mds_client.c 91 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/fs.h>
  3. #include <linux/wait.h>
  4. #include <linux/slab.h>
  5. #include <linux/sched.h>
  6. #include <linux/debugfs.h>
  7. #include <linux/seq_file.h>
  8. #include "super.h"
  9. #include "mds_client.h"
  10. #include <linux/ceph/ceph_features.h>
  11. #include <linux/ceph/messenger.h>
  12. #include <linux/ceph/decode.h>
  13. #include <linux/ceph/pagelist.h>
  14. #include <linux/ceph/auth.h>
  15. #include <linux/ceph/debugfs.h>
  16. /*
  17. * A cluster of MDS (metadata server) daemons is responsible for
  18. * managing the file system namespace (the directory hierarchy and
  19. * inodes) and for coordinating shared access to storage. Metadata is
  20. * partitioning hierarchically across a number of servers, and that
  21. * partition varies over time as the cluster adjusts the distribution
  22. * in order to balance load.
  23. *
  24. * The MDS client is primarily responsible to managing synchronous
  25. * metadata requests for operations like open, unlink, and so forth.
  26. * If there is a MDS failure, we find out about it when we (possibly
  27. * request and) receive a new MDS map, and can resubmit affected
  28. * requests.
  29. *
  30. * For the most part, though, we take advantage of a lossless
  31. * communications channel to the MDS, and do not need to worry about
  32. * timing out or resubmitting requests.
  33. *
  34. * We maintain a stateful "session" with each MDS we interact with.
  35. * Within each session, we sent periodic heartbeat messages to ensure
  36. * any capabilities or leases we have been issues remain valid. If
  37. * the session times out and goes stale, our leases and capabilities
  38. * are no longer valid.
  39. */
  40. struct ceph_reconnect_state {
  41. int nr_caps;
  42. struct ceph_pagelist *pagelist;
  43. bool flock;
  44. };
  45. static void __wake_requests(struct ceph_mds_client *mdsc,
  46. struct list_head *head);
  47. static const struct ceph_connection_operations mds_con_ops;
  48. /*
  49. * mds reply parsing
  50. */
  51. /*
  52. * parse individual inode info
  53. */
  54. static int parse_reply_info_in(void **p, void *end,
  55. struct ceph_mds_reply_info_in *info,
  56. int features)
  57. {
  58. int err = -EIO;
  59. info->in = *p;
  60. *p += sizeof(struct ceph_mds_reply_inode) +
  61. sizeof(*info->in->fragtree.splits) *
  62. le32_to_cpu(info->in->fragtree.nsplits);
  63. ceph_decode_32_safe(p, end, info->symlink_len, bad);
  64. ceph_decode_need(p, end, info->symlink_len, bad);
  65. info->symlink = *p;
  66. *p += info->symlink_len;
  67. if (features & CEPH_FEATURE_DIRLAYOUTHASH)
  68. ceph_decode_copy_safe(p, end, &info->dir_layout,
  69. sizeof(info->dir_layout), bad);
  70. else
  71. memset(&info->dir_layout, 0, sizeof(info->dir_layout));
  72. ceph_decode_32_safe(p, end, info->xattr_len, bad);
  73. ceph_decode_need(p, end, info->xattr_len, bad);
  74. info->xattr_data = *p;
  75. *p += info->xattr_len;
  76. return 0;
  77. bad:
  78. return err;
  79. }
  80. /*
  81. * parse a normal reply, which may contain a (dir+)dentry and/or a
  82. * target inode.
  83. */
  84. static int parse_reply_info_trace(void **p, void *end,
  85. struct ceph_mds_reply_info_parsed *info,
  86. int features)
  87. {
  88. int err;
  89. if (info->head->is_dentry) {
  90. err = parse_reply_info_in(p, end, &info->diri, features);
  91. if (err < 0)
  92. goto out_bad;
  93. if (unlikely(*p + sizeof(*info->dirfrag) > end))
  94. goto bad;
  95. info->dirfrag = *p;
  96. *p += sizeof(*info->dirfrag) +
  97. sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
  98. if (unlikely(*p > end))
  99. goto bad;
  100. ceph_decode_32_safe(p, end, info->dname_len, bad);
  101. ceph_decode_need(p, end, info->dname_len, bad);
  102. info->dname = *p;
  103. *p += info->dname_len;
  104. info->dlease = *p;
  105. *p += sizeof(*info->dlease);
  106. }
  107. if (info->head->is_target) {
  108. err = parse_reply_info_in(p, end, &info->targeti, features);
  109. if (err < 0)
  110. goto out_bad;
  111. }
  112. if (unlikely(*p != end))
  113. goto bad;
  114. return 0;
  115. bad:
  116. err = -EIO;
  117. out_bad:
  118. pr_err("problem parsing mds trace %d\n", err);
  119. return err;
  120. }
  121. /*
  122. * parse readdir results
  123. */
  124. static int parse_reply_info_dir(void **p, void *end,
  125. struct ceph_mds_reply_info_parsed *info,
  126. int features)
  127. {
  128. u32 num, i = 0;
  129. int err;
  130. info->dir_dir = *p;
  131. if (*p + sizeof(*info->dir_dir) > end)
  132. goto bad;
  133. *p += sizeof(*info->dir_dir) +
  134. sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
  135. if (*p > end)
  136. goto bad;
  137. ceph_decode_need(p, end, sizeof(num) + 2, bad);
  138. num = ceph_decode_32(p);
  139. info->dir_end = ceph_decode_8(p);
  140. info->dir_complete = ceph_decode_8(p);
  141. if (num == 0)
  142. goto done;
  143. /* alloc large array */
  144. info->dir_nr = num;
  145. info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
  146. sizeof(*info->dir_dname) +
  147. sizeof(*info->dir_dname_len) +
  148. sizeof(*info->dir_dlease),
  149. GFP_NOFS);
  150. if (info->dir_in == NULL) {
  151. err = -ENOMEM;
  152. goto out_bad;
  153. }
  154. info->dir_dname = (void *)(info->dir_in + num);
  155. info->dir_dname_len = (void *)(info->dir_dname + num);
  156. info->dir_dlease = (void *)(info->dir_dname_len + num);
  157. while (num) {
  158. /* dentry */
  159. ceph_decode_need(p, end, sizeof(u32)*2, bad);
  160. info->dir_dname_len[i] = ceph_decode_32(p);
  161. ceph_decode_need(p, end, info->dir_dname_len[i], bad);
  162. info->dir_dname[i] = *p;
  163. *p += info->dir_dname_len[i];
  164. dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
  165. info->dir_dname[i]);
  166. info->dir_dlease[i] = *p;
  167. *p += sizeof(struct ceph_mds_reply_lease);
  168. /* inode */
  169. err = parse_reply_info_in(p, end, &info->dir_in[i], features);
  170. if (err < 0)
  171. goto out_bad;
  172. i++;
  173. num--;
  174. }
  175. done:
  176. if (*p != end)
  177. goto bad;
  178. return 0;
  179. bad:
  180. err = -EIO;
  181. out_bad:
  182. pr_err("problem parsing dir contents %d\n", err);
  183. return err;
  184. }
  185. /*
  186. * parse fcntl F_GETLK results
  187. */
  188. static int parse_reply_info_filelock(void **p, void *end,
  189. struct ceph_mds_reply_info_parsed *info,
  190. int features)
  191. {
  192. if (*p + sizeof(*info->filelock_reply) > end)
  193. goto bad;
  194. info->filelock_reply = *p;
  195. *p += sizeof(*info->filelock_reply);
  196. if (unlikely(*p != end))
  197. goto bad;
  198. return 0;
  199. bad:
  200. return -EIO;
  201. }
  202. /*
  203. * parse create results
  204. */
  205. static int parse_reply_info_create(void **p, void *end,
  206. struct ceph_mds_reply_info_parsed *info,
  207. int features)
  208. {
  209. if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
  210. if (*p == end) {
  211. info->has_create_ino = false;
  212. } else {
  213. info->has_create_ino = true;
  214. info->ino = ceph_decode_64(p);
  215. }
  216. }
  217. if (unlikely(*p != end))
  218. goto bad;
  219. return 0;
  220. bad:
  221. return -EIO;
  222. }
  223. /*
  224. * parse extra results
  225. */
  226. static int parse_reply_info_extra(void **p, void *end,
  227. struct ceph_mds_reply_info_parsed *info,
  228. int features)
  229. {
  230. if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
  231. return parse_reply_info_filelock(p, end, info, features);
  232. else if (info->head->op == CEPH_MDS_OP_READDIR ||
  233. info->head->op == CEPH_MDS_OP_LSSNAP)
  234. return parse_reply_info_dir(p, end, info, features);
  235. else if (info->head->op == CEPH_MDS_OP_CREATE)
  236. return parse_reply_info_create(p, end, info, features);
  237. else
  238. return -EIO;
  239. }
  240. /*
  241. * parse entire mds reply
  242. */
  243. static int parse_reply_info(struct ceph_msg *msg,
  244. struct ceph_mds_reply_info_parsed *info,
  245. int features)
  246. {
  247. void *p, *end;
  248. u32 len;
  249. int err;
  250. info->head = msg->front.iov_base;
  251. p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
  252. end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
  253. /* trace */
  254. ceph_decode_32_safe(&p, end, len, bad);
  255. if (len > 0) {
  256. ceph_decode_need(&p, end, len, bad);
  257. err = parse_reply_info_trace(&p, p+len, info, features);
  258. if (err < 0)
  259. goto out_bad;
  260. }
  261. /* extra */
  262. ceph_decode_32_safe(&p, end, len, bad);
  263. if (len > 0) {
  264. ceph_decode_need(&p, end, len, bad);
  265. err = parse_reply_info_extra(&p, p+len, info, features);
  266. if (err < 0)
  267. goto out_bad;
  268. }
  269. /* snap blob */
  270. ceph_decode_32_safe(&p, end, len, bad);
  271. info->snapblob_len = len;
  272. info->snapblob = p;
  273. p += len;
  274. if (p != end)
  275. goto bad;
  276. return 0;
  277. bad:
  278. err = -EIO;
  279. out_bad:
  280. pr_err("mds parse_reply err %d\n", err);
  281. return err;
  282. }
  283. static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
  284. {
  285. kfree(info->dir_in);
  286. }
  287. /*
  288. * sessions
  289. */
  290. static const char *session_state_name(int s)
  291. {
  292. switch (s) {
  293. case CEPH_MDS_SESSION_NEW: return "new";
  294. case CEPH_MDS_SESSION_OPENING: return "opening";
  295. case CEPH_MDS_SESSION_OPEN: return "open";
  296. case CEPH_MDS_SESSION_HUNG: return "hung";
  297. case CEPH_MDS_SESSION_CLOSING: return "closing";
  298. case CEPH_MDS_SESSION_RESTARTING: return "restarting";
  299. case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
  300. default: return "???";
  301. }
  302. }
  303. static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
  304. {
  305. if (atomic_inc_not_zero(&s->s_ref)) {
  306. dout("mdsc get_session %p %d -> %d\n", s,
  307. atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
  308. return s;
  309. } else {
  310. dout("mdsc get_session %p 0 -- FAIL", s);
  311. return NULL;
  312. }
  313. }
  314. void ceph_put_mds_session(struct ceph_mds_session *s)
  315. {
  316. dout("mdsc put_session %p %d -> %d\n", s,
  317. atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
  318. if (atomic_dec_and_test(&s->s_ref)) {
  319. if (s->s_auth.authorizer)
  320. ceph_auth_destroy_authorizer(
  321. s->s_mdsc->fsc->client->monc.auth,
  322. s->s_auth.authorizer);
  323. kfree(s);
  324. }
  325. }
  326. /*
  327. * called under mdsc->mutex
  328. */
  329. struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
  330. int mds)
  331. {
  332. struct ceph_mds_session *session;
  333. if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
  334. return NULL;
  335. session = mdsc->sessions[mds];
  336. dout("lookup_mds_session %p %d\n", session,
  337. atomic_read(&session->s_ref));
  338. get_session(session);
  339. return session;
  340. }
  341. static bool __have_session(struct ceph_mds_client *mdsc, int mds)
  342. {
  343. if (mds >= mdsc->max_sessions)
  344. return false;
  345. return mdsc->sessions[mds];
  346. }
  347. static int __verify_registered_session(struct ceph_mds_client *mdsc,
  348. struct ceph_mds_session *s)
  349. {
  350. if (s->s_mds >= mdsc->max_sessions ||
  351. mdsc->sessions[s->s_mds] != s)
  352. return -ENOENT;
  353. return 0;
  354. }
  355. /*
  356. * create+register a new session for given mds.
  357. * called under mdsc->mutex.
  358. */
  359. static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
  360. int mds)
  361. {
  362. struct ceph_mds_session *s;
  363. if (mds >= mdsc->mdsmap->m_max_mds)
  364. return ERR_PTR(-EINVAL);
  365. s = kzalloc(sizeof(*s), GFP_NOFS);
  366. if (!s)
  367. return ERR_PTR(-ENOMEM);
  368. s->s_mdsc = mdsc;
  369. s->s_mds = mds;
  370. s->s_state = CEPH_MDS_SESSION_NEW;
  371. s->s_ttl = 0;
  372. s->s_seq = 0;
  373. mutex_init(&s->s_mutex);
  374. ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
  375. spin_lock_init(&s->s_gen_ttl_lock);
  376. s->s_cap_gen = 0;
  377. s->s_cap_ttl = jiffies - 1;
  378. spin_lock_init(&s->s_cap_lock);
  379. s->s_renew_requested = 0;
  380. s->s_renew_seq = 0;
  381. INIT_LIST_HEAD(&s->s_caps);
  382. s->s_nr_caps = 0;
  383. s->s_trim_caps = 0;
  384. atomic_set(&s->s_ref, 1);
  385. INIT_LIST_HEAD(&s->s_waiting);
  386. INIT_LIST_HEAD(&s->s_unsafe);
  387. s->s_num_cap_releases = 0;
  388. s->s_cap_reconnect = 0;
  389. s->s_cap_iterator = NULL;
  390. INIT_LIST_HEAD(&s->s_cap_releases);
  391. INIT_LIST_HEAD(&s->s_cap_releases_done);
  392. INIT_LIST_HEAD(&s->s_cap_flushing);
  393. INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
  394. dout("register_session mds%d\n", mds);
  395. if (mds >= mdsc->max_sessions) {
  396. int newmax = 1 << get_count_order(mds+1);
  397. struct ceph_mds_session **sa;
  398. dout("register_session realloc to %d\n", newmax);
  399. sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
  400. if (sa == NULL)
  401. goto fail_realloc;
  402. if (mdsc->sessions) {
  403. memcpy(sa, mdsc->sessions,
  404. mdsc->max_sessions * sizeof(void *));
  405. kfree(mdsc->sessions);
  406. }
  407. mdsc->sessions = sa;
  408. mdsc->max_sessions = newmax;
  409. }
  410. mdsc->sessions[mds] = s;
  411. atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
  412. ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
  413. ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
  414. return s;
  415. fail_realloc:
  416. kfree(s);
  417. return ERR_PTR(-ENOMEM);
  418. }
  419. /*
  420. * called under mdsc->mutex
  421. */
  422. static void __unregister_session(struct ceph_mds_client *mdsc,
  423. struct ceph_mds_session *s)
  424. {
  425. dout("__unregister_session mds%d %p\n", s->s_mds, s);
  426. BUG_ON(mdsc->sessions[s->s_mds] != s);
  427. mdsc->sessions[s->s_mds] = NULL;
  428. ceph_con_close(&s->s_con);
  429. ceph_put_mds_session(s);
  430. }
  431. /*
  432. * drop session refs in request.
  433. *
  434. * should be last request ref, or hold mdsc->mutex
  435. */
  436. static void put_request_session(struct ceph_mds_request *req)
  437. {
  438. if (req->r_session) {
  439. ceph_put_mds_session(req->r_session);
  440. req->r_session = NULL;
  441. }
  442. }
  443. void ceph_mdsc_release_request(struct kref *kref)
  444. {
  445. struct ceph_mds_request *req = container_of(kref,
  446. struct ceph_mds_request,
  447. r_kref);
  448. if (req->r_request)
  449. ceph_msg_put(req->r_request);
  450. if (req->r_reply) {
  451. ceph_msg_put(req->r_reply);
  452. destroy_reply_info(&req->r_reply_info);
  453. }
  454. if (req->r_inode) {
  455. ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
  456. iput(req->r_inode);
  457. }
  458. if (req->r_locked_dir)
  459. ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
  460. if (req->r_target_inode)
  461. iput(req->r_target_inode);
  462. if (req->r_dentry)
  463. dput(req->r_dentry);
  464. if (req->r_old_dentry) {
  465. /*
  466. * track (and drop pins for) r_old_dentry_dir
  467. * separately, since r_old_dentry's d_parent may have
  468. * changed between the dir mutex being dropped and
  469. * this request being freed.
  470. */
  471. ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
  472. CEPH_CAP_PIN);
  473. dput(req->r_old_dentry);
  474. iput(req->r_old_dentry_dir);
  475. }
  476. kfree(req->r_path1);
  477. kfree(req->r_path2);
  478. put_request_session(req);
  479. ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
  480. kfree(req);
  481. }
  482. /*
  483. * lookup session, bump ref if found.
  484. *
  485. * called under mdsc->mutex.
  486. */
  487. static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
  488. u64 tid)
  489. {
  490. struct ceph_mds_request *req;
  491. struct rb_node *n = mdsc->request_tree.rb_node;
  492. while (n) {
  493. req = rb_entry(n, struct ceph_mds_request, r_node);
  494. if (tid < req->r_tid)
  495. n = n->rb_left;
  496. else if (tid > req->r_tid)
  497. n = n->rb_right;
  498. else {
  499. ceph_mdsc_get_request(req);
  500. return req;
  501. }
  502. }
  503. return NULL;
  504. }
  505. static void __insert_request(struct ceph_mds_client *mdsc,
  506. struct ceph_mds_request *new)
  507. {
  508. struct rb_node **p = &mdsc->request_tree.rb_node;
  509. struct rb_node *parent = NULL;
  510. struct ceph_mds_request *req = NULL;
  511. while (*p) {
  512. parent = *p;
  513. req = rb_entry(parent, struct ceph_mds_request, r_node);
  514. if (new->r_tid < req->r_tid)
  515. p = &(*p)->rb_left;
  516. else if (new->r_tid > req->r_tid)
  517. p = &(*p)->rb_right;
  518. else
  519. BUG();
  520. }
  521. rb_link_node(&new->r_node, parent, p);
  522. rb_insert_color(&new->r_node, &mdsc->request_tree);
  523. }
  524. /*
  525. * Register an in-flight request, and assign a tid. Link to directory
  526. * are modifying (if any).
  527. *
  528. * Called under mdsc->mutex.
  529. */
  530. static void __register_request(struct ceph_mds_client *mdsc,
  531. struct ceph_mds_request *req,
  532. struct inode *dir)
  533. {
  534. req->r_tid = ++mdsc->last_tid;
  535. if (req->r_num_caps)
  536. ceph_reserve_caps(mdsc, &req->r_caps_reservation,
  537. req->r_num_caps);
  538. dout("__register_request %p tid %lld\n", req, req->r_tid);
  539. ceph_mdsc_get_request(req);
  540. __insert_request(mdsc, req);
  541. req->r_uid = current_fsuid();
  542. req->r_gid = current_fsgid();
  543. if (dir) {
  544. struct ceph_inode_info *ci = ceph_inode(dir);
  545. ihold(dir);
  546. spin_lock(&ci->i_unsafe_lock);
  547. req->r_unsafe_dir = dir;
  548. list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
  549. spin_unlock(&ci->i_unsafe_lock);
  550. }
  551. }
  552. static void __unregister_request(struct ceph_mds_client *mdsc,
  553. struct ceph_mds_request *req)
  554. {
  555. dout("__unregister_request %p tid %lld\n", req, req->r_tid);
  556. rb_erase(&req->r_node, &mdsc->request_tree);
  557. RB_CLEAR_NODE(&req->r_node);
  558. if (req->r_unsafe_dir) {
  559. struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
  560. spin_lock(&ci->i_unsafe_lock);
  561. list_del_init(&req->r_unsafe_dir_item);
  562. spin_unlock(&ci->i_unsafe_lock);
  563. iput(req->r_unsafe_dir);
  564. req->r_unsafe_dir = NULL;
  565. }
  566. complete_all(&req->r_safe_completion);
  567. ceph_mdsc_put_request(req);
  568. }
  569. /*
  570. * Choose mds to send request to next. If there is a hint set in the
  571. * request (e.g., due to a prior forward hint from the mds), use that.
  572. * Otherwise, consult frag tree and/or caps to identify the
  573. * appropriate mds. If all else fails, choose randomly.
  574. *
  575. * Called under mdsc->mutex.
  576. */
  577. static struct dentry *get_nonsnap_parent(struct dentry *dentry)
  578. {
  579. /*
  580. * we don't need to worry about protecting the d_parent access
  581. * here because we never renaming inside the snapped namespace
  582. * except to resplice to another snapdir, and either the old or new
  583. * result is a valid result.
  584. */
  585. while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
  586. dentry = dentry->d_parent;
  587. return dentry;
  588. }
  589. static int __choose_mds(struct ceph_mds_client *mdsc,
  590. struct ceph_mds_request *req)
  591. {
  592. struct inode *inode;
  593. struct ceph_inode_info *ci;
  594. struct ceph_cap *cap;
  595. int mode = req->r_direct_mode;
  596. int mds = -1;
  597. u32 hash = req->r_direct_hash;
  598. bool is_hash = req->r_direct_is_hash;
  599. /*
  600. * is there a specific mds we should try? ignore hint if we have
  601. * no session and the mds is not up (active or recovering).
  602. */
  603. if (req->r_resend_mds >= 0 &&
  604. (__have_session(mdsc, req->r_resend_mds) ||
  605. ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
  606. dout("choose_mds using resend_mds mds%d\n",
  607. req->r_resend_mds);
  608. return req->r_resend_mds;
  609. }
  610. if (mode == USE_RANDOM_MDS)
  611. goto random;
  612. inode = NULL;
  613. if (req->r_inode) {
  614. inode = req->r_inode;
  615. } else if (req->r_dentry) {
  616. /* ignore race with rename; old or new d_parent is okay */
  617. struct dentry *parent = req->r_dentry->d_parent;
  618. struct inode *dir = parent->d_inode;
  619. if (dir->i_sb != mdsc->fsc->sb) {
  620. /* not this fs! */
  621. inode = req->r_dentry->d_inode;
  622. } else if (ceph_snap(dir) != CEPH_NOSNAP) {
  623. /* direct snapped/virtual snapdir requests
  624. * based on parent dir inode */
  625. struct dentry *dn = get_nonsnap_parent(parent);
  626. inode = dn->d_inode;
  627. dout("__choose_mds using nonsnap parent %p\n", inode);
  628. } else if (req->r_dentry->d_inode) {
  629. /* dentry target */
  630. inode = req->r_dentry->d_inode;
  631. } else {
  632. /* dir + name */
  633. inode = dir;
  634. hash = ceph_dentry_hash(dir, req->r_dentry);
  635. is_hash = true;
  636. }
  637. }
  638. dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
  639. (int)hash, mode);
  640. if (!inode)
  641. goto random;
  642. ci = ceph_inode(inode);
  643. if (is_hash && S_ISDIR(inode->i_mode)) {
  644. struct ceph_inode_frag frag;
  645. int found;
  646. ceph_choose_frag(ci, hash, &frag, &found);
  647. if (found) {
  648. if (mode == USE_ANY_MDS && frag.ndist > 0) {
  649. u8 r;
  650. /* choose a random replica */
  651. get_random_bytes(&r, 1);
  652. r %= frag.ndist;
  653. mds = frag.dist[r];
  654. dout("choose_mds %p %llx.%llx "
  655. "frag %u mds%d (%d/%d)\n",
  656. inode, ceph_vinop(inode),
  657. frag.frag, mds,
  658. (int)r, frag.ndist);
  659. if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
  660. CEPH_MDS_STATE_ACTIVE)
  661. return mds;
  662. }
  663. /* since this file/dir wasn't known to be
  664. * replicated, then we want to look for the
  665. * authoritative mds. */
  666. mode = USE_AUTH_MDS;
  667. if (frag.mds >= 0) {
  668. /* choose auth mds */
  669. mds = frag.mds;
  670. dout("choose_mds %p %llx.%llx "
  671. "frag %u mds%d (auth)\n",
  672. inode, ceph_vinop(inode), frag.frag, mds);
  673. if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
  674. CEPH_MDS_STATE_ACTIVE)
  675. return mds;
  676. }
  677. }
  678. }
  679. spin_lock(&ci->i_ceph_lock);
  680. cap = NULL;
  681. if (mode == USE_AUTH_MDS)
  682. cap = ci->i_auth_cap;
  683. if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
  684. cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
  685. if (!cap) {
  686. spin_unlock(&ci->i_ceph_lock);
  687. goto random;
  688. }
  689. mds = cap->session->s_mds;
  690. dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
  691. inode, ceph_vinop(inode), mds,
  692. cap == ci->i_auth_cap ? "auth " : "", cap);
  693. spin_unlock(&ci->i_ceph_lock);
  694. return mds;
  695. random:
  696. mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
  697. dout("choose_mds chose random mds%d\n", mds);
  698. return mds;
  699. }
  700. /*
  701. * session messages
  702. */
  703. static struct ceph_msg *create_session_msg(u32 op, u64 seq)
  704. {
  705. struct ceph_msg *msg;
  706. struct ceph_mds_session_head *h;
  707. msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
  708. false);
  709. if (!msg) {
  710. pr_err("create_session_msg ENOMEM creating msg\n");
  711. return NULL;
  712. }
  713. h = msg->front.iov_base;
  714. h->op = cpu_to_le32(op);
  715. h->seq = cpu_to_le64(seq);
  716. return msg;
  717. }
  718. /*
  719. * send session open request.
  720. *
  721. * called under mdsc->mutex
  722. */
  723. static int __open_session(struct ceph_mds_client *mdsc,
  724. struct ceph_mds_session *session)
  725. {
  726. struct ceph_msg *msg;
  727. int mstate;
  728. int mds = session->s_mds;
  729. /* wait for mds to go active? */
  730. mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
  731. dout("open_session to mds%d (%s)\n", mds,
  732. ceph_mds_state_name(mstate));
  733. session->s_state = CEPH_MDS_SESSION_OPENING;
  734. session->s_renew_requested = jiffies;
  735. /* send connect message */
  736. msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
  737. if (!msg)
  738. return -ENOMEM;
  739. ceph_con_send(&session->s_con, msg);
  740. return 0;
  741. }
  742. /*
  743. * open sessions for any export targets for the given mds
  744. *
  745. * called under mdsc->mutex
  746. */
  747. static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
  748. struct ceph_mds_session *session)
  749. {
  750. struct ceph_mds_info *mi;
  751. struct ceph_mds_session *ts;
  752. int i, mds = session->s_mds;
  753. int target;
  754. if (mds >= mdsc->mdsmap->m_max_mds)
  755. return;
  756. mi = &mdsc->mdsmap->m_info[mds];
  757. dout("open_export_target_sessions for mds%d (%d targets)\n",
  758. session->s_mds, mi->num_export_targets);
  759. for (i = 0; i < mi->num_export_targets; i++) {
  760. target = mi->export_targets[i];
  761. ts = __ceph_lookup_mds_session(mdsc, target);
  762. if (!ts) {
  763. ts = register_session(mdsc, target);
  764. if (IS_ERR(ts))
  765. return;
  766. }
  767. if (session->s_state == CEPH_MDS_SESSION_NEW ||
  768. session->s_state == CEPH_MDS_SESSION_CLOSING)
  769. __open_session(mdsc, session);
  770. else
  771. dout(" mds%d target mds%d %p is %s\n", session->s_mds,
  772. i, ts, session_state_name(ts->s_state));
  773. ceph_put_mds_session(ts);
  774. }
  775. }
  776. void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
  777. struct ceph_mds_session *session)
  778. {
  779. mutex_lock(&mdsc->mutex);
  780. __open_export_target_sessions(mdsc, session);
  781. mutex_unlock(&mdsc->mutex);
  782. }
  783. /*
  784. * session caps
  785. */
  786. /*
  787. * Free preallocated cap messages assigned to this session
  788. */
  789. static void cleanup_cap_releases(struct ceph_mds_session *session)
  790. {
  791. struct ceph_msg *msg;
  792. spin_lock(&session->s_cap_lock);
  793. while (!list_empty(&session->s_cap_releases)) {
  794. msg = list_first_entry(&session->s_cap_releases,
  795. struct ceph_msg, list_head);
  796. list_del_init(&msg->list_head);
  797. ceph_msg_put(msg);
  798. }
  799. while (!list_empty(&session->s_cap_releases_done)) {
  800. msg = list_first_entry(&session->s_cap_releases_done,
  801. struct ceph_msg, list_head);
  802. list_del_init(&msg->list_head);
  803. ceph_msg_put(msg);
  804. }
  805. spin_unlock(&session->s_cap_lock);
  806. }
  807. /*
  808. * Helper to safely iterate over all caps associated with a session, with
  809. * special care taken to handle a racing __ceph_remove_cap().
  810. *
  811. * Caller must hold session s_mutex.
  812. */
  813. static int iterate_session_caps(struct ceph_mds_session *session,
  814. int (*cb)(struct inode *, struct ceph_cap *,
  815. void *), void *arg)
  816. {
  817. struct list_head *p;
  818. struct ceph_cap *cap;
  819. struct inode *inode, *last_inode = NULL;
  820. struct ceph_cap *old_cap = NULL;
  821. int ret;
  822. dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
  823. spin_lock(&session->s_cap_lock);
  824. p = session->s_caps.next;
  825. while (p != &session->s_caps) {
  826. cap = list_entry(p, struct ceph_cap, session_caps);
  827. inode = igrab(&cap->ci->vfs_inode);
  828. if (!inode) {
  829. p = p->next;
  830. continue;
  831. }
  832. session->s_cap_iterator = cap;
  833. spin_unlock(&session->s_cap_lock);
  834. if (last_inode) {
  835. iput(last_inode);
  836. last_inode = NULL;
  837. }
  838. if (old_cap) {
  839. ceph_put_cap(session->s_mdsc, old_cap);
  840. old_cap = NULL;
  841. }
  842. ret = cb(inode, cap, arg);
  843. last_inode = inode;
  844. spin_lock(&session->s_cap_lock);
  845. p = p->next;
  846. if (cap->ci == NULL) {
  847. dout("iterate_session_caps finishing cap %p removal\n",
  848. cap);
  849. BUG_ON(cap->session != session);
  850. list_del_init(&cap->session_caps);
  851. session->s_nr_caps--;
  852. cap->session = NULL;
  853. old_cap = cap; /* put_cap it w/o locks held */
  854. }
  855. if (ret < 0)
  856. goto out;
  857. }
  858. ret = 0;
  859. out:
  860. session->s_cap_iterator = NULL;
  861. spin_unlock(&session->s_cap_lock);
  862. if (last_inode)
  863. iput(last_inode);
  864. if (old_cap)
  865. ceph_put_cap(session->s_mdsc, old_cap);
  866. return ret;
  867. }
  868. static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
  869. void *arg)
  870. {
  871. struct ceph_inode_info *ci = ceph_inode(inode);
  872. int drop = 0;
  873. dout("removing cap %p, ci is %p, inode is %p\n",
  874. cap, ci, &ci->vfs_inode);
  875. spin_lock(&ci->i_ceph_lock);
  876. __ceph_remove_cap(cap, false);
  877. if (!__ceph_is_any_real_caps(ci)) {
  878. struct ceph_mds_client *mdsc =
  879. ceph_sb_to_client(inode->i_sb)->mdsc;
  880. spin_lock(&mdsc->cap_dirty_lock);
  881. if (!list_empty(&ci->i_dirty_item)) {
  882. pr_info(" dropping dirty %s state for %p %lld\n",
  883. ceph_cap_string(ci->i_dirty_caps),
  884. inode, ceph_ino(inode));
  885. ci->i_dirty_caps = 0;
  886. list_del_init(&ci->i_dirty_item);
  887. drop = 1;
  888. }
  889. if (!list_empty(&ci->i_flushing_item)) {
  890. pr_info(" dropping dirty+flushing %s state for %p %lld\n",
  891. ceph_cap_string(ci->i_flushing_caps),
  892. inode, ceph_ino(inode));
  893. ci->i_flushing_caps = 0;
  894. list_del_init(&ci->i_flushing_item);
  895. mdsc->num_cap_flushing--;
  896. drop = 1;
  897. }
  898. if (drop && ci->i_wrbuffer_ref) {
  899. pr_info(" dropping dirty data for %p %lld\n",
  900. inode, ceph_ino(inode));
  901. ci->i_wrbuffer_ref = 0;
  902. ci->i_wrbuffer_ref_head = 0;
  903. drop++;
  904. }
  905. spin_unlock(&mdsc->cap_dirty_lock);
  906. }
  907. spin_unlock(&ci->i_ceph_lock);
  908. while (drop--)
  909. iput(inode);
  910. return 0;
  911. }
  912. /*
  913. * caller must hold session s_mutex
  914. */
  915. static void remove_session_caps(struct ceph_mds_session *session)
  916. {
  917. dout("remove_session_caps on %p\n", session);
  918. iterate_session_caps(session, remove_session_caps_cb, NULL);
  919. spin_lock(&session->s_cap_lock);
  920. if (session->s_nr_caps > 0) {
  921. struct super_block *sb = session->s_mdsc->fsc->sb;
  922. struct inode *inode;
  923. struct ceph_cap *cap, *prev = NULL;
  924. struct ceph_vino vino;
  925. /*
  926. * iterate_session_caps() skips inodes that are being
  927. * deleted, we need to wait until deletions are complete.
  928. * __wait_on_freeing_inode() is designed for the job,
  929. * but it is not exported, so use lookup inode function
  930. * to access it.
  931. */
  932. while (!list_empty(&session->s_caps)) {
  933. cap = list_entry(session->s_caps.next,
  934. struct ceph_cap, session_caps);
  935. if (cap == prev)
  936. break;
  937. prev = cap;
  938. vino = cap->ci->i_vino;
  939. spin_unlock(&session->s_cap_lock);
  940. inode = ceph_find_inode(sb, vino);
  941. iput(inode);
  942. spin_lock(&session->s_cap_lock);
  943. }
  944. }
  945. spin_unlock(&session->s_cap_lock);
  946. BUG_ON(session->s_nr_caps > 0);
  947. BUG_ON(!list_empty(&session->s_cap_flushing));
  948. cleanup_cap_releases(session);
  949. }
  950. /*
  951. * wake up any threads waiting on this session's caps. if the cap is
  952. * old (didn't get renewed on the client reconnect), remove it now.
  953. *
  954. * caller must hold s_mutex.
  955. */
  956. static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
  957. void *arg)
  958. {
  959. struct ceph_inode_info *ci = ceph_inode(inode);
  960. wake_up_all(&ci->i_cap_wq);
  961. if (arg) {
  962. spin_lock(&ci->i_ceph_lock);
  963. ci->i_wanted_max_size = 0;
  964. ci->i_requested_max_size = 0;
  965. spin_unlock(&ci->i_ceph_lock);
  966. }
  967. return 0;
  968. }
  969. static void wake_up_session_caps(struct ceph_mds_session *session,
  970. int reconnect)
  971. {
  972. dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
  973. iterate_session_caps(session, wake_up_session_cb,
  974. (void *)(unsigned long)reconnect);
  975. }
  976. /*
  977. * Send periodic message to MDS renewing all currently held caps. The
  978. * ack will reset the expiration for all caps from this session.
  979. *
  980. * caller holds s_mutex
  981. */
  982. static int send_renew_caps(struct ceph_mds_client *mdsc,
  983. struct ceph_mds_session *session)
  984. {
  985. struct ceph_msg *msg;
  986. int state;
  987. if (time_after_eq(jiffies, session->s_cap_ttl) &&
  988. time_after_eq(session->s_cap_ttl, session->s_renew_requested))
  989. pr_info("mds%d caps stale\n", session->s_mds);
  990. session->s_renew_requested = jiffies;
  991. /* do not try to renew caps until a recovering mds has reconnected
  992. * with its clients. */
  993. state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
  994. if (state < CEPH_MDS_STATE_RECONNECT) {
  995. dout("send_renew_caps ignoring mds%d (%s)\n",
  996. session->s_mds, ceph_mds_state_name(state));
  997. return 0;
  998. }
  999. dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
  1000. ceph_mds_state_name(state));
  1001. msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
  1002. ++session->s_renew_seq);
  1003. if (!msg)
  1004. return -ENOMEM;
  1005. ceph_con_send(&session->s_con, msg);
  1006. return 0;
  1007. }
  1008. /*
  1009. * Note new cap ttl, and any transition from stale -> not stale (fresh?).
  1010. *
  1011. * Called under session->s_mutex
  1012. */
  1013. static void renewed_caps(struct ceph_mds_client *mdsc,
  1014. struct ceph_mds_session *session, int is_renew)
  1015. {
  1016. int was_stale;
  1017. int wake = 0;
  1018. spin_lock(&session->s_cap_lock);
  1019. was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
  1020. session->s_cap_ttl = session->s_renew_requested +
  1021. mdsc->mdsmap->m_session_timeout*HZ;
  1022. if (was_stale) {
  1023. if (time_before(jiffies, session->s_cap_ttl)) {
  1024. pr_info("mds%d caps renewed\n", session->s_mds);
  1025. wake = 1;
  1026. } else {
  1027. pr_info("mds%d caps still stale\n", session->s_mds);
  1028. }
  1029. }
  1030. dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
  1031. session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
  1032. time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
  1033. spin_unlock(&session->s_cap_lock);
  1034. if (wake)
  1035. wake_up_session_caps(session, 0);
  1036. }
  1037. /*
  1038. * send a session close request
  1039. */
  1040. static int request_close_session(struct ceph_mds_client *mdsc,
  1041. struct ceph_mds_session *session)
  1042. {
  1043. struct ceph_msg *msg;
  1044. dout("request_close_session mds%d state %s seq %lld\n",
  1045. session->s_mds, session_state_name(session->s_state),
  1046. session->s_seq);
  1047. msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
  1048. if (!msg)
  1049. return -ENOMEM;
  1050. ceph_con_send(&session->s_con, msg);
  1051. return 0;
  1052. }
  1053. /*
  1054. * Called with s_mutex held.
  1055. */
  1056. static int __close_session(struct ceph_mds_client *mdsc,
  1057. struct ceph_mds_session *session)
  1058. {
  1059. if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
  1060. return 0;
  1061. session->s_state = CEPH_MDS_SESSION_CLOSING;
  1062. return request_close_session(mdsc, session);
  1063. }
  1064. /*
  1065. * Trim old(er) caps.
  1066. *
  1067. * Because we can't cache an inode without one or more caps, we do
  1068. * this indirectly: if a cap is unused, we prune its aliases, at which
  1069. * point the inode will hopefully get dropped to.
  1070. *
  1071. * Yes, this is a bit sloppy. Our only real goal here is to respond to
  1072. * memory pressure from the MDS, though, so it needn't be perfect.
  1073. */
  1074. static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
  1075. {
  1076. struct ceph_mds_session *session = arg;
  1077. struct ceph_inode_info *ci = ceph_inode(inode);
  1078. int used, oissued, mine;
  1079. if (session->s_trim_caps <= 0)
  1080. return -1;
  1081. spin_lock(&ci->i_ceph_lock);
  1082. mine = cap->issued | cap->implemented;
  1083. used = __ceph_caps_used(ci);
  1084. oissued = __ceph_caps_issued_other(ci, cap);
  1085. dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
  1086. inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
  1087. ceph_cap_string(used));
  1088. if (ci->i_dirty_caps)
  1089. goto out; /* dirty caps */
  1090. if ((used & ~oissued) & mine)
  1091. goto out; /* we need these caps */
  1092. session->s_trim_caps--;
  1093. if (oissued) {
  1094. /* we aren't the only cap.. just remove us */
  1095. __ceph_remove_cap(cap, true);
  1096. } else {
  1097. /* try to drop referring dentries */
  1098. spin_unlock(&ci->i_ceph_lock);
  1099. d_prune_aliases(inode);
  1100. dout("trim_caps_cb %p cap %p pruned, count now %d\n",
  1101. inode, cap, atomic_read(&inode->i_count));
  1102. return 0;
  1103. }
  1104. out:
  1105. spin_unlock(&ci->i_ceph_lock);
  1106. return 0;
  1107. }
  1108. /*
  1109. * Trim session cap count down to some max number.
  1110. */
  1111. static int trim_caps(struct ceph_mds_client *mdsc,
  1112. struct ceph_mds_session *session,
  1113. int max_caps)
  1114. {
  1115. int trim_caps = session->s_nr_caps - max_caps;
  1116. dout("trim_caps mds%d start: %d / %d, trim %d\n",
  1117. session->s_mds, session->s_nr_caps, max_caps, trim_caps);
  1118. if (trim_caps > 0) {
  1119. session->s_trim_caps = trim_caps;
  1120. iterate_session_caps(session, trim_caps_cb, session);
  1121. dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
  1122. session->s_mds, session->s_nr_caps, max_caps,
  1123. trim_caps - session->s_trim_caps);
  1124. session->s_trim_caps = 0;
  1125. }
  1126. return 0;
  1127. }
  1128. /*
  1129. * Allocate cap_release messages. If there is a partially full message
  1130. * in the queue, try to allocate enough to cover it's remainder, so that
  1131. * we can send it immediately.
  1132. *
  1133. * Called under s_mutex.
  1134. */
  1135. int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
  1136. struct ceph_mds_session *session)
  1137. {
  1138. struct ceph_msg *msg, *partial = NULL;
  1139. struct ceph_mds_cap_release *head;
  1140. int err = -ENOMEM;
  1141. int extra = mdsc->fsc->mount_options->cap_release_safety;
  1142. int num;
  1143. dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
  1144. extra);
  1145. spin_lock(&session->s_cap_lock);
  1146. if (!list_empty(&session->s_cap_releases)) {
  1147. msg = list_first_entry(&session->s_cap_releases,
  1148. struct ceph_msg,
  1149. list_head);
  1150. head = msg->front.iov_base;
  1151. num = le32_to_cpu(head->num);
  1152. if (num) {
  1153. dout(" partial %p with (%d/%d)\n", msg, num,
  1154. (int)CEPH_CAPS_PER_RELEASE);
  1155. extra += CEPH_CAPS_PER_RELEASE - num;
  1156. partial = msg;
  1157. }
  1158. }
  1159. while (session->s_num_cap_releases < session->s_nr_caps + extra) {
  1160. spin_unlock(&session->s_cap_lock);
  1161. msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
  1162. GFP_NOFS, false);
  1163. if (!msg)
  1164. goto out_unlocked;
  1165. dout("add_cap_releases %p msg %p now %d\n", session, msg,
  1166. (int)msg->front.iov_len);
  1167. head = msg->front.iov_base;
  1168. head->num = cpu_to_le32(0);
  1169. msg->front.iov_len = sizeof(*head);
  1170. spin_lock(&session->s_cap_lock);
  1171. list_add(&msg->list_head, &session->s_cap_releases);
  1172. session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
  1173. }
  1174. if (partial) {
  1175. head = partial->front.iov_base;
  1176. num = le32_to_cpu(head->num);
  1177. dout(" queueing partial %p with %d/%d\n", partial, num,
  1178. (int)CEPH_CAPS_PER_RELEASE);
  1179. list_move_tail(&partial->list_head,
  1180. &session->s_cap_releases_done);
  1181. session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
  1182. }
  1183. err = 0;
  1184. spin_unlock(&session->s_cap_lock);
  1185. out_unlocked:
  1186. return err;
  1187. }
  1188. /*
  1189. * flush all dirty inode data to disk.
  1190. *
  1191. * returns true if we've flushed through want_flush_seq
  1192. */
  1193. static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
  1194. {
  1195. int mds, ret = 1;
  1196. dout("check_cap_flush want %lld\n", want_flush_seq);
  1197. mutex_lock(&mdsc->mutex);
  1198. for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
  1199. struct ceph_mds_session *session = mdsc->sessions[mds];
  1200. if (!session)
  1201. continue;
  1202. get_session(session);
  1203. mutex_unlock(&mdsc->mutex);
  1204. mutex_lock(&session->s_mutex);
  1205. if (!list_empty(&session->s_cap_flushing)) {
  1206. struct ceph_inode_info *ci =
  1207. list_entry(session->s_cap_flushing.next,
  1208. struct ceph_inode_info,
  1209. i_flushing_item);
  1210. struct inode *inode = &ci->vfs_inode;
  1211. spin_lock(&ci->i_ceph_lock);
  1212. if (ci->i_cap_flush_seq <= want_flush_seq) {
  1213. dout("check_cap_flush still flushing %p "
  1214. "seq %lld <= %lld to mds%d\n", inode,
  1215. ci->i_cap_flush_seq, want_flush_seq,
  1216. session->s_mds);
  1217. ret = 0;
  1218. }
  1219. spin_unlock(&ci->i_ceph_lock);
  1220. }
  1221. mutex_unlock(&session->s_mutex);
  1222. ceph_put_mds_session(session);
  1223. if (!ret)
  1224. return ret;
  1225. mutex_lock(&mdsc->mutex);
  1226. }
  1227. mutex_unlock(&mdsc->mutex);
  1228. dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
  1229. return ret;
  1230. }
  1231. /*
  1232. * called under s_mutex
  1233. */
  1234. void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
  1235. struct ceph_mds_session *session)
  1236. {
  1237. struct ceph_msg *msg;
  1238. dout("send_cap_releases mds%d\n", session->s_mds);
  1239. spin_lock(&session->s_cap_lock);
  1240. while (!list_empty(&session->s_cap_releases_done)) {
  1241. msg = list_first_entry(&session->s_cap_releases_done,
  1242. struct ceph_msg, list_head);
  1243. list_del_init(&msg->list_head);
  1244. spin_unlock(&session->s_cap_lock);
  1245. msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
  1246. dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
  1247. ceph_con_send(&session->s_con, msg);
  1248. spin_lock(&session->s_cap_lock);
  1249. }
  1250. spin_unlock(&session->s_cap_lock);
  1251. }
  1252. static void discard_cap_releases(struct ceph_mds_client *mdsc,
  1253. struct ceph_mds_session *session)
  1254. {
  1255. struct ceph_msg *msg;
  1256. struct ceph_mds_cap_release *head;
  1257. unsigned num;
  1258. dout("discard_cap_releases mds%d\n", session->s_mds);
  1259. /* zero out the in-progress message */
  1260. msg = list_first_entry(&session->s_cap_releases,
  1261. struct ceph_msg, list_head);
  1262. head = msg->front.iov_base;
  1263. num = le32_to_cpu(head->num);
  1264. dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
  1265. head->num = cpu_to_le32(0);
  1266. msg->front.iov_len = sizeof(*head);
  1267. session->s_num_cap_releases += num;
  1268. /* requeue completed messages */
  1269. while (!list_empty(&session->s_cap_releases_done)) {
  1270. msg = list_first_entry(&session->s_cap_releases_done,
  1271. struct ceph_msg, list_head);
  1272. list_del_init(&msg->list_head);
  1273. head = msg->front.iov_base;
  1274. num = le32_to_cpu(head->num);
  1275. dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
  1276. num);
  1277. session->s_num_cap_releases += num;
  1278. head->num = cpu_to_le32(0);
  1279. msg->front.iov_len = sizeof(*head);
  1280. list_add(&msg->list_head, &session->s_cap_releases);
  1281. }
  1282. }
  1283. /*
  1284. * requests
  1285. */
  1286. /*
  1287. * Create an mds request.
  1288. */
  1289. struct ceph_mds_request *
  1290. ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
  1291. {
  1292. struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
  1293. if (!req)
  1294. return ERR_PTR(-ENOMEM);
  1295. mutex_init(&req->r_fill_mutex);
  1296. req->r_mdsc = mdsc;
  1297. req->r_started = jiffies;
  1298. req->r_resend_mds = -1;
  1299. INIT_LIST_HEAD(&req->r_unsafe_dir_item);
  1300. req->r_fmode = -1;
  1301. kref_init(&req->r_kref);
  1302. INIT_LIST_HEAD(&req->r_wait);
  1303. init_completion(&req->r_completion);
  1304. init_completion(&req->r_safe_completion);
  1305. INIT_LIST_HEAD(&req->r_unsafe_item);
  1306. req->r_op = op;
  1307. req->r_direct_mode = mode;
  1308. return req;
  1309. }
  1310. /*
  1311. * return oldest (lowest) request, tid in request tree, 0 if none.
  1312. *
  1313. * called under mdsc->mutex.
  1314. */
  1315. static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
  1316. {
  1317. if (RB_EMPTY_ROOT(&mdsc->request_tree))
  1318. return NULL;
  1319. return rb_entry(rb_first(&mdsc->request_tree),
  1320. struct ceph_mds_request, r_node);
  1321. }
  1322. static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
  1323. {
  1324. struct ceph_mds_request *req = __get_oldest_req(mdsc);
  1325. if (req)
  1326. return req->r_tid;
  1327. return 0;
  1328. }
  1329. /*
  1330. * Build a dentry's path. Allocate on heap; caller must kfree. Based
  1331. * on build_path_from_dentry in fs/cifs/dir.c.
  1332. *
  1333. * If @stop_on_nosnap, generate path relative to the first non-snapped
  1334. * inode.
  1335. *
  1336. * Encode hidden .snap dirs as a double /, i.e.
  1337. * foo/.snap/bar -> foo//bar
  1338. */
  1339. char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
  1340. int stop_on_nosnap)
  1341. {
  1342. struct dentry *temp;
  1343. char *path;
  1344. int len, pos;
  1345. unsigned seq;
  1346. if (dentry == NULL)
  1347. return ERR_PTR(-EINVAL);
  1348. retry:
  1349. len = 0;
  1350. seq = read_seqbegin(&rename_lock);
  1351. rcu_read_lock();
  1352. for (temp = dentry; !IS_ROOT(temp);) {
  1353. struct inode *inode = temp->d_inode;
  1354. if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
  1355. len++; /* slash only */
  1356. else if (stop_on_nosnap && inode &&
  1357. ceph_snap(inode) == CEPH_NOSNAP)
  1358. break;
  1359. else
  1360. len += 1 + temp->d_name.len;
  1361. temp = temp->d_parent;
  1362. }
  1363. rcu_read_unlock();
  1364. if (len)
  1365. len--; /* no leading '/' */
  1366. path = kmalloc(len+1, GFP_NOFS);
  1367. if (path == NULL)
  1368. return ERR_PTR(-ENOMEM);
  1369. pos = len;
  1370. path[pos] = 0; /* trailing null */
  1371. rcu_read_lock();
  1372. for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
  1373. struct inode *inode;
  1374. spin_lock(&temp->d_lock);
  1375. inode = temp->d_inode;
  1376. if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
  1377. dout("build_path path+%d: %p SNAPDIR\n",
  1378. pos, temp);
  1379. } else if (stop_on_nosnap && inode &&
  1380. ceph_snap(inode) == CEPH_NOSNAP) {
  1381. spin_unlock(&temp->d_lock);
  1382. break;
  1383. } else {
  1384. pos -= temp->d_name.len;
  1385. if (pos < 0) {
  1386. spin_unlock(&temp->d_lock);
  1387. break;
  1388. }
  1389. strncpy(path + pos, temp->d_name.name,
  1390. temp->d_name.len);
  1391. }
  1392. spin_unlock(&temp->d_lock);
  1393. if (pos)
  1394. path[--pos] = '/';
  1395. temp = temp->d_parent;
  1396. }
  1397. rcu_read_unlock();
  1398. if (pos != 0 || read_seqretry(&rename_lock, seq)) {
  1399. pr_err("build_path did not end path lookup where "
  1400. "expected, namelen is %d, pos is %d\n", len, pos);
  1401. /* presumably this is only possible if racing with a
  1402. rename of one of the parent directories (we can not
  1403. lock the dentries above us to prevent this, but
  1404. retrying should be harmless) */
  1405. kfree(path);
  1406. goto retry;
  1407. }
  1408. *base = ceph_ino(temp->d_inode);
  1409. *plen = len;
  1410. dout("build_path on %p %d built %llx '%.*s'\n",
  1411. dentry, d_count(dentry), *base, len, path);
  1412. return path;
  1413. }
  1414. static int build_dentry_path(struct dentry *dentry,
  1415. const char **ppath, int *ppathlen, u64 *pino,
  1416. int *pfreepath)
  1417. {
  1418. char *path;
  1419. if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
  1420. *pino = ceph_ino(dentry->d_parent->d_inode);
  1421. *ppath = dentry->d_name.name;
  1422. *ppathlen = dentry->d_name.len;
  1423. return 0;
  1424. }
  1425. path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
  1426. if (IS_ERR(path))
  1427. return PTR_ERR(path);
  1428. *ppath = path;
  1429. *pfreepath = 1;
  1430. return 0;
  1431. }
  1432. static int build_inode_path(struct inode *inode,
  1433. const char **ppath, int *ppathlen, u64 *pino,
  1434. int *pfreepath)
  1435. {
  1436. struct dentry *dentry;
  1437. char *path;
  1438. if (ceph_snap(inode) == CEPH_NOSNAP) {
  1439. *pino = ceph_ino(inode);
  1440. *ppathlen = 0;
  1441. return 0;
  1442. }
  1443. dentry = d_find_alias(inode);
  1444. path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
  1445. dput(dentry);
  1446. if (IS_ERR(path))
  1447. return PTR_ERR(path);
  1448. *ppath = path;
  1449. *pfreepath = 1;
  1450. return 0;
  1451. }
  1452. /*
  1453. * request arguments may be specified via an inode *, a dentry *, or
  1454. * an explicit ino+path.
  1455. */
  1456. static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
  1457. const char *rpath, u64 rino,
  1458. const char **ppath, int *pathlen,
  1459. u64 *ino, int *freepath)
  1460. {
  1461. int r = 0;
  1462. if (rinode) {
  1463. r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
  1464. dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
  1465. ceph_snap(rinode));
  1466. } else if (rdentry) {
  1467. r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
  1468. dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
  1469. *ppath);
  1470. } else if (rpath || rino) {
  1471. *ino = rino;
  1472. *ppath = rpath;
  1473. *pathlen = rpath ? strlen(rpath) : 0;
  1474. dout(" path %.*s\n", *pathlen, rpath);
  1475. }
  1476. return r;
  1477. }
  1478. /*
  1479. * called under mdsc->mutex
  1480. */
  1481. static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
  1482. struct ceph_mds_request *req,
  1483. int mds)
  1484. {
  1485. struct ceph_msg *msg;
  1486. struct ceph_mds_request_head *head;
  1487. const char *path1 = NULL;
  1488. const char *path2 = NULL;
  1489. u64 ino1 = 0, ino2 = 0;
  1490. int pathlen1 = 0, pathlen2 = 0;
  1491. int freepath1 = 0, freepath2 = 0;
  1492. int len;
  1493. u16 releases;
  1494. void *p, *end;
  1495. int ret;
  1496. ret = set_request_path_attr(req->r_inode, req->r_dentry,
  1497. req->r_path1, req->r_ino1.ino,
  1498. &path1, &pathlen1, &ino1, &freepath1);
  1499. if (ret < 0) {
  1500. msg = ERR_PTR(ret);
  1501. goto out;
  1502. }
  1503. ret = set_request_path_attr(NULL, req->r_old_dentry,
  1504. req->r_path2, req->r_ino2.ino,
  1505. &path2, &pathlen2, &ino2, &freepath2);
  1506. if (ret < 0) {
  1507. msg = ERR_PTR(ret);
  1508. goto out_free1;
  1509. }
  1510. len = sizeof(*head) +
  1511. pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
  1512. /* calculate (max) length for cap releases */
  1513. len += sizeof(struct ceph_mds_request_release) *
  1514. (!!req->r_inode_drop + !!req->r_dentry_drop +
  1515. !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
  1516. if (req->r_dentry_drop)
  1517. len += req->r_dentry->d_name.len;
  1518. if (req->r_old_dentry_drop)
  1519. len += req->r_old_dentry->d_name.len;
  1520. msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
  1521. if (!msg) {
  1522. msg = ERR_PTR(-ENOMEM);
  1523. goto out_free2;
  1524. }
  1525. msg->hdr.tid = cpu_to_le64(req->r_tid);
  1526. head = msg->front.iov_base;
  1527. p = msg->front.iov_base + sizeof(*head);
  1528. end = msg->front.iov_base + msg->front.iov_len;
  1529. head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
  1530. head->op = cpu_to_le32(req->r_op);
  1531. head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
  1532. head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
  1533. head->args = req->r_args;
  1534. ceph_encode_filepath(&p, end, ino1, path1);
  1535. ceph_encode_filepath(&p, end, ino2, path2);
  1536. /* make note of release offset, in case we need to replay */
  1537. req->r_request_release_offset = p - msg->front.iov_base;
  1538. /* cap releases */
  1539. releases = 0;
  1540. if (req->r_inode_drop)
  1541. releases += ceph_encode_inode_release(&p,
  1542. req->r_inode ? req->r_inode : req->r_dentry->d_inode,
  1543. mds, req->r_inode_drop, req->r_inode_unless, 0);
  1544. if (req->r_dentry_drop)
  1545. releases += ceph_encode_dentry_release(&p, req->r_dentry,
  1546. mds, req->r_dentry_drop, req->r_dentry_unless);
  1547. if (req->r_old_dentry_drop)
  1548. releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
  1549. mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
  1550. if (req->r_old_inode_drop)
  1551. releases += ceph_encode_inode_release(&p,
  1552. req->r_old_dentry->d_inode,
  1553. mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
  1554. head->num_releases = cpu_to_le16(releases);
  1555. BUG_ON(p > end);
  1556. msg->front.iov_len = p - msg->front.iov_base;
  1557. msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
  1558. if (req->r_data_len) {
  1559. /* outbound data set only by ceph_sync_setxattr() */
  1560. BUG_ON(!req->r_pages);
  1561. ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0);
  1562. }
  1563. msg->hdr.data_len = cpu_to_le32(req->r_data_len);
  1564. msg->hdr.data_off = cpu_to_le16(0);
  1565. out_free2:
  1566. if (freepath2)
  1567. kfree((char *)path2);
  1568. out_free1:
  1569. if (freepath1)
  1570. kfree((char *)path1);
  1571. out:
  1572. return msg;
  1573. }
  1574. /*
  1575. * called under mdsc->mutex if error, under no mutex if
  1576. * success.
  1577. */
  1578. static void complete_request(struct ceph_mds_client *mdsc,
  1579. struct ceph_mds_request *req)
  1580. {
  1581. if (req->r_callback)
  1582. req->r_callback(mdsc, req);
  1583. else
  1584. complete_all(&req->r_completion);
  1585. }
  1586. /*
  1587. * called under mdsc->mutex
  1588. */
  1589. static int __prepare_send_request(struct ceph_mds_client *mdsc,
  1590. struct ceph_mds_request *req,
  1591. int mds)
  1592. {
  1593. struct ceph_mds_request_head *rhead;
  1594. struct ceph_msg *msg;
  1595. int flags = 0;
  1596. req->r_attempts++;
  1597. if (req->r_inode) {
  1598. struct ceph_cap *cap =
  1599. ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
  1600. if (cap)
  1601. req->r_sent_on_mseq = cap->mseq;
  1602. else
  1603. req->r_sent_on_mseq = -1;
  1604. }
  1605. dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
  1606. req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
  1607. if (req->r_got_unsafe) {
  1608. /*
  1609. * Replay. Do not regenerate message (and rebuild
  1610. * paths, etc.); just use the original message.
  1611. * Rebuilding paths will break for renames because
  1612. * d_move mangles the src name.
  1613. */
  1614. msg = req->r_request;
  1615. rhead = msg->front.iov_base;
  1616. flags = le32_to_cpu(rhead->flags);
  1617. flags |= CEPH_MDS_FLAG_REPLAY;
  1618. rhead->flags = cpu_to_le32(flags);
  1619. if (req->r_target_inode)
  1620. rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
  1621. rhead->num_retry = req->r_attempts - 1;
  1622. /* remove cap/dentry releases from message */
  1623. rhead->num_releases = 0;
  1624. msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
  1625. msg->front.iov_len = req->r_request_release_offset;
  1626. return 0;
  1627. }
  1628. if (req->r_request) {
  1629. ceph_msg_put(req->r_request);
  1630. req->r_request = NULL;
  1631. }
  1632. msg = create_request_message(mdsc, req, mds);
  1633. if (IS_ERR(msg)) {
  1634. req->r_err = PTR_ERR(msg);
  1635. complete_request(mdsc, req);
  1636. return PTR_ERR(msg);
  1637. }
  1638. req->r_request = msg;
  1639. rhead = msg->front.iov_base;
  1640. rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
  1641. if (req->r_got_unsafe)
  1642. flags |= CEPH_MDS_FLAG_REPLAY;
  1643. if (req->r_locked_dir)
  1644. flags |= CEPH_MDS_FLAG_WANT_DENTRY;
  1645. rhead->flags = cpu_to_le32(flags);
  1646. rhead->num_fwd = req->r_num_fwd;
  1647. rhead->num_retry = req->r_attempts - 1;
  1648. rhead->ino = 0;
  1649. dout(" r_locked_dir = %p\n", req->r_locked_dir);
  1650. return 0;
  1651. }
  1652. /*
  1653. * send request, or put it on the appropriate wait list.
  1654. */
  1655. static int __do_request(struct ceph_mds_client *mdsc,
  1656. struct ceph_mds_request *req)
  1657. {
  1658. struct ceph_mds_session *session = NULL;
  1659. int mds = -1;
  1660. int err = -EAGAIN;
  1661. if (req->r_err || req->r_got_result) {
  1662. if (req->r_aborted)
  1663. __unregister_request(mdsc, req);
  1664. goto out;
  1665. }
  1666. if (req->r_timeout &&
  1667. time_after_eq(jiffies, req->r_started + req->r_timeout)) {
  1668. dout("do_request timed out\n");
  1669. err = -EIO;
  1670. goto finish;
  1671. }
  1672. put_request_session(req);
  1673. mds = __choose_mds(mdsc, req);
  1674. if (mds < 0 ||
  1675. ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
  1676. dout("do_request no mds or not active, waiting for map\n");
  1677. list_add(&req->r_wait, &mdsc->waiting_for_map);
  1678. goto out;
  1679. }
  1680. /* get, open session */
  1681. session = __ceph_lookup_mds_session(mdsc, mds);
  1682. if (!session) {
  1683. session = register_session(mdsc, mds);
  1684. if (IS_ERR(session)) {
  1685. err = PTR_ERR(session);
  1686. goto finish;
  1687. }
  1688. }
  1689. req->r_session = get_session(session);
  1690. dout("do_request mds%d session %p state %s\n", mds, session,
  1691. session_state_name(session->s_state));
  1692. if (session->s_state != CEPH_MDS_SESSION_OPEN &&
  1693. session->s_state != CEPH_MDS_SESSION_HUNG) {
  1694. if (session->s_state == CEPH_MDS_SESSION_NEW ||
  1695. session->s_state == CEPH_MDS_SESSION_CLOSING)
  1696. __open_session(mdsc, session);
  1697. list_add(&req->r_wait, &session->s_waiting);
  1698. goto out_session;
  1699. }
  1700. /* send request */
  1701. req->r_resend_mds = -1; /* forget any previous mds hint */
  1702. if (req->r_request_started == 0) /* note request start time */
  1703. req->r_request_started = jiffies;
  1704. err = __prepare_send_request(mdsc, req, mds);
  1705. if (!err) {
  1706. ceph_msg_get(req->r_request);
  1707. ceph_con_send(&session->s_con, req->r_request);
  1708. }
  1709. out_session:
  1710. ceph_put_mds_session(session);
  1711. out:
  1712. return err;
  1713. finish:
  1714. req->r_err = err;
  1715. complete_request(mdsc, req);
  1716. goto out;
  1717. }
  1718. /*
  1719. * called under mdsc->mutex
  1720. */
  1721. static void __wake_requests(struct ceph_mds_client *mdsc,
  1722. struct list_head *head)
  1723. {
  1724. struct ceph_mds_request *req;
  1725. LIST_HEAD(tmp_list);
  1726. list_splice_init(head, &tmp_list);
  1727. while (!list_empty(&tmp_list)) {
  1728. req = list_entry(tmp_list.next,
  1729. struct ceph_mds_request, r_wait);
  1730. list_del_init(&req->r_wait);
  1731. dout(" wake request %p tid %llu\n", req, req->r_tid);
  1732. __do_request(mdsc, req);
  1733. }
  1734. }
  1735. /*
  1736. * Wake up threads with requests pending for @mds, so that they can
  1737. * resubmit their requests to a possibly different mds.
  1738. */
  1739. static void kick_requests(struct ceph_mds_client *mdsc, int mds)
  1740. {
  1741. struct ceph_mds_request *req;
  1742. struct rb_node *p;
  1743. dout("kick_requests mds%d\n", mds);
  1744. for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
  1745. req = rb_entry(p, struct ceph_mds_request, r_node);
  1746. if (req->r_got_unsafe)
  1747. continue;
  1748. if (req->r_session &&
  1749. req->r_session->s_mds == mds) {
  1750. dout(" kicking tid %llu\n", req->r_tid);
  1751. __do_request(mdsc, req);
  1752. }
  1753. }
  1754. }
  1755. void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
  1756. struct ceph_mds_request *req)
  1757. {
  1758. dout("submit_request on %p\n", req);
  1759. mutex_lock(&mdsc->mutex);
  1760. __register_request(mdsc, req, NULL);
  1761. __do_request(mdsc, req);
  1762. mutex_unlock(&mdsc->mutex);
  1763. }
  1764. /*
  1765. * Synchrously perform an mds request. Take care of all of the
  1766. * session setup, forwarding, retry details.
  1767. */
  1768. int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
  1769. struct inode *dir,
  1770. struct ceph_mds_request *req)
  1771. {
  1772. int err;
  1773. dout("do_request on %p\n", req);
  1774. /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
  1775. if (req->r_inode)
  1776. ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
  1777. if (req->r_locked_dir)
  1778. ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
  1779. if (req->r_old_dentry)
  1780. ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
  1781. CEPH_CAP_PIN);
  1782. /* issue */
  1783. mutex_lock(&mdsc->mutex);
  1784. __register_request(mdsc, req, dir);
  1785. __do_request(mdsc, req);
  1786. if (req->r_err) {
  1787. err = req->r_err;
  1788. __unregister_request(mdsc, req);
  1789. dout("do_request early error %d\n", err);
  1790. goto out;
  1791. }
  1792. /* wait */
  1793. mutex_unlock(&mdsc->mutex);
  1794. dout("do_request waiting\n");
  1795. if (req->r_timeout) {
  1796. err = (long)wait_for_completion_killable_timeout(
  1797. &req->r_completion, req->r_timeout);
  1798. if (err == 0)
  1799. err = -EIO;
  1800. } else {
  1801. err = wait_for_completion_killable(&req->r_completion);
  1802. }
  1803. dout("do_request waited, got %d\n", err);
  1804. mutex_lock(&mdsc->mutex);
  1805. /* only abort if we didn't race with a real reply */
  1806. if (req->r_got_result) {
  1807. err = le32_to_cpu(req->r_reply_info.head->result);
  1808. } else if (err < 0) {
  1809. dout("aborted request %lld with %d\n", req->r_tid, err);
  1810. /*
  1811. * ensure we aren't running concurrently with
  1812. * ceph_fill_trace or ceph_readdir_prepopulate, which
  1813. * rely on locks (dir mutex) held by our caller.
  1814. */
  1815. mutex_lock(&req->r_fill_mutex);
  1816. req->r_err = err;
  1817. req->r_aborted = true;
  1818. mutex_unlock(&req->r_fill_mutex);
  1819. if (req->r_locked_dir &&
  1820. (req->r_op & CEPH_MDS_OP_WRITE))
  1821. ceph_invalidate_dir_request(req);
  1822. } else {
  1823. err = req->r_err;
  1824. }
  1825. out:
  1826. mutex_unlock(&mdsc->mutex);
  1827. dout("do_request %p done, result %d\n", req, err);
  1828. return err;
  1829. }
  1830. /*
  1831. * Invalidate dir's completeness, dentry lease state on an aborted MDS
  1832. * namespace request.
  1833. */
  1834. void ceph_invalidate_dir_request(struct ceph_mds_request *req)
  1835. {
  1836. struct inode *inode = req->r_locked_dir;
  1837. dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
  1838. ceph_dir_clear_complete(inode);
  1839. if (req->r_dentry)
  1840. ceph_invalidate_dentry_lease(req->r_dentry);
  1841. if (req->r_old_dentry)
  1842. ceph_invalidate_dentry_lease(req->r_old_dentry);
  1843. }
  1844. /*
  1845. * Handle mds reply.
  1846. *
  1847. * We take the session mutex and parse and process the reply immediately.
  1848. * This preserves the logical ordering of replies, capabilities, etc., sent
  1849. * by the MDS as they are applied to our local cache.
  1850. */
  1851. static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
  1852. {
  1853. struct ceph_mds_client *mdsc = session->s_mdsc;
  1854. struct ceph_mds_request *req;
  1855. struct ceph_mds_reply_head *head = msg->front.iov_base;
  1856. struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
  1857. u64 tid;
  1858. int err, result;
  1859. int mds = session->s_mds;
  1860. if (msg->front.iov_len < sizeof(*head)) {
  1861. pr_err("mdsc_handle_reply got corrupt (short) reply\n");
  1862. ceph_msg_dump(msg);
  1863. return;
  1864. }
  1865. /* get request, session */
  1866. tid = le64_to_cpu(msg->hdr.tid);
  1867. mutex_lock(&mdsc->mutex);
  1868. req = __lookup_request(mdsc, tid);
  1869. if (!req) {
  1870. dout("handle_reply on unknown tid %llu\n", tid);
  1871. mutex_unlock(&mdsc->mutex);
  1872. return;
  1873. }
  1874. dout("handle_reply %p\n", req);
  1875. /* correct session? */
  1876. if (req->r_session != session) {
  1877. pr_err("mdsc_handle_reply got %llu on session mds%d"
  1878. " not mds%d\n", tid, session->s_mds,
  1879. req->r_session ? req->r_session->s_mds : -1);
  1880. mutex_unlock(&mdsc->mutex);
  1881. goto out;
  1882. }
  1883. /* dup? */
  1884. if ((req->r_got_unsafe && !head->safe) ||
  1885. (req->r_got_safe && head->safe)) {
  1886. pr_warning("got a dup %s reply on %llu from mds%d\n",
  1887. head->safe ? "safe" : "unsafe", tid, mds);
  1888. mutex_unlock(&mdsc->mutex);
  1889. goto out;
  1890. }
  1891. if (req->r_got_safe && !head->safe) {
  1892. pr_warning("got unsafe after safe on %llu from mds%d\n",
  1893. tid, mds);
  1894. mutex_unlock(&mdsc->mutex);
  1895. goto out;
  1896. }
  1897. result = le32_to_cpu(head->result);
  1898. /*
  1899. * Handle an ESTALE
  1900. * if we're not talking to the authority, send to them
  1901. * if the authority has changed while we weren't looking,
  1902. * send to new authority
  1903. * Otherwise we just have to return an ESTALE
  1904. */
  1905. if (result == -ESTALE) {
  1906. dout("got ESTALE on request %llu", req->r_tid);
  1907. if (!req->r_inode) {
  1908. /* do nothing; not an authority problem */
  1909. } else if (req->r_direct_mode != USE_AUTH_MDS) {
  1910. dout("not using auth, setting for that now");
  1911. req->r_direct_mode = USE_AUTH_MDS;
  1912. __do_request(mdsc, req);
  1913. mutex_unlock(&mdsc->mutex);
  1914. goto out;
  1915. } else {
  1916. struct ceph_inode_info *ci = ceph_inode(req->r_inode);
  1917. struct ceph_cap *cap = NULL;
  1918. if (req->r_session)
  1919. cap = ceph_get_cap_for_mds(ci,
  1920. req->r_session->s_mds);
  1921. dout("already using auth");
  1922. if ((!cap || cap != ci->i_auth_cap) ||
  1923. (cap->mseq != req->r_sent_on_mseq)) {
  1924. dout("but cap changed, so resending");
  1925. __do_request(mdsc, req);
  1926. mutex_unlock(&mdsc->mutex);
  1927. goto out;
  1928. }
  1929. }
  1930. dout("have to return ESTALE on request %llu", req->r_tid);
  1931. }
  1932. if (head->safe) {
  1933. req->r_got_safe = true;
  1934. __unregister_request(mdsc, req);
  1935. if (req->r_got_unsafe) {
  1936. /*
  1937. * We already handled the unsafe response, now do the
  1938. * cleanup. No need to examine the response; the MDS
  1939. * doesn't include any result info in the safe
  1940. * response. And even if it did, there is nothing
  1941. * useful we could do with a revised return value.
  1942. */
  1943. dout("got safe reply %llu, mds%d\n", tid, mds);
  1944. list_del_init(&req->r_unsafe_item);
  1945. /* last unsafe request during umount? */
  1946. if (mdsc->stopping && !__get_oldest_req(mdsc))
  1947. complete_all(&mdsc->safe_umount_waiters);
  1948. mutex_unlock(&mdsc->mutex);
  1949. goto out;
  1950. }
  1951. } else {
  1952. req->r_got_unsafe = true;
  1953. list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
  1954. }
  1955. dout("handle_reply tid %lld result %d\n", tid, result);
  1956. rinfo = &req->r_reply_info;
  1957. err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
  1958. mutex_unlock(&mdsc->mutex);
  1959. mutex_lock(&session->s_mutex);
  1960. if (err < 0) {
  1961. pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
  1962. ceph_msg_dump(msg);
  1963. goto out_err;
  1964. }
  1965. /* snap trace */
  1966. if (rinfo->snapblob_len) {
  1967. down_write(&mdsc->snap_rwsem);
  1968. ceph_update_snap_trace(mdsc, rinfo->snapblob,
  1969. rinfo->snapblob + rinfo->snapblob_len,
  1970. le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
  1971. downgrade_write(&mdsc->snap_rwsem);
  1972. } else {
  1973. down_read(&mdsc->snap_rwsem);
  1974. }
  1975. /* insert trace into our cache */
  1976. mutex_lock(&req->r_fill_mutex);
  1977. err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
  1978. if (err == 0) {
  1979. if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
  1980. req->r_op == CEPH_MDS_OP_LSSNAP))
  1981. ceph_readdir_prepopulate(req, req->r_session);
  1982. ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
  1983. }
  1984. mutex_unlock(&req->r_fill_mutex);
  1985. up_read(&mdsc->snap_rwsem);
  1986. out_err:
  1987. mutex_lock(&mdsc->mutex);
  1988. if (!req->r_aborted) {
  1989. if (err) {
  1990. req->r_err = err;
  1991. } else {
  1992. req->r_reply = msg;
  1993. ceph_msg_get(msg);
  1994. req->r_got_result = true;
  1995. }
  1996. } else {
  1997. dout("reply arrived after request %lld was aborted\n", tid);
  1998. }
  1999. mutex_unlock(&mdsc->mutex);
  2000. ceph_add_cap_releases(mdsc, req->r_session);
  2001. mutex_unlock(&session->s_mutex);
  2002. /* kick calling process */
  2003. complete_request(mdsc, req);
  2004. out:
  2005. ceph_mdsc_put_request(req);
  2006. return;
  2007. }
  2008. /*
  2009. * handle mds notification that our request has been forwarded.
  2010. */
  2011. static void handle_forward(struct ceph_mds_client *mdsc,
  2012. struct ceph_mds_session *session,
  2013. struct ceph_msg *msg)
  2014. {
  2015. struct ceph_mds_request *req;
  2016. u64 tid = le64_to_cpu(msg->hdr.tid);
  2017. u32 next_mds;
  2018. u32 fwd_seq;
  2019. int err = -EINVAL;
  2020. void *p = msg->front.iov_base;
  2021. void *end = p + msg->front.iov_len;
  2022. ceph_decode_need(&p, end, 2*sizeof(u32), bad);
  2023. next_mds = ceph_decode_32(&p);
  2024. fwd_seq = ceph_decode_32(&p);
  2025. mutex_lock(&mdsc->mutex);
  2026. req = __lookup_request(mdsc, tid);
  2027. if (!req) {
  2028. dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
  2029. goto out; /* dup reply? */
  2030. }
  2031. if (req->r_aborted) {
  2032. dout("forward tid %llu aborted, unregistering\n", tid);
  2033. __unregister_request(mdsc, req);
  2034. } else if (fwd_seq <= req->r_num_fwd) {
  2035. dout("forward tid %llu to mds%d - old seq %d <= %d\n",
  2036. tid, next_mds, req->r_num_fwd, fwd_seq);
  2037. } else {
  2038. /* resend. forward race not possible; mds would drop */
  2039. dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
  2040. BUG_ON(req->r_err);
  2041. BUG_ON(req->r_got_result);
  2042. req->r_num_fwd = fwd_seq;
  2043. req->r_resend_mds = next_mds;
  2044. put_request_session(req);
  2045. __do_request(mdsc, req);
  2046. }
  2047. ceph_mdsc_put_request(req);
  2048. out:
  2049. mutex_unlock(&mdsc->mutex);
  2050. return;
  2051. bad:
  2052. pr_err("mdsc_handle_forward decode error err=%d\n", err);
  2053. }
  2054. /*
  2055. * handle a mds session control message
  2056. */
  2057. static void handle_session(struct ceph_mds_session *session,
  2058. struct ceph_msg *msg)
  2059. {
  2060. struct ceph_mds_client *mdsc = session->s_mdsc;
  2061. u32 op;
  2062. u64 seq;
  2063. int mds = session->s_mds;
  2064. struct ceph_mds_session_head *h = msg->front.iov_base;
  2065. int wake = 0;
  2066. /* decode */
  2067. if (msg->front.iov_len != sizeof(*h))
  2068. goto bad;
  2069. op = le32_to_cpu(h->op);
  2070. seq = le64_to_cpu(h->seq);
  2071. mutex_lock(&mdsc->mutex);
  2072. if (op == CEPH_SESSION_CLOSE)
  2073. __unregister_session(mdsc, session);
  2074. /* FIXME: this ttl calculation is generous */
  2075. session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
  2076. mutex_unlock(&mdsc->mutex);
  2077. mutex_lock(&session->s_mutex);
  2078. dout("handle_session mds%d %s %p state %s seq %llu\n",
  2079. mds, ceph_session_op_name(op), session,
  2080. session_state_name(session->s_state), seq);
  2081. if (session->s_state == CEPH_MDS_SESSION_HUNG) {
  2082. session->s_state = CEPH_MDS_SESSION_OPEN;
  2083. pr_info("mds%d came back\n", session->s_mds);
  2084. }
  2085. switch (op) {
  2086. case CEPH_SESSION_OPEN:
  2087. if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
  2088. pr_info("mds%d reconnect success\n", session->s_mds);
  2089. session->s_state = CEPH_MDS_SESSION_OPEN;
  2090. renewed_caps(mdsc, session, 0);
  2091. wake = 1;
  2092. if (mdsc->stopping)
  2093. __close_session(mdsc, session);
  2094. break;
  2095. case CEPH_SESSION_RENEWCAPS:
  2096. if (session->s_renew_seq == seq)
  2097. renewed_caps(mdsc, session, 1);
  2098. break;
  2099. case CEPH_SESSION_CLOSE:
  2100. if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
  2101. pr_info("mds%d reconnect denied\n", session->s_mds);
  2102. remove_session_caps(session);
  2103. wake = 1; /* for good measure */
  2104. wake_up_all(&mdsc->session_close_wq);
  2105. kick_requests(mdsc, mds);
  2106. break;
  2107. case CEPH_SESSION_STALE:
  2108. pr_info("mds%d caps went stale, renewing\n",
  2109. session->s_mds);
  2110. spin_lock(&session->s_gen_ttl_lock);
  2111. session->s_cap_gen++;
  2112. session->s_cap_ttl = jiffies - 1;
  2113. spin_unlock(&session->s_gen_ttl_lock);
  2114. send_renew_caps(mdsc, session);
  2115. break;
  2116. case CEPH_SESSION_RECALL_STATE:
  2117. trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
  2118. break;
  2119. default:
  2120. pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
  2121. WARN_ON(1);
  2122. }
  2123. mutex_unlock(&session->s_mutex);
  2124. if (wake) {
  2125. mutex_lock(&mdsc->mutex);
  2126. __wake_requests(mdsc, &session->s_waiting);
  2127. mutex_unlock(&mdsc->mutex);
  2128. }
  2129. return;
  2130. bad:
  2131. pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
  2132. (int)msg->front.iov_len);
  2133. ceph_msg_dump(msg);
  2134. return;
  2135. }
  2136. /*
  2137. * called under session->mutex.
  2138. */
  2139. static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
  2140. struct ceph_mds_session *session)
  2141. {
  2142. struct ceph_mds_request *req, *nreq;
  2143. int err;
  2144. dout("replay_unsafe_requests mds%d\n", session->s_mds);
  2145. mutex_lock(&mdsc->mutex);
  2146. list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
  2147. err = __prepare_send_request(mdsc, req, session->s_mds);
  2148. if (!err) {
  2149. ceph_msg_get(req->r_request);
  2150. ceph_con_send(&session->s_con, req->r_request);
  2151. }
  2152. }
  2153. mutex_unlock(&mdsc->mutex);
  2154. }
  2155. /*
  2156. * Encode information about a cap for a reconnect with the MDS.
  2157. */
  2158. static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
  2159. void *arg)
  2160. {
  2161. union {
  2162. struct ceph_mds_cap_reconnect v2;
  2163. struct ceph_mds_cap_reconnect_v1 v1;
  2164. } rec;
  2165. size_t reclen;
  2166. struct ceph_inode_info *ci;
  2167. struct ceph_reconnect_state *recon_state = arg;
  2168. struct ceph_pagelist *pagelist = recon_state->pagelist;
  2169. char *path;
  2170. int pathlen, err;
  2171. u64 pathbase;
  2172. struct dentry *dentry;
  2173. ci = cap->ci;
  2174. dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
  2175. inode, ceph_vinop(inode), cap, cap->cap_id,
  2176. ceph_cap_string(cap->issued));
  2177. err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
  2178. if (err)
  2179. return err;
  2180. dentry = d_find_alias(inode);
  2181. if (dentry) {
  2182. path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
  2183. if (IS_ERR(path)) {
  2184. err = PTR_ERR(path);
  2185. goto out_dput;
  2186. }
  2187. } else {
  2188. path = NULL;
  2189. pathlen = 0;
  2190. }
  2191. err = ceph_pagelist_encode_string(pagelist, path, pathlen);
  2192. if (err)
  2193. goto out_free;
  2194. spin_lock(&ci->i_ceph_lock);
  2195. cap->seq = 0; /* reset cap seq */
  2196. cap->issue_seq = 0; /* and issue_seq */
  2197. cap->mseq = 0; /* and migrate_seq */
  2198. cap->cap_gen = cap->session->s_cap_gen;
  2199. if (recon_state->flock) {
  2200. rec.v2.cap_id = cpu_to_le64(cap->cap_id);
  2201. rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
  2202. rec.v2.issued = cpu_to_le32(cap->issued);
  2203. rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
  2204. rec.v2.pathbase = cpu_to_le64(pathbase);
  2205. rec.v2.flock_len = 0;
  2206. reclen = sizeof(rec.v2);
  2207. } else {
  2208. rec.v1.cap_id = cpu_to_le64(cap->cap_id);
  2209. rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
  2210. rec.v1.issued = cpu_to_le32(cap->issued);
  2211. rec.v1.size = cpu_to_le64(inode->i_size);
  2212. ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
  2213. ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
  2214. rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
  2215. rec.v1.pathbase = cpu_to_le64(pathbase);
  2216. reclen = sizeof(rec.v1);
  2217. }
  2218. spin_unlock(&ci->i_ceph_lock);
  2219. if (recon_state->flock) {
  2220. int num_fcntl_locks, num_flock_locks;
  2221. struct ceph_filelock *flocks;
  2222. encode_again:
  2223. spin_lock(&inode->i_lock);
  2224. ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
  2225. spin_unlock(&inode->i_lock);
  2226. flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
  2227. sizeof(struct ceph_filelock), GFP_NOFS);
  2228. if (!flocks) {
  2229. err = -ENOMEM;
  2230. goto out_free;
  2231. }
  2232. spin_lock(&inode->i_lock);
  2233. err = ceph_encode_locks_to_buffer(inode, flocks,
  2234. num_fcntl_locks,
  2235. num_flock_locks);
  2236. spin_unlock(&inode->i_lock);
  2237. if (err) {
  2238. kfree(flocks);
  2239. if (err == -ENOSPC)
  2240. goto encode_again;
  2241. goto out_free;
  2242. }
  2243. /*
  2244. * number of encoded locks is stable, so copy to pagelist
  2245. */
  2246. rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
  2247. (num_fcntl_locks+num_flock_locks) *
  2248. sizeof(struct ceph_filelock));
  2249. err = ceph_pagelist_append(pagelist, &rec, reclen);
  2250. if (!err)
  2251. err = ceph_locks_to_pagelist(flocks, pagelist,
  2252. num_fcntl_locks,
  2253. num_flock_locks);
  2254. kfree(flocks);
  2255. } else {
  2256. err = ceph_pagelist_append(pagelist, &rec, reclen);
  2257. }
  2258. recon_state->nr_caps++;
  2259. out_free:
  2260. kfree(path);
  2261. out_dput:
  2262. dput(dentry);
  2263. return err;
  2264. }
  2265. /*
  2266. * If an MDS fails and recovers, clients need to reconnect in order to
  2267. * reestablish shared state. This includes all caps issued through
  2268. * this session _and_ the snap_realm hierarchy. Because it's not
  2269. * clear which snap realms the mds cares about, we send everything we
  2270. * know about.. that ensures we'll then get any new info the
  2271. * recovering MDS might have.
  2272. *
  2273. * This is a relatively heavyweight operation, but it's rare.
  2274. *
  2275. * called with mdsc->mutex held.
  2276. */
  2277. static void send_mds_reconnect(struct ceph_mds_client *mdsc,
  2278. struct ceph_mds_session *session)
  2279. {
  2280. struct ceph_msg *reply;
  2281. struct rb_node *p;
  2282. int mds = session->s_mds;
  2283. int err = -ENOMEM;
  2284. int s_nr_caps;
  2285. struct ceph_pagelist *pagelist;
  2286. struct ceph_reconnect_state recon_state;
  2287. pr_info("mds%d reconnect start\n", mds);
  2288. pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
  2289. if (!pagelist)
  2290. goto fail_nopagelist;
  2291. ceph_pagelist_init(pagelist);
  2292. reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
  2293. if (!reply)
  2294. goto fail_nomsg;
  2295. mutex_lock(&session->s_mutex);
  2296. session->s_state = CEPH_MDS_SESSION_RECONNECTING;
  2297. session->s_seq = 0;
  2298. ceph_con_close(&session->s_con);
  2299. ceph_con_open(&session->s_con,
  2300. CEPH_ENTITY_TYPE_MDS, mds,
  2301. ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
  2302. /* replay unsafe requests */
  2303. replay_unsafe_requests(mdsc, session);
  2304. down_read(&mdsc->snap_rwsem);
  2305. dout("session %p state %s\n", session,
  2306. session_state_name(session->s_state));
  2307. spin_lock(&session->s_gen_ttl_lock);
  2308. session->s_cap_gen++;
  2309. spin_unlock(&session->s_gen_ttl_lock);
  2310. spin_lock(&session->s_cap_lock);
  2311. /*
  2312. * notify __ceph_remove_cap() that we are composing cap reconnect.
  2313. * If a cap get released before being added to the cap reconnect,
  2314. * __ceph_remove_cap() should skip queuing cap release.
  2315. */
  2316. session->s_cap_reconnect = 1;
  2317. /* drop old cap expires; we're about to reestablish that state */
  2318. discard_cap_releases(mdsc, session);
  2319. spin_unlock(&session->s_cap_lock);
  2320. /* traverse this session's caps */
  2321. s_nr_caps = session->s_nr_caps;
  2322. err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
  2323. if (err)
  2324. goto fail;
  2325. recon_state.nr_caps = 0;
  2326. recon_state.pagelist = pagelist;
  2327. recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
  2328. err = iterate_session_caps(session, encode_caps_cb, &recon_state);
  2329. if (err < 0)
  2330. goto fail;
  2331. spin_lock(&session->s_cap_lock);
  2332. session->s_cap_reconnect = 0;
  2333. spin_unlock(&session->s_cap_lock);
  2334. /*
  2335. * snaprealms. we provide mds with the ino, seq (version), and
  2336. * parent for all of our realms. If the mds has any newer info,
  2337. * it will tell us.
  2338. */
  2339. for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
  2340. struct ceph_snap_realm *realm =
  2341. rb_entry(p, struct ceph_snap_realm, node);
  2342. struct ceph_mds_snaprealm_reconnect sr_rec;
  2343. dout(" adding snap realm %llx seq %lld parent %llx\n",
  2344. realm->ino, realm->seq, realm->parent_ino);
  2345. sr_rec.ino = cpu_to_le64(realm->ino);
  2346. sr_rec.seq = cpu_to_le64(realm->seq);
  2347. sr_rec.parent = cpu_to_le64(realm->parent_ino);
  2348. err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
  2349. if (err)
  2350. goto fail;
  2351. }
  2352. if (recon_state.flock)
  2353. reply->hdr.version = cpu_to_le16(2);
  2354. /* raced with cap release? */
  2355. if (s_nr_caps != recon_state.nr_caps) {
  2356. struct page *page = list_first_entry(&pagelist->head,
  2357. struct page, lru);
  2358. __le32 *addr = kmap_atomic(page);
  2359. *addr = cpu_to_le32(recon_state.nr_caps);
  2360. kunmap_atomic(addr);
  2361. }
  2362. reply->hdr.data_len = cpu_to_le32(pagelist->length);
  2363. ceph_msg_data_add_pagelist(reply, pagelist);
  2364. ceph_con_send(&session->s_con, reply);
  2365. mutex_unlock(&session->s_mutex);
  2366. mutex_lock(&mdsc->mutex);
  2367. __wake_requests(mdsc, &session->s_waiting);
  2368. mutex_unlock(&mdsc->mutex);
  2369. up_read(&mdsc->snap_rwsem);
  2370. return;
  2371. fail:
  2372. ceph_msg_put(reply);
  2373. up_read(&mdsc->snap_rwsem);
  2374. mutex_unlock(&session->s_mutex);
  2375. fail_nomsg:
  2376. ceph_pagelist_release(pagelist);
  2377. kfree(pagelist);
  2378. fail_nopagelist:
  2379. pr_err("error %d preparing reconnect for mds%d\n", err, mds);
  2380. return;
  2381. }
  2382. /*
  2383. * compare old and new mdsmaps, kicking requests
  2384. * and closing out old connections as necessary
  2385. *
  2386. * called under mdsc->mutex.
  2387. */
  2388. static void check_new_map(struct ceph_mds_client *mdsc,
  2389. struct ceph_mdsmap *newmap,
  2390. struct ceph_mdsmap *oldmap)
  2391. {
  2392. int i;
  2393. int oldstate, newstate;
  2394. struct ceph_mds_session *s;
  2395. dout("check_new_map new %u old %u\n",
  2396. newmap->m_epoch, oldmap->m_epoch);
  2397. for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
  2398. if (mdsc->sessions[i] == NULL)
  2399. continue;
  2400. s = mdsc->sessions[i];
  2401. oldstate = ceph_mdsmap_get_state(oldmap, i);
  2402. newstate = ceph_mdsmap_get_state(newmap, i);
  2403. dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
  2404. i, ceph_mds_state_name(oldstate),
  2405. ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
  2406. ceph_mds_state_name(newstate),
  2407. ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
  2408. session_state_name(s->s_state));
  2409. if (i >= newmap->m_max_mds ||
  2410. memcmp(ceph_mdsmap_get_addr(oldmap, i),
  2411. ceph_mdsmap_get_addr(newmap, i),
  2412. sizeof(struct ceph_entity_addr))) {
  2413. if (s->s_state == CEPH_MDS_SESSION_OPENING) {
  2414. /* the session never opened, just close it
  2415. * out now */
  2416. __wake_requests(mdsc, &s->s_waiting);
  2417. __unregister_session(mdsc, s);
  2418. } else {
  2419. /* just close it */
  2420. mutex_unlock(&mdsc->mutex);
  2421. mutex_lock(&s->s_mutex);
  2422. mutex_lock(&mdsc->mutex);
  2423. ceph_con_close(&s->s_con);
  2424. mutex_unlock(&s->s_mutex);
  2425. s->s_state = CEPH_MDS_SESSION_RESTARTING;
  2426. }
  2427. /* kick any requests waiting on the recovering mds */
  2428. kick_requests(mdsc, i);
  2429. } else if (oldstate == newstate) {
  2430. continue; /* nothing new with this mds */
  2431. }
  2432. /*
  2433. * send reconnect?
  2434. */
  2435. if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
  2436. newstate >= CEPH_MDS_STATE_RECONNECT) {
  2437. mutex_unlock(&mdsc->mutex);
  2438. send_mds_reconnect(mdsc, s);
  2439. mutex_lock(&mdsc->mutex);
  2440. }
  2441. /*
  2442. * kick request on any mds that has gone active.
  2443. */
  2444. if (oldstate < CEPH_MDS_STATE_ACTIVE &&
  2445. newstate >= CEPH_MDS_STATE_ACTIVE) {
  2446. if (oldstate != CEPH_MDS_STATE_CREATING &&
  2447. oldstate != CEPH_MDS_STATE_STARTING)
  2448. pr_info("mds%d recovery completed\n", s->s_mds);
  2449. kick_requests(mdsc, i);
  2450. ceph_kick_flushing_caps(mdsc, s);
  2451. wake_up_session_caps(s, 1);
  2452. }
  2453. }
  2454. for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
  2455. s = mdsc->sessions[i];
  2456. if (!s)
  2457. continue;
  2458. if (!ceph_mdsmap_is_laggy(newmap, i))
  2459. continue;
  2460. if (s->s_state == CEPH_MDS_SESSION_OPEN ||
  2461. s->s_state == CEPH_MDS_SESSION_HUNG ||
  2462. s->s_state == CEPH_MDS_SESSION_CLOSING) {
  2463. dout(" connecting to export targets of laggy mds%d\n",
  2464. i);
  2465. __open_export_target_sessions(mdsc, s);
  2466. }
  2467. }
  2468. }
  2469. /*
  2470. * leases
  2471. */
  2472. /*
  2473. * caller must hold session s_mutex, dentry->d_lock
  2474. */
  2475. void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
  2476. {
  2477. struct ceph_dentry_info *di = ceph_dentry(dentry);
  2478. ceph_put_mds_session(di->lease_session);
  2479. di->lease_session = NULL;
  2480. }
  2481. static void handle_lease(struct ceph_mds_client *mdsc,
  2482. struct ceph_mds_session *session,
  2483. struct ceph_msg *msg)
  2484. {
  2485. struct super_block *sb = mdsc->fsc->sb;
  2486. struct inode *inode;
  2487. struct dentry *parent, *dentry;
  2488. struct ceph_dentry_info *di;
  2489. int mds = session->s_mds;
  2490. struct ceph_mds_lease *h = msg->front.iov_base;
  2491. u32 seq;
  2492. struct ceph_vino vino;
  2493. struct qstr dname;
  2494. int release = 0;
  2495. dout("handle_lease from mds%d\n", mds);
  2496. /* decode */
  2497. if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
  2498. goto bad;
  2499. vino.ino = le64_to_cpu(h->ino);
  2500. vino.snap = CEPH_NOSNAP;
  2501. seq = le32_to_cpu(h->seq);
  2502. dname.name = (void *)h + sizeof(*h) + sizeof(u32);
  2503. dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
  2504. if (dname.len != get_unaligned_le32(h+1))
  2505. goto bad;
  2506. mutex_lock(&session->s_mutex);
  2507. session->s_seq++;
  2508. /* lookup inode */
  2509. inode = ceph_find_inode(sb, vino);
  2510. dout("handle_lease %s, ino %llx %p %.*s\n",
  2511. ceph_lease_op_name(h->action), vino.ino, inode,
  2512. dname.len, dname.name);
  2513. if (inode == NULL) {
  2514. dout("handle_lease no inode %llx\n", vino.ino);
  2515. goto release;
  2516. }
  2517. /* dentry */
  2518. parent = d_find_alias(inode);
  2519. if (!parent) {
  2520. dout("no parent dentry on inode %p\n", inode);
  2521. WARN_ON(1);
  2522. goto release; /* hrm... */
  2523. }
  2524. dname.hash = full_name_hash(dname.name, dname.len);
  2525. dentry = d_lookup(parent, &dname);
  2526. dput(parent);
  2527. if (!dentry)
  2528. goto release;
  2529. spin_lock(&dentry->d_lock);
  2530. di = ceph_dentry(dentry);
  2531. switch (h->action) {
  2532. case CEPH_MDS_LEASE_REVOKE:
  2533. if (di->lease_session == session) {
  2534. if (ceph_seq_cmp(di->lease_seq, seq) > 0)
  2535. h->seq = cpu_to_le32(di->lease_seq);
  2536. __ceph_mdsc_drop_dentry_lease(dentry);
  2537. }
  2538. release = 1;
  2539. break;
  2540. case CEPH_MDS_LEASE_RENEW:
  2541. if (di->lease_session == session &&
  2542. di->lease_gen == session->s_cap_gen &&
  2543. di->lease_renew_from &&
  2544. di->lease_renew_after == 0) {
  2545. unsigned long duration =
  2546. le32_to_cpu(h->duration_ms) * HZ / 1000;
  2547. di->lease_seq = seq;
  2548. dentry->d_time = di->lease_renew_from + duration;
  2549. di->lease_renew_after = di->lease_renew_from +
  2550. (duration >> 1);
  2551. di->lease_renew_from = 0;
  2552. }
  2553. break;
  2554. }
  2555. spin_unlock(&dentry->d_lock);
  2556. dput(dentry);
  2557. if (!release)
  2558. goto out;
  2559. release:
  2560. /* let's just reuse the same message */
  2561. h->action = CEPH_MDS_LEASE_REVOKE_ACK;
  2562. ceph_msg_get(msg);
  2563. ceph_con_send(&session->s_con, msg);
  2564. out:
  2565. iput(inode);
  2566. mutex_unlock(&session->s_mutex);
  2567. return;
  2568. bad:
  2569. pr_err("corrupt lease message\n");
  2570. ceph_msg_dump(msg);
  2571. }
  2572. void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
  2573. struct inode *inode,
  2574. struct dentry *dentry, char action,
  2575. u32 seq)
  2576. {
  2577. struct ceph_msg *msg;
  2578. struct ceph_mds_lease *lease;
  2579. int len = sizeof(*lease) + sizeof(u32);
  2580. int dnamelen = 0;
  2581. dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
  2582. inode, dentry, ceph_lease_op_name(action), session->s_mds);
  2583. dnamelen = dentry->d_name.len;
  2584. len += dnamelen;
  2585. msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
  2586. if (!msg)
  2587. return;
  2588. lease = msg->front.iov_base;
  2589. lease->action = action;
  2590. lease->ino = cpu_to_le64(ceph_vino(inode).ino);
  2591. lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
  2592. lease->seq = cpu_to_le32(seq);
  2593. put_unaligned_le32(dnamelen, lease + 1);
  2594. memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
  2595. /*
  2596. * if this is a preemptive lease RELEASE, no need to
  2597. * flush request stream, since the actual request will
  2598. * soon follow.
  2599. */
  2600. msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
  2601. ceph_con_send(&session->s_con, msg);
  2602. }
  2603. /*
  2604. * Preemptively release a lease we expect to invalidate anyway.
  2605. * Pass @inode always, @dentry is optional.
  2606. */
  2607. void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
  2608. struct dentry *dentry)
  2609. {
  2610. struct ceph_dentry_info *di;
  2611. struct ceph_mds_session *session;
  2612. u32 seq;
  2613. BUG_ON(inode == NULL);
  2614. BUG_ON(dentry == NULL);
  2615. /* is dentry lease valid? */
  2616. spin_lock(&dentry->d_lock);
  2617. di = ceph_dentry(dentry);
  2618. if (!di || !di->lease_session ||
  2619. di->lease_session->s_mds < 0 ||
  2620. di->lease_gen != di->lease_session->s_cap_gen ||
  2621. !time_before(jiffies, dentry->d_time)) {
  2622. dout("lease_release inode %p dentry %p -- "
  2623. "no lease\n",
  2624. inode, dentry);
  2625. spin_unlock(&dentry->d_lock);
  2626. return;
  2627. }
  2628. /* we do have a lease on this dentry; note mds and seq */
  2629. session = ceph_get_mds_session(di->lease_session);
  2630. seq = di->lease_seq;
  2631. __ceph_mdsc_drop_dentry_lease(dentry);
  2632. spin_unlock(&dentry->d_lock);
  2633. dout("lease_release inode %p dentry %p to mds%d\n",
  2634. inode, dentry, session->s_mds);
  2635. ceph_mdsc_lease_send_msg(session, inode, dentry,
  2636. CEPH_MDS_LEASE_RELEASE, seq);
  2637. ceph_put_mds_session(session);
  2638. }
  2639. /*
  2640. * drop all leases (and dentry refs) in preparation for umount
  2641. */
  2642. static void drop_leases(struct ceph_mds_client *mdsc)
  2643. {
  2644. int i;
  2645. dout("drop_leases\n");
  2646. mutex_lock(&mdsc->mutex);
  2647. for (i = 0; i < mdsc->max_sessions; i++) {
  2648. struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
  2649. if (!s)
  2650. continue;
  2651. mutex_unlock(&mdsc->mutex);
  2652. mutex_lock(&s->s_mutex);
  2653. mutex_unlock(&s->s_mutex);
  2654. ceph_put_mds_session(s);
  2655. mutex_lock(&mdsc->mutex);
  2656. }
  2657. mutex_unlock(&mdsc->mutex);
  2658. }
  2659. /*
  2660. * delayed work -- periodically trim expired leases, renew caps with mds
  2661. */
  2662. static void schedule_delayed(struct ceph_mds_client *mdsc)
  2663. {
  2664. int delay = 5;
  2665. unsigned hz = round_jiffies_relative(HZ * delay);
  2666. schedule_delayed_work(&mdsc->delayed_work, hz);
  2667. }
  2668. static void delayed_work(struct work_struct *work)
  2669. {
  2670. int i;
  2671. struct ceph_mds_client *mdsc =
  2672. container_of(work, struct ceph_mds_client, delayed_work.work);
  2673. int renew_interval;
  2674. int renew_caps;
  2675. dout("mdsc delayed_work\n");
  2676. ceph_check_delayed_caps(mdsc);
  2677. mutex_lock(&mdsc->mutex);
  2678. renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
  2679. renew_caps = time_after_eq(jiffies, HZ*renew_interval +
  2680. mdsc->last_renew_caps);
  2681. if (renew_caps)
  2682. mdsc->last_renew_caps = jiffies;
  2683. for (i = 0; i < mdsc->max_sessions; i++) {
  2684. struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
  2685. if (s == NULL)
  2686. continue;
  2687. if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
  2688. dout("resending session close request for mds%d\n",
  2689. s->s_mds);
  2690. request_close_session(mdsc, s);
  2691. ceph_put_mds_session(s);
  2692. continue;
  2693. }
  2694. if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
  2695. if (s->s_state == CEPH_MDS_SESSION_OPEN) {
  2696. s->s_state = CEPH_MDS_SESSION_HUNG;
  2697. pr_info("mds%d hung\n", s->s_mds);
  2698. }
  2699. }
  2700. if (s->s_state < CEPH_MDS_SESSION_OPEN) {
  2701. /* this mds is failed or recovering, just wait */
  2702. ceph_put_mds_session(s);
  2703. continue;
  2704. }
  2705. mutex_unlock(&mdsc->mutex);
  2706. mutex_lock(&s->s_mutex);
  2707. if (renew_caps)
  2708. send_renew_caps(mdsc, s);
  2709. else
  2710. ceph_con_keepalive(&s->s_con);
  2711. ceph_add_cap_releases(mdsc, s);
  2712. if (s->s_state == CEPH_MDS_SESSION_OPEN ||
  2713. s->s_state == CEPH_MDS_SESSION_HUNG)
  2714. ceph_send_cap_releases(mdsc, s);
  2715. mutex_unlock(&s->s_mutex);
  2716. ceph_put_mds_session(s);
  2717. mutex_lock(&mdsc->mutex);
  2718. }
  2719. mutex_unlock(&mdsc->mutex);
  2720. schedule_delayed(mdsc);
  2721. }
  2722. int ceph_mdsc_init(struct ceph_fs_client *fsc)
  2723. {
  2724. struct ceph_mds_client *mdsc;
  2725. mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
  2726. if (!mdsc)
  2727. return -ENOMEM;
  2728. mdsc->fsc = fsc;
  2729. fsc->mdsc = mdsc;
  2730. mutex_init(&mdsc->mutex);
  2731. mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
  2732. if (mdsc->mdsmap == NULL) {
  2733. kfree(mdsc);
  2734. return -ENOMEM;
  2735. }
  2736. init_completion(&mdsc->safe_umount_waiters);
  2737. init_waitqueue_head(&mdsc->session_close_wq);
  2738. INIT_LIST_HEAD(&mdsc->waiting_for_map);
  2739. mdsc->sessions = NULL;
  2740. mdsc->max_sessions = 0;
  2741. mdsc->stopping = 0;
  2742. init_rwsem(&mdsc->snap_rwsem);
  2743. mdsc->snap_realms = RB_ROOT;
  2744. INIT_LIST_HEAD(&mdsc->snap_empty);
  2745. spin_lock_init(&mdsc->snap_empty_lock);
  2746. mdsc->last_tid = 0;
  2747. mdsc->request_tree = RB_ROOT;
  2748. INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
  2749. mdsc->last_renew_caps = jiffies;
  2750. INIT_LIST_HEAD(&mdsc->cap_delay_list);
  2751. spin_lock_init(&mdsc->cap_delay_lock);
  2752. INIT_LIST_HEAD(&mdsc->snap_flush_list);
  2753. spin_lock_init(&mdsc->snap_flush_lock);
  2754. mdsc->cap_flush_seq = 0;
  2755. INIT_LIST_HEAD(&mdsc->cap_dirty);
  2756. INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
  2757. mdsc->num_cap_flushing = 0;
  2758. spin_lock_init(&mdsc->cap_dirty_lock);
  2759. init_waitqueue_head(&mdsc->cap_flushing_wq);
  2760. spin_lock_init(&mdsc->dentry_lru_lock);
  2761. INIT_LIST_HEAD(&mdsc->dentry_lru);
  2762. ceph_caps_init(mdsc);
  2763. ceph_adjust_min_caps(mdsc, fsc->min_caps);
  2764. return 0;
  2765. }
  2766. /*
  2767. * Wait for safe replies on open mds requests. If we time out, drop
  2768. * all requests from the tree to avoid dangling dentry refs.
  2769. */
  2770. static void wait_requests(struct ceph_mds_client *mdsc)
  2771. {
  2772. struct ceph_mds_request *req;
  2773. struct ceph_fs_client *fsc = mdsc->fsc;
  2774. mutex_lock(&mdsc->mutex);
  2775. if (__get_oldest_req(mdsc)) {
  2776. mutex_unlock(&mdsc->mutex);
  2777. dout("wait_requests waiting for requests\n");
  2778. wait_for_completion_timeout(&mdsc->safe_umount_waiters,
  2779. fsc->client->options->mount_timeout * HZ);
  2780. /* tear down remaining requests */
  2781. mutex_lock(&mdsc->mutex);
  2782. while ((req = __get_oldest_req(mdsc))) {
  2783. dout("wait_requests timed out on tid %llu\n",
  2784. req->r_tid);
  2785. __unregister_request(mdsc, req);
  2786. }
  2787. }
  2788. mutex_unlock(&mdsc->mutex);
  2789. dout("wait_requests done\n");
  2790. }
  2791. /*
  2792. * called before mount is ro, and before dentries are torn down.
  2793. * (hmm, does this still race with new lookups?)
  2794. */
  2795. void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
  2796. {
  2797. dout("pre_umount\n");
  2798. mdsc->stopping = 1;
  2799. drop_leases(mdsc);
  2800. ceph_flush_dirty_caps(mdsc);
  2801. wait_requests(mdsc);
  2802. /*
  2803. * wait for reply handlers to drop their request refs and
  2804. * their inode/dcache refs
  2805. */
  2806. ceph_msgr_flush();
  2807. }
  2808. /*
  2809. * wait for all write mds requests to flush.
  2810. */
  2811. static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
  2812. {
  2813. struct ceph_mds_request *req = NULL, *nextreq;
  2814. struct rb_node *n;
  2815. mutex_lock(&mdsc->mutex);
  2816. dout("wait_unsafe_requests want %lld\n", want_tid);
  2817. restart:
  2818. req = __get_oldest_req(mdsc);
  2819. while (req && req->r_tid <= want_tid) {
  2820. /* find next request */
  2821. n = rb_next(&req->r_node);
  2822. if (n)
  2823. nextreq = rb_entry(n, struct ceph_mds_request, r_node);
  2824. else
  2825. nextreq = NULL;
  2826. if ((req->r_op & CEPH_MDS_OP_WRITE)) {
  2827. /* write op */
  2828. ceph_mdsc_get_request(req);
  2829. if (nextreq)
  2830. ceph_mdsc_get_request(nextreq);
  2831. mutex_unlock(&mdsc->mutex);
  2832. dout("wait_unsafe_requests wait on %llu (want %llu)\n",
  2833. req->r_tid, want_tid);
  2834. wait_for_completion(&req->r_safe_completion);
  2835. mutex_lock(&mdsc->mutex);
  2836. ceph_mdsc_put_request(req);
  2837. if (!nextreq)
  2838. break; /* next dne before, so we're done! */
  2839. if (RB_EMPTY_NODE(&nextreq->r_node)) {
  2840. /* next request was removed from tree */
  2841. ceph_mdsc_put_request(nextreq);
  2842. goto restart;
  2843. }
  2844. ceph_mdsc_put_request(nextreq); /* won't go away */
  2845. }
  2846. req = nextreq;
  2847. }
  2848. mutex_unlock(&mdsc->mutex);
  2849. dout("wait_unsafe_requests done\n");
  2850. }
  2851. void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
  2852. {
  2853. u64 want_tid, want_flush;
  2854. if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
  2855. return;
  2856. dout("sync\n");
  2857. mutex_lock(&mdsc->mutex);
  2858. want_tid = mdsc->last_tid;
  2859. want_flush = mdsc->cap_flush_seq;
  2860. mutex_unlock(&mdsc->mutex);
  2861. dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
  2862. ceph_flush_dirty_caps(mdsc);
  2863. wait_unsafe_requests(mdsc, want_tid);
  2864. wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
  2865. }
  2866. /*
  2867. * true if all sessions are closed, or we force unmount
  2868. */
  2869. static bool done_closing_sessions(struct ceph_mds_client *mdsc)
  2870. {
  2871. int i, n = 0;
  2872. if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
  2873. return true;
  2874. mutex_lock(&mdsc->mutex);
  2875. for (i = 0; i < mdsc->max_sessions; i++)
  2876. if (mdsc->sessions[i])
  2877. n++;
  2878. mutex_unlock(&mdsc->mutex);
  2879. return n == 0;
  2880. }
  2881. /*
  2882. * called after sb is ro.
  2883. */
  2884. void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
  2885. {
  2886. struct ceph_mds_session *session;
  2887. int i;
  2888. struct ceph_fs_client *fsc = mdsc->fsc;
  2889. unsigned long timeout = fsc->client->options->mount_timeout * HZ;
  2890. dout("close_sessions\n");
  2891. /* close sessions */
  2892. mutex_lock(&mdsc->mutex);
  2893. for (i = 0; i < mdsc->max_sessions; i++) {
  2894. session = __ceph_lookup_mds_session(mdsc, i);
  2895. if (!session)
  2896. continue;
  2897. mutex_unlock(&mdsc->mutex);
  2898. mutex_lock(&session->s_mutex);
  2899. __close_session(mdsc, session);
  2900. mutex_unlock(&session->s_mutex);
  2901. ceph_put_mds_session(session);
  2902. mutex_lock(&mdsc->mutex);
  2903. }
  2904. mutex_unlock(&mdsc->mutex);
  2905. dout("waiting for sessions to close\n");
  2906. wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
  2907. timeout);
  2908. /* tear down remaining sessions */
  2909. mutex_lock(&mdsc->mutex);
  2910. for (i = 0; i < mdsc->max_sessions; i++) {
  2911. if (mdsc->sessions[i]) {
  2912. session = get_session(mdsc->sessions[i]);
  2913. __unregister_session(mdsc, session);
  2914. mutex_unlock(&mdsc->mutex);
  2915. mutex_lock(&session->s_mutex);
  2916. remove_session_caps(session);
  2917. mutex_unlock(&session->s_mutex);
  2918. ceph_put_mds_session(session);
  2919. mutex_lock(&mdsc->mutex);
  2920. }
  2921. }
  2922. WARN_ON(!list_empty(&mdsc->cap_delay_list));
  2923. mutex_unlock(&mdsc->mutex);
  2924. ceph_cleanup_empty_realms(mdsc);
  2925. cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
  2926. dout("stopped\n");
  2927. }
  2928. static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
  2929. {
  2930. dout("stop\n");
  2931. cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
  2932. if (mdsc->mdsmap)
  2933. ceph_mdsmap_destroy(mdsc->mdsmap);
  2934. kfree(mdsc->sessions);
  2935. ceph_caps_finalize(mdsc);
  2936. }
  2937. void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
  2938. {
  2939. struct ceph_mds_client *mdsc = fsc->mdsc;
  2940. dout("mdsc_destroy %p\n", mdsc);
  2941. ceph_mdsc_stop(mdsc);
  2942. /* flush out any connection work with references to us */
  2943. ceph_msgr_flush();
  2944. fsc->mdsc = NULL;
  2945. kfree(mdsc);
  2946. dout("mdsc_destroy %p done\n", mdsc);
  2947. }
  2948. /*
  2949. * handle mds map update.
  2950. */
  2951. void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
  2952. {
  2953. u32 epoch;
  2954. u32 maplen;
  2955. void *p = msg->front.iov_base;
  2956. void *end = p + msg->front.iov_len;
  2957. struct ceph_mdsmap *newmap, *oldmap;
  2958. struct ceph_fsid fsid;
  2959. int err = -EINVAL;
  2960. ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
  2961. ceph_decode_copy(&p, &fsid, sizeof(fsid));
  2962. if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
  2963. return;
  2964. epoch = ceph_decode_32(&p);
  2965. maplen = ceph_decode_32(&p);
  2966. dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
  2967. /* do we need it? */
  2968. ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
  2969. mutex_lock(&mdsc->mutex);
  2970. if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
  2971. dout("handle_map epoch %u <= our %u\n",
  2972. epoch, mdsc->mdsmap->m_epoch);
  2973. mutex_unlock(&mdsc->mutex);
  2974. return;
  2975. }
  2976. newmap = ceph_mdsmap_decode(&p, end);
  2977. if (IS_ERR(newmap)) {
  2978. err = PTR_ERR(newmap);
  2979. goto bad_unlock;
  2980. }
  2981. /* swap into place */
  2982. if (mdsc->mdsmap) {
  2983. oldmap = mdsc->mdsmap;
  2984. mdsc->mdsmap = newmap;
  2985. check_new_map(mdsc, newmap, oldmap);
  2986. ceph_mdsmap_destroy(oldmap);
  2987. } else {
  2988. mdsc->mdsmap = newmap; /* first mds map */
  2989. }
  2990. mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
  2991. __wake_requests(mdsc, &mdsc->waiting_for_map);
  2992. mutex_unlock(&mdsc->mutex);
  2993. schedule_delayed(mdsc);
  2994. return;
  2995. bad_unlock:
  2996. mutex_unlock(&mdsc->mutex);
  2997. bad:
  2998. pr_err("error decoding mdsmap %d\n", err);
  2999. return;
  3000. }
  3001. static struct ceph_connection *con_get(struct ceph_connection *con)
  3002. {
  3003. struct ceph_mds_session *s = con->private;
  3004. if (get_session(s)) {
  3005. dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
  3006. return con;
  3007. }
  3008. dout("mdsc con_get %p FAIL\n", s);
  3009. return NULL;
  3010. }
  3011. static void con_put(struct ceph_connection *con)
  3012. {
  3013. struct ceph_mds_session *s = con->private;
  3014. dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
  3015. ceph_put_mds_session(s);
  3016. }
  3017. /*
  3018. * if the client is unresponsive for long enough, the mds will kill
  3019. * the session entirely.
  3020. */
  3021. static void peer_reset(struct ceph_connection *con)
  3022. {
  3023. struct ceph_mds_session *s = con->private;
  3024. struct ceph_mds_client *mdsc = s->s_mdsc;
  3025. pr_warning("mds%d closed our session\n", s->s_mds);
  3026. send_mds_reconnect(mdsc, s);
  3027. }
  3028. static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
  3029. {
  3030. struct ceph_mds_session *s = con->private;
  3031. struct ceph_mds_client *mdsc = s->s_mdsc;
  3032. int type = le16_to_cpu(msg->hdr.type);
  3033. mutex_lock(&mdsc->mutex);
  3034. if (__verify_registered_session(mdsc, s) < 0) {
  3035. mutex_unlock(&mdsc->mutex);
  3036. goto out;
  3037. }
  3038. mutex_unlock(&mdsc->mutex);
  3039. switch (type) {
  3040. case CEPH_MSG_MDS_MAP:
  3041. ceph_mdsc_handle_map(mdsc, msg);
  3042. break;
  3043. case CEPH_MSG_CLIENT_SESSION:
  3044. handle_session(s, msg);
  3045. break;
  3046. case CEPH_MSG_CLIENT_REPLY:
  3047. handle_reply(s, msg);
  3048. break;
  3049. case CEPH_MSG_CLIENT_REQUEST_FORWARD:
  3050. handle_forward(mdsc, s, msg);
  3051. break;
  3052. case CEPH_MSG_CLIENT_CAPS:
  3053. ceph_handle_caps(s, msg);
  3054. break;
  3055. case CEPH_MSG_CLIENT_SNAP:
  3056. ceph_handle_snap(mdsc, s, msg);
  3057. break;
  3058. case CEPH_MSG_CLIENT_LEASE:
  3059. handle_lease(mdsc, s, msg);
  3060. break;
  3061. default:
  3062. pr_err("received unknown message type %d %s\n", type,
  3063. ceph_msg_type_name(type));
  3064. }
  3065. out:
  3066. ceph_msg_put(msg);
  3067. }
  3068. /*
  3069. * authentication
  3070. */
  3071. /*
  3072. * Note: returned pointer is the address of a structure that's
  3073. * managed separately. Caller must *not* attempt to free it.
  3074. */
  3075. static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
  3076. int *proto, int force_new)
  3077. {
  3078. struct ceph_mds_session *s = con->private;
  3079. struct ceph_mds_client *mdsc = s->s_mdsc;
  3080. struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
  3081. struct ceph_auth_handshake *auth = &s->s_auth;
  3082. if (force_new && auth->authorizer) {
  3083. ceph_auth_destroy_authorizer(ac, auth->authorizer);
  3084. auth->authorizer = NULL;
  3085. }
  3086. if (!auth->authorizer) {
  3087. int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
  3088. auth);
  3089. if (ret)
  3090. return ERR_PTR(ret);
  3091. } else {
  3092. int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
  3093. auth);
  3094. if (ret)
  3095. return ERR_PTR(ret);
  3096. }
  3097. *proto = ac->protocol;
  3098. return auth;
  3099. }
  3100. static int verify_authorizer_reply(struct ceph_connection *con, int len)
  3101. {
  3102. struct ceph_mds_session *s = con->private;
  3103. struct ceph_mds_client *mdsc = s->s_mdsc;
  3104. struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
  3105. return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
  3106. }
  3107. static int invalidate_authorizer(struct ceph_connection *con)
  3108. {
  3109. struct ceph_mds_session *s = con->private;
  3110. struct ceph_mds_client *mdsc = s->s_mdsc;
  3111. struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
  3112. ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
  3113. return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
  3114. }
  3115. static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
  3116. struct ceph_msg_header *hdr, int *skip)
  3117. {
  3118. struct ceph_msg *msg;
  3119. int type = (int) le16_to_cpu(hdr->type);
  3120. int front_len = (int) le32_to_cpu(hdr->front_len);
  3121. if (con->in_msg)
  3122. return con->in_msg;
  3123. *skip = 0;
  3124. msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
  3125. if (!msg) {
  3126. pr_err("unable to allocate msg type %d len %d\n",
  3127. type, front_len);
  3128. return NULL;
  3129. }
  3130. return msg;
  3131. }
  3132. static const struct ceph_connection_operations mds_con_ops = {
  3133. .get = con_get,
  3134. .put = con_put,
  3135. .dispatch = dispatch,
  3136. .get_authorizer = get_authorizer,
  3137. .verify_authorizer_reply = verify_authorizer_reply,
  3138. .invalidate_authorizer = invalidate_authorizer,
  3139. .peer_reset = peer_reset,
  3140. .alloc_msg = mds_alloc_msg,
  3141. };
  3142. /* eof */