ll_rw_blk.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/bio.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/highmem.h>
  18. #include <linux/mm.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/string.h>
  21. #include <linux/init.h>
  22. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  23. #include <linux/completion.h>
  24. #include <linux/slab.h>
  25. #include <linux/swap.h>
  26. #include <linux/writeback.h>
  27. #include <linux/task_io_accounting_ops.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/cpu.h>
  30. #include <linux/blktrace_api.h>
  31. #include <linux/fault-inject.h>
  32. /*
  33. * for max sense size
  34. */
  35. #include <scsi/scsi_cmnd.h>
  36. static void blk_unplug_work(struct work_struct *work);
  37. static void blk_unplug_timeout(unsigned long data);
  38. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  39. static void init_request_from_bio(struct request *req, struct bio *bio);
  40. static int __make_request(struct request_queue *q, struct bio *bio);
  41. static struct io_context *current_io_context(gfp_t gfp_flags, int node);
  42. static void blk_recalc_rq_segments(struct request *rq);
  43. static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  44. struct bio *bio);
  45. /*
  46. * For the allocated request tables
  47. */
  48. static struct kmem_cache *request_cachep;
  49. /*
  50. * For queue allocation
  51. */
  52. static struct kmem_cache *requestq_cachep;
  53. /*
  54. * For io context allocations
  55. */
  56. static struct kmem_cache *iocontext_cachep;
  57. /*
  58. * Controlling structure to kblockd
  59. */
  60. static struct workqueue_struct *kblockd_workqueue;
  61. unsigned long blk_max_low_pfn, blk_max_pfn;
  62. EXPORT_SYMBOL(blk_max_low_pfn);
  63. EXPORT_SYMBOL(blk_max_pfn);
  64. static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
  65. /* Amount of time in which a process may batch requests */
  66. #define BLK_BATCH_TIME (HZ/50UL)
  67. /* Number of requests a "batching" process may submit */
  68. #define BLK_BATCH_REQ 32
  69. /*
  70. * Return the threshold (number of used requests) at which the queue is
  71. * considered to be congested. It include a little hysteresis to keep the
  72. * context switch rate down.
  73. */
  74. static inline int queue_congestion_on_threshold(struct request_queue *q)
  75. {
  76. return q->nr_congestion_on;
  77. }
  78. /*
  79. * The threshold at which a queue is considered to be uncongested
  80. */
  81. static inline int queue_congestion_off_threshold(struct request_queue *q)
  82. {
  83. return q->nr_congestion_off;
  84. }
  85. static void blk_queue_congestion_threshold(struct request_queue *q)
  86. {
  87. int nr;
  88. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  89. if (nr > q->nr_requests)
  90. nr = q->nr_requests;
  91. q->nr_congestion_on = nr;
  92. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  93. if (nr < 1)
  94. nr = 1;
  95. q->nr_congestion_off = nr;
  96. }
  97. /**
  98. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  99. * @bdev: device
  100. *
  101. * Locates the passed device's request queue and returns the address of its
  102. * backing_dev_info
  103. *
  104. * Will return NULL if the request queue cannot be located.
  105. */
  106. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  107. {
  108. struct backing_dev_info *ret = NULL;
  109. struct request_queue *q = bdev_get_queue(bdev);
  110. if (q)
  111. ret = &q->backing_dev_info;
  112. return ret;
  113. }
  114. EXPORT_SYMBOL(blk_get_backing_dev_info);
  115. /**
  116. * blk_queue_prep_rq - set a prepare_request function for queue
  117. * @q: queue
  118. * @pfn: prepare_request function
  119. *
  120. * It's possible for a queue to register a prepare_request callback which
  121. * is invoked before the request is handed to the request_fn. The goal of
  122. * the function is to prepare a request for I/O, it can be used to build a
  123. * cdb from the request data for instance.
  124. *
  125. */
  126. void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
  127. {
  128. q->prep_rq_fn = pfn;
  129. }
  130. EXPORT_SYMBOL(blk_queue_prep_rq);
  131. /**
  132. * blk_queue_merge_bvec - set a merge_bvec function for queue
  133. * @q: queue
  134. * @mbfn: merge_bvec_fn
  135. *
  136. * Usually queues have static limitations on the max sectors or segments that
  137. * we can put in a request. Stacking drivers may have some settings that
  138. * are dynamic, and thus we have to query the queue whether it is ok to
  139. * add a new bio_vec to a bio at a given offset or not. If the block device
  140. * has such limitations, it needs to register a merge_bvec_fn to control
  141. * the size of bio's sent to it. Note that a block device *must* allow a
  142. * single page to be added to an empty bio. The block device driver may want
  143. * to use the bio_split() function to deal with these bio's. By default
  144. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  145. * honored.
  146. */
  147. void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
  148. {
  149. q->merge_bvec_fn = mbfn;
  150. }
  151. EXPORT_SYMBOL(blk_queue_merge_bvec);
  152. void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
  153. {
  154. q->softirq_done_fn = fn;
  155. }
  156. EXPORT_SYMBOL(blk_queue_softirq_done);
  157. /**
  158. * blk_queue_make_request - define an alternate make_request function for a device
  159. * @q: the request queue for the device to be affected
  160. * @mfn: the alternate make_request function
  161. *
  162. * Description:
  163. * The normal way for &struct bios to be passed to a device
  164. * driver is for them to be collected into requests on a request
  165. * queue, and then to allow the device driver to select requests
  166. * off that queue when it is ready. This works well for many block
  167. * devices. However some block devices (typically virtual devices
  168. * such as md or lvm) do not benefit from the processing on the
  169. * request queue, and are served best by having the requests passed
  170. * directly to them. This can be achieved by providing a function
  171. * to blk_queue_make_request().
  172. *
  173. * Caveat:
  174. * The driver that does this *must* be able to deal appropriately
  175. * with buffers in "highmemory". This can be accomplished by either calling
  176. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  177. * blk_queue_bounce() to create a buffer in normal memory.
  178. **/
  179. void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
  180. {
  181. /*
  182. * set defaults
  183. */
  184. q->nr_requests = BLKDEV_MAX_RQ;
  185. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  186. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  187. q->make_request_fn = mfn;
  188. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  189. q->backing_dev_info.state = 0;
  190. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  191. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  192. blk_queue_hardsect_size(q, 512);
  193. blk_queue_dma_alignment(q, 511);
  194. blk_queue_congestion_threshold(q);
  195. q->nr_batching = BLK_BATCH_REQ;
  196. q->unplug_thresh = 4; /* hmm */
  197. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  198. if (q->unplug_delay == 0)
  199. q->unplug_delay = 1;
  200. INIT_WORK(&q->unplug_work, blk_unplug_work);
  201. q->unplug_timer.function = blk_unplug_timeout;
  202. q->unplug_timer.data = (unsigned long)q;
  203. /*
  204. * by default assume old behaviour and bounce for any highmem page
  205. */
  206. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  207. }
  208. EXPORT_SYMBOL(blk_queue_make_request);
  209. static void rq_init(struct request_queue *q, struct request *rq)
  210. {
  211. INIT_LIST_HEAD(&rq->queuelist);
  212. INIT_LIST_HEAD(&rq->donelist);
  213. rq->errors = 0;
  214. rq->bio = rq->biotail = NULL;
  215. INIT_HLIST_NODE(&rq->hash);
  216. RB_CLEAR_NODE(&rq->rb_node);
  217. rq->ioprio = 0;
  218. rq->buffer = NULL;
  219. rq->ref_count = 1;
  220. rq->q = q;
  221. rq->special = NULL;
  222. rq->data_len = 0;
  223. rq->data = NULL;
  224. rq->nr_phys_segments = 0;
  225. rq->sense = NULL;
  226. rq->end_io = NULL;
  227. rq->end_io_data = NULL;
  228. rq->completion_data = NULL;
  229. rq->next_rq = NULL;
  230. }
  231. /**
  232. * blk_queue_ordered - does this queue support ordered writes
  233. * @q: the request queue
  234. * @ordered: one of QUEUE_ORDERED_*
  235. * @prepare_flush_fn: rq setup helper for cache flush ordered writes
  236. *
  237. * Description:
  238. * For journalled file systems, doing ordered writes on a commit
  239. * block instead of explicitly doing wait_on_buffer (which is bad
  240. * for performance) can be a big win. Block drivers supporting this
  241. * feature should call this function and indicate so.
  242. *
  243. **/
  244. int blk_queue_ordered(struct request_queue *q, unsigned ordered,
  245. prepare_flush_fn *prepare_flush_fn)
  246. {
  247. if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  248. prepare_flush_fn == NULL) {
  249. printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  250. return -EINVAL;
  251. }
  252. if (ordered != QUEUE_ORDERED_NONE &&
  253. ordered != QUEUE_ORDERED_DRAIN &&
  254. ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  255. ordered != QUEUE_ORDERED_DRAIN_FUA &&
  256. ordered != QUEUE_ORDERED_TAG &&
  257. ordered != QUEUE_ORDERED_TAG_FLUSH &&
  258. ordered != QUEUE_ORDERED_TAG_FUA) {
  259. printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  260. return -EINVAL;
  261. }
  262. q->ordered = ordered;
  263. q->next_ordered = ordered;
  264. q->prepare_flush_fn = prepare_flush_fn;
  265. return 0;
  266. }
  267. EXPORT_SYMBOL(blk_queue_ordered);
  268. /**
  269. * blk_queue_issue_flush_fn - set function for issuing a flush
  270. * @q: the request queue
  271. * @iff: the function to be called issuing the flush
  272. *
  273. * Description:
  274. * If a driver supports issuing a flush command, the support is notified
  275. * to the block layer by defining it through this call.
  276. *
  277. **/
  278. void blk_queue_issue_flush_fn(struct request_queue *q, issue_flush_fn *iff)
  279. {
  280. q->issue_flush_fn = iff;
  281. }
  282. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  283. /*
  284. * Cache flushing for ordered writes handling
  285. */
  286. inline unsigned blk_ordered_cur_seq(struct request_queue *q)
  287. {
  288. if (!q->ordseq)
  289. return 0;
  290. return 1 << ffz(q->ordseq);
  291. }
  292. unsigned blk_ordered_req_seq(struct request *rq)
  293. {
  294. struct request_queue *q = rq->q;
  295. BUG_ON(q->ordseq == 0);
  296. if (rq == &q->pre_flush_rq)
  297. return QUEUE_ORDSEQ_PREFLUSH;
  298. if (rq == &q->bar_rq)
  299. return QUEUE_ORDSEQ_BAR;
  300. if (rq == &q->post_flush_rq)
  301. return QUEUE_ORDSEQ_POSTFLUSH;
  302. /*
  303. * !fs requests don't need to follow barrier ordering. Always
  304. * put them at the front. This fixes the following deadlock.
  305. *
  306. * http://thread.gmane.org/gmane.linux.kernel/537473
  307. */
  308. if (!blk_fs_request(rq))
  309. return QUEUE_ORDSEQ_DRAIN;
  310. if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
  311. (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
  312. return QUEUE_ORDSEQ_DRAIN;
  313. else
  314. return QUEUE_ORDSEQ_DONE;
  315. }
  316. void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
  317. {
  318. struct request *rq;
  319. int uptodate;
  320. if (error && !q->orderr)
  321. q->orderr = error;
  322. BUG_ON(q->ordseq & seq);
  323. q->ordseq |= seq;
  324. if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  325. return;
  326. /*
  327. * Okay, sequence complete.
  328. */
  329. uptodate = 1;
  330. if (q->orderr)
  331. uptodate = q->orderr;
  332. q->ordseq = 0;
  333. rq = q->orig_bar_rq;
  334. end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
  335. end_that_request_last(rq, uptodate);
  336. }
  337. static void pre_flush_end_io(struct request *rq, int error)
  338. {
  339. elv_completed_request(rq->q, rq);
  340. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  341. }
  342. static void bar_end_io(struct request *rq, int error)
  343. {
  344. elv_completed_request(rq->q, rq);
  345. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  346. }
  347. static void post_flush_end_io(struct request *rq, int error)
  348. {
  349. elv_completed_request(rq->q, rq);
  350. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  351. }
  352. static void queue_flush(struct request_queue *q, unsigned which)
  353. {
  354. struct request *rq;
  355. rq_end_io_fn *end_io;
  356. if (which == QUEUE_ORDERED_PREFLUSH) {
  357. rq = &q->pre_flush_rq;
  358. end_io = pre_flush_end_io;
  359. } else {
  360. rq = &q->post_flush_rq;
  361. end_io = post_flush_end_io;
  362. }
  363. rq->cmd_flags = REQ_HARDBARRIER;
  364. rq_init(q, rq);
  365. rq->elevator_private = NULL;
  366. rq->elevator_private2 = NULL;
  367. rq->rq_disk = q->bar_rq.rq_disk;
  368. rq->end_io = end_io;
  369. q->prepare_flush_fn(q, rq);
  370. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  371. }
  372. static inline struct request *start_ordered(struct request_queue *q,
  373. struct request *rq)
  374. {
  375. q->orderr = 0;
  376. q->ordered = q->next_ordered;
  377. q->ordseq |= QUEUE_ORDSEQ_STARTED;
  378. /*
  379. * Prep proxy barrier request.
  380. */
  381. blkdev_dequeue_request(rq);
  382. q->orig_bar_rq = rq;
  383. rq = &q->bar_rq;
  384. rq->cmd_flags = 0;
  385. rq_init(q, rq);
  386. if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
  387. rq->cmd_flags |= REQ_RW;
  388. if (q->ordered & QUEUE_ORDERED_FUA)
  389. rq->cmd_flags |= REQ_FUA;
  390. rq->elevator_private = NULL;
  391. rq->elevator_private2 = NULL;
  392. init_request_from_bio(rq, q->orig_bar_rq->bio);
  393. rq->end_io = bar_end_io;
  394. /*
  395. * Queue ordered sequence. As we stack them at the head, we
  396. * need to queue in reverse order. Note that we rely on that
  397. * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  398. * request gets inbetween ordered sequence.
  399. */
  400. if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
  401. queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  402. else
  403. q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  404. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  405. if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  406. queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  407. rq = &q->pre_flush_rq;
  408. } else
  409. q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  410. if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  411. q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  412. else
  413. rq = NULL;
  414. return rq;
  415. }
  416. int blk_do_ordered(struct request_queue *q, struct request **rqp)
  417. {
  418. struct request *rq = *rqp;
  419. int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  420. if (!q->ordseq) {
  421. if (!is_barrier)
  422. return 1;
  423. if (q->next_ordered != QUEUE_ORDERED_NONE) {
  424. *rqp = start_ordered(q, rq);
  425. return 1;
  426. } else {
  427. /*
  428. * This can happen when the queue switches to
  429. * ORDERED_NONE while this request is on it.
  430. */
  431. blkdev_dequeue_request(rq);
  432. end_that_request_first(rq, -EOPNOTSUPP,
  433. rq->hard_nr_sectors);
  434. end_that_request_last(rq, -EOPNOTSUPP);
  435. *rqp = NULL;
  436. return 0;
  437. }
  438. }
  439. /*
  440. * Ordered sequence in progress
  441. */
  442. /* Special requests are not subject to ordering rules. */
  443. if (!blk_fs_request(rq) &&
  444. rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
  445. return 1;
  446. if (q->ordered & QUEUE_ORDERED_TAG) {
  447. /* Ordered by tag. Blocking the next barrier is enough. */
  448. if (is_barrier && rq != &q->bar_rq)
  449. *rqp = NULL;
  450. } else {
  451. /* Ordered by draining. Wait for turn. */
  452. WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
  453. if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
  454. *rqp = NULL;
  455. }
  456. return 1;
  457. }
  458. static void req_bio_endio(struct request *rq, struct bio *bio,
  459. unsigned int nbytes, int error)
  460. {
  461. struct request_queue *q = rq->q;
  462. if (&q->bar_rq != rq) {
  463. if (error)
  464. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  465. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  466. error = -EIO;
  467. if (unlikely(nbytes > bio->bi_size)) {
  468. printk("%s: want %u bytes done, only %u left\n",
  469. __FUNCTION__, nbytes, bio->bi_size);
  470. nbytes = bio->bi_size;
  471. }
  472. bio->bi_size -= nbytes;
  473. bio->bi_sector += (nbytes >> 9);
  474. if (bio->bi_size == 0)
  475. bio_endio(bio, error);
  476. } else {
  477. /*
  478. * Okay, this is the barrier request in progress, just
  479. * record the error;
  480. */
  481. if (error && !q->orderr)
  482. q->orderr = error;
  483. }
  484. }
  485. /**
  486. * blk_queue_bounce_limit - set bounce buffer limit for queue
  487. * @q: the request queue for the device
  488. * @dma_addr: bus address limit
  489. *
  490. * Description:
  491. * Different hardware can have different requirements as to what pages
  492. * it can do I/O directly to. A low level driver can call
  493. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  494. * buffers for doing I/O to pages residing above @page.
  495. **/
  496. void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
  497. {
  498. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  499. int dma = 0;
  500. q->bounce_gfp = GFP_NOIO;
  501. #if BITS_PER_LONG == 64
  502. /* Assume anything <= 4GB can be handled by IOMMU.
  503. Actually some IOMMUs can handle everything, but I don't
  504. know of a way to test this here. */
  505. if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  506. dma = 1;
  507. q->bounce_pfn = max_low_pfn;
  508. #else
  509. if (bounce_pfn < blk_max_low_pfn)
  510. dma = 1;
  511. q->bounce_pfn = bounce_pfn;
  512. #endif
  513. if (dma) {
  514. init_emergency_isa_pool();
  515. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  516. q->bounce_pfn = bounce_pfn;
  517. }
  518. }
  519. EXPORT_SYMBOL(blk_queue_bounce_limit);
  520. /**
  521. * blk_queue_max_sectors - set max sectors for a request for this queue
  522. * @q: the request queue for the device
  523. * @max_sectors: max sectors in the usual 512b unit
  524. *
  525. * Description:
  526. * Enables a low level driver to set an upper limit on the size of
  527. * received requests.
  528. **/
  529. void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
  530. {
  531. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  532. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  533. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  534. }
  535. if (BLK_DEF_MAX_SECTORS > max_sectors)
  536. q->max_hw_sectors = q->max_sectors = max_sectors;
  537. else {
  538. q->max_sectors = BLK_DEF_MAX_SECTORS;
  539. q->max_hw_sectors = max_sectors;
  540. }
  541. }
  542. EXPORT_SYMBOL(blk_queue_max_sectors);
  543. /**
  544. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  545. * @q: the request queue for the device
  546. * @max_segments: max number of segments
  547. *
  548. * Description:
  549. * Enables a low level driver to set an upper limit on the number of
  550. * physical data segments in a request. This would be the largest sized
  551. * scatter list the driver could handle.
  552. **/
  553. void blk_queue_max_phys_segments(struct request_queue *q,
  554. unsigned short max_segments)
  555. {
  556. if (!max_segments) {
  557. max_segments = 1;
  558. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  559. }
  560. q->max_phys_segments = max_segments;
  561. }
  562. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  563. /**
  564. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  565. * @q: the request queue for the device
  566. * @max_segments: max number of segments
  567. *
  568. * Description:
  569. * Enables a low level driver to set an upper limit on the number of
  570. * hw data segments in a request. This would be the largest number of
  571. * address/length pairs the host adapter can actually give as once
  572. * to the device.
  573. **/
  574. void blk_queue_max_hw_segments(struct request_queue *q,
  575. unsigned short max_segments)
  576. {
  577. if (!max_segments) {
  578. max_segments = 1;
  579. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  580. }
  581. q->max_hw_segments = max_segments;
  582. }
  583. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  584. /**
  585. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  586. * @q: the request queue for the device
  587. * @max_size: max size of segment in bytes
  588. *
  589. * Description:
  590. * Enables a low level driver to set an upper limit on the size of a
  591. * coalesced segment
  592. **/
  593. void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
  594. {
  595. if (max_size < PAGE_CACHE_SIZE) {
  596. max_size = PAGE_CACHE_SIZE;
  597. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  598. }
  599. q->max_segment_size = max_size;
  600. }
  601. EXPORT_SYMBOL(blk_queue_max_segment_size);
  602. /**
  603. * blk_queue_hardsect_size - set hardware sector size for the queue
  604. * @q: the request queue for the device
  605. * @size: the hardware sector size, in bytes
  606. *
  607. * Description:
  608. * This should typically be set to the lowest possible sector size
  609. * that the hardware can operate on (possible without reverting to
  610. * even internal read-modify-write operations). Usually the default
  611. * of 512 covers most hardware.
  612. **/
  613. void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
  614. {
  615. q->hardsect_size = size;
  616. }
  617. EXPORT_SYMBOL(blk_queue_hardsect_size);
  618. /*
  619. * Returns the minimum that is _not_ zero, unless both are zero.
  620. */
  621. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  622. /**
  623. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  624. * @t: the stacking driver (top)
  625. * @b: the underlying device (bottom)
  626. **/
  627. void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
  628. {
  629. /* zero is "infinity" */
  630. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  631. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  632. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  633. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  634. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  635. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  636. if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
  637. clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
  638. }
  639. EXPORT_SYMBOL(blk_queue_stack_limits);
  640. /**
  641. * blk_queue_segment_boundary - set boundary rules for segment merging
  642. * @q: the request queue for the device
  643. * @mask: the memory boundary mask
  644. **/
  645. void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
  646. {
  647. if (mask < PAGE_CACHE_SIZE - 1) {
  648. mask = PAGE_CACHE_SIZE - 1;
  649. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  650. }
  651. q->seg_boundary_mask = mask;
  652. }
  653. EXPORT_SYMBOL(blk_queue_segment_boundary);
  654. /**
  655. * blk_queue_dma_alignment - set dma length and memory alignment
  656. * @q: the request queue for the device
  657. * @mask: alignment mask
  658. *
  659. * description:
  660. * set required memory and length aligment for direct dma transactions.
  661. * this is used when buiding direct io requests for the queue.
  662. *
  663. **/
  664. void blk_queue_dma_alignment(struct request_queue *q, int mask)
  665. {
  666. q->dma_alignment = mask;
  667. }
  668. EXPORT_SYMBOL(blk_queue_dma_alignment);
  669. /**
  670. * blk_queue_find_tag - find a request by its tag and queue
  671. * @q: The request queue for the device
  672. * @tag: The tag of the request
  673. *
  674. * Notes:
  675. * Should be used when a device returns a tag and you want to match
  676. * it with a request.
  677. *
  678. * no locks need be held.
  679. **/
  680. struct request *blk_queue_find_tag(struct request_queue *q, int tag)
  681. {
  682. return blk_map_queue_find_tag(q->queue_tags, tag);
  683. }
  684. EXPORT_SYMBOL(blk_queue_find_tag);
  685. /**
  686. * __blk_free_tags - release a given set of tag maintenance info
  687. * @bqt: the tag map to free
  688. *
  689. * Tries to free the specified @bqt@. Returns true if it was
  690. * actually freed and false if there are still references using it
  691. */
  692. static int __blk_free_tags(struct blk_queue_tag *bqt)
  693. {
  694. int retval;
  695. retval = atomic_dec_and_test(&bqt->refcnt);
  696. if (retval) {
  697. BUG_ON(bqt->busy);
  698. BUG_ON(!list_empty(&bqt->busy_list));
  699. kfree(bqt->tag_index);
  700. bqt->tag_index = NULL;
  701. kfree(bqt->tag_map);
  702. bqt->tag_map = NULL;
  703. kfree(bqt);
  704. }
  705. return retval;
  706. }
  707. /**
  708. * __blk_queue_free_tags - release tag maintenance info
  709. * @q: the request queue for the device
  710. *
  711. * Notes:
  712. * blk_cleanup_queue() will take care of calling this function, if tagging
  713. * has been used. So there's no need to call this directly.
  714. **/
  715. static void __blk_queue_free_tags(struct request_queue *q)
  716. {
  717. struct blk_queue_tag *bqt = q->queue_tags;
  718. if (!bqt)
  719. return;
  720. __blk_free_tags(bqt);
  721. q->queue_tags = NULL;
  722. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  723. }
  724. /**
  725. * blk_free_tags - release a given set of tag maintenance info
  726. * @bqt: the tag map to free
  727. *
  728. * For externally managed @bqt@ frees the map. Callers of this
  729. * function must guarantee to have released all the queues that
  730. * might have been using this tag map.
  731. */
  732. void blk_free_tags(struct blk_queue_tag *bqt)
  733. {
  734. if (unlikely(!__blk_free_tags(bqt)))
  735. BUG();
  736. }
  737. EXPORT_SYMBOL(blk_free_tags);
  738. /**
  739. * blk_queue_free_tags - release tag maintenance info
  740. * @q: the request queue for the device
  741. *
  742. * Notes:
  743. * This is used to disabled tagged queuing to a device, yet leave
  744. * queue in function.
  745. **/
  746. void blk_queue_free_tags(struct request_queue *q)
  747. {
  748. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  749. }
  750. EXPORT_SYMBOL(blk_queue_free_tags);
  751. static int
  752. init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
  753. {
  754. struct request **tag_index;
  755. unsigned long *tag_map;
  756. int nr_ulongs;
  757. if (q && depth > q->nr_requests * 2) {
  758. depth = q->nr_requests * 2;
  759. printk(KERN_ERR "%s: adjusted depth to %d\n",
  760. __FUNCTION__, depth);
  761. }
  762. tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  763. if (!tag_index)
  764. goto fail;
  765. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  766. tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  767. if (!tag_map)
  768. goto fail;
  769. tags->real_max_depth = depth;
  770. tags->max_depth = depth;
  771. tags->tag_index = tag_index;
  772. tags->tag_map = tag_map;
  773. return 0;
  774. fail:
  775. kfree(tag_index);
  776. return -ENOMEM;
  777. }
  778. static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
  779. int depth)
  780. {
  781. struct blk_queue_tag *tags;
  782. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  783. if (!tags)
  784. goto fail;
  785. if (init_tag_map(q, tags, depth))
  786. goto fail;
  787. INIT_LIST_HEAD(&tags->busy_list);
  788. tags->busy = 0;
  789. atomic_set(&tags->refcnt, 1);
  790. return tags;
  791. fail:
  792. kfree(tags);
  793. return NULL;
  794. }
  795. /**
  796. * blk_init_tags - initialize the tag info for an external tag map
  797. * @depth: the maximum queue depth supported
  798. * @tags: the tag to use
  799. **/
  800. struct blk_queue_tag *blk_init_tags(int depth)
  801. {
  802. return __blk_queue_init_tags(NULL, depth);
  803. }
  804. EXPORT_SYMBOL(blk_init_tags);
  805. /**
  806. * blk_queue_init_tags - initialize the queue tag info
  807. * @q: the request queue for the device
  808. * @depth: the maximum queue depth supported
  809. * @tags: the tag to use
  810. **/
  811. int blk_queue_init_tags(struct request_queue *q, int depth,
  812. struct blk_queue_tag *tags)
  813. {
  814. int rc;
  815. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  816. if (!tags && !q->queue_tags) {
  817. tags = __blk_queue_init_tags(q, depth);
  818. if (!tags)
  819. goto fail;
  820. } else if (q->queue_tags) {
  821. if ((rc = blk_queue_resize_tags(q, depth)))
  822. return rc;
  823. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  824. return 0;
  825. } else
  826. atomic_inc(&tags->refcnt);
  827. /*
  828. * assign it, all done
  829. */
  830. q->queue_tags = tags;
  831. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  832. return 0;
  833. fail:
  834. kfree(tags);
  835. return -ENOMEM;
  836. }
  837. EXPORT_SYMBOL(blk_queue_init_tags);
  838. /**
  839. * blk_queue_resize_tags - change the queueing depth
  840. * @q: the request queue for the device
  841. * @new_depth: the new max command queueing depth
  842. *
  843. * Notes:
  844. * Must be called with the queue lock held.
  845. **/
  846. int blk_queue_resize_tags(struct request_queue *q, int new_depth)
  847. {
  848. struct blk_queue_tag *bqt = q->queue_tags;
  849. struct request **tag_index;
  850. unsigned long *tag_map;
  851. int max_depth, nr_ulongs;
  852. if (!bqt)
  853. return -ENXIO;
  854. /*
  855. * if we already have large enough real_max_depth. just
  856. * adjust max_depth. *NOTE* as requests with tag value
  857. * between new_depth and real_max_depth can be in-flight, tag
  858. * map can not be shrunk blindly here.
  859. */
  860. if (new_depth <= bqt->real_max_depth) {
  861. bqt->max_depth = new_depth;
  862. return 0;
  863. }
  864. /*
  865. * Currently cannot replace a shared tag map with a new
  866. * one, so error out if this is the case
  867. */
  868. if (atomic_read(&bqt->refcnt) != 1)
  869. return -EBUSY;
  870. /*
  871. * save the old state info, so we can copy it back
  872. */
  873. tag_index = bqt->tag_index;
  874. tag_map = bqt->tag_map;
  875. max_depth = bqt->real_max_depth;
  876. if (init_tag_map(q, bqt, new_depth))
  877. return -ENOMEM;
  878. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  879. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  880. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  881. kfree(tag_index);
  882. kfree(tag_map);
  883. return 0;
  884. }
  885. EXPORT_SYMBOL(blk_queue_resize_tags);
  886. /**
  887. * blk_queue_end_tag - end tag operations for a request
  888. * @q: the request queue for the device
  889. * @rq: the request that has completed
  890. *
  891. * Description:
  892. * Typically called when end_that_request_first() returns 0, meaning
  893. * all transfers have been done for a request. It's important to call
  894. * this function before end_that_request_last(), as that will put the
  895. * request back on the free list thus corrupting the internal tag list.
  896. *
  897. * Notes:
  898. * queue lock must be held.
  899. **/
  900. void blk_queue_end_tag(struct request_queue *q, struct request *rq)
  901. {
  902. struct blk_queue_tag *bqt = q->queue_tags;
  903. int tag = rq->tag;
  904. BUG_ON(tag == -1);
  905. if (unlikely(tag >= bqt->real_max_depth))
  906. /*
  907. * This can happen after tag depth has been reduced.
  908. * FIXME: how about a warning or info message here?
  909. */
  910. return;
  911. list_del_init(&rq->queuelist);
  912. rq->cmd_flags &= ~REQ_QUEUED;
  913. rq->tag = -1;
  914. if (unlikely(bqt->tag_index[tag] == NULL))
  915. printk(KERN_ERR "%s: tag %d is missing\n",
  916. __FUNCTION__, tag);
  917. bqt->tag_index[tag] = NULL;
  918. /*
  919. * We use test_and_clear_bit's memory ordering properties here.
  920. * The tag_map bit acts as a lock for tag_index[bit], so we need
  921. * a barrer before clearing the bit (precisely: release semantics).
  922. * Could use clear_bit_unlock when it is merged.
  923. */
  924. if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
  925. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  926. __FUNCTION__, tag);
  927. return;
  928. }
  929. bqt->busy--;
  930. }
  931. EXPORT_SYMBOL(blk_queue_end_tag);
  932. /**
  933. * blk_queue_start_tag - find a free tag and assign it
  934. * @q: the request queue for the device
  935. * @rq: the block request that needs tagging
  936. *
  937. * Description:
  938. * This can either be used as a stand-alone helper, or possibly be
  939. * assigned as the queue &prep_rq_fn (in which case &struct request
  940. * automagically gets a tag assigned). Note that this function
  941. * assumes that any type of request can be queued! if this is not
  942. * true for your device, you must check the request type before
  943. * calling this function. The request will also be removed from
  944. * the request queue, so it's the drivers responsibility to readd
  945. * it if it should need to be restarted for some reason.
  946. *
  947. * Notes:
  948. * queue lock must be held.
  949. **/
  950. int blk_queue_start_tag(struct request_queue *q, struct request *rq)
  951. {
  952. struct blk_queue_tag *bqt = q->queue_tags;
  953. int tag;
  954. if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
  955. printk(KERN_ERR
  956. "%s: request %p for device [%s] already tagged %d",
  957. __FUNCTION__, rq,
  958. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  959. BUG();
  960. }
  961. /*
  962. * Protect against shared tag maps, as we may not have exclusive
  963. * access to the tag map.
  964. */
  965. do {
  966. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  967. if (tag >= bqt->max_depth)
  968. return 1;
  969. } while (test_and_set_bit(tag, bqt->tag_map));
  970. /*
  971. * We rely on test_and_set_bit providing lock memory ordering semantics
  972. * (could use test_and_set_bit_lock when it is merged).
  973. */
  974. rq->cmd_flags |= REQ_QUEUED;
  975. rq->tag = tag;
  976. bqt->tag_index[tag] = rq;
  977. blkdev_dequeue_request(rq);
  978. list_add(&rq->queuelist, &bqt->busy_list);
  979. bqt->busy++;
  980. return 0;
  981. }
  982. EXPORT_SYMBOL(blk_queue_start_tag);
  983. /**
  984. * blk_queue_invalidate_tags - invalidate all pending tags
  985. * @q: the request queue for the device
  986. *
  987. * Description:
  988. * Hardware conditions may dictate a need to stop all pending requests.
  989. * In this case, we will safely clear the block side of the tag queue and
  990. * readd all requests to the request queue in the right order.
  991. *
  992. * Notes:
  993. * queue lock must be held.
  994. **/
  995. void blk_queue_invalidate_tags(struct request_queue *q)
  996. {
  997. struct blk_queue_tag *bqt = q->queue_tags;
  998. struct list_head *tmp, *n;
  999. struct request *rq;
  1000. list_for_each_safe(tmp, n, &bqt->busy_list) {
  1001. rq = list_entry_rq(tmp);
  1002. if (rq->tag == -1) {
  1003. printk(KERN_ERR
  1004. "%s: bad tag found on list\n", __FUNCTION__);
  1005. list_del_init(&rq->queuelist);
  1006. rq->cmd_flags &= ~REQ_QUEUED;
  1007. } else
  1008. blk_queue_end_tag(q, rq);
  1009. rq->cmd_flags &= ~REQ_STARTED;
  1010. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  1011. }
  1012. }
  1013. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  1014. void blk_dump_rq_flags(struct request *rq, char *msg)
  1015. {
  1016. int bit;
  1017. printk("%s: dev %s: type=%x, flags=%x\n", msg,
  1018. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
  1019. rq->cmd_flags);
  1020. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  1021. rq->nr_sectors,
  1022. rq->current_nr_sectors);
  1023. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  1024. if (blk_pc_request(rq)) {
  1025. printk("cdb: ");
  1026. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  1027. printk("%02x ", rq->cmd[bit]);
  1028. printk("\n");
  1029. }
  1030. }
  1031. EXPORT_SYMBOL(blk_dump_rq_flags);
  1032. void blk_recount_segments(struct request_queue *q, struct bio *bio)
  1033. {
  1034. struct request rq;
  1035. struct bio *nxt = bio->bi_next;
  1036. rq.q = q;
  1037. rq.bio = rq.biotail = bio;
  1038. bio->bi_next = NULL;
  1039. blk_recalc_rq_segments(&rq);
  1040. bio->bi_next = nxt;
  1041. bio->bi_phys_segments = rq.nr_phys_segments;
  1042. bio->bi_hw_segments = rq.nr_hw_segments;
  1043. bio->bi_flags |= (1 << BIO_SEG_VALID);
  1044. }
  1045. EXPORT_SYMBOL(blk_recount_segments);
  1046. static void blk_recalc_rq_segments(struct request *rq)
  1047. {
  1048. int nr_phys_segs;
  1049. int nr_hw_segs;
  1050. unsigned int phys_size;
  1051. unsigned int hw_size;
  1052. struct bio_vec *bv, *bvprv = NULL;
  1053. int seg_size;
  1054. int hw_seg_size;
  1055. int cluster;
  1056. struct req_iterator iter;
  1057. int high, highprv = 1;
  1058. struct request_queue *q = rq->q;
  1059. if (!rq->bio)
  1060. return;
  1061. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1062. hw_seg_size = seg_size = 0;
  1063. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  1064. rq_for_each_segment(bv, rq, iter) {
  1065. /*
  1066. * the trick here is making sure that a high page is never
  1067. * considered part of another segment, since that might
  1068. * change with the bounce page.
  1069. */
  1070. high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
  1071. if (high || highprv)
  1072. goto new_hw_segment;
  1073. if (cluster) {
  1074. if (seg_size + bv->bv_len > q->max_segment_size)
  1075. goto new_segment;
  1076. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  1077. goto new_segment;
  1078. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  1079. goto new_segment;
  1080. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1081. goto new_hw_segment;
  1082. seg_size += bv->bv_len;
  1083. hw_seg_size += bv->bv_len;
  1084. bvprv = bv;
  1085. continue;
  1086. }
  1087. new_segment:
  1088. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  1089. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1090. hw_seg_size += bv->bv_len;
  1091. else {
  1092. new_hw_segment:
  1093. if (nr_hw_segs == 1 &&
  1094. hw_seg_size > rq->bio->bi_hw_front_size)
  1095. rq->bio->bi_hw_front_size = hw_seg_size;
  1096. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  1097. nr_hw_segs++;
  1098. }
  1099. nr_phys_segs++;
  1100. bvprv = bv;
  1101. seg_size = bv->bv_len;
  1102. highprv = high;
  1103. }
  1104. if (nr_hw_segs == 1 &&
  1105. hw_seg_size > rq->bio->bi_hw_front_size)
  1106. rq->bio->bi_hw_front_size = hw_seg_size;
  1107. if (hw_seg_size > rq->biotail->bi_hw_back_size)
  1108. rq->biotail->bi_hw_back_size = hw_seg_size;
  1109. rq->nr_phys_segments = nr_phys_segs;
  1110. rq->nr_hw_segments = nr_hw_segs;
  1111. }
  1112. static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
  1113. struct bio *nxt)
  1114. {
  1115. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  1116. return 0;
  1117. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  1118. return 0;
  1119. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1120. return 0;
  1121. /*
  1122. * bio and nxt are contigous in memory, check if the queue allows
  1123. * these two to be merged into one
  1124. */
  1125. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1126. return 1;
  1127. return 0;
  1128. }
  1129. static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
  1130. struct bio *nxt)
  1131. {
  1132. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1133. blk_recount_segments(q, bio);
  1134. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1135. blk_recount_segments(q, nxt);
  1136. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1137. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
  1138. return 0;
  1139. if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
  1140. return 0;
  1141. return 1;
  1142. }
  1143. /*
  1144. * map a request to scatterlist, return number of sg entries setup. Caller
  1145. * must make sure sg can hold rq->nr_phys_segments entries
  1146. */
  1147. int blk_rq_map_sg(struct request_queue *q, struct request *rq,
  1148. struct scatterlist *sg)
  1149. {
  1150. struct bio_vec *bvec, *bvprv;
  1151. struct req_iterator iter;
  1152. int nsegs, cluster;
  1153. nsegs = 0;
  1154. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1155. /*
  1156. * for each bio in rq
  1157. */
  1158. bvprv = NULL;
  1159. rq_for_each_segment(bvec, rq, iter) {
  1160. int nbytes = bvec->bv_len;
  1161. if (bvprv && cluster) {
  1162. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1163. goto new_segment;
  1164. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1165. goto new_segment;
  1166. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1167. goto new_segment;
  1168. sg[nsegs - 1].length += nbytes;
  1169. } else {
  1170. new_segment:
  1171. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1172. sg[nsegs].page = bvec->bv_page;
  1173. sg[nsegs].length = nbytes;
  1174. sg[nsegs].offset = bvec->bv_offset;
  1175. nsegs++;
  1176. }
  1177. bvprv = bvec;
  1178. } /* segments in rq */
  1179. return nsegs;
  1180. }
  1181. EXPORT_SYMBOL(blk_rq_map_sg);
  1182. /*
  1183. * the standard queue merge functions, can be overridden with device
  1184. * specific ones if so desired
  1185. */
  1186. static inline int ll_new_mergeable(struct request_queue *q,
  1187. struct request *req,
  1188. struct bio *bio)
  1189. {
  1190. int nr_phys_segs = bio_phys_segments(q, bio);
  1191. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1192. req->cmd_flags |= REQ_NOMERGE;
  1193. if (req == q->last_merge)
  1194. q->last_merge = NULL;
  1195. return 0;
  1196. }
  1197. /*
  1198. * A hw segment is just getting larger, bump just the phys
  1199. * counter.
  1200. */
  1201. req->nr_phys_segments += nr_phys_segs;
  1202. return 1;
  1203. }
  1204. static inline int ll_new_hw_segment(struct request_queue *q,
  1205. struct request *req,
  1206. struct bio *bio)
  1207. {
  1208. int nr_hw_segs = bio_hw_segments(q, bio);
  1209. int nr_phys_segs = bio_phys_segments(q, bio);
  1210. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1211. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1212. req->cmd_flags |= REQ_NOMERGE;
  1213. if (req == q->last_merge)
  1214. q->last_merge = NULL;
  1215. return 0;
  1216. }
  1217. /*
  1218. * This will form the start of a new hw segment. Bump both
  1219. * counters.
  1220. */
  1221. req->nr_hw_segments += nr_hw_segs;
  1222. req->nr_phys_segments += nr_phys_segs;
  1223. return 1;
  1224. }
  1225. static int ll_back_merge_fn(struct request_queue *q, struct request *req,
  1226. struct bio *bio)
  1227. {
  1228. unsigned short max_sectors;
  1229. int len;
  1230. if (unlikely(blk_pc_request(req)))
  1231. max_sectors = q->max_hw_sectors;
  1232. else
  1233. max_sectors = q->max_sectors;
  1234. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1235. req->cmd_flags |= REQ_NOMERGE;
  1236. if (req == q->last_merge)
  1237. q->last_merge = NULL;
  1238. return 0;
  1239. }
  1240. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1241. blk_recount_segments(q, req->biotail);
  1242. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1243. blk_recount_segments(q, bio);
  1244. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1245. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1246. !BIOVEC_VIRT_OVERSIZE(len)) {
  1247. int mergeable = ll_new_mergeable(q, req, bio);
  1248. if (mergeable) {
  1249. if (req->nr_hw_segments == 1)
  1250. req->bio->bi_hw_front_size = len;
  1251. if (bio->bi_hw_segments == 1)
  1252. bio->bi_hw_back_size = len;
  1253. }
  1254. return mergeable;
  1255. }
  1256. return ll_new_hw_segment(q, req, bio);
  1257. }
  1258. static int ll_front_merge_fn(struct request_queue *q, struct request *req,
  1259. struct bio *bio)
  1260. {
  1261. unsigned short max_sectors;
  1262. int len;
  1263. if (unlikely(blk_pc_request(req)))
  1264. max_sectors = q->max_hw_sectors;
  1265. else
  1266. max_sectors = q->max_sectors;
  1267. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1268. req->cmd_flags |= REQ_NOMERGE;
  1269. if (req == q->last_merge)
  1270. q->last_merge = NULL;
  1271. return 0;
  1272. }
  1273. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1274. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1275. blk_recount_segments(q, bio);
  1276. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1277. blk_recount_segments(q, req->bio);
  1278. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1279. !BIOVEC_VIRT_OVERSIZE(len)) {
  1280. int mergeable = ll_new_mergeable(q, req, bio);
  1281. if (mergeable) {
  1282. if (bio->bi_hw_segments == 1)
  1283. bio->bi_hw_front_size = len;
  1284. if (req->nr_hw_segments == 1)
  1285. req->biotail->bi_hw_back_size = len;
  1286. }
  1287. return mergeable;
  1288. }
  1289. return ll_new_hw_segment(q, req, bio);
  1290. }
  1291. static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
  1292. struct request *next)
  1293. {
  1294. int total_phys_segments;
  1295. int total_hw_segments;
  1296. /*
  1297. * First check if the either of the requests are re-queued
  1298. * requests. Can't merge them if they are.
  1299. */
  1300. if (req->special || next->special)
  1301. return 0;
  1302. /*
  1303. * Will it become too large?
  1304. */
  1305. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1306. return 0;
  1307. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1308. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1309. total_phys_segments--;
  1310. if (total_phys_segments > q->max_phys_segments)
  1311. return 0;
  1312. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1313. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1314. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1315. /*
  1316. * propagate the combined length to the end of the requests
  1317. */
  1318. if (req->nr_hw_segments == 1)
  1319. req->bio->bi_hw_front_size = len;
  1320. if (next->nr_hw_segments == 1)
  1321. next->biotail->bi_hw_back_size = len;
  1322. total_hw_segments--;
  1323. }
  1324. if (total_hw_segments > q->max_hw_segments)
  1325. return 0;
  1326. /* Merge is OK... */
  1327. req->nr_phys_segments = total_phys_segments;
  1328. req->nr_hw_segments = total_hw_segments;
  1329. return 1;
  1330. }
  1331. /*
  1332. * "plug" the device if there are no outstanding requests: this will
  1333. * force the transfer to start only after we have put all the requests
  1334. * on the list.
  1335. *
  1336. * This is called with interrupts off and no requests on the queue and
  1337. * with the queue lock held.
  1338. */
  1339. void blk_plug_device(struct request_queue *q)
  1340. {
  1341. WARN_ON(!irqs_disabled());
  1342. /*
  1343. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1344. * which will restart the queueing
  1345. */
  1346. if (blk_queue_stopped(q))
  1347. return;
  1348. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
  1349. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1350. blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
  1351. }
  1352. }
  1353. EXPORT_SYMBOL(blk_plug_device);
  1354. /*
  1355. * remove the queue from the plugged list, if present. called with
  1356. * queue lock held and interrupts disabled.
  1357. */
  1358. int blk_remove_plug(struct request_queue *q)
  1359. {
  1360. WARN_ON(!irqs_disabled());
  1361. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1362. return 0;
  1363. del_timer(&q->unplug_timer);
  1364. return 1;
  1365. }
  1366. EXPORT_SYMBOL(blk_remove_plug);
  1367. /*
  1368. * remove the plug and let it rip..
  1369. */
  1370. void __generic_unplug_device(struct request_queue *q)
  1371. {
  1372. if (unlikely(blk_queue_stopped(q)))
  1373. return;
  1374. if (!blk_remove_plug(q))
  1375. return;
  1376. q->request_fn(q);
  1377. }
  1378. EXPORT_SYMBOL(__generic_unplug_device);
  1379. /**
  1380. * generic_unplug_device - fire a request queue
  1381. * @q: The &struct request_queue in question
  1382. *
  1383. * Description:
  1384. * Linux uses plugging to build bigger requests queues before letting
  1385. * the device have at them. If a queue is plugged, the I/O scheduler
  1386. * is still adding and merging requests on the queue. Once the queue
  1387. * gets unplugged, the request_fn defined for the queue is invoked and
  1388. * transfers started.
  1389. **/
  1390. void generic_unplug_device(struct request_queue *q)
  1391. {
  1392. spin_lock_irq(q->queue_lock);
  1393. __generic_unplug_device(q);
  1394. spin_unlock_irq(q->queue_lock);
  1395. }
  1396. EXPORT_SYMBOL(generic_unplug_device);
  1397. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1398. struct page *page)
  1399. {
  1400. struct request_queue *q = bdi->unplug_io_data;
  1401. /*
  1402. * devices don't necessarily have an ->unplug_fn defined
  1403. */
  1404. if (q->unplug_fn) {
  1405. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1406. q->rq.count[READ] + q->rq.count[WRITE]);
  1407. q->unplug_fn(q);
  1408. }
  1409. }
  1410. static void blk_unplug_work(struct work_struct *work)
  1411. {
  1412. struct request_queue *q =
  1413. container_of(work, struct request_queue, unplug_work);
  1414. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1415. q->rq.count[READ] + q->rq.count[WRITE]);
  1416. q->unplug_fn(q);
  1417. }
  1418. static void blk_unplug_timeout(unsigned long data)
  1419. {
  1420. struct request_queue *q = (struct request_queue *)data;
  1421. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
  1422. q->rq.count[READ] + q->rq.count[WRITE]);
  1423. kblockd_schedule_work(&q->unplug_work);
  1424. }
  1425. /**
  1426. * blk_start_queue - restart a previously stopped queue
  1427. * @q: The &struct request_queue in question
  1428. *
  1429. * Description:
  1430. * blk_start_queue() will clear the stop flag on the queue, and call
  1431. * the request_fn for the queue if it was in a stopped state when
  1432. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1433. **/
  1434. void blk_start_queue(struct request_queue *q)
  1435. {
  1436. WARN_ON(!irqs_disabled());
  1437. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1438. /*
  1439. * one level of recursion is ok and is much faster than kicking
  1440. * the unplug handling
  1441. */
  1442. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1443. q->request_fn(q);
  1444. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1445. } else {
  1446. blk_plug_device(q);
  1447. kblockd_schedule_work(&q->unplug_work);
  1448. }
  1449. }
  1450. EXPORT_SYMBOL(blk_start_queue);
  1451. /**
  1452. * blk_stop_queue - stop a queue
  1453. * @q: The &struct request_queue in question
  1454. *
  1455. * Description:
  1456. * The Linux block layer assumes that a block driver will consume all
  1457. * entries on the request queue when the request_fn strategy is called.
  1458. * Often this will not happen, because of hardware limitations (queue
  1459. * depth settings). If a device driver gets a 'queue full' response,
  1460. * or if it simply chooses not to queue more I/O at one point, it can
  1461. * call this function to prevent the request_fn from being called until
  1462. * the driver has signalled it's ready to go again. This happens by calling
  1463. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1464. **/
  1465. void blk_stop_queue(struct request_queue *q)
  1466. {
  1467. blk_remove_plug(q);
  1468. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1469. }
  1470. EXPORT_SYMBOL(blk_stop_queue);
  1471. /**
  1472. * blk_sync_queue - cancel any pending callbacks on a queue
  1473. * @q: the queue
  1474. *
  1475. * Description:
  1476. * The block layer may perform asynchronous callback activity
  1477. * on a queue, such as calling the unplug function after a timeout.
  1478. * A block device may call blk_sync_queue to ensure that any
  1479. * such activity is cancelled, thus allowing it to release resources
  1480. * that the callbacks might use. The caller must already have made sure
  1481. * that its ->make_request_fn will not re-add plugging prior to calling
  1482. * this function.
  1483. *
  1484. */
  1485. void blk_sync_queue(struct request_queue *q)
  1486. {
  1487. del_timer_sync(&q->unplug_timer);
  1488. }
  1489. EXPORT_SYMBOL(blk_sync_queue);
  1490. /**
  1491. * blk_run_queue - run a single device queue
  1492. * @q: The queue to run
  1493. */
  1494. void blk_run_queue(struct request_queue *q)
  1495. {
  1496. unsigned long flags;
  1497. spin_lock_irqsave(q->queue_lock, flags);
  1498. blk_remove_plug(q);
  1499. /*
  1500. * Only recurse once to avoid overrunning the stack, let the unplug
  1501. * handling reinvoke the handler shortly if we already got there.
  1502. */
  1503. if (!elv_queue_empty(q)) {
  1504. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1505. q->request_fn(q);
  1506. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1507. } else {
  1508. blk_plug_device(q);
  1509. kblockd_schedule_work(&q->unplug_work);
  1510. }
  1511. }
  1512. spin_unlock_irqrestore(q->queue_lock, flags);
  1513. }
  1514. EXPORT_SYMBOL(blk_run_queue);
  1515. /**
  1516. * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
  1517. * @kobj: the kobj belonging of the request queue to be released
  1518. *
  1519. * Description:
  1520. * blk_cleanup_queue is the pair to blk_init_queue() or
  1521. * blk_queue_make_request(). It should be called when a request queue is
  1522. * being released; typically when a block device is being de-registered.
  1523. * Currently, its primary task it to free all the &struct request
  1524. * structures that were allocated to the queue and the queue itself.
  1525. *
  1526. * Caveat:
  1527. * Hopefully the low level driver will have finished any
  1528. * outstanding requests first...
  1529. **/
  1530. static void blk_release_queue(struct kobject *kobj)
  1531. {
  1532. struct request_queue *q =
  1533. container_of(kobj, struct request_queue, kobj);
  1534. struct request_list *rl = &q->rq;
  1535. blk_sync_queue(q);
  1536. if (rl->rq_pool)
  1537. mempool_destroy(rl->rq_pool);
  1538. if (q->queue_tags)
  1539. __blk_queue_free_tags(q);
  1540. blk_trace_shutdown(q);
  1541. kmem_cache_free(requestq_cachep, q);
  1542. }
  1543. void blk_put_queue(struct request_queue *q)
  1544. {
  1545. kobject_put(&q->kobj);
  1546. }
  1547. EXPORT_SYMBOL(blk_put_queue);
  1548. void blk_cleanup_queue(struct request_queue * q)
  1549. {
  1550. mutex_lock(&q->sysfs_lock);
  1551. set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
  1552. mutex_unlock(&q->sysfs_lock);
  1553. if (q->elevator)
  1554. elevator_exit(q->elevator);
  1555. blk_put_queue(q);
  1556. }
  1557. EXPORT_SYMBOL(blk_cleanup_queue);
  1558. static int blk_init_free_list(struct request_queue *q)
  1559. {
  1560. struct request_list *rl = &q->rq;
  1561. rl->count[READ] = rl->count[WRITE] = 0;
  1562. rl->starved[READ] = rl->starved[WRITE] = 0;
  1563. rl->elvpriv = 0;
  1564. init_waitqueue_head(&rl->wait[READ]);
  1565. init_waitqueue_head(&rl->wait[WRITE]);
  1566. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1567. mempool_free_slab, request_cachep, q->node);
  1568. if (!rl->rq_pool)
  1569. return -ENOMEM;
  1570. return 0;
  1571. }
  1572. struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
  1573. {
  1574. return blk_alloc_queue_node(gfp_mask, -1);
  1575. }
  1576. EXPORT_SYMBOL(blk_alloc_queue);
  1577. static struct kobj_type queue_ktype;
  1578. struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1579. {
  1580. struct request_queue *q;
  1581. q = kmem_cache_alloc_node(requestq_cachep,
  1582. gfp_mask | __GFP_ZERO, node_id);
  1583. if (!q)
  1584. return NULL;
  1585. init_timer(&q->unplug_timer);
  1586. kobject_set_name(&q->kobj, "%s", "queue");
  1587. q->kobj.ktype = &queue_ktype;
  1588. kobject_init(&q->kobj);
  1589. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1590. q->backing_dev_info.unplug_io_data = q;
  1591. mutex_init(&q->sysfs_lock);
  1592. return q;
  1593. }
  1594. EXPORT_SYMBOL(blk_alloc_queue_node);
  1595. /**
  1596. * blk_init_queue - prepare a request queue for use with a block device
  1597. * @rfn: The function to be called to process requests that have been
  1598. * placed on the queue.
  1599. * @lock: Request queue spin lock
  1600. *
  1601. * Description:
  1602. * If a block device wishes to use the standard request handling procedures,
  1603. * which sorts requests and coalesces adjacent requests, then it must
  1604. * call blk_init_queue(). The function @rfn will be called when there
  1605. * are requests on the queue that need to be processed. If the device
  1606. * supports plugging, then @rfn may not be called immediately when requests
  1607. * are available on the queue, but may be called at some time later instead.
  1608. * Plugged queues are generally unplugged when a buffer belonging to one
  1609. * of the requests on the queue is needed, or due to memory pressure.
  1610. *
  1611. * @rfn is not required, or even expected, to remove all requests off the
  1612. * queue, but only as many as it can handle at a time. If it does leave
  1613. * requests on the queue, it is responsible for arranging that the requests
  1614. * get dealt with eventually.
  1615. *
  1616. * The queue spin lock must be held while manipulating the requests on the
  1617. * request queue; this lock will be taken also from interrupt context, so irq
  1618. * disabling is needed for it.
  1619. *
  1620. * Function returns a pointer to the initialized request queue, or NULL if
  1621. * it didn't succeed.
  1622. *
  1623. * Note:
  1624. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1625. * when the block device is deactivated (such as at module unload).
  1626. **/
  1627. struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1628. {
  1629. return blk_init_queue_node(rfn, lock, -1);
  1630. }
  1631. EXPORT_SYMBOL(blk_init_queue);
  1632. struct request_queue *
  1633. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1634. {
  1635. struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1636. if (!q)
  1637. return NULL;
  1638. q->node = node_id;
  1639. if (blk_init_free_list(q)) {
  1640. kmem_cache_free(requestq_cachep, q);
  1641. return NULL;
  1642. }
  1643. /*
  1644. * if caller didn't supply a lock, they get per-queue locking with
  1645. * our embedded lock
  1646. */
  1647. if (!lock) {
  1648. spin_lock_init(&q->__queue_lock);
  1649. lock = &q->__queue_lock;
  1650. }
  1651. q->request_fn = rfn;
  1652. q->prep_rq_fn = NULL;
  1653. q->unplug_fn = generic_unplug_device;
  1654. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1655. q->queue_lock = lock;
  1656. blk_queue_segment_boundary(q, 0xffffffff);
  1657. blk_queue_make_request(q, __make_request);
  1658. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1659. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1660. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1661. q->sg_reserved_size = INT_MAX;
  1662. /*
  1663. * all done
  1664. */
  1665. if (!elevator_init(q, NULL)) {
  1666. blk_queue_congestion_threshold(q);
  1667. return q;
  1668. }
  1669. blk_put_queue(q);
  1670. return NULL;
  1671. }
  1672. EXPORT_SYMBOL(blk_init_queue_node);
  1673. int blk_get_queue(struct request_queue *q)
  1674. {
  1675. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1676. kobject_get(&q->kobj);
  1677. return 0;
  1678. }
  1679. return 1;
  1680. }
  1681. EXPORT_SYMBOL(blk_get_queue);
  1682. static inline void blk_free_request(struct request_queue *q, struct request *rq)
  1683. {
  1684. if (rq->cmd_flags & REQ_ELVPRIV)
  1685. elv_put_request(q, rq);
  1686. mempool_free(rq, q->rq.rq_pool);
  1687. }
  1688. static struct request *
  1689. blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
  1690. {
  1691. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1692. if (!rq)
  1693. return NULL;
  1694. /*
  1695. * first three bits are identical in rq->cmd_flags and bio->bi_rw,
  1696. * see bio.h and blkdev.h
  1697. */
  1698. rq->cmd_flags = rw | REQ_ALLOCED;
  1699. if (priv) {
  1700. if (unlikely(elv_set_request(q, rq, gfp_mask))) {
  1701. mempool_free(rq, q->rq.rq_pool);
  1702. return NULL;
  1703. }
  1704. rq->cmd_flags |= REQ_ELVPRIV;
  1705. }
  1706. return rq;
  1707. }
  1708. /*
  1709. * ioc_batching returns true if the ioc is a valid batching request and
  1710. * should be given priority access to a request.
  1711. */
  1712. static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
  1713. {
  1714. if (!ioc)
  1715. return 0;
  1716. /*
  1717. * Make sure the process is able to allocate at least 1 request
  1718. * even if the batch times out, otherwise we could theoretically
  1719. * lose wakeups.
  1720. */
  1721. return ioc->nr_batch_requests == q->nr_batching ||
  1722. (ioc->nr_batch_requests > 0
  1723. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1724. }
  1725. /*
  1726. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1727. * will cause the process to be a "batcher" on all queues in the system. This
  1728. * is the behaviour we want though - once it gets a wakeup it should be given
  1729. * a nice run.
  1730. */
  1731. static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
  1732. {
  1733. if (!ioc || ioc_batching(q, ioc))
  1734. return;
  1735. ioc->nr_batch_requests = q->nr_batching;
  1736. ioc->last_waited = jiffies;
  1737. }
  1738. static void __freed_request(struct request_queue *q, int rw)
  1739. {
  1740. struct request_list *rl = &q->rq;
  1741. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1742. blk_clear_queue_congested(q, rw);
  1743. if (rl->count[rw] + 1 <= q->nr_requests) {
  1744. if (waitqueue_active(&rl->wait[rw]))
  1745. wake_up(&rl->wait[rw]);
  1746. blk_clear_queue_full(q, rw);
  1747. }
  1748. }
  1749. /*
  1750. * A request has just been released. Account for it, update the full and
  1751. * congestion status, wake up any waiters. Called under q->queue_lock.
  1752. */
  1753. static void freed_request(struct request_queue *q, int rw, int priv)
  1754. {
  1755. struct request_list *rl = &q->rq;
  1756. rl->count[rw]--;
  1757. if (priv)
  1758. rl->elvpriv--;
  1759. __freed_request(q, rw);
  1760. if (unlikely(rl->starved[rw ^ 1]))
  1761. __freed_request(q, rw ^ 1);
  1762. }
  1763. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1764. /*
  1765. * Get a free request, queue_lock must be held.
  1766. * Returns NULL on failure, with queue_lock held.
  1767. * Returns !NULL on success, with queue_lock *not held*.
  1768. */
  1769. static struct request *get_request(struct request_queue *q, int rw_flags,
  1770. struct bio *bio, gfp_t gfp_mask)
  1771. {
  1772. struct request *rq = NULL;
  1773. struct request_list *rl = &q->rq;
  1774. struct io_context *ioc = NULL;
  1775. const int rw = rw_flags & 0x01;
  1776. int may_queue, priv;
  1777. may_queue = elv_may_queue(q, rw_flags);
  1778. if (may_queue == ELV_MQUEUE_NO)
  1779. goto rq_starved;
  1780. if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
  1781. if (rl->count[rw]+1 >= q->nr_requests) {
  1782. ioc = current_io_context(GFP_ATOMIC, q->node);
  1783. /*
  1784. * The queue will fill after this allocation, so set
  1785. * it as full, and mark this process as "batching".
  1786. * This process will be allowed to complete a batch of
  1787. * requests, others will be blocked.
  1788. */
  1789. if (!blk_queue_full(q, rw)) {
  1790. ioc_set_batching(q, ioc);
  1791. blk_set_queue_full(q, rw);
  1792. } else {
  1793. if (may_queue != ELV_MQUEUE_MUST
  1794. && !ioc_batching(q, ioc)) {
  1795. /*
  1796. * The queue is full and the allocating
  1797. * process is not a "batcher", and not
  1798. * exempted by the IO scheduler
  1799. */
  1800. goto out;
  1801. }
  1802. }
  1803. }
  1804. blk_set_queue_congested(q, rw);
  1805. }
  1806. /*
  1807. * Only allow batching queuers to allocate up to 50% over the defined
  1808. * limit of requests, otherwise we could have thousands of requests
  1809. * allocated with any setting of ->nr_requests
  1810. */
  1811. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1812. goto out;
  1813. rl->count[rw]++;
  1814. rl->starved[rw] = 0;
  1815. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1816. if (priv)
  1817. rl->elvpriv++;
  1818. spin_unlock_irq(q->queue_lock);
  1819. rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
  1820. if (unlikely(!rq)) {
  1821. /*
  1822. * Allocation failed presumably due to memory. Undo anything
  1823. * we might have messed up.
  1824. *
  1825. * Allocating task should really be put onto the front of the
  1826. * wait queue, but this is pretty rare.
  1827. */
  1828. spin_lock_irq(q->queue_lock);
  1829. freed_request(q, rw, priv);
  1830. /*
  1831. * in the very unlikely event that allocation failed and no
  1832. * requests for this direction was pending, mark us starved
  1833. * so that freeing of a request in the other direction will
  1834. * notice us. another possible fix would be to split the
  1835. * rq mempool into READ and WRITE
  1836. */
  1837. rq_starved:
  1838. if (unlikely(rl->count[rw] == 0))
  1839. rl->starved[rw] = 1;
  1840. goto out;
  1841. }
  1842. /*
  1843. * ioc may be NULL here, and ioc_batching will be false. That's
  1844. * OK, if the queue is under the request limit then requests need
  1845. * not count toward the nr_batch_requests limit. There will always
  1846. * be some limit enforced by BLK_BATCH_TIME.
  1847. */
  1848. if (ioc_batching(q, ioc))
  1849. ioc->nr_batch_requests--;
  1850. rq_init(q, rq);
  1851. blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
  1852. out:
  1853. return rq;
  1854. }
  1855. /*
  1856. * No available requests for this queue, unplug the device and wait for some
  1857. * requests to become available.
  1858. *
  1859. * Called with q->queue_lock held, and returns with it unlocked.
  1860. */
  1861. static struct request *get_request_wait(struct request_queue *q, int rw_flags,
  1862. struct bio *bio)
  1863. {
  1864. const int rw = rw_flags & 0x01;
  1865. struct request *rq;
  1866. rq = get_request(q, rw_flags, bio, GFP_NOIO);
  1867. while (!rq) {
  1868. DEFINE_WAIT(wait);
  1869. struct request_list *rl = &q->rq;
  1870. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1871. TASK_UNINTERRUPTIBLE);
  1872. rq = get_request(q, rw_flags, bio, GFP_NOIO);
  1873. if (!rq) {
  1874. struct io_context *ioc;
  1875. blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
  1876. __generic_unplug_device(q);
  1877. spin_unlock_irq(q->queue_lock);
  1878. io_schedule();
  1879. /*
  1880. * After sleeping, we become a "batching" process and
  1881. * will be able to allocate at least one request, and
  1882. * up to a big batch of them for a small period time.
  1883. * See ioc_batching, ioc_set_batching
  1884. */
  1885. ioc = current_io_context(GFP_NOIO, q->node);
  1886. ioc_set_batching(q, ioc);
  1887. spin_lock_irq(q->queue_lock);
  1888. }
  1889. finish_wait(&rl->wait[rw], &wait);
  1890. }
  1891. return rq;
  1892. }
  1893. struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
  1894. {
  1895. struct request *rq;
  1896. BUG_ON(rw != READ && rw != WRITE);
  1897. spin_lock_irq(q->queue_lock);
  1898. if (gfp_mask & __GFP_WAIT) {
  1899. rq = get_request_wait(q, rw, NULL);
  1900. } else {
  1901. rq = get_request(q, rw, NULL, gfp_mask);
  1902. if (!rq)
  1903. spin_unlock_irq(q->queue_lock);
  1904. }
  1905. /* q->queue_lock is unlocked at this point */
  1906. return rq;
  1907. }
  1908. EXPORT_SYMBOL(blk_get_request);
  1909. /**
  1910. * blk_start_queueing - initiate dispatch of requests to device
  1911. * @q: request queue to kick into gear
  1912. *
  1913. * This is basically a helper to remove the need to know whether a queue
  1914. * is plugged or not if someone just wants to initiate dispatch of requests
  1915. * for this queue.
  1916. *
  1917. * The queue lock must be held with interrupts disabled.
  1918. */
  1919. void blk_start_queueing(struct request_queue *q)
  1920. {
  1921. if (!blk_queue_plugged(q))
  1922. q->request_fn(q);
  1923. else
  1924. __generic_unplug_device(q);
  1925. }
  1926. EXPORT_SYMBOL(blk_start_queueing);
  1927. /**
  1928. * blk_requeue_request - put a request back on queue
  1929. * @q: request queue where request should be inserted
  1930. * @rq: request to be inserted
  1931. *
  1932. * Description:
  1933. * Drivers often keep queueing requests until the hardware cannot accept
  1934. * more, when that condition happens we need to put the request back
  1935. * on the queue. Must be called with queue lock held.
  1936. */
  1937. void blk_requeue_request(struct request_queue *q, struct request *rq)
  1938. {
  1939. blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
  1940. if (blk_rq_tagged(rq))
  1941. blk_queue_end_tag(q, rq);
  1942. elv_requeue_request(q, rq);
  1943. }
  1944. EXPORT_SYMBOL(blk_requeue_request);
  1945. /**
  1946. * blk_insert_request - insert a special request in to a request queue
  1947. * @q: request queue where request should be inserted
  1948. * @rq: request to be inserted
  1949. * @at_head: insert request at head or tail of queue
  1950. * @data: private data
  1951. *
  1952. * Description:
  1953. * Many block devices need to execute commands asynchronously, so they don't
  1954. * block the whole kernel from preemption during request execution. This is
  1955. * accomplished normally by inserting aritficial requests tagged as
  1956. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1957. * scheduled for actual execution by the request queue.
  1958. *
  1959. * We have the option of inserting the head or the tail of the queue.
  1960. * Typically we use the tail for new ioctls and so forth. We use the head
  1961. * of the queue for things like a QUEUE_FULL message from a device, or a
  1962. * host that is unable to accept a particular command.
  1963. */
  1964. void blk_insert_request(struct request_queue *q, struct request *rq,
  1965. int at_head, void *data)
  1966. {
  1967. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1968. unsigned long flags;
  1969. /*
  1970. * tell I/O scheduler that this isn't a regular read/write (ie it
  1971. * must not attempt merges on this) and that it acts as a soft
  1972. * barrier
  1973. */
  1974. rq->cmd_type = REQ_TYPE_SPECIAL;
  1975. rq->cmd_flags |= REQ_SOFTBARRIER;
  1976. rq->special = data;
  1977. spin_lock_irqsave(q->queue_lock, flags);
  1978. /*
  1979. * If command is tagged, release the tag
  1980. */
  1981. if (blk_rq_tagged(rq))
  1982. blk_queue_end_tag(q, rq);
  1983. drive_stat_acct(rq, rq->nr_sectors, 1);
  1984. __elv_add_request(q, rq, where, 0);
  1985. blk_start_queueing(q);
  1986. spin_unlock_irqrestore(q->queue_lock, flags);
  1987. }
  1988. EXPORT_SYMBOL(blk_insert_request);
  1989. static int __blk_rq_unmap_user(struct bio *bio)
  1990. {
  1991. int ret = 0;
  1992. if (bio) {
  1993. if (bio_flagged(bio, BIO_USER_MAPPED))
  1994. bio_unmap_user(bio);
  1995. else
  1996. ret = bio_uncopy_user(bio);
  1997. }
  1998. return ret;
  1999. }
  2000. int blk_rq_append_bio(struct request_queue *q, struct request *rq,
  2001. struct bio *bio)
  2002. {
  2003. if (!rq->bio)
  2004. blk_rq_bio_prep(q, rq, bio);
  2005. else if (!ll_back_merge_fn(q, rq, bio))
  2006. return -EINVAL;
  2007. else {
  2008. rq->biotail->bi_next = bio;
  2009. rq->biotail = bio;
  2010. rq->data_len += bio->bi_size;
  2011. }
  2012. return 0;
  2013. }
  2014. EXPORT_SYMBOL(blk_rq_append_bio);
  2015. static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
  2016. void __user *ubuf, unsigned int len)
  2017. {
  2018. unsigned long uaddr;
  2019. struct bio *bio, *orig_bio;
  2020. int reading, ret;
  2021. reading = rq_data_dir(rq) == READ;
  2022. /*
  2023. * if alignment requirement is satisfied, map in user pages for
  2024. * direct dma. else, set up kernel bounce buffers
  2025. */
  2026. uaddr = (unsigned long) ubuf;
  2027. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  2028. bio = bio_map_user(q, NULL, uaddr, len, reading);
  2029. else
  2030. bio = bio_copy_user(q, uaddr, len, reading);
  2031. if (IS_ERR(bio))
  2032. return PTR_ERR(bio);
  2033. orig_bio = bio;
  2034. blk_queue_bounce(q, &bio);
  2035. /*
  2036. * We link the bounce buffer in and could have to traverse it
  2037. * later so we have to get a ref to prevent it from being freed
  2038. */
  2039. bio_get(bio);
  2040. ret = blk_rq_append_bio(q, rq, bio);
  2041. if (!ret)
  2042. return bio->bi_size;
  2043. /* if it was boucned we must call the end io function */
  2044. bio_endio(bio, 0);
  2045. __blk_rq_unmap_user(orig_bio);
  2046. bio_put(bio);
  2047. return ret;
  2048. }
  2049. /**
  2050. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  2051. * @q: request queue where request should be inserted
  2052. * @rq: request structure to fill
  2053. * @ubuf: the user buffer
  2054. * @len: length of user data
  2055. *
  2056. * Description:
  2057. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2058. * a kernel bounce buffer is used.
  2059. *
  2060. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2061. * still in process context.
  2062. *
  2063. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2064. * before being submitted to the device, as pages mapped may be out of
  2065. * reach. It's the callers responsibility to make sure this happens. The
  2066. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2067. * unmapping.
  2068. */
  2069. int blk_rq_map_user(struct request_queue *q, struct request *rq,
  2070. void __user *ubuf, unsigned long len)
  2071. {
  2072. unsigned long bytes_read = 0;
  2073. struct bio *bio = NULL;
  2074. int ret;
  2075. if (len > (q->max_hw_sectors << 9))
  2076. return -EINVAL;
  2077. if (!len || !ubuf)
  2078. return -EINVAL;
  2079. while (bytes_read != len) {
  2080. unsigned long map_len, end, start;
  2081. map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
  2082. end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
  2083. >> PAGE_SHIFT;
  2084. start = (unsigned long)ubuf >> PAGE_SHIFT;
  2085. /*
  2086. * A bad offset could cause us to require BIO_MAX_PAGES + 1
  2087. * pages. If this happens we just lower the requested
  2088. * mapping len by a page so that we can fit
  2089. */
  2090. if (end - start > BIO_MAX_PAGES)
  2091. map_len -= PAGE_SIZE;
  2092. ret = __blk_rq_map_user(q, rq, ubuf, map_len);
  2093. if (ret < 0)
  2094. goto unmap_rq;
  2095. if (!bio)
  2096. bio = rq->bio;
  2097. bytes_read += ret;
  2098. ubuf += ret;
  2099. }
  2100. rq->buffer = rq->data = NULL;
  2101. return 0;
  2102. unmap_rq:
  2103. blk_rq_unmap_user(bio);
  2104. return ret;
  2105. }
  2106. EXPORT_SYMBOL(blk_rq_map_user);
  2107. /**
  2108. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  2109. * @q: request queue where request should be inserted
  2110. * @rq: request to map data to
  2111. * @iov: pointer to the iovec
  2112. * @iov_count: number of elements in the iovec
  2113. * @len: I/O byte count
  2114. *
  2115. * Description:
  2116. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2117. * a kernel bounce buffer is used.
  2118. *
  2119. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2120. * still in process context.
  2121. *
  2122. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2123. * before being submitted to the device, as pages mapped may be out of
  2124. * reach. It's the callers responsibility to make sure this happens. The
  2125. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2126. * unmapping.
  2127. */
  2128. int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
  2129. struct sg_iovec *iov, int iov_count, unsigned int len)
  2130. {
  2131. struct bio *bio;
  2132. if (!iov || iov_count <= 0)
  2133. return -EINVAL;
  2134. /* we don't allow misaligned data like bio_map_user() does. If the
  2135. * user is using sg, they're expected to know the alignment constraints
  2136. * and respect them accordingly */
  2137. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  2138. if (IS_ERR(bio))
  2139. return PTR_ERR(bio);
  2140. if (bio->bi_size != len) {
  2141. bio_endio(bio, 0);
  2142. bio_unmap_user(bio);
  2143. return -EINVAL;
  2144. }
  2145. bio_get(bio);
  2146. blk_rq_bio_prep(q, rq, bio);
  2147. rq->buffer = rq->data = NULL;
  2148. return 0;
  2149. }
  2150. EXPORT_SYMBOL(blk_rq_map_user_iov);
  2151. /**
  2152. * blk_rq_unmap_user - unmap a request with user data
  2153. * @bio: start of bio list
  2154. *
  2155. * Description:
  2156. * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
  2157. * supply the original rq->bio from the blk_rq_map_user() return, since
  2158. * the io completion may have changed rq->bio.
  2159. */
  2160. int blk_rq_unmap_user(struct bio *bio)
  2161. {
  2162. struct bio *mapped_bio;
  2163. int ret = 0, ret2;
  2164. while (bio) {
  2165. mapped_bio = bio;
  2166. if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
  2167. mapped_bio = bio->bi_private;
  2168. ret2 = __blk_rq_unmap_user(mapped_bio);
  2169. if (ret2 && !ret)
  2170. ret = ret2;
  2171. mapped_bio = bio;
  2172. bio = bio->bi_next;
  2173. bio_put(mapped_bio);
  2174. }
  2175. return ret;
  2176. }
  2177. EXPORT_SYMBOL(blk_rq_unmap_user);
  2178. /**
  2179. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  2180. * @q: request queue where request should be inserted
  2181. * @rq: request to fill
  2182. * @kbuf: the kernel buffer
  2183. * @len: length of user data
  2184. * @gfp_mask: memory allocation flags
  2185. */
  2186. int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
  2187. unsigned int len, gfp_t gfp_mask)
  2188. {
  2189. struct bio *bio;
  2190. if (len > (q->max_hw_sectors << 9))
  2191. return -EINVAL;
  2192. if (!len || !kbuf)
  2193. return -EINVAL;
  2194. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  2195. if (IS_ERR(bio))
  2196. return PTR_ERR(bio);
  2197. if (rq_data_dir(rq) == WRITE)
  2198. bio->bi_rw |= (1 << BIO_RW);
  2199. blk_rq_bio_prep(q, rq, bio);
  2200. blk_queue_bounce(q, &rq->bio);
  2201. rq->buffer = rq->data = NULL;
  2202. return 0;
  2203. }
  2204. EXPORT_SYMBOL(blk_rq_map_kern);
  2205. /**
  2206. * blk_execute_rq_nowait - insert a request into queue for execution
  2207. * @q: queue to insert the request in
  2208. * @bd_disk: matching gendisk
  2209. * @rq: request to insert
  2210. * @at_head: insert request at head or tail of queue
  2211. * @done: I/O completion handler
  2212. *
  2213. * Description:
  2214. * Insert a fully prepared request at the back of the io scheduler queue
  2215. * for execution. Don't wait for completion.
  2216. */
  2217. void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
  2218. struct request *rq, int at_head,
  2219. rq_end_io_fn *done)
  2220. {
  2221. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  2222. rq->rq_disk = bd_disk;
  2223. rq->cmd_flags |= REQ_NOMERGE;
  2224. rq->end_io = done;
  2225. WARN_ON(irqs_disabled());
  2226. spin_lock_irq(q->queue_lock);
  2227. __elv_add_request(q, rq, where, 1);
  2228. __generic_unplug_device(q);
  2229. spin_unlock_irq(q->queue_lock);
  2230. }
  2231. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  2232. /**
  2233. * blk_execute_rq - insert a request into queue for execution
  2234. * @q: queue to insert the request in
  2235. * @bd_disk: matching gendisk
  2236. * @rq: request to insert
  2237. * @at_head: insert request at head or tail of queue
  2238. *
  2239. * Description:
  2240. * Insert a fully prepared request at the back of the io scheduler queue
  2241. * for execution and wait for completion.
  2242. */
  2243. int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
  2244. struct request *rq, int at_head)
  2245. {
  2246. DECLARE_COMPLETION_ONSTACK(wait);
  2247. char sense[SCSI_SENSE_BUFFERSIZE];
  2248. int err = 0;
  2249. /*
  2250. * we need an extra reference to the request, so we can look at
  2251. * it after io completion
  2252. */
  2253. rq->ref_count++;
  2254. if (!rq->sense) {
  2255. memset(sense, 0, sizeof(sense));
  2256. rq->sense = sense;
  2257. rq->sense_len = 0;
  2258. }
  2259. rq->end_io_data = &wait;
  2260. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2261. wait_for_completion(&wait);
  2262. if (rq->errors)
  2263. err = -EIO;
  2264. return err;
  2265. }
  2266. EXPORT_SYMBOL(blk_execute_rq);
  2267. /**
  2268. * blkdev_issue_flush - queue a flush
  2269. * @bdev: blockdev to issue flush for
  2270. * @error_sector: error sector
  2271. *
  2272. * Description:
  2273. * Issue a flush for the block device in question. Caller can supply
  2274. * room for storing the error offset in case of a flush error, if they
  2275. * wish to. Caller must run wait_for_completion() on its own.
  2276. */
  2277. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2278. {
  2279. struct request_queue *q;
  2280. if (bdev->bd_disk == NULL)
  2281. return -ENXIO;
  2282. q = bdev_get_queue(bdev);
  2283. if (!q)
  2284. return -ENXIO;
  2285. if (!q->issue_flush_fn)
  2286. return -EOPNOTSUPP;
  2287. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  2288. }
  2289. EXPORT_SYMBOL(blkdev_issue_flush);
  2290. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2291. {
  2292. int rw = rq_data_dir(rq);
  2293. if (!blk_fs_request(rq) || !rq->rq_disk)
  2294. return;
  2295. if (!new_io) {
  2296. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2297. } else {
  2298. disk_round_stats(rq->rq_disk);
  2299. rq->rq_disk->in_flight++;
  2300. }
  2301. }
  2302. /*
  2303. * add-request adds a request to the linked list.
  2304. * queue lock is held and interrupts disabled, as we muck with the
  2305. * request queue list.
  2306. */
  2307. static inline void add_request(struct request_queue * q, struct request * req)
  2308. {
  2309. drive_stat_acct(req, req->nr_sectors, 1);
  2310. /*
  2311. * elevator indicated where it wants this request to be
  2312. * inserted at elevator_merge time
  2313. */
  2314. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2315. }
  2316. /*
  2317. * disk_round_stats() - Round off the performance stats on a struct
  2318. * disk_stats.
  2319. *
  2320. * The average IO queue length and utilisation statistics are maintained
  2321. * by observing the current state of the queue length and the amount of
  2322. * time it has been in this state for.
  2323. *
  2324. * Normally, that accounting is done on IO completion, but that can result
  2325. * in more than a second's worth of IO being accounted for within any one
  2326. * second, leading to >100% utilisation. To deal with that, we call this
  2327. * function to do a round-off before returning the results when reading
  2328. * /proc/diskstats. This accounts immediately for all queue usage up to
  2329. * the current jiffies and restarts the counters again.
  2330. */
  2331. void disk_round_stats(struct gendisk *disk)
  2332. {
  2333. unsigned long now = jiffies;
  2334. if (now == disk->stamp)
  2335. return;
  2336. if (disk->in_flight) {
  2337. __disk_stat_add(disk, time_in_queue,
  2338. disk->in_flight * (now - disk->stamp));
  2339. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2340. }
  2341. disk->stamp = now;
  2342. }
  2343. EXPORT_SYMBOL_GPL(disk_round_stats);
  2344. /*
  2345. * queue lock must be held
  2346. */
  2347. void __blk_put_request(struct request_queue *q, struct request *req)
  2348. {
  2349. if (unlikely(!q))
  2350. return;
  2351. if (unlikely(--req->ref_count))
  2352. return;
  2353. elv_completed_request(q, req);
  2354. /*
  2355. * Request may not have originated from ll_rw_blk. if not,
  2356. * it didn't come out of our reserved rq pools
  2357. */
  2358. if (req->cmd_flags & REQ_ALLOCED) {
  2359. int rw = rq_data_dir(req);
  2360. int priv = req->cmd_flags & REQ_ELVPRIV;
  2361. BUG_ON(!list_empty(&req->queuelist));
  2362. BUG_ON(!hlist_unhashed(&req->hash));
  2363. blk_free_request(q, req);
  2364. freed_request(q, rw, priv);
  2365. }
  2366. }
  2367. EXPORT_SYMBOL_GPL(__blk_put_request);
  2368. void blk_put_request(struct request *req)
  2369. {
  2370. unsigned long flags;
  2371. struct request_queue *q = req->q;
  2372. /*
  2373. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2374. * following if (q) test.
  2375. */
  2376. if (q) {
  2377. spin_lock_irqsave(q->queue_lock, flags);
  2378. __blk_put_request(q, req);
  2379. spin_unlock_irqrestore(q->queue_lock, flags);
  2380. }
  2381. }
  2382. EXPORT_SYMBOL(blk_put_request);
  2383. /**
  2384. * blk_end_sync_rq - executes a completion event on a request
  2385. * @rq: request to complete
  2386. * @error: end io status of the request
  2387. */
  2388. void blk_end_sync_rq(struct request *rq, int error)
  2389. {
  2390. struct completion *waiting = rq->end_io_data;
  2391. rq->end_io_data = NULL;
  2392. __blk_put_request(rq->q, rq);
  2393. /*
  2394. * complete last, if this is a stack request the process (and thus
  2395. * the rq pointer) could be invalid right after this complete()
  2396. */
  2397. complete(waiting);
  2398. }
  2399. EXPORT_SYMBOL(blk_end_sync_rq);
  2400. /*
  2401. * Has to be called with the request spinlock acquired
  2402. */
  2403. static int attempt_merge(struct request_queue *q, struct request *req,
  2404. struct request *next)
  2405. {
  2406. if (!rq_mergeable(req) || !rq_mergeable(next))
  2407. return 0;
  2408. /*
  2409. * not contiguous
  2410. */
  2411. if (req->sector + req->nr_sectors != next->sector)
  2412. return 0;
  2413. if (rq_data_dir(req) != rq_data_dir(next)
  2414. || req->rq_disk != next->rq_disk
  2415. || next->special)
  2416. return 0;
  2417. /*
  2418. * If we are allowed to merge, then append bio list
  2419. * from next to rq and release next. merge_requests_fn
  2420. * will have updated segment counts, update sector
  2421. * counts here.
  2422. */
  2423. if (!ll_merge_requests_fn(q, req, next))
  2424. return 0;
  2425. /*
  2426. * At this point we have either done a back merge
  2427. * or front merge. We need the smaller start_time of
  2428. * the merged requests to be the current request
  2429. * for accounting purposes.
  2430. */
  2431. if (time_after(req->start_time, next->start_time))
  2432. req->start_time = next->start_time;
  2433. req->biotail->bi_next = next->bio;
  2434. req->biotail = next->biotail;
  2435. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2436. elv_merge_requests(q, req, next);
  2437. if (req->rq_disk) {
  2438. disk_round_stats(req->rq_disk);
  2439. req->rq_disk->in_flight--;
  2440. }
  2441. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2442. __blk_put_request(q, next);
  2443. return 1;
  2444. }
  2445. static inline int attempt_back_merge(struct request_queue *q,
  2446. struct request *rq)
  2447. {
  2448. struct request *next = elv_latter_request(q, rq);
  2449. if (next)
  2450. return attempt_merge(q, rq, next);
  2451. return 0;
  2452. }
  2453. static inline int attempt_front_merge(struct request_queue *q,
  2454. struct request *rq)
  2455. {
  2456. struct request *prev = elv_former_request(q, rq);
  2457. if (prev)
  2458. return attempt_merge(q, prev, rq);
  2459. return 0;
  2460. }
  2461. static void init_request_from_bio(struct request *req, struct bio *bio)
  2462. {
  2463. req->cmd_type = REQ_TYPE_FS;
  2464. /*
  2465. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2466. */
  2467. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2468. req->cmd_flags |= REQ_FAILFAST;
  2469. /*
  2470. * REQ_BARRIER implies no merging, but lets make it explicit
  2471. */
  2472. if (unlikely(bio_barrier(bio)))
  2473. req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2474. if (bio_sync(bio))
  2475. req->cmd_flags |= REQ_RW_SYNC;
  2476. if (bio_rw_meta(bio))
  2477. req->cmd_flags |= REQ_RW_META;
  2478. req->errors = 0;
  2479. req->hard_sector = req->sector = bio->bi_sector;
  2480. req->ioprio = bio_prio(bio);
  2481. req->start_time = jiffies;
  2482. blk_rq_bio_prep(req->q, req, bio);
  2483. }
  2484. static int __make_request(struct request_queue *q, struct bio *bio)
  2485. {
  2486. struct request *req;
  2487. int el_ret, nr_sectors, barrier, err;
  2488. const unsigned short prio = bio_prio(bio);
  2489. const int sync = bio_sync(bio);
  2490. int rw_flags;
  2491. nr_sectors = bio_sectors(bio);
  2492. /*
  2493. * low level driver can indicate that it wants pages above a
  2494. * certain limit bounced to low memory (ie for highmem, or even
  2495. * ISA dma in theory)
  2496. */
  2497. blk_queue_bounce(q, &bio);
  2498. barrier = bio_barrier(bio);
  2499. if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
  2500. err = -EOPNOTSUPP;
  2501. goto end_io;
  2502. }
  2503. spin_lock_irq(q->queue_lock);
  2504. if (unlikely(barrier) || elv_queue_empty(q))
  2505. goto get_rq;
  2506. el_ret = elv_merge(q, &req, bio);
  2507. switch (el_ret) {
  2508. case ELEVATOR_BACK_MERGE:
  2509. BUG_ON(!rq_mergeable(req));
  2510. if (!ll_back_merge_fn(q, req, bio))
  2511. break;
  2512. blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
  2513. req->biotail->bi_next = bio;
  2514. req->biotail = bio;
  2515. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2516. req->ioprio = ioprio_best(req->ioprio, prio);
  2517. drive_stat_acct(req, nr_sectors, 0);
  2518. if (!attempt_back_merge(q, req))
  2519. elv_merged_request(q, req, el_ret);
  2520. goto out;
  2521. case ELEVATOR_FRONT_MERGE:
  2522. BUG_ON(!rq_mergeable(req));
  2523. if (!ll_front_merge_fn(q, req, bio))
  2524. break;
  2525. blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
  2526. bio->bi_next = req->bio;
  2527. req->bio = bio;
  2528. /*
  2529. * may not be valid. if the low level driver said
  2530. * it didn't need a bounce buffer then it better
  2531. * not touch req->buffer either...
  2532. */
  2533. req->buffer = bio_data(bio);
  2534. req->current_nr_sectors = bio_cur_sectors(bio);
  2535. req->hard_cur_sectors = req->current_nr_sectors;
  2536. req->sector = req->hard_sector = bio->bi_sector;
  2537. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2538. req->ioprio = ioprio_best(req->ioprio, prio);
  2539. drive_stat_acct(req, nr_sectors, 0);
  2540. if (!attempt_front_merge(q, req))
  2541. elv_merged_request(q, req, el_ret);
  2542. goto out;
  2543. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2544. default:
  2545. ;
  2546. }
  2547. get_rq:
  2548. /*
  2549. * This sync check and mask will be re-done in init_request_from_bio(),
  2550. * but we need to set it earlier to expose the sync flag to the
  2551. * rq allocator and io schedulers.
  2552. */
  2553. rw_flags = bio_data_dir(bio);
  2554. if (sync)
  2555. rw_flags |= REQ_RW_SYNC;
  2556. /*
  2557. * Grab a free request. This is might sleep but can not fail.
  2558. * Returns with the queue unlocked.
  2559. */
  2560. req = get_request_wait(q, rw_flags, bio);
  2561. /*
  2562. * After dropping the lock and possibly sleeping here, our request
  2563. * may now be mergeable after it had proven unmergeable (above).
  2564. * We don't worry about that case for efficiency. It won't happen
  2565. * often, and the elevators are able to handle it.
  2566. */
  2567. init_request_from_bio(req, bio);
  2568. spin_lock_irq(q->queue_lock);
  2569. if (elv_queue_empty(q))
  2570. blk_plug_device(q);
  2571. add_request(q, req);
  2572. out:
  2573. if (sync)
  2574. __generic_unplug_device(q);
  2575. spin_unlock_irq(q->queue_lock);
  2576. return 0;
  2577. end_io:
  2578. bio_endio(bio, err);
  2579. return 0;
  2580. }
  2581. /*
  2582. * If bio->bi_dev is a partition, remap the location
  2583. */
  2584. static inline void blk_partition_remap(struct bio *bio)
  2585. {
  2586. struct block_device *bdev = bio->bi_bdev;
  2587. if (bdev != bdev->bd_contains) {
  2588. struct hd_struct *p = bdev->bd_part;
  2589. const int rw = bio_data_dir(bio);
  2590. p->sectors[rw] += bio_sectors(bio);
  2591. p->ios[rw]++;
  2592. bio->bi_sector += p->start_sect;
  2593. bio->bi_bdev = bdev->bd_contains;
  2594. blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
  2595. bdev->bd_dev, bio->bi_sector,
  2596. bio->bi_sector - p->start_sect);
  2597. }
  2598. }
  2599. static void handle_bad_sector(struct bio *bio)
  2600. {
  2601. char b[BDEVNAME_SIZE];
  2602. printk(KERN_INFO "attempt to access beyond end of device\n");
  2603. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2604. bdevname(bio->bi_bdev, b),
  2605. bio->bi_rw,
  2606. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2607. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2608. set_bit(BIO_EOF, &bio->bi_flags);
  2609. }
  2610. #ifdef CONFIG_FAIL_MAKE_REQUEST
  2611. static DECLARE_FAULT_ATTR(fail_make_request);
  2612. static int __init setup_fail_make_request(char *str)
  2613. {
  2614. return setup_fault_attr(&fail_make_request, str);
  2615. }
  2616. __setup("fail_make_request=", setup_fail_make_request);
  2617. static int should_fail_request(struct bio *bio)
  2618. {
  2619. if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
  2620. (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
  2621. return should_fail(&fail_make_request, bio->bi_size);
  2622. return 0;
  2623. }
  2624. static int __init fail_make_request_debugfs(void)
  2625. {
  2626. return init_fault_attr_dentries(&fail_make_request,
  2627. "fail_make_request");
  2628. }
  2629. late_initcall(fail_make_request_debugfs);
  2630. #else /* CONFIG_FAIL_MAKE_REQUEST */
  2631. static inline int should_fail_request(struct bio *bio)
  2632. {
  2633. return 0;
  2634. }
  2635. #endif /* CONFIG_FAIL_MAKE_REQUEST */
  2636. /**
  2637. * generic_make_request: hand a buffer to its device driver for I/O
  2638. * @bio: The bio describing the location in memory and on the device.
  2639. *
  2640. * generic_make_request() is used to make I/O requests of block
  2641. * devices. It is passed a &struct bio, which describes the I/O that needs
  2642. * to be done.
  2643. *
  2644. * generic_make_request() does not return any status. The
  2645. * success/failure status of the request, along with notification of
  2646. * completion, is delivered asynchronously through the bio->bi_end_io
  2647. * function described (one day) else where.
  2648. *
  2649. * The caller of generic_make_request must make sure that bi_io_vec
  2650. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2651. * set to describe the device address, and the
  2652. * bi_end_io and optionally bi_private are set to describe how
  2653. * completion notification should be signaled.
  2654. *
  2655. * generic_make_request and the drivers it calls may use bi_next if this
  2656. * bio happens to be merged with someone else, and may change bi_dev and
  2657. * bi_sector for remaps as it sees fit. So the values of these fields
  2658. * should NOT be depended on after the call to generic_make_request.
  2659. */
  2660. static inline void __generic_make_request(struct bio *bio)
  2661. {
  2662. struct request_queue *q;
  2663. sector_t maxsector;
  2664. sector_t old_sector;
  2665. int ret, nr_sectors = bio_sectors(bio);
  2666. dev_t old_dev;
  2667. might_sleep();
  2668. /* Test device or partition size, when known. */
  2669. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2670. if (maxsector) {
  2671. sector_t sector = bio->bi_sector;
  2672. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2673. /*
  2674. * This may well happen - the kernel calls bread()
  2675. * without checking the size of the device, e.g., when
  2676. * mounting a device.
  2677. */
  2678. handle_bad_sector(bio);
  2679. goto end_io;
  2680. }
  2681. }
  2682. /*
  2683. * Resolve the mapping until finished. (drivers are
  2684. * still free to implement/resolve their own stacking
  2685. * by explicitly returning 0)
  2686. *
  2687. * NOTE: we don't repeat the blk_size check for each new device.
  2688. * Stacking drivers are expected to know what they are doing.
  2689. */
  2690. old_sector = -1;
  2691. old_dev = 0;
  2692. do {
  2693. char b[BDEVNAME_SIZE];
  2694. q = bdev_get_queue(bio->bi_bdev);
  2695. if (!q) {
  2696. printk(KERN_ERR
  2697. "generic_make_request: Trying to access "
  2698. "nonexistent block-device %s (%Lu)\n",
  2699. bdevname(bio->bi_bdev, b),
  2700. (long long) bio->bi_sector);
  2701. end_io:
  2702. bio_endio(bio, -EIO);
  2703. break;
  2704. }
  2705. if (unlikely(nr_sectors > q->max_hw_sectors)) {
  2706. printk("bio too big device %s (%u > %u)\n",
  2707. bdevname(bio->bi_bdev, b),
  2708. bio_sectors(bio),
  2709. q->max_hw_sectors);
  2710. goto end_io;
  2711. }
  2712. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2713. goto end_io;
  2714. if (should_fail_request(bio))
  2715. goto end_io;
  2716. /*
  2717. * If this device has partitions, remap block n
  2718. * of partition p to block n+start(p) of the disk.
  2719. */
  2720. blk_partition_remap(bio);
  2721. if (old_sector != -1)
  2722. blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
  2723. old_sector);
  2724. blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
  2725. old_sector = bio->bi_sector;
  2726. old_dev = bio->bi_bdev->bd_dev;
  2727. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2728. if (maxsector) {
  2729. sector_t sector = bio->bi_sector;
  2730. if (maxsector < nr_sectors ||
  2731. maxsector - nr_sectors < sector) {
  2732. /*
  2733. * This may well happen - partitions are not
  2734. * checked to make sure they are within the size
  2735. * of the whole device.
  2736. */
  2737. handle_bad_sector(bio);
  2738. goto end_io;
  2739. }
  2740. }
  2741. ret = q->make_request_fn(q, bio);
  2742. } while (ret);
  2743. }
  2744. /*
  2745. * We only want one ->make_request_fn to be active at a time,
  2746. * else stack usage with stacked devices could be a problem.
  2747. * So use current->bio_{list,tail} to keep a list of requests
  2748. * submited by a make_request_fn function.
  2749. * current->bio_tail is also used as a flag to say if
  2750. * generic_make_request is currently active in this task or not.
  2751. * If it is NULL, then no make_request is active. If it is non-NULL,
  2752. * then a make_request is active, and new requests should be added
  2753. * at the tail
  2754. */
  2755. void generic_make_request(struct bio *bio)
  2756. {
  2757. if (current->bio_tail) {
  2758. /* make_request is active */
  2759. *(current->bio_tail) = bio;
  2760. bio->bi_next = NULL;
  2761. current->bio_tail = &bio->bi_next;
  2762. return;
  2763. }
  2764. /* following loop may be a bit non-obvious, and so deserves some
  2765. * explanation.
  2766. * Before entering the loop, bio->bi_next is NULL (as all callers
  2767. * ensure that) so we have a list with a single bio.
  2768. * We pretend that we have just taken it off a longer list, so
  2769. * we assign bio_list to the next (which is NULL) and bio_tail
  2770. * to &bio_list, thus initialising the bio_list of new bios to be
  2771. * added. __generic_make_request may indeed add some more bios
  2772. * through a recursive call to generic_make_request. If it
  2773. * did, we find a non-NULL value in bio_list and re-enter the loop
  2774. * from the top. In this case we really did just take the bio
  2775. * of the top of the list (no pretending) and so fixup bio_list and
  2776. * bio_tail or bi_next, and call into __generic_make_request again.
  2777. *
  2778. * The loop was structured like this to make only one call to
  2779. * __generic_make_request (which is important as it is large and
  2780. * inlined) and to keep the structure simple.
  2781. */
  2782. BUG_ON(bio->bi_next);
  2783. do {
  2784. current->bio_list = bio->bi_next;
  2785. if (bio->bi_next == NULL)
  2786. current->bio_tail = &current->bio_list;
  2787. else
  2788. bio->bi_next = NULL;
  2789. __generic_make_request(bio);
  2790. bio = current->bio_list;
  2791. } while (bio);
  2792. current->bio_tail = NULL; /* deactivate */
  2793. }
  2794. EXPORT_SYMBOL(generic_make_request);
  2795. /**
  2796. * submit_bio: submit a bio to the block device layer for I/O
  2797. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2798. * @bio: The &struct bio which describes the I/O
  2799. *
  2800. * submit_bio() is very similar in purpose to generic_make_request(), and
  2801. * uses that function to do most of the work. Both are fairly rough
  2802. * interfaces, @bio must be presetup and ready for I/O.
  2803. *
  2804. */
  2805. void submit_bio(int rw, struct bio *bio)
  2806. {
  2807. int count = bio_sectors(bio);
  2808. BIO_BUG_ON(!bio->bi_size);
  2809. BIO_BUG_ON(!bio->bi_io_vec);
  2810. bio->bi_rw |= rw;
  2811. if (rw & WRITE) {
  2812. count_vm_events(PGPGOUT, count);
  2813. } else {
  2814. task_io_account_read(bio->bi_size);
  2815. count_vm_events(PGPGIN, count);
  2816. }
  2817. if (unlikely(block_dump)) {
  2818. char b[BDEVNAME_SIZE];
  2819. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2820. current->comm, current->pid,
  2821. (rw & WRITE) ? "WRITE" : "READ",
  2822. (unsigned long long)bio->bi_sector,
  2823. bdevname(bio->bi_bdev,b));
  2824. }
  2825. generic_make_request(bio);
  2826. }
  2827. EXPORT_SYMBOL(submit_bio);
  2828. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2829. {
  2830. if (blk_fs_request(rq)) {
  2831. rq->hard_sector += nsect;
  2832. rq->hard_nr_sectors -= nsect;
  2833. /*
  2834. * Move the I/O submission pointers ahead if required.
  2835. */
  2836. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2837. (rq->sector <= rq->hard_sector)) {
  2838. rq->sector = rq->hard_sector;
  2839. rq->nr_sectors = rq->hard_nr_sectors;
  2840. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2841. rq->current_nr_sectors = rq->hard_cur_sectors;
  2842. rq->buffer = bio_data(rq->bio);
  2843. }
  2844. /*
  2845. * if total number of sectors is less than the first segment
  2846. * size, something has gone terribly wrong
  2847. */
  2848. if (rq->nr_sectors < rq->current_nr_sectors) {
  2849. printk("blk: request botched\n");
  2850. rq->nr_sectors = rq->current_nr_sectors;
  2851. }
  2852. }
  2853. }
  2854. static int __end_that_request_first(struct request *req, int uptodate,
  2855. int nr_bytes)
  2856. {
  2857. int total_bytes, bio_nbytes, error, next_idx = 0;
  2858. struct bio *bio;
  2859. blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
  2860. /*
  2861. * extend uptodate bool to allow < 0 value to be direct io error
  2862. */
  2863. error = 0;
  2864. if (end_io_error(uptodate))
  2865. error = !uptodate ? -EIO : uptodate;
  2866. /*
  2867. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2868. * sense key with us all the way through
  2869. */
  2870. if (!blk_pc_request(req))
  2871. req->errors = 0;
  2872. if (!uptodate) {
  2873. if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
  2874. printk("end_request: I/O error, dev %s, sector %llu\n",
  2875. req->rq_disk ? req->rq_disk->disk_name : "?",
  2876. (unsigned long long)req->sector);
  2877. }
  2878. if (blk_fs_request(req) && req->rq_disk) {
  2879. const int rw = rq_data_dir(req);
  2880. disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2881. }
  2882. total_bytes = bio_nbytes = 0;
  2883. while ((bio = req->bio) != NULL) {
  2884. int nbytes;
  2885. if (nr_bytes >= bio->bi_size) {
  2886. req->bio = bio->bi_next;
  2887. nbytes = bio->bi_size;
  2888. req_bio_endio(req, bio, nbytes, error);
  2889. next_idx = 0;
  2890. bio_nbytes = 0;
  2891. } else {
  2892. int idx = bio->bi_idx + next_idx;
  2893. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2894. blk_dump_rq_flags(req, "__end_that");
  2895. printk("%s: bio idx %d >= vcnt %d\n",
  2896. __FUNCTION__,
  2897. bio->bi_idx, bio->bi_vcnt);
  2898. break;
  2899. }
  2900. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2901. BIO_BUG_ON(nbytes > bio->bi_size);
  2902. /*
  2903. * not a complete bvec done
  2904. */
  2905. if (unlikely(nbytes > nr_bytes)) {
  2906. bio_nbytes += nr_bytes;
  2907. total_bytes += nr_bytes;
  2908. break;
  2909. }
  2910. /*
  2911. * advance to the next vector
  2912. */
  2913. next_idx++;
  2914. bio_nbytes += nbytes;
  2915. }
  2916. total_bytes += nbytes;
  2917. nr_bytes -= nbytes;
  2918. if ((bio = req->bio)) {
  2919. /*
  2920. * end more in this run, or just return 'not-done'
  2921. */
  2922. if (unlikely(nr_bytes <= 0))
  2923. break;
  2924. }
  2925. }
  2926. /*
  2927. * completely done
  2928. */
  2929. if (!req->bio)
  2930. return 0;
  2931. /*
  2932. * if the request wasn't completed, update state
  2933. */
  2934. if (bio_nbytes) {
  2935. req_bio_endio(req, bio, bio_nbytes, error);
  2936. bio->bi_idx += next_idx;
  2937. bio_iovec(bio)->bv_offset += nr_bytes;
  2938. bio_iovec(bio)->bv_len -= nr_bytes;
  2939. }
  2940. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2941. blk_recalc_rq_segments(req);
  2942. return 1;
  2943. }
  2944. /**
  2945. * end_that_request_first - end I/O on a request
  2946. * @req: the request being processed
  2947. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2948. * @nr_sectors: number of sectors to end I/O on
  2949. *
  2950. * Description:
  2951. * Ends I/O on a number of sectors attached to @req, and sets it up
  2952. * for the next range of segments (if any) in the cluster.
  2953. *
  2954. * Return:
  2955. * 0 - we are done with this request, call end_that_request_last()
  2956. * 1 - still buffers pending for this request
  2957. **/
  2958. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2959. {
  2960. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2961. }
  2962. EXPORT_SYMBOL(end_that_request_first);
  2963. /**
  2964. * end_that_request_chunk - end I/O on a request
  2965. * @req: the request being processed
  2966. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2967. * @nr_bytes: number of bytes to complete
  2968. *
  2969. * Description:
  2970. * Ends I/O on a number of bytes attached to @req, and sets it up
  2971. * for the next range of segments (if any). Like end_that_request_first(),
  2972. * but deals with bytes instead of sectors.
  2973. *
  2974. * Return:
  2975. * 0 - we are done with this request, call end_that_request_last()
  2976. * 1 - still buffers pending for this request
  2977. **/
  2978. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2979. {
  2980. return __end_that_request_first(req, uptodate, nr_bytes);
  2981. }
  2982. EXPORT_SYMBOL(end_that_request_chunk);
  2983. /*
  2984. * splice the completion data to a local structure and hand off to
  2985. * process_completion_queue() to complete the requests
  2986. */
  2987. static void blk_done_softirq(struct softirq_action *h)
  2988. {
  2989. struct list_head *cpu_list, local_list;
  2990. local_irq_disable();
  2991. cpu_list = &__get_cpu_var(blk_cpu_done);
  2992. list_replace_init(cpu_list, &local_list);
  2993. local_irq_enable();
  2994. while (!list_empty(&local_list)) {
  2995. struct request *rq = list_entry(local_list.next, struct request, donelist);
  2996. list_del_init(&rq->donelist);
  2997. rq->q->softirq_done_fn(rq);
  2998. }
  2999. }
  3000. static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
  3001. void *hcpu)
  3002. {
  3003. /*
  3004. * If a CPU goes away, splice its entries to the current CPU
  3005. * and trigger a run of the softirq
  3006. */
  3007. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3008. int cpu = (unsigned long) hcpu;
  3009. local_irq_disable();
  3010. list_splice_init(&per_cpu(blk_cpu_done, cpu),
  3011. &__get_cpu_var(blk_cpu_done));
  3012. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  3013. local_irq_enable();
  3014. }
  3015. return NOTIFY_OK;
  3016. }
  3017. static struct notifier_block blk_cpu_notifier __cpuinitdata = {
  3018. .notifier_call = blk_cpu_notify,
  3019. };
  3020. /**
  3021. * blk_complete_request - end I/O on a request
  3022. * @req: the request being processed
  3023. *
  3024. * Description:
  3025. * Ends all I/O on a request. It does not handle partial completions,
  3026. * unless the driver actually implements this in its completion callback
  3027. * through requeueing. The actual completion happens out-of-order,
  3028. * through a softirq handler. The user must have registered a completion
  3029. * callback through blk_queue_softirq_done().
  3030. **/
  3031. void blk_complete_request(struct request *req)
  3032. {
  3033. struct list_head *cpu_list;
  3034. unsigned long flags;
  3035. BUG_ON(!req->q->softirq_done_fn);
  3036. local_irq_save(flags);
  3037. cpu_list = &__get_cpu_var(blk_cpu_done);
  3038. list_add_tail(&req->donelist, cpu_list);
  3039. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  3040. local_irq_restore(flags);
  3041. }
  3042. EXPORT_SYMBOL(blk_complete_request);
  3043. /*
  3044. * queue lock must be held
  3045. */
  3046. void end_that_request_last(struct request *req, int uptodate)
  3047. {
  3048. struct gendisk *disk = req->rq_disk;
  3049. int error;
  3050. /*
  3051. * extend uptodate bool to allow < 0 value to be direct io error
  3052. */
  3053. error = 0;
  3054. if (end_io_error(uptodate))
  3055. error = !uptodate ? -EIO : uptodate;
  3056. if (unlikely(laptop_mode) && blk_fs_request(req))
  3057. laptop_io_completion();
  3058. /*
  3059. * Account IO completion. bar_rq isn't accounted as a normal
  3060. * IO on queueing nor completion. Accounting the containing
  3061. * request is enough.
  3062. */
  3063. if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
  3064. unsigned long duration = jiffies - req->start_time;
  3065. const int rw = rq_data_dir(req);
  3066. __disk_stat_inc(disk, ios[rw]);
  3067. __disk_stat_add(disk, ticks[rw], duration);
  3068. disk_round_stats(disk);
  3069. disk->in_flight--;
  3070. }
  3071. if (req->end_io)
  3072. req->end_io(req, error);
  3073. else
  3074. __blk_put_request(req->q, req);
  3075. }
  3076. EXPORT_SYMBOL(end_that_request_last);
  3077. void end_request(struct request *req, int uptodate)
  3078. {
  3079. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  3080. add_disk_randomness(req->rq_disk);
  3081. blkdev_dequeue_request(req);
  3082. end_that_request_last(req, uptodate);
  3083. }
  3084. }
  3085. EXPORT_SYMBOL(end_request);
  3086. static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  3087. struct bio *bio)
  3088. {
  3089. /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
  3090. rq->cmd_flags |= (bio->bi_rw & 3);
  3091. rq->nr_phys_segments = bio_phys_segments(q, bio);
  3092. rq->nr_hw_segments = bio_hw_segments(q, bio);
  3093. rq->current_nr_sectors = bio_cur_sectors(bio);
  3094. rq->hard_cur_sectors = rq->current_nr_sectors;
  3095. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  3096. rq->buffer = bio_data(bio);
  3097. rq->data_len = bio->bi_size;
  3098. rq->bio = rq->biotail = bio;
  3099. if (bio->bi_bdev)
  3100. rq->rq_disk = bio->bi_bdev->bd_disk;
  3101. }
  3102. int kblockd_schedule_work(struct work_struct *work)
  3103. {
  3104. return queue_work(kblockd_workqueue, work);
  3105. }
  3106. EXPORT_SYMBOL(kblockd_schedule_work);
  3107. void kblockd_flush_work(struct work_struct *work)
  3108. {
  3109. cancel_work_sync(work);
  3110. }
  3111. EXPORT_SYMBOL(kblockd_flush_work);
  3112. int __init blk_dev_init(void)
  3113. {
  3114. int i;
  3115. kblockd_workqueue = create_workqueue("kblockd");
  3116. if (!kblockd_workqueue)
  3117. panic("Failed to create kblockd\n");
  3118. request_cachep = kmem_cache_create("blkdev_requests",
  3119. sizeof(struct request), 0, SLAB_PANIC, NULL);
  3120. requestq_cachep = kmem_cache_create("blkdev_queue",
  3121. sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
  3122. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  3123. sizeof(struct io_context), 0, SLAB_PANIC, NULL);
  3124. for_each_possible_cpu(i)
  3125. INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
  3126. open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
  3127. register_hotcpu_notifier(&blk_cpu_notifier);
  3128. blk_max_low_pfn = max_low_pfn - 1;
  3129. blk_max_pfn = max_pfn - 1;
  3130. return 0;
  3131. }
  3132. /*
  3133. * IO Context helper functions
  3134. */
  3135. void put_io_context(struct io_context *ioc)
  3136. {
  3137. if (ioc == NULL)
  3138. return;
  3139. BUG_ON(atomic_read(&ioc->refcount) == 0);
  3140. if (atomic_dec_and_test(&ioc->refcount)) {
  3141. struct cfq_io_context *cic;
  3142. rcu_read_lock();
  3143. if (ioc->aic && ioc->aic->dtor)
  3144. ioc->aic->dtor(ioc->aic);
  3145. if (ioc->cic_root.rb_node != NULL) {
  3146. struct rb_node *n = rb_first(&ioc->cic_root);
  3147. cic = rb_entry(n, struct cfq_io_context, rb_node);
  3148. cic->dtor(ioc);
  3149. }
  3150. rcu_read_unlock();
  3151. kmem_cache_free(iocontext_cachep, ioc);
  3152. }
  3153. }
  3154. EXPORT_SYMBOL(put_io_context);
  3155. /* Called by the exitting task */
  3156. void exit_io_context(void)
  3157. {
  3158. struct io_context *ioc;
  3159. struct cfq_io_context *cic;
  3160. task_lock(current);
  3161. ioc = current->io_context;
  3162. current->io_context = NULL;
  3163. task_unlock(current);
  3164. ioc->task = NULL;
  3165. if (ioc->aic && ioc->aic->exit)
  3166. ioc->aic->exit(ioc->aic);
  3167. if (ioc->cic_root.rb_node != NULL) {
  3168. cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
  3169. cic->exit(ioc);
  3170. }
  3171. put_io_context(ioc);
  3172. }
  3173. /*
  3174. * If the current task has no IO context then create one and initialise it.
  3175. * Otherwise, return its existing IO context.
  3176. *
  3177. * This returned IO context doesn't have a specifically elevated refcount,
  3178. * but since the current task itself holds a reference, the context can be
  3179. * used in general code, so long as it stays within `current` context.
  3180. */
  3181. static struct io_context *current_io_context(gfp_t gfp_flags, int node)
  3182. {
  3183. struct task_struct *tsk = current;
  3184. struct io_context *ret;
  3185. ret = tsk->io_context;
  3186. if (likely(ret))
  3187. return ret;
  3188. ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
  3189. if (ret) {
  3190. atomic_set(&ret->refcount, 1);
  3191. ret->task = current;
  3192. ret->ioprio_changed = 0;
  3193. ret->last_waited = jiffies; /* doesn't matter... */
  3194. ret->nr_batch_requests = 0; /* because this is 0 */
  3195. ret->aic = NULL;
  3196. ret->cic_root.rb_node = NULL;
  3197. ret->ioc_data = NULL;
  3198. /* make sure set_task_ioprio() sees the settings above */
  3199. smp_wmb();
  3200. tsk->io_context = ret;
  3201. }
  3202. return ret;
  3203. }
  3204. /*
  3205. * If the current task has no IO context then create one and initialise it.
  3206. * If it does have a context, take a ref on it.
  3207. *
  3208. * This is always called in the context of the task which submitted the I/O.
  3209. */
  3210. struct io_context *get_io_context(gfp_t gfp_flags, int node)
  3211. {
  3212. struct io_context *ret;
  3213. ret = current_io_context(gfp_flags, node);
  3214. if (likely(ret))
  3215. atomic_inc(&ret->refcount);
  3216. return ret;
  3217. }
  3218. EXPORT_SYMBOL(get_io_context);
  3219. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  3220. {
  3221. struct io_context *src = *psrc;
  3222. struct io_context *dst = *pdst;
  3223. if (src) {
  3224. BUG_ON(atomic_read(&src->refcount) == 0);
  3225. atomic_inc(&src->refcount);
  3226. put_io_context(dst);
  3227. *pdst = src;
  3228. }
  3229. }
  3230. EXPORT_SYMBOL(copy_io_context);
  3231. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  3232. {
  3233. struct io_context *temp;
  3234. temp = *ioc1;
  3235. *ioc1 = *ioc2;
  3236. *ioc2 = temp;
  3237. }
  3238. EXPORT_SYMBOL(swap_io_context);
  3239. /*
  3240. * sysfs parts below
  3241. */
  3242. struct queue_sysfs_entry {
  3243. struct attribute attr;
  3244. ssize_t (*show)(struct request_queue *, char *);
  3245. ssize_t (*store)(struct request_queue *, const char *, size_t);
  3246. };
  3247. static ssize_t
  3248. queue_var_show(unsigned int var, char *page)
  3249. {
  3250. return sprintf(page, "%d\n", var);
  3251. }
  3252. static ssize_t
  3253. queue_var_store(unsigned long *var, const char *page, size_t count)
  3254. {
  3255. char *p = (char *) page;
  3256. *var = simple_strtoul(p, &p, 10);
  3257. return count;
  3258. }
  3259. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  3260. {
  3261. return queue_var_show(q->nr_requests, (page));
  3262. }
  3263. static ssize_t
  3264. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  3265. {
  3266. struct request_list *rl = &q->rq;
  3267. unsigned long nr;
  3268. int ret = queue_var_store(&nr, page, count);
  3269. if (nr < BLKDEV_MIN_RQ)
  3270. nr = BLKDEV_MIN_RQ;
  3271. spin_lock_irq(q->queue_lock);
  3272. q->nr_requests = nr;
  3273. blk_queue_congestion_threshold(q);
  3274. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  3275. blk_set_queue_congested(q, READ);
  3276. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  3277. blk_clear_queue_congested(q, READ);
  3278. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  3279. blk_set_queue_congested(q, WRITE);
  3280. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  3281. blk_clear_queue_congested(q, WRITE);
  3282. if (rl->count[READ] >= q->nr_requests) {
  3283. blk_set_queue_full(q, READ);
  3284. } else if (rl->count[READ]+1 <= q->nr_requests) {
  3285. blk_clear_queue_full(q, READ);
  3286. wake_up(&rl->wait[READ]);
  3287. }
  3288. if (rl->count[WRITE] >= q->nr_requests) {
  3289. blk_set_queue_full(q, WRITE);
  3290. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  3291. blk_clear_queue_full(q, WRITE);
  3292. wake_up(&rl->wait[WRITE]);
  3293. }
  3294. spin_unlock_irq(q->queue_lock);
  3295. return ret;
  3296. }
  3297. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  3298. {
  3299. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3300. return queue_var_show(ra_kb, (page));
  3301. }
  3302. static ssize_t
  3303. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  3304. {
  3305. unsigned long ra_kb;
  3306. ssize_t ret = queue_var_store(&ra_kb, page, count);
  3307. spin_lock_irq(q->queue_lock);
  3308. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  3309. spin_unlock_irq(q->queue_lock);
  3310. return ret;
  3311. }
  3312. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  3313. {
  3314. int max_sectors_kb = q->max_sectors >> 1;
  3315. return queue_var_show(max_sectors_kb, (page));
  3316. }
  3317. static ssize_t
  3318. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3319. {
  3320. unsigned long max_sectors_kb,
  3321. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3322. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3323. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3324. int ra_kb;
  3325. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3326. return -EINVAL;
  3327. /*
  3328. * Take the queue lock to update the readahead and max_sectors
  3329. * values synchronously:
  3330. */
  3331. spin_lock_irq(q->queue_lock);
  3332. /*
  3333. * Trim readahead window as well, if necessary:
  3334. */
  3335. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3336. if (ra_kb > max_sectors_kb)
  3337. q->backing_dev_info.ra_pages =
  3338. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  3339. q->max_sectors = max_sectors_kb << 1;
  3340. spin_unlock_irq(q->queue_lock);
  3341. return ret;
  3342. }
  3343. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3344. {
  3345. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3346. return queue_var_show(max_hw_sectors_kb, (page));
  3347. }
  3348. static struct queue_sysfs_entry queue_requests_entry = {
  3349. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3350. .show = queue_requests_show,
  3351. .store = queue_requests_store,
  3352. };
  3353. static struct queue_sysfs_entry queue_ra_entry = {
  3354. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3355. .show = queue_ra_show,
  3356. .store = queue_ra_store,
  3357. };
  3358. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3359. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3360. .show = queue_max_sectors_show,
  3361. .store = queue_max_sectors_store,
  3362. };
  3363. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3364. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3365. .show = queue_max_hw_sectors_show,
  3366. };
  3367. static struct queue_sysfs_entry queue_iosched_entry = {
  3368. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3369. .show = elv_iosched_show,
  3370. .store = elv_iosched_store,
  3371. };
  3372. static struct attribute *default_attrs[] = {
  3373. &queue_requests_entry.attr,
  3374. &queue_ra_entry.attr,
  3375. &queue_max_hw_sectors_entry.attr,
  3376. &queue_max_sectors_entry.attr,
  3377. &queue_iosched_entry.attr,
  3378. NULL,
  3379. };
  3380. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3381. static ssize_t
  3382. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3383. {
  3384. struct queue_sysfs_entry *entry = to_queue(attr);
  3385. struct request_queue *q =
  3386. container_of(kobj, struct request_queue, kobj);
  3387. ssize_t res;
  3388. if (!entry->show)
  3389. return -EIO;
  3390. mutex_lock(&q->sysfs_lock);
  3391. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3392. mutex_unlock(&q->sysfs_lock);
  3393. return -ENOENT;
  3394. }
  3395. res = entry->show(q, page);
  3396. mutex_unlock(&q->sysfs_lock);
  3397. return res;
  3398. }
  3399. static ssize_t
  3400. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3401. const char *page, size_t length)
  3402. {
  3403. struct queue_sysfs_entry *entry = to_queue(attr);
  3404. struct request_queue *q = container_of(kobj, struct request_queue, kobj);
  3405. ssize_t res;
  3406. if (!entry->store)
  3407. return -EIO;
  3408. mutex_lock(&q->sysfs_lock);
  3409. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3410. mutex_unlock(&q->sysfs_lock);
  3411. return -ENOENT;
  3412. }
  3413. res = entry->store(q, page, length);
  3414. mutex_unlock(&q->sysfs_lock);
  3415. return res;
  3416. }
  3417. static struct sysfs_ops queue_sysfs_ops = {
  3418. .show = queue_attr_show,
  3419. .store = queue_attr_store,
  3420. };
  3421. static struct kobj_type queue_ktype = {
  3422. .sysfs_ops = &queue_sysfs_ops,
  3423. .default_attrs = default_attrs,
  3424. .release = blk_release_queue,
  3425. };
  3426. int blk_register_queue(struct gendisk *disk)
  3427. {
  3428. int ret;
  3429. struct request_queue *q = disk->queue;
  3430. if (!q || !q->request_fn)
  3431. return -ENXIO;
  3432. q->kobj.parent = kobject_get(&disk->kobj);
  3433. ret = kobject_add(&q->kobj);
  3434. if (ret < 0)
  3435. return ret;
  3436. kobject_uevent(&q->kobj, KOBJ_ADD);
  3437. ret = elv_register_queue(q);
  3438. if (ret) {
  3439. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3440. kobject_del(&q->kobj);
  3441. return ret;
  3442. }
  3443. return 0;
  3444. }
  3445. void blk_unregister_queue(struct gendisk *disk)
  3446. {
  3447. struct request_queue *q = disk->queue;
  3448. if (q && q->request_fn) {
  3449. elv_unregister_queue(q);
  3450. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3451. kobject_del(&q->kobj);
  3452. kobject_put(&disk->kobj);
  3453. }
  3454. }