input.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/types.h>
  13. #include <linux/input.h>
  14. #include <linux/module.h>
  15. #include <linux/random.h>
  16. #include <linux/major.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/sched.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/poll.h>
  21. #include <linux/device.h>
  22. #include <linux/mutex.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/smp_lock.h>
  25. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  26. MODULE_DESCRIPTION("Input core");
  27. MODULE_LICENSE("GPL");
  28. #define INPUT_DEVICES 256
  29. /*
  30. * EV_ABS events which should not be cached are listed here.
  31. */
  32. static unsigned int input_abs_bypass_init_data[] __initdata = {
  33. ABS_MT_TOUCH_MAJOR,
  34. ABS_MT_TOUCH_MINOR,
  35. ABS_MT_WIDTH_MAJOR,
  36. ABS_MT_WIDTH_MINOR,
  37. ABS_MT_ORIENTATION,
  38. ABS_MT_POSITION_X,
  39. ABS_MT_POSITION_Y,
  40. ABS_MT_TOOL_TYPE,
  41. ABS_MT_BLOB_ID,
  42. ABS_MT_TRACKING_ID,
  43. 0
  44. };
  45. static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
  46. static LIST_HEAD(input_dev_list);
  47. static LIST_HEAD(input_handler_list);
  48. /*
  49. * input_mutex protects access to both input_dev_list and input_handler_list.
  50. * This also causes input_[un]register_device and input_[un]register_handler
  51. * be mutually exclusive which simplifies locking in drivers implementing
  52. * input handlers.
  53. */
  54. static DEFINE_MUTEX(input_mutex);
  55. static struct input_handler *input_table[8];
  56. static inline int is_event_supported(unsigned int code,
  57. unsigned long *bm, unsigned int max)
  58. {
  59. return code <= max && test_bit(code, bm);
  60. }
  61. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  62. {
  63. if (fuzz) {
  64. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  65. return old_val;
  66. if (value > old_val - fuzz && value < old_val + fuzz)
  67. return (old_val * 3 + value) / 4;
  68. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  69. return (old_val + value) / 2;
  70. }
  71. return value;
  72. }
  73. /*
  74. * Pass event through all open handles. This function is called with
  75. * dev->event_lock held and interrupts disabled.
  76. */
  77. static void input_pass_event(struct input_dev *dev,
  78. unsigned int type, unsigned int code, int value)
  79. {
  80. struct input_handle *handle;
  81. rcu_read_lock();
  82. handle = rcu_dereference(dev->grab);
  83. if (handle)
  84. handle->handler->event(handle, type, code, value);
  85. else
  86. list_for_each_entry_rcu(handle, &dev->h_list, d_node)
  87. if (handle->open)
  88. handle->handler->event(handle,
  89. type, code, value);
  90. rcu_read_unlock();
  91. }
  92. /*
  93. * Generate software autorepeat event. Note that we take
  94. * dev->event_lock here to avoid racing with input_event
  95. * which may cause keys get "stuck".
  96. */
  97. static void input_repeat_key(unsigned long data)
  98. {
  99. struct input_dev *dev = (void *) data;
  100. unsigned long flags;
  101. spin_lock_irqsave(&dev->event_lock, flags);
  102. if (test_bit(dev->repeat_key, dev->key) &&
  103. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  104. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  105. if (dev->sync) {
  106. /*
  107. * Only send SYN_REPORT if we are not in a middle
  108. * of driver parsing a new hardware packet.
  109. * Otherwise assume that the driver will send
  110. * SYN_REPORT once it's done.
  111. */
  112. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  113. }
  114. if (dev->rep[REP_PERIOD])
  115. mod_timer(&dev->timer, jiffies +
  116. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  117. }
  118. spin_unlock_irqrestore(&dev->event_lock, flags);
  119. }
  120. static void input_start_autorepeat(struct input_dev *dev, int code)
  121. {
  122. if (test_bit(EV_REP, dev->evbit) &&
  123. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  124. dev->timer.data) {
  125. dev->repeat_key = code;
  126. mod_timer(&dev->timer,
  127. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  128. }
  129. }
  130. static void input_stop_autorepeat(struct input_dev *dev)
  131. {
  132. del_timer(&dev->timer);
  133. }
  134. #define INPUT_IGNORE_EVENT 0
  135. #define INPUT_PASS_TO_HANDLERS 1
  136. #define INPUT_PASS_TO_DEVICE 2
  137. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  138. static void input_handle_event(struct input_dev *dev,
  139. unsigned int type, unsigned int code, int value)
  140. {
  141. int disposition = INPUT_IGNORE_EVENT;
  142. switch (type) {
  143. case EV_SYN:
  144. switch (code) {
  145. case SYN_CONFIG:
  146. disposition = INPUT_PASS_TO_ALL;
  147. break;
  148. case SYN_REPORT:
  149. if (!dev->sync) {
  150. dev->sync = 1;
  151. disposition = INPUT_PASS_TO_HANDLERS;
  152. }
  153. break;
  154. case SYN_MT_REPORT:
  155. dev->sync = 0;
  156. disposition = INPUT_PASS_TO_HANDLERS;
  157. break;
  158. }
  159. break;
  160. case EV_KEY:
  161. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  162. !!test_bit(code, dev->key) != value) {
  163. if (value != 2) {
  164. __change_bit(code, dev->key);
  165. if (value)
  166. input_start_autorepeat(dev, code);
  167. else
  168. input_stop_autorepeat(dev);
  169. }
  170. disposition = INPUT_PASS_TO_HANDLERS;
  171. }
  172. break;
  173. case EV_SW:
  174. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  175. !!test_bit(code, dev->sw) != value) {
  176. __change_bit(code, dev->sw);
  177. disposition = INPUT_PASS_TO_HANDLERS;
  178. }
  179. break;
  180. case EV_ABS:
  181. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  182. if (test_bit(code, input_abs_bypass)) {
  183. disposition = INPUT_PASS_TO_HANDLERS;
  184. break;
  185. }
  186. value = input_defuzz_abs_event(value,
  187. dev->abs[code], dev->absfuzz[code]);
  188. if (dev->abs[code] != value) {
  189. dev->abs[code] = value;
  190. disposition = INPUT_PASS_TO_HANDLERS;
  191. }
  192. }
  193. break;
  194. case EV_REL:
  195. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  196. disposition = INPUT_PASS_TO_HANDLERS;
  197. break;
  198. case EV_MSC:
  199. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  200. disposition = INPUT_PASS_TO_ALL;
  201. break;
  202. case EV_LED:
  203. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  204. !!test_bit(code, dev->led) != value) {
  205. __change_bit(code, dev->led);
  206. disposition = INPUT_PASS_TO_ALL;
  207. }
  208. break;
  209. case EV_SND:
  210. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  211. if (!!test_bit(code, dev->snd) != !!value)
  212. __change_bit(code, dev->snd);
  213. disposition = INPUT_PASS_TO_ALL;
  214. }
  215. break;
  216. case EV_REP:
  217. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  218. dev->rep[code] = value;
  219. disposition = INPUT_PASS_TO_ALL;
  220. }
  221. break;
  222. case EV_FF:
  223. if (value >= 0)
  224. disposition = INPUT_PASS_TO_ALL;
  225. break;
  226. case EV_PWR:
  227. disposition = INPUT_PASS_TO_ALL;
  228. break;
  229. }
  230. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  231. dev->sync = 0;
  232. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  233. dev->event(dev, type, code, value);
  234. if (disposition & INPUT_PASS_TO_HANDLERS)
  235. input_pass_event(dev, type, code, value);
  236. }
  237. /**
  238. * input_event() - report new input event
  239. * @dev: device that generated the event
  240. * @type: type of the event
  241. * @code: event code
  242. * @value: value of the event
  243. *
  244. * This function should be used by drivers implementing various input
  245. * devices to report input events. See also input_inject_event().
  246. *
  247. * NOTE: input_event() may be safely used right after input device was
  248. * allocated with input_allocate_device(), even before it is registered
  249. * with input_register_device(), but the event will not reach any of the
  250. * input handlers. Such early invocation of input_event() may be used
  251. * to 'seed' initial state of a switch or initial position of absolute
  252. * axis, etc.
  253. */
  254. void input_event(struct input_dev *dev,
  255. unsigned int type, unsigned int code, int value)
  256. {
  257. unsigned long flags;
  258. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  259. spin_lock_irqsave(&dev->event_lock, flags);
  260. add_input_randomness(type, code, value);
  261. input_handle_event(dev, type, code, value);
  262. spin_unlock_irqrestore(&dev->event_lock, flags);
  263. }
  264. }
  265. EXPORT_SYMBOL(input_event);
  266. /**
  267. * input_inject_event() - send input event from input handler
  268. * @handle: input handle to send event through
  269. * @type: type of the event
  270. * @code: event code
  271. * @value: value of the event
  272. *
  273. * Similar to input_event() but will ignore event if device is
  274. * "grabbed" and handle injecting event is not the one that owns
  275. * the device.
  276. */
  277. void input_inject_event(struct input_handle *handle,
  278. unsigned int type, unsigned int code, int value)
  279. {
  280. struct input_dev *dev = handle->dev;
  281. struct input_handle *grab;
  282. unsigned long flags;
  283. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  284. spin_lock_irqsave(&dev->event_lock, flags);
  285. rcu_read_lock();
  286. grab = rcu_dereference(dev->grab);
  287. if (!grab || grab == handle)
  288. input_handle_event(dev, type, code, value);
  289. rcu_read_unlock();
  290. spin_unlock_irqrestore(&dev->event_lock, flags);
  291. }
  292. }
  293. EXPORT_SYMBOL(input_inject_event);
  294. /**
  295. * input_grab_device - grabs device for exclusive use
  296. * @handle: input handle that wants to own the device
  297. *
  298. * When a device is grabbed by an input handle all events generated by
  299. * the device are delivered only to this handle. Also events injected
  300. * by other input handles are ignored while device is grabbed.
  301. */
  302. int input_grab_device(struct input_handle *handle)
  303. {
  304. struct input_dev *dev = handle->dev;
  305. int retval;
  306. retval = mutex_lock_interruptible(&dev->mutex);
  307. if (retval)
  308. return retval;
  309. if (dev->grab) {
  310. retval = -EBUSY;
  311. goto out;
  312. }
  313. rcu_assign_pointer(dev->grab, handle);
  314. synchronize_rcu();
  315. out:
  316. mutex_unlock(&dev->mutex);
  317. return retval;
  318. }
  319. EXPORT_SYMBOL(input_grab_device);
  320. static void __input_release_device(struct input_handle *handle)
  321. {
  322. struct input_dev *dev = handle->dev;
  323. if (dev->grab == handle) {
  324. rcu_assign_pointer(dev->grab, NULL);
  325. /* Make sure input_pass_event() notices that grab is gone */
  326. synchronize_rcu();
  327. list_for_each_entry(handle, &dev->h_list, d_node)
  328. if (handle->open && handle->handler->start)
  329. handle->handler->start(handle);
  330. }
  331. }
  332. /**
  333. * input_release_device - release previously grabbed device
  334. * @handle: input handle that owns the device
  335. *
  336. * Releases previously grabbed device so that other input handles can
  337. * start receiving input events. Upon release all handlers attached
  338. * to the device have their start() method called so they have a change
  339. * to synchronize device state with the rest of the system.
  340. */
  341. void input_release_device(struct input_handle *handle)
  342. {
  343. struct input_dev *dev = handle->dev;
  344. mutex_lock(&dev->mutex);
  345. __input_release_device(handle);
  346. mutex_unlock(&dev->mutex);
  347. }
  348. EXPORT_SYMBOL(input_release_device);
  349. /**
  350. * input_open_device - open input device
  351. * @handle: handle through which device is being accessed
  352. *
  353. * This function should be called by input handlers when they
  354. * want to start receive events from given input device.
  355. */
  356. int input_open_device(struct input_handle *handle)
  357. {
  358. struct input_dev *dev = handle->dev;
  359. int retval;
  360. retval = mutex_lock_interruptible(&dev->mutex);
  361. if (retval)
  362. return retval;
  363. if (dev->going_away) {
  364. retval = -ENODEV;
  365. goto out;
  366. }
  367. handle->open++;
  368. if (!dev->users++ && dev->open)
  369. retval = dev->open(dev);
  370. if (retval) {
  371. dev->users--;
  372. if (!--handle->open) {
  373. /*
  374. * Make sure we are not delivering any more events
  375. * through this handle
  376. */
  377. synchronize_rcu();
  378. }
  379. }
  380. out:
  381. mutex_unlock(&dev->mutex);
  382. return retval;
  383. }
  384. EXPORT_SYMBOL(input_open_device);
  385. int input_flush_device(struct input_handle *handle, struct file *file)
  386. {
  387. struct input_dev *dev = handle->dev;
  388. int retval;
  389. retval = mutex_lock_interruptible(&dev->mutex);
  390. if (retval)
  391. return retval;
  392. if (dev->flush)
  393. retval = dev->flush(dev, file);
  394. mutex_unlock(&dev->mutex);
  395. return retval;
  396. }
  397. EXPORT_SYMBOL(input_flush_device);
  398. /**
  399. * input_close_device - close input device
  400. * @handle: handle through which device is being accessed
  401. *
  402. * This function should be called by input handlers when they
  403. * want to stop receive events from given input device.
  404. */
  405. void input_close_device(struct input_handle *handle)
  406. {
  407. struct input_dev *dev = handle->dev;
  408. mutex_lock(&dev->mutex);
  409. __input_release_device(handle);
  410. if (!--dev->users && dev->close)
  411. dev->close(dev);
  412. if (!--handle->open) {
  413. /*
  414. * synchronize_rcu() makes sure that input_pass_event()
  415. * completed and that no more input events are delivered
  416. * through this handle
  417. */
  418. synchronize_rcu();
  419. }
  420. mutex_unlock(&dev->mutex);
  421. }
  422. EXPORT_SYMBOL(input_close_device);
  423. /*
  424. * Prepare device for unregistering
  425. */
  426. static void input_disconnect_device(struct input_dev *dev)
  427. {
  428. struct input_handle *handle;
  429. int code;
  430. /*
  431. * Mark device as going away. Note that we take dev->mutex here
  432. * not to protect access to dev->going_away but rather to ensure
  433. * that there are no threads in the middle of input_open_device()
  434. */
  435. mutex_lock(&dev->mutex);
  436. dev->going_away = true;
  437. mutex_unlock(&dev->mutex);
  438. spin_lock_irq(&dev->event_lock);
  439. /*
  440. * Simulate keyup events for all pressed keys so that handlers
  441. * are not left with "stuck" keys. The driver may continue
  442. * generate events even after we done here but they will not
  443. * reach any handlers.
  444. */
  445. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  446. for (code = 0; code <= KEY_MAX; code++) {
  447. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  448. __test_and_clear_bit(code, dev->key)) {
  449. input_pass_event(dev, EV_KEY, code, 0);
  450. }
  451. }
  452. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  453. }
  454. list_for_each_entry(handle, &dev->h_list, d_node)
  455. handle->open = 0;
  456. spin_unlock_irq(&dev->event_lock);
  457. }
  458. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  459. {
  460. switch (dev->keycodesize) {
  461. case 1:
  462. return ((u8 *)dev->keycode)[scancode];
  463. case 2:
  464. return ((u16 *)dev->keycode)[scancode];
  465. default:
  466. return ((u32 *)dev->keycode)[scancode];
  467. }
  468. }
  469. static int input_default_getkeycode(struct input_dev *dev,
  470. int scancode, int *keycode)
  471. {
  472. if (!dev->keycodesize)
  473. return -EINVAL;
  474. if (scancode >= dev->keycodemax)
  475. return -EINVAL;
  476. *keycode = input_fetch_keycode(dev, scancode);
  477. return 0;
  478. }
  479. static int input_default_setkeycode(struct input_dev *dev,
  480. int scancode, int keycode)
  481. {
  482. int old_keycode;
  483. int i;
  484. if (scancode >= dev->keycodemax)
  485. return -EINVAL;
  486. if (!dev->keycodesize)
  487. return -EINVAL;
  488. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  489. return -EINVAL;
  490. switch (dev->keycodesize) {
  491. case 1: {
  492. u8 *k = (u8 *)dev->keycode;
  493. old_keycode = k[scancode];
  494. k[scancode] = keycode;
  495. break;
  496. }
  497. case 2: {
  498. u16 *k = (u16 *)dev->keycode;
  499. old_keycode = k[scancode];
  500. k[scancode] = keycode;
  501. break;
  502. }
  503. default: {
  504. u32 *k = (u32 *)dev->keycode;
  505. old_keycode = k[scancode];
  506. k[scancode] = keycode;
  507. break;
  508. }
  509. }
  510. __clear_bit(old_keycode, dev->keybit);
  511. __set_bit(keycode, dev->keybit);
  512. for (i = 0; i < dev->keycodemax; i++) {
  513. if (input_fetch_keycode(dev, i) == old_keycode) {
  514. __set_bit(old_keycode, dev->keybit);
  515. break; /* Setting the bit twice is useless, so break */
  516. }
  517. }
  518. return 0;
  519. }
  520. /**
  521. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  522. * @dev: input device which keymap is being queried
  523. * @scancode: scancode (or its equivalent for device in question) for which
  524. * keycode is needed
  525. * @keycode: result
  526. *
  527. * This function should be called by anyone interested in retrieving current
  528. * keymap. Presently keyboard and evdev handlers use it.
  529. */
  530. int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
  531. {
  532. if (scancode < 0)
  533. return -EINVAL;
  534. return dev->getkeycode(dev, scancode, keycode);
  535. }
  536. EXPORT_SYMBOL(input_get_keycode);
  537. /**
  538. * input_get_keycode - assign new keycode to a given scancode
  539. * @dev: input device which keymap is being updated
  540. * @scancode: scancode (or its equivalent for device in question)
  541. * @keycode: new keycode to be assigned to the scancode
  542. *
  543. * This function should be called by anyone needing to update current
  544. * keymap. Presently keyboard and evdev handlers use it.
  545. */
  546. int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
  547. {
  548. unsigned long flags;
  549. int old_keycode;
  550. int retval;
  551. if (scancode < 0)
  552. return -EINVAL;
  553. if (keycode < 0 || keycode > KEY_MAX)
  554. return -EINVAL;
  555. spin_lock_irqsave(&dev->event_lock, flags);
  556. retval = dev->getkeycode(dev, scancode, &old_keycode);
  557. if (retval)
  558. goto out;
  559. retval = dev->setkeycode(dev, scancode, keycode);
  560. if (retval)
  561. goto out;
  562. /* Make sure KEY_RESERVED did not get enabled. */
  563. __clear_bit(KEY_RESERVED, dev->keybit);
  564. /*
  565. * Simulate keyup event if keycode is not present
  566. * in the keymap anymore
  567. */
  568. if (test_bit(EV_KEY, dev->evbit) &&
  569. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  570. __test_and_clear_bit(old_keycode, dev->key)) {
  571. input_pass_event(dev, EV_KEY, old_keycode, 0);
  572. if (dev->sync)
  573. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  574. }
  575. out:
  576. spin_unlock_irqrestore(&dev->event_lock, flags);
  577. return retval;
  578. }
  579. EXPORT_SYMBOL(input_set_keycode);
  580. #define MATCH_BIT(bit, max) \
  581. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  582. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  583. break; \
  584. if (i != BITS_TO_LONGS(max)) \
  585. continue;
  586. static const struct input_device_id *input_match_device(const struct input_device_id *id,
  587. struct input_dev *dev)
  588. {
  589. int i;
  590. for (; id->flags || id->driver_info; id++) {
  591. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  592. if (id->bustype != dev->id.bustype)
  593. continue;
  594. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  595. if (id->vendor != dev->id.vendor)
  596. continue;
  597. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  598. if (id->product != dev->id.product)
  599. continue;
  600. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  601. if (id->version != dev->id.version)
  602. continue;
  603. MATCH_BIT(evbit, EV_MAX);
  604. MATCH_BIT(keybit, KEY_MAX);
  605. MATCH_BIT(relbit, REL_MAX);
  606. MATCH_BIT(absbit, ABS_MAX);
  607. MATCH_BIT(mscbit, MSC_MAX);
  608. MATCH_BIT(ledbit, LED_MAX);
  609. MATCH_BIT(sndbit, SND_MAX);
  610. MATCH_BIT(ffbit, FF_MAX);
  611. MATCH_BIT(swbit, SW_MAX);
  612. return id;
  613. }
  614. return NULL;
  615. }
  616. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  617. {
  618. const struct input_device_id *id;
  619. int error;
  620. if (handler->blacklist && input_match_device(handler->blacklist, dev))
  621. return -ENODEV;
  622. id = input_match_device(handler->id_table, dev);
  623. if (!id)
  624. return -ENODEV;
  625. error = handler->connect(handler, dev, id);
  626. if (error && error != -ENODEV)
  627. printk(KERN_ERR
  628. "input: failed to attach handler %s to device %s, "
  629. "error: %d\n",
  630. handler->name, kobject_name(&dev->dev.kobj), error);
  631. return error;
  632. }
  633. #ifdef CONFIG_PROC_FS
  634. static struct proc_dir_entry *proc_bus_input_dir;
  635. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  636. static int input_devices_state;
  637. static inline void input_wakeup_procfs_readers(void)
  638. {
  639. input_devices_state++;
  640. wake_up(&input_devices_poll_wait);
  641. }
  642. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  643. {
  644. poll_wait(file, &input_devices_poll_wait, wait);
  645. if (file->f_version != input_devices_state) {
  646. file->f_version = input_devices_state;
  647. return POLLIN | POLLRDNORM;
  648. }
  649. return 0;
  650. }
  651. union input_seq_state {
  652. struct {
  653. unsigned short pos;
  654. bool mutex_acquired;
  655. };
  656. void *p;
  657. };
  658. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  659. {
  660. union input_seq_state *state = (union input_seq_state *)&seq->private;
  661. int error;
  662. /* We need to fit into seq->private pointer */
  663. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  664. error = mutex_lock_interruptible(&input_mutex);
  665. if (error) {
  666. state->mutex_acquired = false;
  667. return ERR_PTR(error);
  668. }
  669. state->mutex_acquired = true;
  670. return seq_list_start(&input_dev_list, *pos);
  671. }
  672. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  673. {
  674. return seq_list_next(v, &input_dev_list, pos);
  675. }
  676. static void input_seq_stop(struct seq_file *seq, void *v)
  677. {
  678. union input_seq_state *state = (union input_seq_state *)&seq->private;
  679. if (state->mutex_acquired)
  680. mutex_unlock(&input_mutex);
  681. }
  682. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  683. unsigned long *bitmap, int max)
  684. {
  685. int i;
  686. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  687. if (bitmap[i])
  688. break;
  689. seq_printf(seq, "B: %s=", name);
  690. for (; i >= 0; i--)
  691. seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
  692. seq_putc(seq, '\n');
  693. }
  694. static int input_devices_seq_show(struct seq_file *seq, void *v)
  695. {
  696. struct input_dev *dev = container_of(v, struct input_dev, node);
  697. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  698. struct input_handle *handle;
  699. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  700. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  701. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  702. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  703. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  704. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  705. seq_printf(seq, "H: Handlers=");
  706. list_for_each_entry(handle, &dev->h_list, d_node)
  707. seq_printf(seq, "%s ", handle->name);
  708. seq_putc(seq, '\n');
  709. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  710. if (test_bit(EV_KEY, dev->evbit))
  711. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  712. if (test_bit(EV_REL, dev->evbit))
  713. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  714. if (test_bit(EV_ABS, dev->evbit))
  715. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  716. if (test_bit(EV_MSC, dev->evbit))
  717. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  718. if (test_bit(EV_LED, dev->evbit))
  719. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  720. if (test_bit(EV_SND, dev->evbit))
  721. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  722. if (test_bit(EV_FF, dev->evbit))
  723. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  724. if (test_bit(EV_SW, dev->evbit))
  725. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  726. seq_putc(seq, '\n');
  727. kfree(path);
  728. return 0;
  729. }
  730. static const struct seq_operations input_devices_seq_ops = {
  731. .start = input_devices_seq_start,
  732. .next = input_devices_seq_next,
  733. .stop = input_seq_stop,
  734. .show = input_devices_seq_show,
  735. };
  736. static int input_proc_devices_open(struct inode *inode, struct file *file)
  737. {
  738. return seq_open(file, &input_devices_seq_ops);
  739. }
  740. static const struct file_operations input_devices_fileops = {
  741. .owner = THIS_MODULE,
  742. .open = input_proc_devices_open,
  743. .poll = input_proc_devices_poll,
  744. .read = seq_read,
  745. .llseek = seq_lseek,
  746. .release = seq_release,
  747. };
  748. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  749. {
  750. union input_seq_state *state = (union input_seq_state *)&seq->private;
  751. int error;
  752. /* We need to fit into seq->private pointer */
  753. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  754. error = mutex_lock_interruptible(&input_mutex);
  755. if (error) {
  756. state->mutex_acquired = false;
  757. return ERR_PTR(error);
  758. }
  759. state->mutex_acquired = true;
  760. state->pos = *pos;
  761. return seq_list_start(&input_handler_list, *pos);
  762. }
  763. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  764. {
  765. union input_seq_state *state = (union input_seq_state *)&seq->private;
  766. state->pos = *pos + 1;
  767. return seq_list_next(v, &input_handler_list, pos);
  768. }
  769. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  770. {
  771. struct input_handler *handler = container_of(v, struct input_handler, node);
  772. union input_seq_state *state = (union input_seq_state *)&seq->private;
  773. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  774. if (handler->fops)
  775. seq_printf(seq, " Minor=%d", handler->minor);
  776. seq_putc(seq, '\n');
  777. return 0;
  778. }
  779. static const struct seq_operations input_handlers_seq_ops = {
  780. .start = input_handlers_seq_start,
  781. .next = input_handlers_seq_next,
  782. .stop = input_seq_stop,
  783. .show = input_handlers_seq_show,
  784. };
  785. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  786. {
  787. return seq_open(file, &input_handlers_seq_ops);
  788. }
  789. static const struct file_operations input_handlers_fileops = {
  790. .owner = THIS_MODULE,
  791. .open = input_proc_handlers_open,
  792. .read = seq_read,
  793. .llseek = seq_lseek,
  794. .release = seq_release,
  795. };
  796. static int __init input_proc_init(void)
  797. {
  798. struct proc_dir_entry *entry;
  799. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  800. if (!proc_bus_input_dir)
  801. return -ENOMEM;
  802. entry = proc_create("devices", 0, proc_bus_input_dir,
  803. &input_devices_fileops);
  804. if (!entry)
  805. goto fail1;
  806. entry = proc_create("handlers", 0, proc_bus_input_dir,
  807. &input_handlers_fileops);
  808. if (!entry)
  809. goto fail2;
  810. return 0;
  811. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  812. fail1: remove_proc_entry("bus/input", NULL);
  813. return -ENOMEM;
  814. }
  815. static void input_proc_exit(void)
  816. {
  817. remove_proc_entry("devices", proc_bus_input_dir);
  818. remove_proc_entry("handlers", proc_bus_input_dir);
  819. remove_proc_entry("bus/input", NULL);
  820. }
  821. #else /* !CONFIG_PROC_FS */
  822. static inline void input_wakeup_procfs_readers(void) { }
  823. static inline int input_proc_init(void) { return 0; }
  824. static inline void input_proc_exit(void) { }
  825. #endif
  826. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  827. static ssize_t input_dev_show_##name(struct device *dev, \
  828. struct device_attribute *attr, \
  829. char *buf) \
  830. { \
  831. struct input_dev *input_dev = to_input_dev(dev); \
  832. \
  833. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  834. input_dev->name ? input_dev->name : ""); \
  835. } \
  836. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  837. INPUT_DEV_STRING_ATTR_SHOW(name);
  838. INPUT_DEV_STRING_ATTR_SHOW(phys);
  839. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  840. static int input_print_modalias_bits(char *buf, int size,
  841. char name, unsigned long *bm,
  842. unsigned int min_bit, unsigned int max_bit)
  843. {
  844. int len = 0, i;
  845. len += snprintf(buf, max(size, 0), "%c", name);
  846. for (i = min_bit; i < max_bit; i++)
  847. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  848. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  849. return len;
  850. }
  851. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  852. int add_cr)
  853. {
  854. int len;
  855. len = snprintf(buf, max(size, 0),
  856. "input:b%04Xv%04Xp%04Xe%04X-",
  857. id->id.bustype, id->id.vendor,
  858. id->id.product, id->id.version);
  859. len += input_print_modalias_bits(buf + len, size - len,
  860. 'e', id->evbit, 0, EV_MAX);
  861. len += input_print_modalias_bits(buf + len, size - len,
  862. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  863. len += input_print_modalias_bits(buf + len, size - len,
  864. 'r', id->relbit, 0, REL_MAX);
  865. len += input_print_modalias_bits(buf + len, size - len,
  866. 'a', id->absbit, 0, ABS_MAX);
  867. len += input_print_modalias_bits(buf + len, size - len,
  868. 'm', id->mscbit, 0, MSC_MAX);
  869. len += input_print_modalias_bits(buf + len, size - len,
  870. 'l', id->ledbit, 0, LED_MAX);
  871. len += input_print_modalias_bits(buf + len, size - len,
  872. 's', id->sndbit, 0, SND_MAX);
  873. len += input_print_modalias_bits(buf + len, size - len,
  874. 'f', id->ffbit, 0, FF_MAX);
  875. len += input_print_modalias_bits(buf + len, size - len,
  876. 'w', id->swbit, 0, SW_MAX);
  877. if (add_cr)
  878. len += snprintf(buf + len, max(size - len, 0), "\n");
  879. return len;
  880. }
  881. static ssize_t input_dev_show_modalias(struct device *dev,
  882. struct device_attribute *attr,
  883. char *buf)
  884. {
  885. struct input_dev *id = to_input_dev(dev);
  886. ssize_t len;
  887. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  888. return min_t(int, len, PAGE_SIZE);
  889. }
  890. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  891. static struct attribute *input_dev_attrs[] = {
  892. &dev_attr_name.attr,
  893. &dev_attr_phys.attr,
  894. &dev_attr_uniq.attr,
  895. &dev_attr_modalias.attr,
  896. NULL
  897. };
  898. static struct attribute_group input_dev_attr_group = {
  899. .attrs = input_dev_attrs,
  900. };
  901. #define INPUT_DEV_ID_ATTR(name) \
  902. static ssize_t input_dev_show_id_##name(struct device *dev, \
  903. struct device_attribute *attr, \
  904. char *buf) \
  905. { \
  906. struct input_dev *input_dev = to_input_dev(dev); \
  907. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  908. } \
  909. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  910. INPUT_DEV_ID_ATTR(bustype);
  911. INPUT_DEV_ID_ATTR(vendor);
  912. INPUT_DEV_ID_ATTR(product);
  913. INPUT_DEV_ID_ATTR(version);
  914. static struct attribute *input_dev_id_attrs[] = {
  915. &dev_attr_bustype.attr,
  916. &dev_attr_vendor.attr,
  917. &dev_attr_product.attr,
  918. &dev_attr_version.attr,
  919. NULL
  920. };
  921. static struct attribute_group input_dev_id_attr_group = {
  922. .name = "id",
  923. .attrs = input_dev_id_attrs,
  924. };
  925. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  926. int max, int add_cr)
  927. {
  928. int i;
  929. int len = 0;
  930. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  931. if (bitmap[i])
  932. break;
  933. for (; i >= 0; i--)
  934. len += snprintf(buf + len, max(buf_size - len, 0),
  935. "%lx%s", bitmap[i], i > 0 ? " " : "");
  936. if (add_cr)
  937. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  938. return len;
  939. }
  940. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  941. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  942. struct device_attribute *attr, \
  943. char *buf) \
  944. { \
  945. struct input_dev *input_dev = to_input_dev(dev); \
  946. int len = input_print_bitmap(buf, PAGE_SIZE, \
  947. input_dev->bm##bit, ev##_MAX, 1); \
  948. return min_t(int, len, PAGE_SIZE); \
  949. } \
  950. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  951. INPUT_DEV_CAP_ATTR(EV, ev);
  952. INPUT_DEV_CAP_ATTR(KEY, key);
  953. INPUT_DEV_CAP_ATTR(REL, rel);
  954. INPUT_DEV_CAP_ATTR(ABS, abs);
  955. INPUT_DEV_CAP_ATTR(MSC, msc);
  956. INPUT_DEV_CAP_ATTR(LED, led);
  957. INPUT_DEV_CAP_ATTR(SND, snd);
  958. INPUT_DEV_CAP_ATTR(FF, ff);
  959. INPUT_DEV_CAP_ATTR(SW, sw);
  960. static struct attribute *input_dev_caps_attrs[] = {
  961. &dev_attr_ev.attr,
  962. &dev_attr_key.attr,
  963. &dev_attr_rel.attr,
  964. &dev_attr_abs.attr,
  965. &dev_attr_msc.attr,
  966. &dev_attr_led.attr,
  967. &dev_attr_snd.attr,
  968. &dev_attr_ff.attr,
  969. &dev_attr_sw.attr,
  970. NULL
  971. };
  972. static struct attribute_group input_dev_caps_attr_group = {
  973. .name = "capabilities",
  974. .attrs = input_dev_caps_attrs,
  975. };
  976. static const struct attribute_group *input_dev_attr_groups[] = {
  977. &input_dev_attr_group,
  978. &input_dev_id_attr_group,
  979. &input_dev_caps_attr_group,
  980. NULL
  981. };
  982. static void input_dev_release(struct device *device)
  983. {
  984. struct input_dev *dev = to_input_dev(device);
  985. input_ff_destroy(dev);
  986. kfree(dev);
  987. module_put(THIS_MODULE);
  988. }
  989. /*
  990. * Input uevent interface - loading event handlers based on
  991. * device bitfields.
  992. */
  993. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  994. const char *name, unsigned long *bitmap, int max)
  995. {
  996. int len;
  997. if (add_uevent_var(env, "%s=", name))
  998. return -ENOMEM;
  999. len = input_print_bitmap(&env->buf[env->buflen - 1],
  1000. sizeof(env->buf) - env->buflen,
  1001. bitmap, max, 0);
  1002. if (len >= (sizeof(env->buf) - env->buflen))
  1003. return -ENOMEM;
  1004. env->buflen += len;
  1005. return 0;
  1006. }
  1007. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  1008. struct input_dev *dev)
  1009. {
  1010. int len;
  1011. if (add_uevent_var(env, "MODALIAS="))
  1012. return -ENOMEM;
  1013. len = input_print_modalias(&env->buf[env->buflen - 1],
  1014. sizeof(env->buf) - env->buflen,
  1015. dev, 0);
  1016. if (len >= (sizeof(env->buf) - env->buflen))
  1017. return -ENOMEM;
  1018. env->buflen += len;
  1019. return 0;
  1020. }
  1021. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1022. do { \
  1023. int err = add_uevent_var(env, fmt, val); \
  1024. if (err) \
  1025. return err; \
  1026. } while (0)
  1027. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1028. do { \
  1029. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1030. if (err) \
  1031. return err; \
  1032. } while (0)
  1033. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1034. do { \
  1035. int err = input_add_uevent_modalias_var(env, dev); \
  1036. if (err) \
  1037. return err; \
  1038. } while (0)
  1039. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1040. {
  1041. struct input_dev *dev = to_input_dev(device);
  1042. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1043. dev->id.bustype, dev->id.vendor,
  1044. dev->id.product, dev->id.version);
  1045. if (dev->name)
  1046. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1047. if (dev->phys)
  1048. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1049. if (dev->uniq)
  1050. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1051. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1052. if (test_bit(EV_KEY, dev->evbit))
  1053. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1054. if (test_bit(EV_REL, dev->evbit))
  1055. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1056. if (test_bit(EV_ABS, dev->evbit))
  1057. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1058. if (test_bit(EV_MSC, dev->evbit))
  1059. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1060. if (test_bit(EV_LED, dev->evbit))
  1061. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1062. if (test_bit(EV_SND, dev->evbit))
  1063. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1064. if (test_bit(EV_FF, dev->evbit))
  1065. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1066. if (test_bit(EV_SW, dev->evbit))
  1067. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1068. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1069. return 0;
  1070. }
  1071. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1072. do { \
  1073. int i; \
  1074. bool active; \
  1075. \
  1076. if (!test_bit(EV_##type, dev->evbit)) \
  1077. break; \
  1078. \
  1079. for (i = 0; i < type##_MAX; i++) { \
  1080. if (!test_bit(i, dev->bits##bit)) \
  1081. continue; \
  1082. \
  1083. active = test_bit(i, dev->bits); \
  1084. if (!active && !on) \
  1085. continue; \
  1086. \
  1087. dev->event(dev, EV_##type, i, on ? active : 0); \
  1088. } \
  1089. } while (0)
  1090. #ifdef CONFIG_PM
  1091. static void input_dev_reset(struct input_dev *dev, bool activate)
  1092. {
  1093. if (!dev->event)
  1094. return;
  1095. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1096. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1097. if (activate && test_bit(EV_REP, dev->evbit)) {
  1098. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1099. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1100. }
  1101. }
  1102. static int input_dev_suspend(struct device *dev)
  1103. {
  1104. struct input_dev *input_dev = to_input_dev(dev);
  1105. mutex_lock(&input_dev->mutex);
  1106. input_dev_reset(input_dev, false);
  1107. mutex_unlock(&input_dev->mutex);
  1108. return 0;
  1109. }
  1110. static int input_dev_resume(struct device *dev)
  1111. {
  1112. struct input_dev *input_dev = to_input_dev(dev);
  1113. mutex_lock(&input_dev->mutex);
  1114. input_dev_reset(input_dev, true);
  1115. mutex_unlock(&input_dev->mutex);
  1116. return 0;
  1117. }
  1118. static const struct dev_pm_ops input_dev_pm_ops = {
  1119. .suspend = input_dev_suspend,
  1120. .resume = input_dev_resume,
  1121. .poweroff = input_dev_suspend,
  1122. .restore = input_dev_resume,
  1123. };
  1124. #endif /* CONFIG_PM */
  1125. static struct device_type input_dev_type = {
  1126. .groups = input_dev_attr_groups,
  1127. .release = input_dev_release,
  1128. .uevent = input_dev_uevent,
  1129. #ifdef CONFIG_PM
  1130. .pm = &input_dev_pm_ops,
  1131. #endif
  1132. };
  1133. static char *input_devnode(struct device *dev, mode_t *mode)
  1134. {
  1135. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1136. }
  1137. struct class input_class = {
  1138. .name = "input",
  1139. .devnode = input_devnode,
  1140. };
  1141. EXPORT_SYMBOL_GPL(input_class);
  1142. /**
  1143. * input_allocate_device - allocate memory for new input device
  1144. *
  1145. * Returns prepared struct input_dev or NULL.
  1146. *
  1147. * NOTE: Use input_free_device() to free devices that have not been
  1148. * registered; input_unregister_device() should be used for already
  1149. * registered devices.
  1150. */
  1151. struct input_dev *input_allocate_device(void)
  1152. {
  1153. struct input_dev *dev;
  1154. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1155. if (dev) {
  1156. dev->dev.type = &input_dev_type;
  1157. dev->dev.class = &input_class;
  1158. device_initialize(&dev->dev);
  1159. mutex_init(&dev->mutex);
  1160. spin_lock_init(&dev->event_lock);
  1161. INIT_LIST_HEAD(&dev->h_list);
  1162. INIT_LIST_HEAD(&dev->node);
  1163. __module_get(THIS_MODULE);
  1164. }
  1165. return dev;
  1166. }
  1167. EXPORT_SYMBOL(input_allocate_device);
  1168. /**
  1169. * input_free_device - free memory occupied by input_dev structure
  1170. * @dev: input device to free
  1171. *
  1172. * This function should only be used if input_register_device()
  1173. * was not called yet or if it failed. Once device was registered
  1174. * use input_unregister_device() and memory will be freed once last
  1175. * reference to the device is dropped.
  1176. *
  1177. * Device should be allocated by input_allocate_device().
  1178. *
  1179. * NOTE: If there are references to the input device then memory
  1180. * will not be freed until last reference is dropped.
  1181. */
  1182. void input_free_device(struct input_dev *dev)
  1183. {
  1184. if (dev)
  1185. input_put_device(dev);
  1186. }
  1187. EXPORT_SYMBOL(input_free_device);
  1188. /**
  1189. * input_set_capability - mark device as capable of a certain event
  1190. * @dev: device that is capable of emitting or accepting event
  1191. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1192. * @code: event code
  1193. *
  1194. * In addition to setting up corresponding bit in appropriate capability
  1195. * bitmap the function also adjusts dev->evbit.
  1196. */
  1197. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1198. {
  1199. switch (type) {
  1200. case EV_KEY:
  1201. __set_bit(code, dev->keybit);
  1202. break;
  1203. case EV_REL:
  1204. __set_bit(code, dev->relbit);
  1205. break;
  1206. case EV_ABS:
  1207. __set_bit(code, dev->absbit);
  1208. break;
  1209. case EV_MSC:
  1210. __set_bit(code, dev->mscbit);
  1211. break;
  1212. case EV_SW:
  1213. __set_bit(code, dev->swbit);
  1214. break;
  1215. case EV_LED:
  1216. __set_bit(code, dev->ledbit);
  1217. break;
  1218. case EV_SND:
  1219. __set_bit(code, dev->sndbit);
  1220. break;
  1221. case EV_FF:
  1222. __set_bit(code, dev->ffbit);
  1223. break;
  1224. case EV_PWR:
  1225. /* do nothing */
  1226. break;
  1227. default:
  1228. printk(KERN_ERR
  1229. "input_set_capability: unknown type %u (code %u)\n",
  1230. type, code);
  1231. dump_stack();
  1232. return;
  1233. }
  1234. __set_bit(type, dev->evbit);
  1235. }
  1236. EXPORT_SYMBOL(input_set_capability);
  1237. /**
  1238. * input_register_device - register device with input core
  1239. * @dev: device to be registered
  1240. *
  1241. * This function registers device with input core. The device must be
  1242. * allocated with input_allocate_device() and all it's capabilities
  1243. * set up before registering.
  1244. * If function fails the device must be freed with input_free_device().
  1245. * Once device has been successfully registered it can be unregistered
  1246. * with input_unregister_device(); input_free_device() should not be
  1247. * called in this case.
  1248. */
  1249. int input_register_device(struct input_dev *dev)
  1250. {
  1251. static atomic_t input_no = ATOMIC_INIT(0);
  1252. struct input_handler *handler;
  1253. const char *path;
  1254. int error;
  1255. /* Every input device generates EV_SYN/SYN_REPORT events. */
  1256. __set_bit(EV_SYN, dev->evbit);
  1257. /* KEY_RESERVED is not supposed to be transmitted to userspace. */
  1258. __clear_bit(KEY_RESERVED, dev->keybit);
  1259. /*
  1260. * If delay and period are pre-set by the driver, then autorepeating
  1261. * is handled by the driver itself and we don't do it in input.c.
  1262. */
  1263. init_timer(&dev->timer);
  1264. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1265. dev->timer.data = (long) dev;
  1266. dev->timer.function = input_repeat_key;
  1267. dev->rep[REP_DELAY] = 250;
  1268. dev->rep[REP_PERIOD] = 33;
  1269. }
  1270. if (!dev->getkeycode)
  1271. dev->getkeycode = input_default_getkeycode;
  1272. if (!dev->setkeycode)
  1273. dev->setkeycode = input_default_setkeycode;
  1274. dev_set_name(&dev->dev, "input%ld",
  1275. (unsigned long) atomic_inc_return(&input_no) - 1);
  1276. error = device_add(&dev->dev);
  1277. if (error)
  1278. return error;
  1279. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1280. printk(KERN_INFO "input: %s as %s\n",
  1281. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1282. kfree(path);
  1283. error = mutex_lock_interruptible(&input_mutex);
  1284. if (error) {
  1285. device_del(&dev->dev);
  1286. return error;
  1287. }
  1288. list_add_tail(&dev->node, &input_dev_list);
  1289. list_for_each_entry(handler, &input_handler_list, node)
  1290. input_attach_handler(dev, handler);
  1291. input_wakeup_procfs_readers();
  1292. mutex_unlock(&input_mutex);
  1293. return 0;
  1294. }
  1295. EXPORT_SYMBOL(input_register_device);
  1296. /**
  1297. * input_unregister_device - unregister previously registered device
  1298. * @dev: device to be unregistered
  1299. *
  1300. * This function unregisters an input device. Once device is unregistered
  1301. * the caller should not try to access it as it may get freed at any moment.
  1302. */
  1303. void input_unregister_device(struct input_dev *dev)
  1304. {
  1305. struct input_handle *handle, *next;
  1306. input_disconnect_device(dev);
  1307. mutex_lock(&input_mutex);
  1308. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1309. handle->handler->disconnect(handle);
  1310. WARN_ON(!list_empty(&dev->h_list));
  1311. del_timer_sync(&dev->timer);
  1312. list_del_init(&dev->node);
  1313. input_wakeup_procfs_readers();
  1314. mutex_unlock(&input_mutex);
  1315. device_unregister(&dev->dev);
  1316. }
  1317. EXPORT_SYMBOL(input_unregister_device);
  1318. /**
  1319. * input_register_handler - register a new input handler
  1320. * @handler: handler to be registered
  1321. *
  1322. * This function registers a new input handler (interface) for input
  1323. * devices in the system and attaches it to all input devices that
  1324. * are compatible with the handler.
  1325. */
  1326. int input_register_handler(struct input_handler *handler)
  1327. {
  1328. struct input_dev *dev;
  1329. int retval;
  1330. retval = mutex_lock_interruptible(&input_mutex);
  1331. if (retval)
  1332. return retval;
  1333. INIT_LIST_HEAD(&handler->h_list);
  1334. if (handler->fops != NULL) {
  1335. if (input_table[handler->minor >> 5]) {
  1336. retval = -EBUSY;
  1337. goto out;
  1338. }
  1339. input_table[handler->minor >> 5] = handler;
  1340. }
  1341. list_add_tail(&handler->node, &input_handler_list);
  1342. list_for_each_entry(dev, &input_dev_list, node)
  1343. input_attach_handler(dev, handler);
  1344. input_wakeup_procfs_readers();
  1345. out:
  1346. mutex_unlock(&input_mutex);
  1347. return retval;
  1348. }
  1349. EXPORT_SYMBOL(input_register_handler);
  1350. /**
  1351. * input_unregister_handler - unregisters an input handler
  1352. * @handler: handler to be unregistered
  1353. *
  1354. * This function disconnects a handler from its input devices and
  1355. * removes it from lists of known handlers.
  1356. */
  1357. void input_unregister_handler(struct input_handler *handler)
  1358. {
  1359. struct input_handle *handle, *next;
  1360. mutex_lock(&input_mutex);
  1361. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1362. handler->disconnect(handle);
  1363. WARN_ON(!list_empty(&handler->h_list));
  1364. list_del_init(&handler->node);
  1365. if (handler->fops != NULL)
  1366. input_table[handler->minor >> 5] = NULL;
  1367. input_wakeup_procfs_readers();
  1368. mutex_unlock(&input_mutex);
  1369. }
  1370. EXPORT_SYMBOL(input_unregister_handler);
  1371. /**
  1372. * input_handler_for_each_handle - handle iterator
  1373. * @handler: input handler to iterate
  1374. * @data: data for the callback
  1375. * @fn: function to be called for each handle
  1376. *
  1377. * Iterate over @bus's list of devices, and call @fn for each, passing
  1378. * it @data and stop when @fn returns a non-zero value. The function is
  1379. * using RCU to traverse the list and therefore may be usind in atonic
  1380. * contexts. The @fn callback is invoked from RCU critical section and
  1381. * thus must not sleep.
  1382. */
  1383. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1384. int (*fn)(struct input_handle *, void *))
  1385. {
  1386. struct input_handle *handle;
  1387. int retval = 0;
  1388. rcu_read_lock();
  1389. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1390. retval = fn(handle, data);
  1391. if (retval)
  1392. break;
  1393. }
  1394. rcu_read_unlock();
  1395. return retval;
  1396. }
  1397. EXPORT_SYMBOL(input_handler_for_each_handle);
  1398. /**
  1399. * input_register_handle - register a new input handle
  1400. * @handle: handle to register
  1401. *
  1402. * This function puts a new input handle onto device's
  1403. * and handler's lists so that events can flow through
  1404. * it once it is opened using input_open_device().
  1405. *
  1406. * This function is supposed to be called from handler's
  1407. * connect() method.
  1408. */
  1409. int input_register_handle(struct input_handle *handle)
  1410. {
  1411. struct input_handler *handler = handle->handler;
  1412. struct input_dev *dev = handle->dev;
  1413. int error;
  1414. /*
  1415. * We take dev->mutex here to prevent race with
  1416. * input_release_device().
  1417. */
  1418. error = mutex_lock_interruptible(&dev->mutex);
  1419. if (error)
  1420. return error;
  1421. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1422. mutex_unlock(&dev->mutex);
  1423. /*
  1424. * Since we are supposed to be called from ->connect()
  1425. * which is mutually exclusive with ->disconnect()
  1426. * we can't be racing with input_unregister_handle()
  1427. * and so separate lock is not needed here.
  1428. */
  1429. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1430. if (handler->start)
  1431. handler->start(handle);
  1432. return 0;
  1433. }
  1434. EXPORT_SYMBOL(input_register_handle);
  1435. /**
  1436. * input_unregister_handle - unregister an input handle
  1437. * @handle: handle to unregister
  1438. *
  1439. * This function removes input handle from device's
  1440. * and handler's lists.
  1441. *
  1442. * This function is supposed to be called from handler's
  1443. * disconnect() method.
  1444. */
  1445. void input_unregister_handle(struct input_handle *handle)
  1446. {
  1447. struct input_dev *dev = handle->dev;
  1448. list_del_rcu(&handle->h_node);
  1449. /*
  1450. * Take dev->mutex to prevent race with input_release_device().
  1451. */
  1452. mutex_lock(&dev->mutex);
  1453. list_del_rcu(&handle->d_node);
  1454. mutex_unlock(&dev->mutex);
  1455. synchronize_rcu();
  1456. }
  1457. EXPORT_SYMBOL(input_unregister_handle);
  1458. static int input_open_file(struct inode *inode, struct file *file)
  1459. {
  1460. struct input_handler *handler;
  1461. const struct file_operations *old_fops, *new_fops = NULL;
  1462. int err;
  1463. lock_kernel();
  1464. /* No load-on-demand here? */
  1465. handler = input_table[iminor(inode) >> 5];
  1466. if (!handler || !(new_fops = fops_get(handler->fops))) {
  1467. err = -ENODEV;
  1468. goto out;
  1469. }
  1470. /*
  1471. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1472. * not "no device". Oh, well...
  1473. */
  1474. if (!new_fops->open) {
  1475. fops_put(new_fops);
  1476. err = -ENODEV;
  1477. goto out;
  1478. }
  1479. old_fops = file->f_op;
  1480. file->f_op = new_fops;
  1481. err = new_fops->open(inode, file);
  1482. if (err) {
  1483. fops_put(file->f_op);
  1484. file->f_op = fops_get(old_fops);
  1485. }
  1486. fops_put(old_fops);
  1487. out:
  1488. unlock_kernel();
  1489. return err;
  1490. }
  1491. static const struct file_operations input_fops = {
  1492. .owner = THIS_MODULE,
  1493. .open = input_open_file,
  1494. };
  1495. static void __init input_init_abs_bypass(void)
  1496. {
  1497. const unsigned int *p;
  1498. for (p = input_abs_bypass_init_data; *p; p++)
  1499. input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
  1500. }
  1501. static int __init input_init(void)
  1502. {
  1503. int err;
  1504. input_init_abs_bypass();
  1505. err = class_register(&input_class);
  1506. if (err) {
  1507. printk(KERN_ERR "input: unable to register input_dev class\n");
  1508. return err;
  1509. }
  1510. err = input_proc_init();
  1511. if (err)
  1512. goto fail1;
  1513. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1514. if (err) {
  1515. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1516. goto fail2;
  1517. }
  1518. return 0;
  1519. fail2: input_proc_exit();
  1520. fail1: class_unregister(&input_class);
  1521. return err;
  1522. }
  1523. static void __exit input_exit(void)
  1524. {
  1525. input_proc_exit();
  1526. unregister_chrdev(INPUT_MAJOR, "input");
  1527. class_unregister(&input_class);
  1528. }
  1529. subsys_initcall(input_init);
  1530. module_exit(input_exit);