv_registers_test[i].reg);
  3936. /* xor with mask to toggle bits */
  3937. orig_read ^= nv_registers_test[i].mask;
  3938. writel(orig_read, base + nv_registers_test[i].reg);
  3939. new_read = readl(base + nv_registers_test[i].reg);
  3940. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  3941. return 0;
  3942. /* restore original value */
  3943. orig_read ^= nv_registers_test[i].mask;
  3944. writel(orig_read, base + nv_registers_test[i].reg);
  3945. } while (nv_registers_test[++i].reg != 0);
  3946. return 1;
  3947. }
  3948. static int nv_interrupt_test(struct net_device *dev)
  3949. {
  3950. struct fe_priv *np = netdev_priv(dev);
  3951. u8 __iomem *base = get_hwbase(dev);
  3952. int ret = 1;
  3953. int testcnt;
  3954. u32 save_msi_flags, save_poll_interval = 0;
  3955. if (netif_running(dev)) {
  3956. /* free current irq */
  3957. nv_free_irq(dev);
  3958. save_poll_interval = readl(base+NvRegPollingInterval);
  3959. }
  3960. /* flag to test interrupt handler */
  3961. np->intr_test = 0;
  3962. /* setup test irq */
  3963. save_msi_flags = np->msi_flags;
  3964. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  3965. np->msi_flags |= 0x001; /* setup 1 vector */
  3966. if (nv_request_irq(dev, 1))
  3967. return 0;
  3968. /* setup timer interrupt */
  3969. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3970. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3971. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3972. /* wait for at least one interrupt */
  3973. msleep(100);
  3974. spin_lock_irq(&np->lock);
  3975. /* flag should be set within ISR */
  3976. testcnt = np->intr_test;
  3977. if (!testcnt)
  3978. ret = 2;
  3979. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3980. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3981. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3982. else
  3983. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3984. spin_unlock_irq(&np->lock);
  3985. nv_free_irq(dev);
  3986. np->msi_flags = save_msi_flags;
  3987. if (netif_running(dev)) {
  3988. writel(save_poll_interval, base + NvRegPollingInterval);
  3989. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3990. /* restore original irq */
  3991. if (nv_request_irq(dev, 0))
  3992. return 0;
  3993. }
  3994. return ret;
  3995. }
  3996. static int nv_loopback_test(struct net_device *dev)
  3997. {
  3998. struct fe_priv *np = netdev_priv(dev);
  3999. u8 __iomem *base = get_hwbase(dev);
  4000. struct sk_buff *tx_skb, *rx_skb;
  4001. dma_addr_t test_dma_addr;
  4002. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4003. u32 flags;
  4004. int len, i, pkt_len;
  4005. u8 *pkt_data;
  4006. u32 filter_flags = 0;
  4007. u32 misc1_flags = 0;
  4008. int ret = 1;
  4009. if (netif_running(dev)) {
  4010. nv_disable_irq(dev);
  4011. filter_flags = readl(base + NvRegPacketFilterFlags);
  4012. misc1_flags = readl(base + NvRegMisc1);
  4013. } else {
  4014. nv_txrx_reset(dev);
  4015. }
  4016. /* reinit driver view of the rx queue */
  4017. set_bufsize(dev);
  4018. nv_init_ring(dev);
  4019. /* setup hardware for loopback */
  4020. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4021. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4022. /* reinit nic view of the rx queue */
  4023. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4024. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4025. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4026. base + NvRegRingSizes);
  4027. pci_push(base);
  4028. /* restart rx engine */
  4029. nv_start_rx(dev);
  4030. nv_start_tx(dev);
  4031. /* setup packet for tx */
  4032. pkt_len = ETH_DATA_LEN;
  4033. tx_skb = dev_alloc_skb(pkt_len);
  4034. if (!tx_skb) {
  4035. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4036. " of %s\n", dev->name);
  4037. ret = 0;
  4038. goto out;
  4039. }
  4040. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4041. skb_tailroom(tx_skb),
  4042. PCI_DMA_FROMDEVICE);
  4043. pkt_data = skb_put(tx_skb, pkt_len);
  4044. for (i = 0; i < pkt_len; i++)
  4045. pkt_data[i] = (u8)(i & 0xff);
  4046. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4047. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4048. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4049. } else {
  4050. np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
  4051. np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
  4052. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4053. }
  4054. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4055. pci_push(get_hwbase(dev));
  4056. msleep(500);
  4057. /* check for rx of the packet */
  4058. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4059. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4060. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4061. } else {
  4062. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4063. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4064. }
  4065. if (flags & NV_RX_AVAIL) {
  4066. ret = 0;
  4067. } else if (np->desc_ver == DESC_VER_1) {
  4068. if (flags & NV_RX_ERROR)
  4069. ret = 0;
  4070. } else {
  4071. if (flags & NV_RX2_ERROR) {
  4072. ret = 0;
  4073. }
  4074. }
  4075. if (ret) {
  4076. if (len != pkt_len) {
  4077. ret = 0;
  4078. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4079. dev->name, len, pkt_len);
  4080. } else {
  4081. rx_skb = np->rx_skb[0].skb;
  4082. for (i = 0; i < pkt_len; i++) {
  4083. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4084. ret = 0;
  4085. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4086. dev->name, i);
  4087. break;
  4088. }
  4089. }
  4090. }
  4091. } else {
  4092. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4093. }
  4094. pci_unmap_page(np->pci_dev, test_dma_addr,
  4095. (skb_end_pointer(tx_skb) - tx_skb->data),
  4096. PCI_DMA_TODEVICE);
  4097. dev_kfree_skb_any(tx_skb);
  4098. out:
  4099. /* stop engines */
  4100. nv_stop_rx(dev);
  4101. nv_stop_tx(dev);
  4102. nv_txrx_reset(dev);
  4103. /* drain rx queue */
  4104. nv_drain_rx(dev);
  4105. nv_drain_tx(dev);
  4106. if (netif_running(dev)) {
  4107. writel(misc1_flags, base + NvRegMisc1);
  4108. writel(filter_flags, base + NvRegPacketFilterFlags);
  4109. nv_enable_irq(dev);
  4110. }
  4111. return ret;
  4112. }
  4113. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4114. {
  4115. struct fe_priv *np = netdev_priv(dev);
  4116. u8 __iomem *base = get_hwbase(dev);
  4117. int result;
  4118. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4119. if (!nv_link_test(dev)) {
  4120. test->flags |= ETH_TEST_FL_FAILED;
  4121. buffer[0] = 1;
  4122. }
  4123. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4124. if (netif_running(dev)) {
  4125. netif_stop_queue(dev);
  4126. #ifdef CONFIG_FORCEDETH_NAPI
  4127. napi_disable(&np->napi);
  4128. #endif
  4129. netif_tx_lock_bh(dev);
  4130. spin_lock_irq(&np->lock);
  4131. nv_disable_hw_interrupts(dev, np->irqmask);
  4132. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4133. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4134. } else {
  4135. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4136. }
  4137. /* stop engines */
  4138. nv_stop_rx(dev);
  4139. nv_stop_tx(dev);
  4140. nv_txrx_reset(dev);
  4141. /* drain rx queue */
  4142. nv_drain_rx(dev);
  4143. nv_drain_tx(dev);
  4144. spin_unlock_irq(&np->lock);
  4145. netif_tx_unlock_bh(dev);
  4146. }
  4147. if (!nv_register_test(dev)) {
  4148. test->flags |= ETH_TEST_FL_FAILED;
  4149. buffer[1] = 1;
  4150. }
  4151. result = nv_interrupt_test(dev);
  4152. if (result != 1) {
  4153. test->flags |= ETH_TEST_FL_FAILED;
  4154. buffer[2] = 1;
  4155. }
  4156. if (result == 0) {
  4157. /* bail out */
  4158. return;
  4159. }
  4160. if (!nv_loopback_test(dev)) {
  4161. test->flags |= ETH_TEST_FL_FAILED;
  4162. buffer[3] = 1;
  4163. }
  4164. if (netif_running(dev)) {
  4165. /* reinit driver view of the rx queue */
  4166. set_bufsize(dev);
  4167. if (nv_init_ring(dev)) {
  4168. if (!np->in_shutdown)
  4169. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4170. }
  4171. /* reinit nic view of the rx queue */
  4172. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4173. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4174. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4175. base + NvRegRingSizes);
  4176. pci_push(base);
  4177. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4178. pci_push(base);
  4179. /* restart rx engine */
  4180. nv_start_rx(dev);
  4181. nv_start_tx(dev);
  4182. netif_start_queue(dev);
  4183. #ifdef CONFIG_FORCEDETH_NAPI
  4184. napi_enable(&np->napi);
  4185. #endif
  4186. nv_enable_hw_interrupts(dev, np->irqmask);
  4187. }
  4188. }
  4189. }
  4190. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4191. {
  4192. switch (stringset) {
  4193. case ETH_SS_STATS:
  4194. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4195. break;
  4196. case ETH_SS_TEST:
  4197. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4198. break;
  4199. }
  4200. }
  4201. static const struct ethtool_ops ops = {
  4202. .get_drvinfo = nv_get_drvinfo,
  4203. .get_link = ethtool_op_get_link,
  4204. .get_wol = nv_get_wol,
  4205. .set_wol = nv_set_wol,
  4206. .get_settings = nv_get_settings,
  4207. .set_settings = nv_set_settings,
  4208. .get_regs_len = nv_get_regs_len,
  4209. .get_regs = nv_get_regs,
  4210. .nway_reset = nv_nway_reset,
  4211. .set_tso = nv_set_tso,
  4212. .get_ringparam = nv_get_ringparam,
  4213. .set_ringparam = nv_set_ringparam,
  4214. .get_pauseparam = nv_get_pauseparam,
  4215. .set_pauseparam = nv_set_pauseparam,
  4216. .get_rx_csum = nv_get_rx_csum,
  4217. .set_rx_csum = nv_set_rx_csum,
  4218. .set_tx_csum = nv_set_tx_csum,
  4219. .set_sg = nv_set_sg,
  4220. .get_strings = nv_get_strings,
  4221. .get_ethtool_stats = nv_get_ethtool_stats,
  4222. .get_sset_count = nv_get_sset_count,
  4223. .self_test = nv_self_test,
  4224. };
  4225. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4226. {
  4227. struct fe_priv *np = get_nvpriv(dev);
  4228. spin_lock_irq(&np->lock);
  4229. /* save vlan group */
  4230. np->vlangrp = grp;
  4231. if (grp) {
  4232. /* enable vlan on MAC */
  4233. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4234. } else {
  4235. /* disable vlan on MAC */
  4236. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4237. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4238. }
  4239. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4240. spin_unlock_irq(&np->lock);
  4241. }
  4242. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4243. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4244. {
  4245. u8 __iomem *base = get_hwbase(dev);
  4246. int i;
  4247. u32 tx_ctrl, mgmt_sema;
  4248. for (i = 0; i < 10; i++) {
  4249. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4250. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4251. break;
  4252. msleep(500);
  4253. }
  4254. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4255. return 0;
  4256. for (i = 0; i < 2; i++) {
  4257. tx_ctrl = readl(base + NvRegTransmitterControl);
  4258. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4259. writel(tx_ctrl, base + NvRegTransmitterControl);
  4260. /* verify that semaphore was acquired */
  4261. tx_ctrl = readl(base + NvRegTransmitterControl);
  4262. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4263. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  4264. return 1;
  4265. else
  4266. udelay(50);
  4267. }
  4268. return 0;
  4269. }
  4270. static int nv_open(struct net_device *dev)
  4271. {
  4272. struct fe_priv *np = netdev_priv(dev);
  4273. u8 __iomem *base = get_hwbase(dev);
  4274. int ret = 1;
  4275. int oom, i;
  4276. dprintk(KERN_DEBUG "nv_open: begin\n");
  4277. /* erase previous misconfiguration */
  4278. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4279. nv_mac_reset(dev);
  4280. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4281. writel(0, base + NvRegMulticastAddrB);
  4282. writel(0, base + NvRegMulticastMaskA);
  4283. writel(0, base + NvRegMulticastMaskB);
  4284. writel(0, base + NvRegPacketFilterFlags);
  4285. writel(0, base + NvRegTransmitterControl);
  4286. writel(0, base + NvRegReceiverControl);
  4287. writel(0, base + NvRegAdapterControl);
  4288. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4289. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4290. /* initialize descriptor rings */
  4291. set_bufsize(dev);
  4292. oom = nv_init_ring(dev);
  4293. writel(0, base + NvRegLinkSpeed);
  4294. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4295. nv_txrx_reset(dev);
  4296. writel(0, base + NvRegUnknownSetupReg6);
  4297. np->in_shutdown = 0;
  4298. /* give hw rings */
  4299. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4300. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4301. base + NvRegRingSizes);
  4302. writel(np->linkspeed, base + NvRegLinkSpeed);
  4303. if (np->desc_ver == DESC_VER_1)
  4304. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4305. else
  4306. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4307. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4308. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4309. pci_push(base);
  4310. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4311. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4312. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4313. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4314. writel(0, base + NvRegMIIMask);
  4315. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4316. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  4317. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4318. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4319. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4320. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4321. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4322. get_random_bytes(&i, sizeof(i));
  4323. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  4324. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4325. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4326. if (poll_interval == -1) {
  4327. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4328. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4329. else
  4330. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4331. }
  4332. else
  4333. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4334. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4335. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4336. base + NvRegAdapterControl);
  4337. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4338. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4339. if (np->wolenabled)
  4340. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4341. i = readl(base + NvRegPowerState);
  4342. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4343. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4344. pci_push(base);
  4345. udelay(10);
  4346. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4347. nv_disable_hw_interrupts(dev, np->irqmask);
  4348. pci_push(base);
  4349. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  4350. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4351. pci_push(base);
  4352. if (nv_request_irq(dev, 0)) {
  4353. goto out_drain;
  4354. }
  4355. /* ask for interrupts */
  4356. nv_enable_hw_interrupts(dev, np->irqmask);
  4357. spin_lock_irq(&np->lock);
  4358. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4359. writel(0, base + NvRegMulticastAddrB);
  4360. writel(0, base + NvRegMulticastMaskA);
  4361. writel(0, base + NvRegMulticastMaskB);
  4362. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4363. /* One manual link speed update: Interrupts are enabled, future link
  4364. * speed changes cause interrupts and are handled by nv_link_irq().
  4365. */
  4366. {
  4367. u32 miistat;
  4368. miistat = readl(base + NvRegMIIStatus);
  4369. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  4370. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4371. }
  4372. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4373. * to init hw */
  4374. np->linkspeed = 0;
  4375. ret = nv_update_linkspeed(dev);
  4376. nv_start_rx(dev);
  4377. nv_start_tx(dev);
  4378. netif_start_queue(dev);
  4379. #ifdef CONFIG_FORCEDETH_NAPI
  4380. napi_enable(&np->napi);
  4381. #endif
  4382. if (ret) {
  4383. netif_carrier_on(dev);
  4384. } else {
  4385. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4386. netif_carrier_off(dev);
  4387. }
  4388. if (oom)
  4389. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4390. /* start statistics timer */
  4391. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
  4392. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  4393. spin_unlock_irq(&np->lock);
  4394. return 0;
  4395. out_drain:
  4396. drain_ring(dev);
  4397. return ret;
  4398. }
  4399. static int nv_close(struct net_device *dev)
  4400. {
  4401. struct fe_priv *np = netdev_priv(dev);
  4402. u8 __iomem *base;
  4403. spin_lock_irq(&np->lock);
  4404. np->in_shutdown = 1;
  4405. spin_unlock_irq(&np->lock);
  4406. #ifdef CONFIG_FORCEDETH_NAPI
  4407. napi_disable(&np->napi);
  4408. #endif
  4409. synchronize_irq(np->pci_dev->irq);
  4410. del_timer_sync(&np->oom_kick);
  4411. del_timer_sync(&np->nic_poll);
  4412. del_timer_sync(&np->stats_poll);
  4413. netif_stop_queue(dev);
  4414. spin_lock_irq(&np->lock);
  4415. nv_stop_tx(dev);
  4416. nv_stop_rx(dev);
  4417. nv_txrx_reset(dev);
  4418. /* disable interrupts on the nic or we will lock up */
  4419. base = get_hwbase(dev);
  4420. nv_disable_hw_interrupts(dev, np->irqmask);
  4421. pci_push(base);
  4422. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4423. spin_unlock_irq(&np->lock);
  4424. nv_free_irq(dev);
  4425. drain_ring(dev);
  4426. if (np->wolenabled) {
  4427. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4428. nv_start_rx(dev);
  4429. }
  4430. /* FIXME: power down nic */
  4431. return 0;
  4432. }
  4433. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4434. {
  4435. struct net_device *dev;
  4436. struct fe_priv *np;
  4437. unsigned long addr;
  4438. u8 __iomem *base;
  4439. int err, i;
  4440. u32 powerstate, txreg;
  4441. u32 phystate_orig = 0, phystate;
  4442. int phyinitialized = 0;
  4443. DECLARE_MAC_BUF(mac);
  4444. static int printed_version;
  4445. if (!printed_version++)
  4446. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4447. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4448. dev = alloc_etherdev(sizeof(struct fe_priv));
  4449. err = -ENOMEM;
  4450. if (!dev)
  4451. goto out;
  4452. np = netdev_priv(dev);
  4453. np->dev = dev;
  4454. np->pci_dev = pci_dev;
  4455. spin_lock_init(&np->lock);
  4456. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4457. init_timer(&np->oom_kick);
  4458. np->oom_kick.data = (unsigned long) dev;
  4459. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4460. init_timer(&np->nic_poll);
  4461. np->nic_poll.data = (unsigned long) dev;
  4462. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4463. init_timer(&np->stats_poll);
  4464. np->stats_poll.data = (unsigned long) dev;
  4465. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4466. err = pci_enable_device(pci_dev);
  4467. if (err)
  4468. goto out_free;
  4469. pci_set_master(pci_dev);
  4470. err = pci_request_regions(pci_dev, DRV_NAME);
  4471. if (err < 0)
  4472. goto out_disable;
  4473. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
  4474. np->register_size = NV_PCI_REGSZ_VER3;
  4475. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4476. np->register_size = NV_PCI_REGSZ_VER2;
  4477. else
  4478. np->register_size = NV_PCI_REGSZ_VER1;
  4479. err = -EINVAL;
  4480. addr = 0;
  4481. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4482. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4483. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4484. pci_resource_len(pci_dev, i),
  4485. pci_resource_flags(pci_dev, i));
  4486. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4487. pci_resource_len(pci_dev, i) >= np->register_size) {
  4488. addr = pci_resource_start(pci_dev, i);
  4489. break;
  4490. }
  4491. }
  4492. if (i == DEVICE_COUNT_RESOURCE) {
  4493. dev_printk(KERN_INFO, &pci_dev->dev,
  4494. "Couldn't find register window\n");
  4495. goto out_relreg;
  4496. }
  4497. /* copy of driver data */
  4498. np->driver_data = id->driver_data;
  4499. /* handle different descriptor versions */
  4500. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4501. /* packet format 3: supports 40-bit addressing */
  4502. np->desc_ver = DESC_VER_3;
  4503. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4504. if (dma_64bit) {
  4505. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
  4506. dev_printk(KERN_INFO, &pci_dev->dev,
  4507. "64-bit DMA failed, using 32-bit addressing\n");
  4508. else
  4509. dev->features |= NETIF_F_HIGHDMA;
  4510. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4511. dev_printk(KERN_INFO, &pci_dev->dev,
  4512. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4513. }
  4514. }
  4515. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4516. /* packet format 2: supports jumbo frames */
  4517. np->desc_ver = DESC_VER_2;
  4518. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4519. } else {
  4520. /* original packet format */
  4521. np->desc_ver = DESC_VER_1;
  4522. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4523. }
  4524. np->pkt_limit = NV_PKTLIMIT_1;
  4525. if (id->driver_data & DEV_HAS_LARGEDESC)
  4526. np->pkt_limit = NV_PKTLIMIT_2;
  4527. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4528. np->rx_csum = 1;
  4529. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4530. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  4531. dev->features |= NETIF_F_TSO;
  4532. }
  4533. np->vlanctl_bits = 0;
  4534. if (id->driver_data & DEV_HAS_VLAN) {
  4535. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4536. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4537. dev->vlan_rx_register = nv_vlan_rx_register;
  4538. }
  4539. np->msi_flags = 0;
  4540. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4541. np->msi_flags |= NV_MSI_CAPABLE;
  4542. }
  4543. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4544. np->msi_flags |= NV_MSI_X_CAPABLE;
  4545. }
  4546. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4547. if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
  4548. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4549. }
  4550. err = -ENOMEM;
  4551. np->base = ioremap(addr, np->register_size);
  4552. if (!np->base)
  4553. goto out_relreg;
  4554. dev->base_addr = (unsigned long)np->base;
  4555. dev->irq = pci_dev->irq;
  4556. np->rx_ring_size = RX_RING_DEFAULT;
  4557. np->tx_ring_size = TX_RING_DEFAULT;
  4558. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4559. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4560. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4561. &np->ring_addr);
  4562. if (!np->rx_ring.orig)
  4563. goto out_unmap;
  4564. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4565. } else {
  4566. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4567. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4568. &np->ring_addr);
  4569. if (!np->rx_ring.ex)
  4570. goto out_unmap;
  4571. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4572. }
  4573. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4574. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4575. if (!np->rx_skb || !np->tx_skb)
  4576. goto out_freering;
  4577. dev->open = nv_open;
  4578. dev->stop = nv_close;
  4579. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  4580. dev->hard_start_xmit = nv_start_xmit;
  4581. else
  4582. dev->hard_start_xmit = nv_start_xmit_optimized;
  4583. dev->get_stats = nv_get_stats;
  4584. dev->change_mtu = nv_change_mtu;
  4585. dev->set_mac_address = nv_set_mac_address;
  4586. dev->set_multicast_list = nv_set_multicast;
  4587. #ifdef CONFIG_NET_POLL_CONTROLLER
  4588. dev->poll_controller = nv_poll_controller;
  4589. #endif
  4590. #ifdef CONFIG_FORCEDETH_NAPI
  4591. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  4592. #endif
  4593. SET_ETHTOOL_OPS(dev, &ops);
  4594. dev->tx_timeout = nv_tx_timeout;
  4595. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4596. pci_set_drvdata(pci_dev, dev);
  4597. /* read the mac address */
  4598. base = get_hwbase(dev);
  4599. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4600. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4601. /* check the workaround bit for correct mac address order */
  4602. txreg = readl(base + NvRegTransmitPoll);
  4603. if ((txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) ||
  4604. (id->driver_data & DEV_HAS_CORRECT_MACADDR)) {
  4605. /* mac address is already in correct order */
  4606. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4607. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4608. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4609. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4610. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4611. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4612. } else {
  4613. /* need to reverse mac address to correct order */
  4614. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4615. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4616. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4617. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4618. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4619. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4620. /* set permanent address to be correct aswell */
  4621. np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  4622. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  4623. np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  4624. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4625. }
  4626. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4627. if (!is_valid_ether_addr(dev->perm_addr)) {
  4628. /*
  4629. * Bad mac address. At least one bios sets the mac address
  4630. * to 01:23:45:67:89:ab
  4631. */
  4632. dev_printk(KERN_ERR, &pci_dev->dev,
  4633. "Invalid Mac address detected: %s\n",
  4634. print_mac(mac, dev->dev_addr));
  4635. dev_printk(KERN_ERR, &pci_dev->dev,
  4636. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4637. dev->dev_addr[0] = 0x00;
  4638. dev->dev_addr[1] = 0x00;
  4639. dev->dev_addr[2] = 0x6c;
  4640. get_random_bytes(&dev->dev_addr[3], 3);
  4641. }
  4642. dprintk(KERN_DEBUG "%s: MAC Address %s\n",
  4643. pci_name(pci_dev), print_mac(mac, dev->dev_addr));
  4644. /* set mac address */
  4645. nv_copy_mac_to_hw(dev);
  4646. /* disable WOL */
  4647. writel(0, base + NvRegWakeUpFlags);
  4648. np->wolenabled = 0;
  4649. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4650. /* take phy and nic out of low power mode */
  4651. powerstate = readl(base + NvRegPowerState2);
  4652. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4653. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  4654. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  4655. pci_dev->revision >= 0xA3)
  4656. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4657. writel(powerstate, base + NvRegPowerState2);
  4658. }
  4659. if (np->desc_ver == DESC_VER_1) {
  4660. np->tx_flags = NV_TX_VALID;
  4661. } else {
  4662. np->tx_flags = NV_TX2_VALID;
  4663. }
  4664. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  4665. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4666. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4667. np->msi_flags |= 0x0003;
  4668. } else {
  4669. np->irqmask = NVREG_IRQMASK_CPU;
  4670. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4671. np->msi_flags |= 0x0001;
  4672. }
  4673. if (id->driver_data & DEV_NEED_TIMERIRQ)
  4674. np->irqmask |= NVREG_IRQ_TIMER;
  4675. if (id->driver_data & DEV_NEED_LINKTIMER) {
  4676. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  4677. np->need_linktimer = 1;
  4678. np->link_timeout = jiffies + LINK_TIMEOUT;
  4679. } else {
  4680. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  4681. np->need_linktimer = 0;
  4682. }
  4683. /* clear phy state and temporarily halt phy interrupts */
  4684. writel(0, base + NvRegMIIMask);
  4685. phystate = readl(base + NvRegAdapterControl);
  4686. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  4687. phystate_orig = 1;
  4688. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  4689. writel(phystate, base + NvRegAdapterControl);
  4690. }
  4691. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  4692. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4693. /* management unit running on the mac? */
  4694. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
  4695. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  4696. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
  4697. for (i = 0; i < 5000; i++) {
  4698. msleep(1);
  4699. if (nv_mgmt_acquire_sema(dev)) {
  4700. /* management unit setup the phy already? */
  4701. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  4702. NVREG_XMITCTL_SYNC_PHY_INIT) {
  4703. /* phy is inited by mgmt unit */
  4704. phyinitialized = 1;
  4705. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
  4706. } else {
  4707. /* we need to init the phy */
  4708. }
  4709. break;
  4710. }
  4711. }
  4712. }
  4713. }
  4714. /* find a suitable phy */
  4715. for (i = 1; i <= 32; i++) {
  4716. int id1, id2;
  4717. int phyaddr = i & 0x1F;
  4718. spin_lock_irq(&np->lock);
  4719. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  4720. spin_unlock_irq(&np->lock);
  4721. if (id1 < 0 || id1 == 0xffff)
  4722. continue;
  4723. spin_lock_irq(&np->lock);
  4724. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  4725. spin_unlock_irq(&np->lock);
  4726. if (id2 < 0 || id2 == 0xffff)
  4727. continue;
  4728. np->phy_model = id2 & PHYID2_MODEL_MASK;
  4729. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  4730. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  4731. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  4732. pci_name(pci_dev), id1, id2, phyaddr);
  4733. np->phyaddr = phyaddr;
  4734. np->phy_oui = id1 | id2;
  4735. break;
  4736. }
  4737. if (i == 33) {
  4738. dev_printk(KERN_INFO, &pci_dev->dev,
  4739. "open: Could not find a valid PHY.\n");
  4740. goto out_error;
  4741. }
  4742. if (!phyinitialized) {
  4743. /* reset it */
  4744. phy_init(dev);
  4745. } else {
  4746. /* see if it is a gigabit phy */
  4747. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4748. if (mii_status & PHY_GIGABIT) {
  4749. np->gigabit = PHY_GIGABIT;
  4750. }
  4751. }
  4752. /* set default link speed settings */
  4753. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  4754. np->duplex = 0;
  4755. np->autoneg = 1;
  4756. err = register_netdev(dev);
  4757. if (err) {
  4758. dev_printk(KERN_INFO, &pci_dev->dev,
  4759. "unable to register netdev: %d\n", err);
  4760. goto out_error;
  4761. }
  4762. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  4763. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  4764. dev->name,
  4765. np->phy_oui,
  4766. np->phyaddr,
  4767. dev->dev_addr[0],
  4768. dev->dev_addr[1],
  4769. dev->dev_addr[2],
  4770. dev->dev_addr[3],
  4771. dev->dev_addr[4],
  4772. dev->dev_addr[5]);
  4773. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  4774. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  4775. dev->features & (NETIF_F_HW_CSUM | NETIF_F_SG) ?
  4776. "csum " : "",
  4777. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  4778. "vlan " : "",
  4779. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  4780. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  4781. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  4782. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  4783. np->need_linktimer ? "lnktim " : "",
  4784. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  4785. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  4786. np->desc_ver);
  4787. return 0;
  4788. out_error:
  4789. if (phystate_orig)
  4790. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  4791. pci_set_drvdata(pci_dev, NULL);
  4792. out_freering:
  4793. free_rings(dev);
  4794. out_unmap:
  4795. iounmap(get_hwbase(dev));
  4796. out_relreg:
  4797. pci_release_regions(pci_dev);
  4798. out_disable:
  4799. pci_disable_device(pci_dev);
  4800. out_free:
  4801. free_netdev(dev);
  4802. out:
  4803. return err;
  4804. }
  4805. static void __devexit nv_remove(struct pci_dev *pci_dev)
  4806. {
  4807. struct net_device *dev = pci_get_drvdata(pci_dev);
  4808. struct fe_priv *np = netdev_priv(dev);
  4809. u8 __iomem *base = get_hwbase(dev);
  4810. unregister_netdev(dev);
  4811. /* special op: write back the misordered MAC address - otherwise
  4812. * the next nv_probe would see a wrong address.
  4813. */
  4814. writel(np->orig_mac[0], base + NvRegMacAddrA);
  4815. writel(np->orig_mac[1], base + NvRegMacAddrB);
  4816. /* free all structures */
  4817. free_rings(dev);
  4818. iounmap(get_hwbase(dev));
  4819. pci_release_regions(pci_dev);
  4820. pci_disable_device(pci_dev);
  4821. free_netdev(dev);
  4822. pci_set_drvdata(pci_dev, NULL);
  4823. }
  4824. #ifdef CONFIG_PM
  4825. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  4826. {
  4827. struct net_device *dev = pci_get_drvdata(pdev);
  4828. struct fe_priv *np = netdev_priv(dev);
  4829. if (!netif_running(dev))
  4830. goto out;
  4831. netif_device_detach(dev);
  4832. // Gross.
  4833. nv_close(dev);
  4834. pci_save_state(pdev);
  4835. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  4836. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4837. out:
  4838. return 0;
  4839. }
  4840. static int nv_resume(struct pci_dev *pdev)
  4841. {
  4842. struct net_device *dev = pci_get_drvdata(pdev);
  4843. int rc = 0;
  4844. if (!netif_running(dev))
  4845. goto out;
  4846. netif_device_attach(dev);
  4847. pci_set_power_state(pdev, PCI_D0);
  4848. pci_restore_state(pdev);
  4849. pci_enable_wake(pdev, PCI_D0, 0);
  4850. rc = nv_open(dev);
  4851. out:
  4852. return rc;
  4853. }
  4854. #else
  4855. #define nv_suspend NULL
  4856. #define nv_resume NULL
  4857. #endif /* CONFIG_PM */
  4858. static struct pci_device_id pci_tbl[] = {
  4859. { /* nForce Ethernet Controller */
  4860. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  4861. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4862. },
  4863. { /* nForce2 Ethernet Controller */
  4864. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  4865. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4866. },
  4867. { /* nForce3 Ethernet Controller */
  4868. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  4869. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4870. },
  4871. { /* nForce3 Ethernet Controller */
  4872. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  4873. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4874. },
  4875. { /* nForce3 Ethernet Controller */
  4876. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  4877. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4878. },
  4879. { /* nForce3 Ethernet Controller */
  4880. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  4881. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4882. },
  4883. { /* nForce3 Ethernet Controller */
  4884. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  4885. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4886. },
  4887. { /* CK804 Ethernet Controller */
  4888. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  4889. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4890. },
  4891. { /* CK804 Ethernet Controller */
  4892. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  4893. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4894. },
  4895. { /* MCP04 Ethernet Controller */
  4896. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  4897. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4898. },
  4899. { /* MCP04 Ethernet Controller */
  4900. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  4901. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4902. },
  4903. { /* MCP51 Ethernet Controller */
  4904. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  4905. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  4906. },
  4907. { /* MCP51 Ethernet Controller */
  4908. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  4909. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  4910. },
  4911. { /* MCP55 Ethernet Controller */
  4912. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  4913. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4914. },
  4915. { /* MCP55 Ethernet Controller */
  4916. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  4917. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4918. },
  4919. { /* MCP61 Ethernet Controller */
  4920. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  4921. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4922. },
  4923. { /* MCP61 Ethernet Controller */
  4924. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  4925. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4926. },
  4927. { /* MCP61 Ethernet Controller */
  4928. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  4929. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4930. },
  4931. { /* MCP61 Ethernet Controller */
  4932. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  4933. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4934. },
  4935. { /* MCP65 Ethernet Controller */
  4936. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  4937. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4938. },
  4939. { /* MCP65 Ethernet Controller */
  4940. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  4941. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4942. },
  4943. { /* MCP65 Ethernet Controller */
  4944. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  4945. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4946. },
  4947. { /* MCP65 Ethernet Controller */
  4948. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  4949. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4950. },
  4951. { /* MCP67 Ethernet Controller */
  4952. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  4953. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4954. },
  4955. { /* MCP67 Ethernet Controller */
  4956. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  4957. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4958. },
  4959. { /* MCP67 Ethernet Controller */
  4960. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  4961. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4962. },
  4963. { /* MCP67 Ethernet Controller */
  4964. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  4965. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4966. },
  4967. { /* MCP73 Ethernet Controller */
  4968. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  4969. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4970. },
  4971. { /* MCP73 Ethernet Controller */
  4972. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  4973. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4974. },
  4975. { /* MCP73 Ethernet Controller */
  4976. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  4977. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4978. },
  4979. { /* MCP73 Ethernet Controller */
  4980. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  4981. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4982. },
  4983. {0,},
  4984. };
  4985. static struct pci_driver driver = {
  4986. .name = DRV_NAME,
  4987. .id_table = pci_tbl,
  4988. .probe = nv_probe,
  4989. .remove = __devexit_p(nv_remove),
  4990. .suspend = nv_suspend,
  4991. .resume = nv_resume,
  4992. };
  4993. static int __init init_nic(void)
  4994. {
  4995. return pci_register_driver(&driver);
  4996. }
  4997. static void __exit exit_nic(void)
  4998. {
  4999. pci_unregister_driver(&driver);
  5000. }
  5001. module_param(max_interrupt_work, int, 0);
  5002. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5003. module_param(optimization_mode, int, 0);
  5004. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  5005. module_param(poll_interval, int, 0);
  5006. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5007. module_param(msi, int, 0);
  5008. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5009. module_param(msix, int, 0);
  5010. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5011. module_param(dma_64bit, int, 0);
  5012. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5013. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5014. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5015. MODULE_LICENSE("GPL");
  5016. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5017. module_init(init_nic);
  5018. module_exit(exit_nic);