x86.c 125 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/user-return-notifier.h>
  39. #include <trace/events/kvm.h>
  40. #undef TRACE_INCLUDE_FILE
  41. #define CREATE_TRACE_POINTS
  42. #include "trace.h"
  43. #include <asm/uaccess.h>
  44. #include <asm/msr.h>
  45. #include <asm/desc.h>
  46. #include <asm/mtrr.h>
  47. #include <asm/mce.h>
  48. #define MAX_IO_MSRS 256
  49. #define CR0_RESERVED_BITS \
  50. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  51. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  52. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  53. #define CR4_RESERVED_BITS \
  54. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  55. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  56. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  57. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  58. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  59. #define KVM_MAX_MCE_BANKS 32
  60. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  61. /* EFER defaults:
  62. * - enable syscall per default because its emulated by KVM
  63. * - enable LME and LMA per default on 64 bit KVM
  64. */
  65. #ifdef CONFIG_X86_64
  66. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  67. #else
  68. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  69. #endif
  70. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  71. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  72. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  73. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  74. struct kvm_cpuid_entry2 __user *entries);
  75. struct kvm_x86_ops *kvm_x86_ops;
  76. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  77. int ignore_msrs = 0;
  78. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  79. #define KVM_NR_SHARED_MSRS 16
  80. struct kvm_shared_msrs_global {
  81. int nr;
  82. struct kvm_shared_msr {
  83. u32 msr;
  84. u64 value;
  85. } msrs[KVM_NR_SHARED_MSRS];
  86. };
  87. struct kvm_shared_msrs {
  88. struct user_return_notifier urn;
  89. bool registered;
  90. u64 current_value[KVM_NR_SHARED_MSRS];
  91. };
  92. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  93. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  94. struct kvm_stats_debugfs_item debugfs_entries[] = {
  95. { "pf_fixed", VCPU_STAT(pf_fixed) },
  96. { "pf_guest", VCPU_STAT(pf_guest) },
  97. { "tlb_flush", VCPU_STAT(tlb_flush) },
  98. { "invlpg", VCPU_STAT(invlpg) },
  99. { "exits", VCPU_STAT(exits) },
  100. { "io_exits", VCPU_STAT(io_exits) },
  101. { "mmio_exits", VCPU_STAT(mmio_exits) },
  102. { "signal_exits", VCPU_STAT(signal_exits) },
  103. { "irq_window", VCPU_STAT(irq_window_exits) },
  104. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  105. { "halt_exits", VCPU_STAT(halt_exits) },
  106. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  107. { "hypercalls", VCPU_STAT(hypercalls) },
  108. { "request_irq", VCPU_STAT(request_irq_exits) },
  109. { "irq_exits", VCPU_STAT(irq_exits) },
  110. { "host_state_reload", VCPU_STAT(host_state_reload) },
  111. { "efer_reload", VCPU_STAT(efer_reload) },
  112. { "fpu_reload", VCPU_STAT(fpu_reload) },
  113. { "insn_emulation", VCPU_STAT(insn_emulation) },
  114. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  115. { "irq_injections", VCPU_STAT(irq_injections) },
  116. { "nmi_injections", VCPU_STAT(nmi_injections) },
  117. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  118. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  119. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  120. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  121. { "mmu_flooded", VM_STAT(mmu_flooded) },
  122. { "mmu_recycled", VM_STAT(mmu_recycled) },
  123. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  124. { "mmu_unsync", VM_STAT(mmu_unsync) },
  125. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  126. { "largepages", VM_STAT(lpages) },
  127. { NULL }
  128. };
  129. static void kvm_on_user_return(struct user_return_notifier *urn)
  130. {
  131. unsigned slot;
  132. struct kvm_shared_msr *global;
  133. struct kvm_shared_msrs *locals
  134. = container_of(urn, struct kvm_shared_msrs, urn);
  135. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  136. global = &shared_msrs_global.msrs[slot];
  137. if (global->value != locals->current_value[slot]) {
  138. wrmsrl(global->msr, global->value);
  139. locals->current_value[slot] = global->value;
  140. }
  141. }
  142. locals->registered = false;
  143. user_return_notifier_unregister(urn);
  144. }
  145. void kvm_define_shared_msr(unsigned slot, u32 msr)
  146. {
  147. int cpu;
  148. u64 value;
  149. if (slot >= shared_msrs_global.nr)
  150. shared_msrs_global.nr = slot + 1;
  151. shared_msrs_global.msrs[slot].msr = msr;
  152. rdmsrl_safe(msr, &value);
  153. shared_msrs_global.msrs[slot].value = value;
  154. for_each_online_cpu(cpu)
  155. per_cpu(shared_msrs, cpu).current_value[slot] = value;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  158. static void kvm_shared_msr_cpu_online(void)
  159. {
  160. unsigned i;
  161. struct kvm_shared_msrs *locals = &__get_cpu_var(shared_msrs);
  162. for (i = 0; i < shared_msrs_global.nr; ++i)
  163. locals->current_value[i] = shared_msrs_global.msrs[i].value;
  164. }
  165. void kvm_set_shared_msr(unsigned slot, u64 value)
  166. {
  167. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  168. if (value == smsr->current_value[slot])
  169. return;
  170. smsr->current_value[slot] = value;
  171. wrmsrl(shared_msrs_global.msrs[slot].msr, value);
  172. if (!smsr->registered) {
  173. smsr->urn.on_user_return = kvm_on_user_return;
  174. user_return_notifier_register(&smsr->urn);
  175. smsr->registered = true;
  176. }
  177. }
  178. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  179. unsigned long segment_base(u16 selector)
  180. {
  181. struct descriptor_table gdt;
  182. struct desc_struct *d;
  183. unsigned long table_base;
  184. unsigned long v;
  185. if (selector == 0)
  186. return 0;
  187. kvm_get_gdt(&gdt);
  188. table_base = gdt.base;
  189. if (selector & 4) { /* from ldt */
  190. u16 ldt_selector = kvm_read_ldt();
  191. table_base = segment_base(ldt_selector);
  192. }
  193. d = (struct desc_struct *)(table_base + (selector & ~7));
  194. v = get_desc_base(d);
  195. #ifdef CONFIG_X86_64
  196. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  197. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  198. #endif
  199. return v;
  200. }
  201. EXPORT_SYMBOL_GPL(segment_base);
  202. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  203. {
  204. if (irqchip_in_kernel(vcpu->kvm))
  205. return vcpu->arch.apic_base;
  206. else
  207. return vcpu->arch.apic_base;
  208. }
  209. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  210. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  211. {
  212. /* TODO: reserve bits check */
  213. if (irqchip_in_kernel(vcpu->kvm))
  214. kvm_lapic_set_base(vcpu, data);
  215. else
  216. vcpu->arch.apic_base = data;
  217. }
  218. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  219. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  220. {
  221. WARN_ON(vcpu->arch.exception.pending);
  222. vcpu->arch.exception.pending = true;
  223. vcpu->arch.exception.has_error_code = false;
  224. vcpu->arch.exception.nr = nr;
  225. }
  226. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  227. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  228. u32 error_code)
  229. {
  230. ++vcpu->stat.pf_guest;
  231. if (vcpu->arch.exception.pending) {
  232. switch(vcpu->arch.exception.nr) {
  233. case DF_VECTOR:
  234. /* triple fault -> shutdown */
  235. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  236. return;
  237. case PF_VECTOR:
  238. vcpu->arch.exception.nr = DF_VECTOR;
  239. vcpu->arch.exception.error_code = 0;
  240. return;
  241. default:
  242. /* replace previous exception with a new one in a hope
  243. that instruction re-execution will regenerate lost
  244. exception */
  245. vcpu->arch.exception.pending = false;
  246. break;
  247. }
  248. }
  249. vcpu->arch.cr2 = addr;
  250. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  251. }
  252. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  253. {
  254. vcpu->arch.nmi_pending = 1;
  255. }
  256. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  257. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  258. {
  259. WARN_ON(vcpu->arch.exception.pending);
  260. vcpu->arch.exception.pending = true;
  261. vcpu->arch.exception.has_error_code = true;
  262. vcpu->arch.exception.nr = nr;
  263. vcpu->arch.exception.error_code = error_code;
  264. }
  265. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  266. /*
  267. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  268. * a #GP and return false.
  269. */
  270. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  271. {
  272. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  273. return true;
  274. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  275. return false;
  276. }
  277. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  278. /*
  279. * Load the pae pdptrs. Return true is they are all valid.
  280. */
  281. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  282. {
  283. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  284. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  285. int i;
  286. int ret;
  287. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  288. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  289. offset * sizeof(u64), sizeof(pdpte));
  290. if (ret < 0) {
  291. ret = 0;
  292. goto out;
  293. }
  294. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  295. if (is_present_gpte(pdpte[i]) &&
  296. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  297. ret = 0;
  298. goto out;
  299. }
  300. }
  301. ret = 1;
  302. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  303. __set_bit(VCPU_EXREG_PDPTR,
  304. (unsigned long *)&vcpu->arch.regs_avail);
  305. __set_bit(VCPU_EXREG_PDPTR,
  306. (unsigned long *)&vcpu->arch.regs_dirty);
  307. out:
  308. return ret;
  309. }
  310. EXPORT_SYMBOL_GPL(load_pdptrs);
  311. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  312. {
  313. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  314. bool changed = true;
  315. int r;
  316. if (is_long_mode(vcpu) || !is_pae(vcpu))
  317. return false;
  318. if (!test_bit(VCPU_EXREG_PDPTR,
  319. (unsigned long *)&vcpu->arch.regs_avail))
  320. return true;
  321. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  322. if (r < 0)
  323. goto out;
  324. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  325. out:
  326. return changed;
  327. }
  328. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  329. {
  330. if (cr0 & CR0_RESERVED_BITS) {
  331. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  332. cr0, vcpu->arch.cr0);
  333. kvm_inject_gp(vcpu, 0);
  334. return;
  335. }
  336. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  337. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  338. kvm_inject_gp(vcpu, 0);
  339. return;
  340. }
  341. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  342. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  343. "and a clear PE flag\n");
  344. kvm_inject_gp(vcpu, 0);
  345. return;
  346. }
  347. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  348. #ifdef CONFIG_X86_64
  349. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  350. int cs_db, cs_l;
  351. if (!is_pae(vcpu)) {
  352. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  353. "in long mode while PAE is disabled\n");
  354. kvm_inject_gp(vcpu, 0);
  355. return;
  356. }
  357. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  358. if (cs_l) {
  359. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  360. "in long mode while CS.L == 1\n");
  361. kvm_inject_gp(vcpu, 0);
  362. return;
  363. }
  364. } else
  365. #endif
  366. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  367. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  368. "reserved bits\n");
  369. kvm_inject_gp(vcpu, 0);
  370. return;
  371. }
  372. }
  373. kvm_x86_ops->set_cr0(vcpu, cr0);
  374. vcpu->arch.cr0 = cr0;
  375. kvm_mmu_reset_context(vcpu);
  376. return;
  377. }
  378. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  379. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  380. {
  381. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  382. }
  383. EXPORT_SYMBOL_GPL(kvm_lmsw);
  384. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  385. {
  386. unsigned long old_cr4 = vcpu->arch.cr4;
  387. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  388. if (cr4 & CR4_RESERVED_BITS) {
  389. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  390. kvm_inject_gp(vcpu, 0);
  391. return;
  392. }
  393. if (is_long_mode(vcpu)) {
  394. if (!(cr4 & X86_CR4_PAE)) {
  395. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  396. "in long mode\n");
  397. kvm_inject_gp(vcpu, 0);
  398. return;
  399. }
  400. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  401. && ((cr4 ^ old_cr4) & pdptr_bits)
  402. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  403. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  404. kvm_inject_gp(vcpu, 0);
  405. return;
  406. }
  407. if (cr4 & X86_CR4_VMXE) {
  408. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  409. kvm_inject_gp(vcpu, 0);
  410. return;
  411. }
  412. kvm_x86_ops->set_cr4(vcpu, cr4);
  413. vcpu->arch.cr4 = cr4;
  414. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  415. kvm_mmu_reset_context(vcpu);
  416. }
  417. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  418. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  419. {
  420. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  421. kvm_mmu_sync_roots(vcpu);
  422. kvm_mmu_flush_tlb(vcpu);
  423. return;
  424. }
  425. if (is_long_mode(vcpu)) {
  426. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  427. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  428. kvm_inject_gp(vcpu, 0);
  429. return;
  430. }
  431. } else {
  432. if (is_pae(vcpu)) {
  433. if (cr3 & CR3_PAE_RESERVED_BITS) {
  434. printk(KERN_DEBUG
  435. "set_cr3: #GP, reserved bits\n");
  436. kvm_inject_gp(vcpu, 0);
  437. return;
  438. }
  439. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  440. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  441. "reserved bits\n");
  442. kvm_inject_gp(vcpu, 0);
  443. return;
  444. }
  445. }
  446. /*
  447. * We don't check reserved bits in nonpae mode, because
  448. * this isn't enforced, and VMware depends on this.
  449. */
  450. }
  451. /*
  452. * Does the new cr3 value map to physical memory? (Note, we
  453. * catch an invalid cr3 even in real-mode, because it would
  454. * cause trouble later on when we turn on paging anyway.)
  455. *
  456. * A real CPU would silently accept an invalid cr3 and would
  457. * attempt to use it - with largely undefined (and often hard
  458. * to debug) behavior on the guest side.
  459. */
  460. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  461. kvm_inject_gp(vcpu, 0);
  462. else {
  463. vcpu->arch.cr3 = cr3;
  464. vcpu->arch.mmu.new_cr3(vcpu);
  465. }
  466. }
  467. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  468. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  469. {
  470. if (cr8 & CR8_RESERVED_BITS) {
  471. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  472. kvm_inject_gp(vcpu, 0);
  473. return;
  474. }
  475. if (irqchip_in_kernel(vcpu->kvm))
  476. kvm_lapic_set_tpr(vcpu, cr8);
  477. else
  478. vcpu->arch.cr8 = cr8;
  479. }
  480. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  481. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  482. {
  483. if (irqchip_in_kernel(vcpu->kvm))
  484. return kvm_lapic_get_cr8(vcpu);
  485. else
  486. return vcpu->arch.cr8;
  487. }
  488. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  489. static inline u32 bit(int bitno)
  490. {
  491. return 1 << (bitno & 31);
  492. }
  493. /*
  494. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  495. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  496. *
  497. * This list is modified at module load time to reflect the
  498. * capabilities of the host cpu. This capabilities test skips MSRs that are
  499. * kvm-specific. Those are put in the beginning of the list.
  500. */
  501. #define KVM_SAVE_MSRS_BEGIN 2
  502. static u32 msrs_to_save[] = {
  503. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  504. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  505. MSR_K6_STAR,
  506. #ifdef CONFIG_X86_64
  507. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  508. #endif
  509. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  510. };
  511. static unsigned num_msrs_to_save;
  512. static u32 emulated_msrs[] = {
  513. MSR_IA32_MISC_ENABLE,
  514. };
  515. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  516. {
  517. if (efer & efer_reserved_bits) {
  518. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  519. efer);
  520. kvm_inject_gp(vcpu, 0);
  521. return;
  522. }
  523. if (is_paging(vcpu)
  524. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  525. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  526. kvm_inject_gp(vcpu, 0);
  527. return;
  528. }
  529. if (efer & EFER_FFXSR) {
  530. struct kvm_cpuid_entry2 *feat;
  531. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  532. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  533. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  534. kvm_inject_gp(vcpu, 0);
  535. return;
  536. }
  537. }
  538. if (efer & EFER_SVME) {
  539. struct kvm_cpuid_entry2 *feat;
  540. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  541. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  542. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  543. kvm_inject_gp(vcpu, 0);
  544. return;
  545. }
  546. }
  547. kvm_x86_ops->set_efer(vcpu, efer);
  548. efer &= ~EFER_LMA;
  549. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  550. vcpu->arch.shadow_efer = efer;
  551. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  552. kvm_mmu_reset_context(vcpu);
  553. }
  554. void kvm_enable_efer_bits(u64 mask)
  555. {
  556. efer_reserved_bits &= ~mask;
  557. }
  558. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  559. /*
  560. * Writes msr value into into the appropriate "register".
  561. * Returns 0 on success, non-0 otherwise.
  562. * Assumes vcpu_load() was already called.
  563. */
  564. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  565. {
  566. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  567. }
  568. /*
  569. * Adapt set_msr() to msr_io()'s calling convention
  570. */
  571. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  572. {
  573. return kvm_set_msr(vcpu, index, *data);
  574. }
  575. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  576. {
  577. static int version;
  578. struct pvclock_wall_clock wc;
  579. struct timespec now, sys, boot;
  580. if (!wall_clock)
  581. return;
  582. version++;
  583. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  584. /*
  585. * The guest calculates current wall clock time by adding
  586. * system time (updated by kvm_write_guest_time below) to the
  587. * wall clock specified here. guest system time equals host
  588. * system time for us, thus we must fill in host boot time here.
  589. */
  590. now = current_kernel_time();
  591. ktime_get_ts(&sys);
  592. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  593. wc.sec = boot.tv_sec;
  594. wc.nsec = boot.tv_nsec;
  595. wc.version = version;
  596. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  597. version++;
  598. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  599. }
  600. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  601. {
  602. uint32_t quotient, remainder;
  603. /* Don't try to replace with do_div(), this one calculates
  604. * "(dividend << 32) / divisor" */
  605. __asm__ ( "divl %4"
  606. : "=a" (quotient), "=d" (remainder)
  607. : "0" (0), "1" (dividend), "r" (divisor) );
  608. return quotient;
  609. }
  610. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  611. {
  612. uint64_t nsecs = 1000000000LL;
  613. int32_t shift = 0;
  614. uint64_t tps64;
  615. uint32_t tps32;
  616. tps64 = tsc_khz * 1000LL;
  617. while (tps64 > nsecs*2) {
  618. tps64 >>= 1;
  619. shift--;
  620. }
  621. tps32 = (uint32_t)tps64;
  622. while (tps32 <= (uint32_t)nsecs) {
  623. tps32 <<= 1;
  624. shift++;
  625. }
  626. hv_clock->tsc_shift = shift;
  627. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  628. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  629. __func__, tsc_khz, hv_clock->tsc_shift,
  630. hv_clock->tsc_to_system_mul);
  631. }
  632. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  633. static void kvm_write_guest_time(struct kvm_vcpu *v)
  634. {
  635. struct timespec ts;
  636. unsigned long flags;
  637. struct kvm_vcpu_arch *vcpu = &v->arch;
  638. void *shared_kaddr;
  639. unsigned long this_tsc_khz;
  640. if ((!vcpu->time_page))
  641. return;
  642. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  643. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  644. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  645. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  646. }
  647. put_cpu_var(cpu_tsc_khz);
  648. /* Keep irq disabled to prevent changes to the clock */
  649. local_irq_save(flags);
  650. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  651. ktime_get_ts(&ts);
  652. local_irq_restore(flags);
  653. /* With all the info we got, fill in the values */
  654. vcpu->hv_clock.system_time = ts.tv_nsec +
  655. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  656. /*
  657. * The interface expects us to write an even number signaling that the
  658. * update is finished. Since the guest won't see the intermediate
  659. * state, we just increase by 2 at the end.
  660. */
  661. vcpu->hv_clock.version += 2;
  662. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  663. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  664. sizeof(vcpu->hv_clock));
  665. kunmap_atomic(shared_kaddr, KM_USER0);
  666. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  667. }
  668. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  669. {
  670. struct kvm_vcpu_arch *vcpu = &v->arch;
  671. if (!vcpu->time_page)
  672. return 0;
  673. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  674. return 1;
  675. }
  676. static bool msr_mtrr_valid(unsigned msr)
  677. {
  678. switch (msr) {
  679. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  680. case MSR_MTRRfix64K_00000:
  681. case MSR_MTRRfix16K_80000:
  682. case MSR_MTRRfix16K_A0000:
  683. case MSR_MTRRfix4K_C0000:
  684. case MSR_MTRRfix4K_C8000:
  685. case MSR_MTRRfix4K_D0000:
  686. case MSR_MTRRfix4K_D8000:
  687. case MSR_MTRRfix4K_E0000:
  688. case MSR_MTRRfix4K_E8000:
  689. case MSR_MTRRfix4K_F0000:
  690. case MSR_MTRRfix4K_F8000:
  691. case MSR_MTRRdefType:
  692. case MSR_IA32_CR_PAT:
  693. return true;
  694. case 0x2f8:
  695. return true;
  696. }
  697. return false;
  698. }
  699. static bool valid_pat_type(unsigned t)
  700. {
  701. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  702. }
  703. static bool valid_mtrr_type(unsigned t)
  704. {
  705. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  706. }
  707. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  708. {
  709. int i;
  710. if (!msr_mtrr_valid(msr))
  711. return false;
  712. if (msr == MSR_IA32_CR_PAT) {
  713. for (i = 0; i < 8; i++)
  714. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  715. return false;
  716. return true;
  717. } else if (msr == MSR_MTRRdefType) {
  718. if (data & ~0xcff)
  719. return false;
  720. return valid_mtrr_type(data & 0xff);
  721. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  722. for (i = 0; i < 8 ; i++)
  723. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  724. return false;
  725. return true;
  726. }
  727. /* variable MTRRs */
  728. return valid_mtrr_type(data & 0xff);
  729. }
  730. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  731. {
  732. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  733. if (!mtrr_valid(vcpu, msr, data))
  734. return 1;
  735. if (msr == MSR_MTRRdefType) {
  736. vcpu->arch.mtrr_state.def_type = data;
  737. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  738. } else if (msr == MSR_MTRRfix64K_00000)
  739. p[0] = data;
  740. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  741. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  742. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  743. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  744. else if (msr == MSR_IA32_CR_PAT)
  745. vcpu->arch.pat = data;
  746. else { /* Variable MTRRs */
  747. int idx, is_mtrr_mask;
  748. u64 *pt;
  749. idx = (msr - 0x200) / 2;
  750. is_mtrr_mask = msr - 0x200 - 2 * idx;
  751. if (!is_mtrr_mask)
  752. pt =
  753. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  754. else
  755. pt =
  756. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  757. *pt = data;
  758. }
  759. kvm_mmu_reset_context(vcpu);
  760. return 0;
  761. }
  762. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  763. {
  764. u64 mcg_cap = vcpu->arch.mcg_cap;
  765. unsigned bank_num = mcg_cap & 0xff;
  766. switch (msr) {
  767. case MSR_IA32_MCG_STATUS:
  768. vcpu->arch.mcg_status = data;
  769. break;
  770. case MSR_IA32_MCG_CTL:
  771. if (!(mcg_cap & MCG_CTL_P))
  772. return 1;
  773. if (data != 0 && data != ~(u64)0)
  774. return -1;
  775. vcpu->arch.mcg_ctl = data;
  776. break;
  777. default:
  778. if (msr >= MSR_IA32_MC0_CTL &&
  779. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  780. u32 offset = msr - MSR_IA32_MC0_CTL;
  781. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  782. if ((offset & 0x3) == 0 &&
  783. data != 0 && data != ~(u64)0)
  784. return -1;
  785. vcpu->arch.mce_banks[offset] = data;
  786. break;
  787. }
  788. return 1;
  789. }
  790. return 0;
  791. }
  792. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  793. {
  794. struct kvm *kvm = vcpu->kvm;
  795. int lm = is_long_mode(vcpu);
  796. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  797. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  798. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  799. : kvm->arch.xen_hvm_config.blob_size_32;
  800. u32 page_num = data & ~PAGE_MASK;
  801. u64 page_addr = data & PAGE_MASK;
  802. u8 *page;
  803. int r;
  804. r = -E2BIG;
  805. if (page_num >= blob_size)
  806. goto out;
  807. r = -ENOMEM;
  808. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  809. if (!page)
  810. goto out;
  811. r = -EFAULT;
  812. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  813. goto out_free;
  814. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  815. goto out_free;
  816. r = 0;
  817. out_free:
  818. kfree(page);
  819. out:
  820. return r;
  821. }
  822. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  823. {
  824. switch (msr) {
  825. case MSR_EFER:
  826. set_efer(vcpu, data);
  827. break;
  828. case MSR_K7_HWCR:
  829. data &= ~(u64)0x40; /* ignore flush filter disable */
  830. if (data != 0) {
  831. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  832. data);
  833. return 1;
  834. }
  835. break;
  836. case MSR_FAM10H_MMIO_CONF_BASE:
  837. if (data != 0) {
  838. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  839. "0x%llx\n", data);
  840. return 1;
  841. }
  842. break;
  843. case MSR_AMD64_NB_CFG:
  844. break;
  845. case MSR_IA32_DEBUGCTLMSR:
  846. if (!data) {
  847. /* We support the non-activated case already */
  848. break;
  849. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  850. /* Values other than LBR and BTF are vendor-specific,
  851. thus reserved and should throw a #GP */
  852. return 1;
  853. }
  854. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  855. __func__, data);
  856. break;
  857. case MSR_IA32_UCODE_REV:
  858. case MSR_IA32_UCODE_WRITE:
  859. case MSR_VM_HSAVE_PA:
  860. case MSR_AMD64_PATCH_LOADER:
  861. break;
  862. case 0x200 ... 0x2ff:
  863. return set_msr_mtrr(vcpu, msr, data);
  864. case MSR_IA32_APICBASE:
  865. kvm_set_apic_base(vcpu, data);
  866. break;
  867. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  868. return kvm_x2apic_msr_write(vcpu, msr, data);
  869. case MSR_IA32_MISC_ENABLE:
  870. vcpu->arch.ia32_misc_enable_msr = data;
  871. break;
  872. case MSR_KVM_WALL_CLOCK:
  873. vcpu->kvm->arch.wall_clock = data;
  874. kvm_write_wall_clock(vcpu->kvm, data);
  875. break;
  876. case MSR_KVM_SYSTEM_TIME: {
  877. if (vcpu->arch.time_page) {
  878. kvm_release_page_dirty(vcpu->arch.time_page);
  879. vcpu->arch.time_page = NULL;
  880. }
  881. vcpu->arch.time = data;
  882. /* we verify if the enable bit is set... */
  883. if (!(data & 1))
  884. break;
  885. /* ...but clean it before doing the actual write */
  886. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  887. vcpu->arch.time_page =
  888. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  889. if (is_error_page(vcpu->arch.time_page)) {
  890. kvm_release_page_clean(vcpu->arch.time_page);
  891. vcpu->arch.time_page = NULL;
  892. }
  893. kvm_request_guest_time_update(vcpu);
  894. break;
  895. }
  896. case MSR_IA32_MCG_CTL:
  897. case MSR_IA32_MCG_STATUS:
  898. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  899. return set_msr_mce(vcpu, msr, data);
  900. /* Performance counters are not protected by a CPUID bit,
  901. * so we should check all of them in the generic path for the sake of
  902. * cross vendor migration.
  903. * Writing a zero into the event select MSRs disables them,
  904. * which we perfectly emulate ;-). Any other value should be at least
  905. * reported, some guests depend on them.
  906. */
  907. case MSR_P6_EVNTSEL0:
  908. case MSR_P6_EVNTSEL1:
  909. case MSR_K7_EVNTSEL0:
  910. case MSR_K7_EVNTSEL1:
  911. case MSR_K7_EVNTSEL2:
  912. case MSR_K7_EVNTSEL3:
  913. if (data != 0)
  914. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  915. "0x%x data 0x%llx\n", msr, data);
  916. break;
  917. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  918. * so we ignore writes to make it happy.
  919. */
  920. case MSR_P6_PERFCTR0:
  921. case MSR_P6_PERFCTR1:
  922. case MSR_K7_PERFCTR0:
  923. case MSR_K7_PERFCTR1:
  924. case MSR_K7_PERFCTR2:
  925. case MSR_K7_PERFCTR3:
  926. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  927. "0x%x data 0x%llx\n", msr, data);
  928. break;
  929. default:
  930. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  931. return xen_hvm_config(vcpu, data);
  932. if (!ignore_msrs) {
  933. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  934. msr, data);
  935. return 1;
  936. } else {
  937. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  938. msr, data);
  939. break;
  940. }
  941. }
  942. return 0;
  943. }
  944. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  945. /*
  946. * Reads an msr value (of 'msr_index') into 'pdata'.
  947. * Returns 0 on success, non-0 otherwise.
  948. * Assumes vcpu_load() was already called.
  949. */
  950. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  951. {
  952. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  953. }
  954. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  955. {
  956. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  957. if (!msr_mtrr_valid(msr))
  958. return 1;
  959. if (msr == MSR_MTRRdefType)
  960. *pdata = vcpu->arch.mtrr_state.def_type +
  961. (vcpu->arch.mtrr_state.enabled << 10);
  962. else if (msr == MSR_MTRRfix64K_00000)
  963. *pdata = p[0];
  964. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  965. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  966. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  967. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  968. else if (msr == MSR_IA32_CR_PAT)
  969. *pdata = vcpu->arch.pat;
  970. else { /* Variable MTRRs */
  971. int idx, is_mtrr_mask;
  972. u64 *pt;
  973. idx = (msr - 0x200) / 2;
  974. is_mtrr_mask = msr - 0x200 - 2 * idx;
  975. if (!is_mtrr_mask)
  976. pt =
  977. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  978. else
  979. pt =
  980. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  981. *pdata = *pt;
  982. }
  983. return 0;
  984. }
  985. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  986. {
  987. u64 data;
  988. u64 mcg_cap = vcpu->arch.mcg_cap;
  989. unsigned bank_num = mcg_cap & 0xff;
  990. switch (msr) {
  991. case MSR_IA32_P5_MC_ADDR:
  992. case MSR_IA32_P5_MC_TYPE:
  993. data = 0;
  994. break;
  995. case MSR_IA32_MCG_CAP:
  996. data = vcpu->arch.mcg_cap;
  997. break;
  998. case MSR_IA32_MCG_CTL:
  999. if (!(mcg_cap & MCG_CTL_P))
  1000. return 1;
  1001. data = vcpu->arch.mcg_ctl;
  1002. break;
  1003. case MSR_IA32_MCG_STATUS:
  1004. data = vcpu->arch.mcg_status;
  1005. break;
  1006. default:
  1007. if (msr >= MSR_IA32_MC0_CTL &&
  1008. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1009. u32 offset = msr - MSR_IA32_MC0_CTL;
  1010. data = vcpu->arch.mce_banks[offset];
  1011. break;
  1012. }
  1013. return 1;
  1014. }
  1015. *pdata = data;
  1016. return 0;
  1017. }
  1018. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1019. {
  1020. u64 data;
  1021. switch (msr) {
  1022. case MSR_IA32_PLATFORM_ID:
  1023. case MSR_IA32_UCODE_REV:
  1024. case MSR_IA32_EBL_CR_POWERON:
  1025. case MSR_IA32_DEBUGCTLMSR:
  1026. case MSR_IA32_LASTBRANCHFROMIP:
  1027. case MSR_IA32_LASTBRANCHTOIP:
  1028. case MSR_IA32_LASTINTFROMIP:
  1029. case MSR_IA32_LASTINTTOIP:
  1030. case MSR_K8_SYSCFG:
  1031. case MSR_K7_HWCR:
  1032. case MSR_VM_HSAVE_PA:
  1033. case MSR_P6_PERFCTR0:
  1034. case MSR_P6_PERFCTR1:
  1035. case MSR_P6_EVNTSEL0:
  1036. case MSR_P6_EVNTSEL1:
  1037. case MSR_K7_EVNTSEL0:
  1038. case MSR_K7_PERFCTR0:
  1039. case MSR_K8_INT_PENDING_MSG:
  1040. case MSR_AMD64_NB_CFG:
  1041. case MSR_FAM10H_MMIO_CONF_BASE:
  1042. data = 0;
  1043. break;
  1044. case MSR_MTRRcap:
  1045. data = 0x500 | KVM_NR_VAR_MTRR;
  1046. break;
  1047. case 0x200 ... 0x2ff:
  1048. return get_msr_mtrr(vcpu, msr, pdata);
  1049. case 0xcd: /* fsb frequency */
  1050. data = 3;
  1051. break;
  1052. case MSR_IA32_APICBASE:
  1053. data = kvm_get_apic_base(vcpu);
  1054. break;
  1055. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1056. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1057. break;
  1058. case MSR_IA32_MISC_ENABLE:
  1059. data = vcpu->arch.ia32_misc_enable_msr;
  1060. break;
  1061. case MSR_IA32_PERF_STATUS:
  1062. /* TSC increment by tick */
  1063. data = 1000ULL;
  1064. /* CPU multiplier */
  1065. data |= (((uint64_t)4ULL) << 40);
  1066. break;
  1067. case MSR_EFER:
  1068. data = vcpu->arch.shadow_efer;
  1069. break;
  1070. case MSR_KVM_WALL_CLOCK:
  1071. data = vcpu->kvm->arch.wall_clock;
  1072. break;
  1073. case MSR_KVM_SYSTEM_TIME:
  1074. data = vcpu->arch.time;
  1075. break;
  1076. case MSR_IA32_P5_MC_ADDR:
  1077. case MSR_IA32_P5_MC_TYPE:
  1078. case MSR_IA32_MCG_CAP:
  1079. case MSR_IA32_MCG_CTL:
  1080. case MSR_IA32_MCG_STATUS:
  1081. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1082. return get_msr_mce(vcpu, msr, pdata);
  1083. default:
  1084. if (!ignore_msrs) {
  1085. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1086. return 1;
  1087. } else {
  1088. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1089. data = 0;
  1090. }
  1091. break;
  1092. }
  1093. *pdata = data;
  1094. return 0;
  1095. }
  1096. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1097. /*
  1098. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1099. *
  1100. * @return number of msrs set successfully.
  1101. */
  1102. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1103. struct kvm_msr_entry *entries,
  1104. int (*do_msr)(struct kvm_vcpu *vcpu,
  1105. unsigned index, u64 *data))
  1106. {
  1107. int i;
  1108. vcpu_load(vcpu);
  1109. down_read(&vcpu->kvm->slots_lock);
  1110. for (i = 0; i < msrs->nmsrs; ++i)
  1111. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1112. break;
  1113. up_read(&vcpu->kvm->slots_lock);
  1114. vcpu_put(vcpu);
  1115. return i;
  1116. }
  1117. /*
  1118. * Read or write a bunch of msrs. Parameters are user addresses.
  1119. *
  1120. * @return number of msrs set successfully.
  1121. */
  1122. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1123. int (*do_msr)(struct kvm_vcpu *vcpu,
  1124. unsigned index, u64 *data),
  1125. int writeback)
  1126. {
  1127. struct kvm_msrs msrs;
  1128. struct kvm_msr_entry *entries;
  1129. int r, n;
  1130. unsigned size;
  1131. r = -EFAULT;
  1132. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1133. goto out;
  1134. r = -E2BIG;
  1135. if (msrs.nmsrs >= MAX_IO_MSRS)
  1136. goto out;
  1137. r = -ENOMEM;
  1138. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1139. entries = vmalloc(size);
  1140. if (!entries)
  1141. goto out;
  1142. r = -EFAULT;
  1143. if (copy_from_user(entries, user_msrs->entries, size))
  1144. goto out_free;
  1145. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1146. if (r < 0)
  1147. goto out_free;
  1148. r = -EFAULT;
  1149. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1150. goto out_free;
  1151. r = n;
  1152. out_free:
  1153. vfree(entries);
  1154. out:
  1155. return r;
  1156. }
  1157. int kvm_dev_ioctl_check_extension(long ext)
  1158. {
  1159. int r;
  1160. switch (ext) {
  1161. case KVM_CAP_IRQCHIP:
  1162. case KVM_CAP_HLT:
  1163. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1164. case KVM_CAP_SET_TSS_ADDR:
  1165. case KVM_CAP_EXT_CPUID:
  1166. case KVM_CAP_CLOCKSOURCE:
  1167. case KVM_CAP_PIT:
  1168. case KVM_CAP_NOP_IO_DELAY:
  1169. case KVM_CAP_MP_STATE:
  1170. case KVM_CAP_SYNC_MMU:
  1171. case KVM_CAP_REINJECT_CONTROL:
  1172. case KVM_CAP_IRQ_INJECT_STATUS:
  1173. case KVM_CAP_ASSIGN_DEV_IRQ:
  1174. case KVM_CAP_IRQFD:
  1175. case KVM_CAP_IOEVENTFD:
  1176. case KVM_CAP_PIT2:
  1177. case KVM_CAP_PIT_STATE2:
  1178. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1179. case KVM_CAP_XEN_HVM:
  1180. case KVM_CAP_ADJUST_CLOCK:
  1181. r = 1;
  1182. break;
  1183. case KVM_CAP_COALESCED_MMIO:
  1184. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1185. break;
  1186. case KVM_CAP_VAPIC:
  1187. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1188. break;
  1189. case KVM_CAP_NR_VCPUS:
  1190. r = KVM_MAX_VCPUS;
  1191. break;
  1192. case KVM_CAP_NR_MEMSLOTS:
  1193. r = KVM_MEMORY_SLOTS;
  1194. break;
  1195. case KVM_CAP_PV_MMU: /* obsolete */
  1196. r = 0;
  1197. break;
  1198. case KVM_CAP_IOMMU:
  1199. r = iommu_found();
  1200. break;
  1201. case KVM_CAP_MCE:
  1202. r = KVM_MAX_MCE_BANKS;
  1203. break;
  1204. default:
  1205. r = 0;
  1206. break;
  1207. }
  1208. return r;
  1209. }
  1210. long kvm_arch_dev_ioctl(struct file *filp,
  1211. unsigned int ioctl, unsigned long arg)
  1212. {
  1213. void __user *argp = (void __user *)arg;
  1214. long r;
  1215. switch (ioctl) {
  1216. case KVM_GET_MSR_INDEX_LIST: {
  1217. struct kvm_msr_list __user *user_msr_list = argp;
  1218. struct kvm_msr_list msr_list;
  1219. unsigned n;
  1220. r = -EFAULT;
  1221. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1222. goto out;
  1223. n = msr_list.nmsrs;
  1224. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1225. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1226. goto out;
  1227. r = -E2BIG;
  1228. if (n < msr_list.nmsrs)
  1229. goto out;
  1230. r = -EFAULT;
  1231. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1232. num_msrs_to_save * sizeof(u32)))
  1233. goto out;
  1234. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1235. &emulated_msrs,
  1236. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1237. goto out;
  1238. r = 0;
  1239. break;
  1240. }
  1241. case KVM_GET_SUPPORTED_CPUID: {
  1242. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1243. struct kvm_cpuid2 cpuid;
  1244. r = -EFAULT;
  1245. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1246. goto out;
  1247. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1248. cpuid_arg->entries);
  1249. if (r)
  1250. goto out;
  1251. r = -EFAULT;
  1252. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1253. goto out;
  1254. r = 0;
  1255. break;
  1256. }
  1257. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1258. u64 mce_cap;
  1259. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1260. r = -EFAULT;
  1261. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1262. goto out;
  1263. r = 0;
  1264. break;
  1265. }
  1266. default:
  1267. r = -EINVAL;
  1268. }
  1269. out:
  1270. return r;
  1271. }
  1272. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1273. {
  1274. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1275. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1276. unsigned long khz = cpufreq_quick_get(cpu);
  1277. if (!khz)
  1278. khz = tsc_khz;
  1279. per_cpu(cpu_tsc_khz, cpu) = khz;
  1280. }
  1281. kvm_request_guest_time_update(vcpu);
  1282. }
  1283. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1284. {
  1285. kvm_x86_ops->vcpu_put(vcpu);
  1286. kvm_put_guest_fpu(vcpu);
  1287. }
  1288. static int is_efer_nx(void)
  1289. {
  1290. unsigned long long efer = 0;
  1291. rdmsrl_safe(MSR_EFER, &efer);
  1292. return efer & EFER_NX;
  1293. }
  1294. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1295. {
  1296. int i;
  1297. struct kvm_cpuid_entry2 *e, *entry;
  1298. entry = NULL;
  1299. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1300. e = &vcpu->arch.cpuid_entries[i];
  1301. if (e->function == 0x80000001) {
  1302. entry = e;
  1303. break;
  1304. }
  1305. }
  1306. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1307. entry->edx &= ~(1 << 20);
  1308. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1309. }
  1310. }
  1311. /* when an old userspace process fills a new kernel module */
  1312. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1313. struct kvm_cpuid *cpuid,
  1314. struct kvm_cpuid_entry __user *entries)
  1315. {
  1316. int r, i;
  1317. struct kvm_cpuid_entry *cpuid_entries;
  1318. r = -E2BIG;
  1319. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1320. goto out;
  1321. r = -ENOMEM;
  1322. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1323. if (!cpuid_entries)
  1324. goto out;
  1325. r = -EFAULT;
  1326. if (copy_from_user(cpuid_entries, entries,
  1327. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1328. goto out_free;
  1329. for (i = 0; i < cpuid->nent; i++) {
  1330. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1331. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1332. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1333. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1334. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1335. vcpu->arch.cpuid_entries[i].index = 0;
  1336. vcpu->arch.cpuid_entries[i].flags = 0;
  1337. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1338. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1339. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1340. }
  1341. vcpu->arch.cpuid_nent = cpuid->nent;
  1342. cpuid_fix_nx_cap(vcpu);
  1343. r = 0;
  1344. kvm_apic_set_version(vcpu);
  1345. out_free:
  1346. vfree(cpuid_entries);
  1347. out:
  1348. return r;
  1349. }
  1350. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1351. struct kvm_cpuid2 *cpuid,
  1352. struct kvm_cpuid_entry2 __user *entries)
  1353. {
  1354. int r;
  1355. r = -E2BIG;
  1356. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1357. goto out;
  1358. r = -EFAULT;
  1359. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1360. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1361. goto out;
  1362. vcpu->arch.cpuid_nent = cpuid->nent;
  1363. kvm_apic_set_version(vcpu);
  1364. return 0;
  1365. out:
  1366. return r;
  1367. }
  1368. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1369. struct kvm_cpuid2 *cpuid,
  1370. struct kvm_cpuid_entry2 __user *entries)
  1371. {
  1372. int r;
  1373. r = -E2BIG;
  1374. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1375. goto out;
  1376. r = -EFAULT;
  1377. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1378. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1379. goto out;
  1380. return 0;
  1381. out:
  1382. cpuid->nent = vcpu->arch.cpuid_nent;
  1383. return r;
  1384. }
  1385. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1386. u32 index)
  1387. {
  1388. entry->function = function;
  1389. entry->index = index;
  1390. cpuid_count(entry->function, entry->index,
  1391. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1392. entry->flags = 0;
  1393. }
  1394. #define F(x) bit(X86_FEATURE_##x)
  1395. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1396. u32 index, int *nent, int maxnent)
  1397. {
  1398. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1399. unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
  1400. #ifdef CONFIG_X86_64
  1401. unsigned f_lm = F(LM);
  1402. #else
  1403. unsigned f_lm = 0;
  1404. #endif
  1405. /* cpuid 1.edx */
  1406. const u32 kvm_supported_word0_x86_features =
  1407. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1408. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1409. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1410. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1411. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1412. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1413. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1414. 0 /* HTT, TM, Reserved, PBE */;
  1415. /* cpuid 0x80000001.edx */
  1416. const u32 kvm_supported_word1_x86_features =
  1417. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1418. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1419. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1420. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1421. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1422. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1423. F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
  1424. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1425. /* cpuid 1.ecx */
  1426. const u32 kvm_supported_word4_x86_features =
  1427. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1428. 0 /* DS-CPL, VMX, SMX, EST */ |
  1429. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1430. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1431. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1432. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1433. 0 /* Reserved, XSAVE, OSXSAVE */;
  1434. /* cpuid 0x80000001.ecx */
  1435. const u32 kvm_supported_word6_x86_features =
  1436. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1437. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1438. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1439. 0 /* SKINIT */ | 0 /* WDT */;
  1440. /* all calls to cpuid_count() should be made on the same cpu */
  1441. get_cpu();
  1442. do_cpuid_1_ent(entry, function, index);
  1443. ++*nent;
  1444. switch (function) {
  1445. case 0:
  1446. entry->eax = min(entry->eax, (u32)0xb);
  1447. break;
  1448. case 1:
  1449. entry->edx &= kvm_supported_word0_x86_features;
  1450. entry->ecx &= kvm_supported_word4_x86_features;
  1451. /* we support x2apic emulation even if host does not support
  1452. * it since we emulate x2apic in software */
  1453. entry->ecx |= F(X2APIC);
  1454. break;
  1455. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1456. * may return different values. This forces us to get_cpu() before
  1457. * issuing the first command, and also to emulate this annoying behavior
  1458. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1459. case 2: {
  1460. int t, times = entry->eax & 0xff;
  1461. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1462. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1463. for (t = 1; t < times && *nent < maxnent; ++t) {
  1464. do_cpuid_1_ent(&entry[t], function, 0);
  1465. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1466. ++*nent;
  1467. }
  1468. break;
  1469. }
  1470. /* function 4 and 0xb have additional index. */
  1471. case 4: {
  1472. int i, cache_type;
  1473. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1474. /* read more entries until cache_type is zero */
  1475. for (i = 1; *nent < maxnent; ++i) {
  1476. cache_type = entry[i - 1].eax & 0x1f;
  1477. if (!cache_type)
  1478. break;
  1479. do_cpuid_1_ent(&entry[i], function, i);
  1480. entry[i].flags |=
  1481. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1482. ++*nent;
  1483. }
  1484. break;
  1485. }
  1486. case 0xb: {
  1487. int i, level_type;
  1488. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1489. /* read more entries until level_type is zero */
  1490. for (i = 1; *nent < maxnent; ++i) {
  1491. level_type = entry[i - 1].ecx & 0xff00;
  1492. if (!level_type)
  1493. break;
  1494. do_cpuid_1_ent(&entry[i], function, i);
  1495. entry[i].flags |=
  1496. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1497. ++*nent;
  1498. }
  1499. break;
  1500. }
  1501. case 0x80000000:
  1502. entry->eax = min(entry->eax, 0x8000001a);
  1503. break;
  1504. case 0x80000001:
  1505. entry->edx &= kvm_supported_word1_x86_features;
  1506. entry->ecx &= kvm_supported_word6_x86_features;
  1507. break;
  1508. }
  1509. put_cpu();
  1510. }
  1511. #undef F
  1512. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1513. struct kvm_cpuid_entry2 __user *entries)
  1514. {
  1515. struct kvm_cpuid_entry2 *cpuid_entries;
  1516. int limit, nent = 0, r = -E2BIG;
  1517. u32 func;
  1518. if (cpuid->nent < 1)
  1519. goto out;
  1520. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1521. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1522. r = -ENOMEM;
  1523. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1524. if (!cpuid_entries)
  1525. goto out;
  1526. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1527. limit = cpuid_entries[0].eax;
  1528. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1529. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1530. &nent, cpuid->nent);
  1531. r = -E2BIG;
  1532. if (nent >= cpuid->nent)
  1533. goto out_free;
  1534. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1535. limit = cpuid_entries[nent - 1].eax;
  1536. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1537. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1538. &nent, cpuid->nent);
  1539. r = -E2BIG;
  1540. if (nent >= cpuid->nent)
  1541. goto out_free;
  1542. r = -EFAULT;
  1543. if (copy_to_user(entries, cpuid_entries,
  1544. nent * sizeof(struct kvm_cpuid_entry2)))
  1545. goto out_free;
  1546. cpuid->nent = nent;
  1547. r = 0;
  1548. out_free:
  1549. vfree(cpuid_entries);
  1550. out:
  1551. return r;
  1552. }
  1553. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1554. struct kvm_lapic_state *s)
  1555. {
  1556. vcpu_load(vcpu);
  1557. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1558. vcpu_put(vcpu);
  1559. return 0;
  1560. }
  1561. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1562. struct kvm_lapic_state *s)
  1563. {
  1564. vcpu_load(vcpu);
  1565. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1566. kvm_apic_post_state_restore(vcpu);
  1567. update_cr8_intercept(vcpu);
  1568. vcpu_put(vcpu);
  1569. return 0;
  1570. }
  1571. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1572. struct kvm_interrupt *irq)
  1573. {
  1574. if (irq->irq < 0 || irq->irq >= 256)
  1575. return -EINVAL;
  1576. if (irqchip_in_kernel(vcpu->kvm))
  1577. return -ENXIO;
  1578. vcpu_load(vcpu);
  1579. kvm_queue_interrupt(vcpu, irq->irq, false);
  1580. vcpu_put(vcpu);
  1581. return 0;
  1582. }
  1583. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1584. {
  1585. vcpu_load(vcpu);
  1586. kvm_inject_nmi(vcpu);
  1587. vcpu_put(vcpu);
  1588. return 0;
  1589. }
  1590. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1591. struct kvm_tpr_access_ctl *tac)
  1592. {
  1593. if (tac->flags)
  1594. return -EINVAL;
  1595. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1596. return 0;
  1597. }
  1598. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1599. u64 mcg_cap)
  1600. {
  1601. int r;
  1602. unsigned bank_num = mcg_cap & 0xff, bank;
  1603. r = -EINVAL;
  1604. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1605. goto out;
  1606. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1607. goto out;
  1608. r = 0;
  1609. vcpu->arch.mcg_cap = mcg_cap;
  1610. /* Init IA32_MCG_CTL to all 1s */
  1611. if (mcg_cap & MCG_CTL_P)
  1612. vcpu->arch.mcg_ctl = ~(u64)0;
  1613. /* Init IA32_MCi_CTL to all 1s */
  1614. for (bank = 0; bank < bank_num; bank++)
  1615. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1616. out:
  1617. return r;
  1618. }
  1619. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1620. struct kvm_x86_mce *mce)
  1621. {
  1622. u64 mcg_cap = vcpu->arch.mcg_cap;
  1623. unsigned bank_num = mcg_cap & 0xff;
  1624. u64 *banks = vcpu->arch.mce_banks;
  1625. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1626. return -EINVAL;
  1627. /*
  1628. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1629. * reporting is disabled
  1630. */
  1631. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1632. vcpu->arch.mcg_ctl != ~(u64)0)
  1633. return 0;
  1634. banks += 4 * mce->bank;
  1635. /*
  1636. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1637. * reporting is disabled for the bank
  1638. */
  1639. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1640. return 0;
  1641. if (mce->status & MCI_STATUS_UC) {
  1642. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1643. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1644. printk(KERN_DEBUG "kvm: set_mce: "
  1645. "injects mce exception while "
  1646. "previous one is in progress!\n");
  1647. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1648. return 0;
  1649. }
  1650. if (banks[1] & MCI_STATUS_VAL)
  1651. mce->status |= MCI_STATUS_OVER;
  1652. banks[2] = mce->addr;
  1653. banks[3] = mce->misc;
  1654. vcpu->arch.mcg_status = mce->mcg_status;
  1655. banks[1] = mce->status;
  1656. kvm_queue_exception(vcpu, MC_VECTOR);
  1657. } else if (!(banks[1] & MCI_STATUS_VAL)
  1658. || !(banks[1] & MCI_STATUS_UC)) {
  1659. if (banks[1] & MCI_STATUS_VAL)
  1660. mce->status |= MCI_STATUS_OVER;
  1661. banks[2] = mce->addr;
  1662. banks[3] = mce->misc;
  1663. banks[1] = mce->status;
  1664. } else
  1665. banks[1] |= MCI_STATUS_OVER;
  1666. return 0;
  1667. }
  1668. long kvm_arch_vcpu_ioctl(struct file *filp,
  1669. unsigned int ioctl, unsigned long arg)
  1670. {
  1671. struct kvm_vcpu *vcpu = filp->private_data;
  1672. void __user *argp = (void __user *)arg;
  1673. int r;
  1674. struct kvm_lapic_state *lapic = NULL;
  1675. switch (ioctl) {
  1676. case KVM_GET_LAPIC: {
  1677. r = -EINVAL;
  1678. if (!vcpu->arch.apic)
  1679. goto out;
  1680. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1681. r = -ENOMEM;
  1682. if (!lapic)
  1683. goto out;
  1684. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1685. if (r)
  1686. goto out;
  1687. r = -EFAULT;
  1688. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1689. goto out;
  1690. r = 0;
  1691. break;
  1692. }
  1693. case KVM_SET_LAPIC: {
  1694. r = -EINVAL;
  1695. if (!vcpu->arch.apic)
  1696. goto out;
  1697. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1698. r = -ENOMEM;
  1699. if (!lapic)
  1700. goto out;
  1701. r = -EFAULT;
  1702. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1703. goto out;
  1704. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1705. if (r)
  1706. goto out;
  1707. r = 0;
  1708. break;
  1709. }
  1710. case KVM_INTERRUPT: {
  1711. struct kvm_interrupt irq;
  1712. r = -EFAULT;
  1713. if (copy_from_user(&irq, argp, sizeof irq))
  1714. goto out;
  1715. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1716. if (r)
  1717. goto out;
  1718. r = 0;
  1719. break;
  1720. }
  1721. case KVM_NMI: {
  1722. r = kvm_vcpu_ioctl_nmi(vcpu);
  1723. if (r)
  1724. goto out;
  1725. r = 0;
  1726. break;
  1727. }
  1728. case KVM_SET_CPUID: {
  1729. struct kvm_cpuid __user *cpuid_arg = argp;
  1730. struct kvm_cpuid cpuid;
  1731. r = -EFAULT;
  1732. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1733. goto out;
  1734. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1735. if (r)
  1736. goto out;
  1737. break;
  1738. }
  1739. case KVM_SET_CPUID2: {
  1740. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1741. struct kvm_cpuid2 cpuid;
  1742. r = -EFAULT;
  1743. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1744. goto out;
  1745. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1746. cpuid_arg->entries);
  1747. if (r)
  1748. goto out;
  1749. break;
  1750. }
  1751. case KVM_GET_CPUID2: {
  1752. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1753. struct kvm_cpuid2 cpuid;
  1754. r = -EFAULT;
  1755. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1756. goto out;
  1757. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1758. cpuid_arg->entries);
  1759. if (r)
  1760. goto out;
  1761. r = -EFAULT;
  1762. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1763. goto out;
  1764. r = 0;
  1765. break;
  1766. }
  1767. case KVM_GET_MSRS:
  1768. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1769. break;
  1770. case KVM_SET_MSRS:
  1771. r = msr_io(vcpu, argp, do_set_msr, 0);
  1772. break;
  1773. case KVM_TPR_ACCESS_REPORTING: {
  1774. struct kvm_tpr_access_ctl tac;
  1775. r = -EFAULT;
  1776. if (copy_from_user(&tac, argp, sizeof tac))
  1777. goto out;
  1778. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1779. if (r)
  1780. goto out;
  1781. r = -EFAULT;
  1782. if (copy_to_user(argp, &tac, sizeof tac))
  1783. goto out;
  1784. r = 0;
  1785. break;
  1786. };
  1787. case KVM_SET_VAPIC_ADDR: {
  1788. struct kvm_vapic_addr va;
  1789. r = -EINVAL;
  1790. if (!irqchip_in_kernel(vcpu->kvm))
  1791. goto out;
  1792. r = -EFAULT;
  1793. if (copy_from_user(&va, argp, sizeof va))
  1794. goto out;
  1795. r = 0;
  1796. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1797. break;
  1798. }
  1799. case KVM_X86_SETUP_MCE: {
  1800. u64 mcg_cap;
  1801. r = -EFAULT;
  1802. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1803. goto out;
  1804. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1805. break;
  1806. }
  1807. case KVM_X86_SET_MCE: {
  1808. struct kvm_x86_mce mce;
  1809. r = -EFAULT;
  1810. if (copy_from_user(&mce, argp, sizeof mce))
  1811. goto out;
  1812. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1813. break;
  1814. }
  1815. default:
  1816. r = -EINVAL;
  1817. }
  1818. out:
  1819. kfree(lapic);
  1820. return r;
  1821. }
  1822. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1823. {
  1824. int ret;
  1825. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1826. return -1;
  1827. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1828. return ret;
  1829. }
  1830. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  1831. u64 ident_addr)
  1832. {
  1833. kvm->arch.ept_identity_map_addr = ident_addr;
  1834. return 0;
  1835. }
  1836. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1837. u32 kvm_nr_mmu_pages)
  1838. {
  1839. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1840. return -EINVAL;
  1841. down_write(&kvm->slots_lock);
  1842. spin_lock(&kvm->mmu_lock);
  1843. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1844. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1845. spin_unlock(&kvm->mmu_lock);
  1846. up_write(&kvm->slots_lock);
  1847. return 0;
  1848. }
  1849. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1850. {
  1851. return kvm->arch.n_alloc_mmu_pages;
  1852. }
  1853. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1854. {
  1855. int i;
  1856. struct kvm_mem_alias *alias;
  1857. for (i = 0; i < kvm->arch.naliases; ++i) {
  1858. alias = &kvm->arch.aliases[i];
  1859. if (gfn >= alias->base_gfn
  1860. && gfn < alias->base_gfn + alias->npages)
  1861. return alias->target_gfn + gfn - alias->base_gfn;
  1862. }
  1863. return gfn;
  1864. }
  1865. /*
  1866. * Set a new alias region. Aliases map a portion of physical memory into
  1867. * another portion. This is useful for memory windows, for example the PC
  1868. * VGA region.
  1869. */
  1870. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1871. struct kvm_memory_alias *alias)
  1872. {
  1873. int r, n;
  1874. struct kvm_mem_alias *p;
  1875. r = -EINVAL;
  1876. /* General sanity checks */
  1877. if (alias->memory_size & (PAGE_SIZE - 1))
  1878. goto out;
  1879. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1880. goto out;
  1881. if (alias->slot >= KVM_ALIAS_SLOTS)
  1882. goto out;
  1883. if (alias->guest_phys_addr + alias->memory_size
  1884. < alias->guest_phys_addr)
  1885. goto out;
  1886. if (alias->target_phys_addr + alias->memory_size
  1887. < alias->target_phys_addr)
  1888. goto out;
  1889. down_write(&kvm->slots_lock);
  1890. spin_lock(&kvm->mmu_lock);
  1891. p = &kvm->arch.aliases[alias->slot];
  1892. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1893. p->npages = alias->memory_size >> PAGE_SHIFT;
  1894. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1895. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1896. if (kvm->arch.aliases[n - 1].npages)
  1897. break;
  1898. kvm->arch.naliases = n;
  1899. spin_unlock(&kvm->mmu_lock);
  1900. kvm_mmu_zap_all(kvm);
  1901. up_write(&kvm->slots_lock);
  1902. return 0;
  1903. out:
  1904. return r;
  1905. }
  1906. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1907. {
  1908. int r;
  1909. r = 0;
  1910. switch (chip->chip_id) {
  1911. case KVM_IRQCHIP_PIC_MASTER:
  1912. memcpy(&chip->chip.pic,
  1913. &pic_irqchip(kvm)->pics[0],
  1914. sizeof(struct kvm_pic_state));
  1915. break;
  1916. case KVM_IRQCHIP_PIC_SLAVE:
  1917. memcpy(&chip->chip.pic,
  1918. &pic_irqchip(kvm)->pics[1],
  1919. sizeof(struct kvm_pic_state));
  1920. break;
  1921. case KVM_IRQCHIP_IOAPIC:
  1922. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  1923. break;
  1924. default:
  1925. r = -EINVAL;
  1926. break;
  1927. }
  1928. return r;
  1929. }
  1930. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1931. {
  1932. int r;
  1933. r = 0;
  1934. switch (chip->chip_id) {
  1935. case KVM_IRQCHIP_PIC_MASTER:
  1936. spin_lock(&pic_irqchip(kvm)->lock);
  1937. memcpy(&pic_irqchip(kvm)->pics[0],
  1938. &chip->chip.pic,
  1939. sizeof(struct kvm_pic_state));
  1940. spin_unlock(&pic_irqchip(kvm)->lock);
  1941. break;
  1942. case KVM_IRQCHIP_PIC_SLAVE:
  1943. spin_lock(&pic_irqchip(kvm)->lock);
  1944. memcpy(&pic_irqchip(kvm)->pics[1],
  1945. &chip->chip.pic,
  1946. sizeof(struct kvm_pic_state));
  1947. spin_unlock(&pic_irqchip(kvm)->lock);
  1948. break;
  1949. case KVM_IRQCHIP_IOAPIC:
  1950. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  1951. break;
  1952. default:
  1953. r = -EINVAL;
  1954. break;
  1955. }
  1956. kvm_pic_update_irq(pic_irqchip(kvm));
  1957. return r;
  1958. }
  1959. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1960. {
  1961. int r = 0;
  1962. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1963. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1964. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1965. return r;
  1966. }
  1967. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1968. {
  1969. int r = 0;
  1970. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1971. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1972. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  1973. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1974. return r;
  1975. }
  1976. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1977. {
  1978. int r = 0;
  1979. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1980. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  1981. sizeof(ps->channels));
  1982. ps->flags = kvm->arch.vpit->pit_state.flags;
  1983. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1984. return r;
  1985. }
  1986. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1987. {
  1988. int r = 0, start = 0;
  1989. u32 prev_legacy, cur_legacy;
  1990. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1991. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1992. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1993. if (!prev_legacy && cur_legacy)
  1994. start = 1;
  1995. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  1996. sizeof(kvm->arch.vpit->pit_state.channels));
  1997. kvm->arch.vpit->pit_state.flags = ps->flags;
  1998. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  1999. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2000. return r;
  2001. }
  2002. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2003. struct kvm_reinject_control *control)
  2004. {
  2005. if (!kvm->arch.vpit)
  2006. return -ENXIO;
  2007. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2008. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2009. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2010. return 0;
  2011. }
  2012. /*
  2013. * Get (and clear) the dirty memory log for a memory slot.
  2014. */
  2015. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2016. struct kvm_dirty_log *log)
  2017. {
  2018. int r;
  2019. int n;
  2020. struct kvm_memory_slot *memslot;
  2021. int is_dirty = 0;
  2022. down_write(&kvm->slots_lock);
  2023. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  2024. if (r)
  2025. goto out;
  2026. /* If nothing is dirty, don't bother messing with page tables. */
  2027. if (is_dirty) {
  2028. spin_lock(&kvm->mmu_lock);
  2029. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2030. spin_unlock(&kvm->mmu_lock);
  2031. memslot = &kvm->memslots[log->slot];
  2032. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  2033. memset(memslot->dirty_bitmap, 0, n);
  2034. }
  2035. r = 0;
  2036. out:
  2037. up_write(&kvm->slots_lock);
  2038. return r;
  2039. }
  2040. long kvm_arch_vm_ioctl(struct file *filp,
  2041. unsigned int ioctl, unsigned long arg)
  2042. {
  2043. struct kvm *kvm = filp->private_data;
  2044. void __user *argp = (void __user *)arg;
  2045. int r = -ENOTTY;
  2046. /*
  2047. * This union makes it completely explicit to gcc-3.x
  2048. * that these two variables' stack usage should be
  2049. * combined, not added together.
  2050. */
  2051. union {
  2052. struct kvm_pit_state ps;
  2053. struct kvm_pit_state2 ps2;
  2054. struct kvm_memory_alias alias;
  2055. struct kvm_pit_config pit_config;
  2056. } u;
  2057. switch (ioctl) {
  2058. case KVM_SET_TSS_ADDR:
  2059. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2060. if (r < 0)
  2061. goto out;
  2062. break;
  2063. case KVM_SET_IDENTITY_MAP_ADDR: {
  2064. u64 ident_addr;
  2065. r = -EFAULT;
  2066. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2067. goto out;
  2068. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2069. if (r < 0)
  2070. goto out;
  2071. break;
  2072. }
  2073. case KVM_SET_MEMORY_REGION: {
  2074. struct kvm_memory_region kvm_mem;
  2075. struct kvm_userspace_memory_region kvm_userspace_mem;
  2076. r = -EFAULT;
  2077. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2078. goto out;
  2079. kvm_userspace_mem.slot = kvm_mem.slot;
  2080. kvm_userspace_mem.flags = kvm_mem.flags;
  2081. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2082. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2083. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2084. if (r)
  2085. goto out;
  2086. break;
  2087. }
  2088. case KVM_SET_NR_MMU_PAGES:
  2089. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2090. if (r)
  2091. goto out;
  2092. break;
  2093. case KVM_GET_NR_MMU_PAGES:
  2094. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2095. break;
  2096. case KVM_SET_MEMORY_ALIAS:
  2097. r = -EFAULT;
  2098. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2099. goto out;
  2100. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2101. if (r)
  2102. goto out;
  2103. break;
  2104. case KVM_CREATE_IRQCHIP: {
  2105. struct kvm_pic *vpic;
  2106. mutex_lock(&kvm->lock);
  2107. r = -EEXIST;
  2108. if (kvm->arch.vpic)
  2109. goto create_irqchip_unlock;
  2110. r = -ENOMEM;
  2111. vpic = kvm_create_pic(kvm);
  2112. if (vpic) {
  2113. r = kvm_ioapic_init(kvm);
  2114. if (r) {
  2115. kfree(vpic);
  2116. goto create_irqchip_unlock;
  2117. }
  2118. } else
  2119. goto create_irqchip_unlock;
  2120. smp_wmb();
  2121. kvm->arch.vpic = vpic;
  2122. smp_wmb();
  2123. r = kvm_setup_default_irq_routing(kvm);
  2124. if (r) {
  2125. mutex_lock(&kvm->irq_lock);
  2126. kfree(kvm->arch.vpic);
  2127. kfree(kvm->arch.vioapic);
  2128. kvm->arch.vpic = NULL;
  2129. kvm->arch.vioapic = NULL;
  2130. mutex_unlock(&kvm->irq_lock);
  2131. }
  2132. create_irqchip_unlock:
  2133. mutex_unlock(&kvm->lock);
  2134. break;
  2135. }
  2136. case KVM_CREATE_PIT:
  2137. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2138. goto create_pit;
  2139. case KVM_CREATE_PIT2:
  2140. r = -EFAULT;
  2141. if (copy_from_user(&u.pit_config, argp,
  2142. sizeof(struct kvm_pit_config)))
  2143. goto out;
  2144. create_pit:
  2145. down_write(&kvm->slots_lock);
  2146. r = -EEXIST;
  2147. if (kvm->arch.vpit)
  2148. goto create_pit_unlock;
  2149. r = -ENOMEM;
  2150. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2151. if (kvm->arch.vpit)
  2152. r = 0;
  2153. create_pit_unlock:
  2154. up_write(&kvm->slots_lock);
  2155. break;
  2156. case KVM_IRQ_LINE_STATUS:
  2157. case KVM_IRQ_LINE: {
  2158. struct kvm_irq_level irq_event;
  2159. r = -EFAULT;
  2160. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2161. goto out;
  2162. if (irqchip_in_kernel(kvm)) {
  2163. __s32 status;
  2164. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2165. irq_event.irq, irq_event.level);
  2166. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2167. irq_event.status = status;
  2168. if (copy_to_user(argp, &irq_event,
  2169. sizeof irq_event))
  2170. goto out;
  2171. }
  2172. r = 0;
  2173. }
  2174. break;
  2175. }
  2176. case KVM_GET_IRQCHIP: {
  2177. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2178. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2179. r = -ENOMEM;
  2180. if (!chip)
  2181. goto out;
  2182. r = -EFAULT;
  2183. if (copy_from_user(chip, argp, sizeof *chip))
  2184. goto get_irqchip_out;
  2185. r = -ENXIO;
  2186. if (!irqchip_in_kernel(kvm))
  2187. goto get_irqchip_out;
  2188. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2189. if (r)
  2190. goto get_irqchip_out;
  2191. r = -EFAULT;
  2192. if (copy_to_user(argp, chip, sizeof *chip))
  2193. goto get_irqchip_out;
  2194. r = 0;
  2195. get_irqchip_out:
  2196. kfree(chip);
  2197. if (r)
  2198. goto out;
  2199. break;
  2200. }
  2201. case KVM_SET_IRQCHIP: {
  2202. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2203. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2204. r = -ENOMEM;
  2205. if (!chip)
  2206. goto out;
  2207. r = -EFAULT;
  2208. if (copy_from_user(chip, argp, sizeof *chip))
  2209. goto set_irqchip_out;
  2210. r = -ENXIO;
  2211. if (!irqchip_in_kernel(kvm))
  2212. goto set_irqchip_out;
  2213. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2214. if (r)
  2215. goto set_irqchip_out;
  2216. r = 0;
  2217. set_irqchip_out:
  2218. kfree(chip);
  2219. if (r)
  2220. goto out;
  2221. break;
  2222. }
  2223. case KVM_GET_PIT: {
  2224. r = -EFAULT;
  2225. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2226. goto out;
  2227. r = -ENXIO;
  2228. if (!kvm->arch.vpit)
  2229. goto out;
  2230. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2231. if (r)
  2232. goto out;
  2233. r = -EFAULT;
  2234. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2235. goto out;
  2236. r = 0;
  2237. break;
  2238. }
  2239. case KVM_SET_PIT: {
  2240. r = -EFAULT;
  2241. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2242. goto out;
  2243. r = -ENXIO;
  2244. if (!kvm->arch.vpit)
  2245. goto out;
  2246. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2247. if (r)
  2248. goto out;
  2249. r = 0;
  2250. break;
  2251. }
  2252. case KVM_GET_PIT2: {
  2253. r = -ENXIO;
  2254. if (!kvm->arch.vpit)
  2255. goto out;
  2256. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2257. if (r)
  2258. goto out;
  2259. r = -EFAULT;
  2260. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2261. goto out;
  2262. r = 0;
  2263. break;
  2264. }
  2265. case KVM_SET_PIT2: {
  2266. r = -EFAULT;
  2267. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2268. goto out;
  2269. r = -ENXIO;
  2270. if (!kvm->arch.vpit)
  2271. goto out;
  2272. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2273. if (r)
  2274. goto out;
  2275. r = 0;
  2276. break;
  2277. }
  2278. case KVM_REINJECT_CONTROL: {
  2279. struct kvm_reinject_control control;
  2280. r = -EFAULT;
  2281. if (copy_from_user(&control, argp, sizeof(control)))
  2282. goto out;
  2283. r = kvm_vm_ioctl_reinject(kvm, &control);
  2284. if (r)
  2285. goto out;
  2286. r = 0;
  2287. break;
  2288. }
  2289. case KVM_XEN_HVM_CONFIG: {
  2290. r = -EFAULT;
  2291. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2292. sizeof(struct kvm_xen_hvm_config)))
  2293. goto out;
  2294. r = -EINVAL;
  2295. if (kvm->arch.xen_hvm_config.flags)
  2296. goto out;
  2297. r = 0;
  2298. break;
  2299. }
  2300. case KVM_SET_CLOCK: {
  2301. struct timespec now;
  2302. struct kvm_clock_data user_ns;
  2303. u64 now_ns;
  2304. s64 delta;
  2305. r = -EFAULT;
  2306. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2307. goto out;
  2308. r = -EINVAL;
  2309. if (user_ns.flags)
  2310. goto out;
  2311. r = 0;
  2312. ktime_get_ts(&now);
  2313. now_ns = timespec_to_ns(&now);
  2314. delta = user_ns.clock - now_ns;
  2315. kvm->arch.kvmclock_offset = delta;
  2316. break;
  2317. }
  2318. case KVM_GET_CLOCK: {
  2319. struct timespec now;
  2320. struct kvm_clock_data user_ns;
  2321. u64 now_ns;
  2322. ktime_get_ts(&now);
  2323. now_ns = timespec_to_ns(&now);
  2324. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2325. user_ns.flags = 0;
  2326. r = -EFAULT;
  2327. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2328. goto out;
  2329. r = 0;
  2330. break;
  2331. }
  2332. default:
  2333. ;
  2334. }
  2335. out:
  2336. return r;
  2337. }
  2338. static void kvm_init_msr_list(void)
  2339. {
  2340. u32 dummy[2];
  2341. unsigned i, j;
  2342. /* skip the first msrs in the list. KVM-specific */
  2343. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2344. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2345. continue;
  2346. if (j < i)
  2347. msrs_to_save[j] = msrs_to_save[i];
  2348. j++;
  2349. }
  2350. num_msrs_to_save = j;
  2351. }
  2352. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2353. const void *v)
  2354. {
  2355. if (vcpu->arch.apic &&
  2356. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2357. return 0;
  2358. return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
  2359. }
  2360. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2361. {
  2362. if (vcpu->arch.apic &&
  2363. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2364. return 0;
  2365. return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
  2366. }
  2367. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2368. struct kvm_vcpu *vcpu)
  2369. {
  2370. void *data = val;
  2371. int r = X86EMUL_CONTINUE;
  2372. while (bytes) {
  2373. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2374. unsigned offset = addr & (PAGE_SIZE-1);
  2375. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2376. int ret;
  2377. if (gpa == UNMAPPED_GVA) {
  2378. r = X86EMUL_PROPAGATE_FAULT;
  2379. goto out;
  2380. }
  2381. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2382. if (ret < 0) {
  2383. r = X86EMUL_UNHANDLEABLE;
  2384. goto out;
  2385. }
  2386. bytes -= toread;
  2387. data += toread;
  2388. addr += toread;
  2389. }
  2390. out:
  2391. return r;
  2392. }
  2393. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2394. struct kvm_vcpu *vcpu)
  2395. {
  2396. void *data = val;
  2397. int r = X86EMUL_CONTINUE;
  2398. while (bytes) {
  2399. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2400. unsigned offset = addr & (PAGE_SIZE-1);
  2401. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2402. int ret;
  2403. if (gpa == UNMAPPED_GVA) {
  2404. r = X86EMUL_PROPAGATE_FAULT;
  2405. goto out;
  2406. }
  2407. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2408. if (ret < 0) {
  2409. r = X86EMUL_UNHANDLEABLE;
  2410. goto out;
  2411. }
  2412. bytes -= towrite;
  2413. data += towrite;
  2414. addr += towrite;
  2415. }
  2416. out:
  2417. return r;
  2418. }
  2419. static int emulator_read_emulated(unsigned long addr,
  2420. void *val,
  2421. unsigned int bytes,
  2422. struct kvm_vcpu *vcpu)
  2423. {
  2424. gpa_t gpa;
  2425. if (vcpu->mmio_read_completed) {
  2426. memcpy(val, vcpu->mmio_data, bytes);
  2427. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2428. vcpu->mmio_phys_addr, *(u64 *)val);
  2429. vcpu->mmio_read_completed = 0;
  2430. return X86EMUL_CONTINUE;
  2431. }
  2432. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2433. /* For APIC access vmexit */
  2434. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2435. goto mmio;
  2436. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2437. == X86EMUL_CONTINUE)
  2438. return X86EMUL_CONTINUE;
  2439. if (gpa == UNMAPPED_GVA)
  2440. return X86EMUL_PROPAGATE_FAULT;
  2441. mmio:
  2442. /*
  2443. * Is this MMIO handled locally?
  2444. */
  2445. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2446. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2447. return X86EMUL_CONTINUE;
  2448. }
  2449. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2450. vcpu->mmio_needed = 1;
  2451. vcpu->mmio_phys_addr = gpa;
  2452. vcpu->mmio_size = bytes;
  2453. vcpu->mmio_is_write = 0;
  2454. return X86EMUL_UNHANDLEABLE;
  2455. }
  2456. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2457. const void *val, int bytes)
  2458. {
  2459. int ret;
  2460. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2461. if (ret < 0)
  2462. return 0;
  2463. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2464. return 1;
  2465. }
  2466. static int emulator_write_emulated_onepage(unsigned long addr,
  2467. const void *val,
  2468. unsigned int bytes,
  2469. struct kvm_vcpu *vcpu)
  2470. {
  2471. gpa_t gpa;
  2472. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2473. if (gpa == UNMAPPED_GVA) {
  2474. kvm_inject_page_fault(vcpu, addr, 2);
  2475. return X86EMUL_PROPAGATE_FAULT;
  2476. }
  2477. /* For APIC access vmexit */
  2478. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2479. goto mmio;
  2480. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2481. return X86EMUL_CONTINUE;
  2482. mmio:
  2483. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2484. /*
  2485. * Is this MMIO handled locally?
  2486. */
  2487. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2488. return X86EMUL_CONTINUE;
  2489. vcpu->mmio_needed = 1;
  2490. vcpu->mmio_phys_addr = gpa;
  2491. vcpu->mmio_size = bytes;
  2492. vcpu->mmio_is_write = 1;
  2493. memcpy(vcpu->mmio_data, val, bytes);
  2494. return X86EMUL_CONTINUE;
  2495. }
  2496. int emulator_write_emulated(unsigned long addr,
  2497. const void *val,
  2498. unsigned int bytes,
  2499. struct kvm_vcpu *vcpu)
  2500. {
  2501. /* Crossing a page boundary? */
  2502. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2503. int rc, now;
  2504. now = -addr & ~PAGE_MASK;
  2505. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2506. if (rc != X86EMUL_CONTINUE)
  2507. return rc;
  2508. addr += now;
  2509. val += now;
  2510. bytes -= now;
  2511. }
  2512. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2513. }
  2514. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2515. static int emulator_cmpxchg_emulated(unsigned long addr,
  2516. const void *old,
  2517. const void *new,
  2518. unsigned int bytes,
  2519. struct kvm_vcpu *vcpu)
  2520. {
  2521. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2522. #ifndef CONFIG_X86_64
  2523. /* guests cmpxchg8b have to be emulated atomically */
  2524. if (bytes == 8) {
  2525. gpa_t gpa;
  2526. struct page *page;
  2527. char *kaddr;
  2528. u64 val;
  2529. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2530. if (gpa == UNMAPPED_GVA ||
  2531. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2532. goto emul_write;
  2533. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2534. goto emul_write;
  2535. val = *(u64 *)new;
  2536. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2537. kaddr = kmap_atomic(page, KM_USER0);
  2538. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2539. kunmap_atomic(kaddr, KM_USER0);
  2540. kvm_release_page_dirty(page);
  2541. }
  2542. emul_write:
  2543. #endif
  2544. return emulator_write_emulated(addr, new, bytes, vcpu);
  2545. }
  2546. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2547. {
  2548. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2549. }
  2550. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2551. {
  2552. kvm_mmu_invlpg(vcpu, address);
  2553. return X86EMUL_CONTINUE;
  2554. }
  2555. int emulate_clts(struct kvm_vcpu *vcpu)
  2556. {
  2557. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2558. return X86EMUL_CONTINUE;
  2559. }
  2560. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2561. {
  2562. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2563. switch (dr) {
  2564. case 0 ... 3:
  2565. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2566. return X86EMUL_CONTINUE;
  2567. default:
  2568. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2569. return X86EMUL_UNHANDLEABLE;
  2570. }
  2571. }
  2572. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2573. {
  2574. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2575. int exception;
  2576. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2577. if (exception) {
  2578. /* FIXME: better handling */
  2579. return X86EMUL_UNHANDLEABLE;
  2580. }
  2581. return X86EMUL_CONTINUE;
  2582. }
  2583. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2584. {
  2585. u8 opcodes[4];
  2586. unsigned long rip = kvm_rip_read(vcpu);
  2587. unsigned long rip_linear;
  2588. if (!printk_ratelimit())
  2589. return;
  2590. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2591. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2592. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2593. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2594. }
  2595. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2596. static struct x86_emulate_ops emulate_ops = {
  2597. .read_std = kvm_read_guest_virt,
  2598. .read_emulated = emulator_read_emulated,
  2599. .write_emulated = emulator_write_emulated,
  2600. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2601. };
  2602. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2603. {
  2604. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2605. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2606. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2607. vcpu->arch.regs_dirty = ~0;
  2608. }
  2609. int emulate_instruction(struct kvm_vcpu *vcpu,
  2610. unsigned long cr2,
  2611. u16 error_code,
  2612. int emulation_type)
  2613. {
  2614. int r, shadow_mask;
  2615. struct decode_cache *c;
  2616. struct kvm_run *run = vcpu->run;
  2617. kvm_clear_exception_queue(vcpu);
  2618. vcpu->arch.mmio_fault_cr2 = cr2;
  2619. /*
  2620. * TODO: fix emulate.c to use guest_read/write_register
  2621. * instead of direct ->regs accesses, can save hundred cycles
  2622. * on Intel for instructions that don't read/change RSP, for
  2623. * for example.
  2624. */
  2625. cache_all_regs(vcpu);
  2626. vcpu->mmio_is_write = 0;
  2627. vcpu->arch.pio.string = 0;
  2628. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2629. int cs_db, cs_l;
  2630. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2631. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2632. vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
  2633. vcpu->arch.emulate_ctxt.mode =
  2634. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2635. ? X86EMUL_MODE_REAL : cs_l
  2636. ? X86EMUL_MODE_PROT64 : cs_db
  2637. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2638. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2639. /* Only allow emulation of specific instructions on #UD
  2640. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2641. c = &vcpu->arch.emulate_ctxt.decode;
  2642. if (emulation_type & EMULTYPE_TRAP_UD) {
  2643. if (!c->twobyte)
  2644. return EMULATE_FAIL;
  2645. switch (c->b) {
  2646. case 0x01: /* VMMCALL */
  2647. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2648. return EMULATE_FAIL;
  2649. break;
  2650. case 0x34: /* sysenter */
  2651. case 0x35: /* sysexit */
  2652. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2653. return EMULATE_FAIL;
  2654. break;
  2655. case 0x05: /* syscall */
  2656. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2657. return EMULATE_FAIL;
  2658. break;
  2659. default:
  2660. return EMULATE_FAIL;
  2661. }
  2662. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2663. return EMULATE_FAIL;
  2664. }
  2665. ++vcpu->stat.insn_emulation;
  2666. if (r) {
  2667. ++vcpu->stat.insn_emulation_fail;
  2668. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2669. return EMULATE_DONE;
  2670. return EMULATE_FAIL;
  2671. }
  2672. }
  2673. if (emulation_type & EMULTYPE_SKIP) {
  2674. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2675. return EMULATE_DONE;
  2676. }
  2677. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2678. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2679. if (r == 0)
  2680. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2681. if (vcpu->arch.pio.string)
  2682. return EMULATE_DO_MMIO;
  2683. if ((r || vcpu->mmio_is_write) && run) {
  2684. run->exit_reason = KVM_EXIT_MMIO;
  2685. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2686. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2687. run->mmio.len = vcpu->mmio_size;
  2688. run->mmio.is_write = vcpu->mmio_is_write;
  2689. }
  2690. if (r) {
  2691. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2692. return EMULATE_DONE;
  2693. if (!vcpu->mmio_needed) {
  2694. kvm_report_emulation_failure(vcpu, "mmio");
  2695. return EMULATE_FAIL;
  2696. }
  2697. return EMULATE_DO_MMIO;
  2698. }
  2699. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2700. if (vcpu->mmio_is_write) {
  2701. vcpu->mmio_needed = 0;
  2702. return EMULATE_DO_MMIO;
  2703. }
  2704. return EMULATE_DONE;
  2705. }
  2706. EXPORT_SYMBOL_GPL(emulate_instruction);
  2707. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2708. {
  2709. void *p = vcpu->arch.pio_data;
  2710. gva_t q = vcpu->arch.pio.guest_gva;
  2711. unsigned bytes;
  2712. int ret;
  2713. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2714. if (vcpu->arch.pio.in)
  2715. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2716. else
  2717. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2718. return ret;
  2719. }
  2720. int complete_pio(struct kvm_vcpu *vcpu)
  2721. {
  2722. struct kvm_pio_request *io = &vcpu->arch.pio;
  2723. long delta;
  2724. int r;
  2725. unsigned long val;
  2726. if (!io->string) {
  2727. if (io->in) {
  2728. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2729. memcpy(&val, vcpu->arch.pio_data, io->size);
  2730. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2731. }
  2732. } else {
  2733. if (io->in) {
  2734. r = pio_copy_data(vcpu);
  2735. if (r)
  2736. return r;
  2737. }
  2738. delta = 1;
  2739. if (io->rep) {
  2740. delta *= io->cur_count;
  2741. /*
  2742. * The size of the register should really depend on
  2743. * current address size.
  2744. */
  2745. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2746. val -= delta;
  2747. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2748. }
  2749. if (io->down)
  2750. delta = -delta;
  2751. delta *= io->size;
  2752. if (io->in) {
  2753. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2754. val += delta;
  2755. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2756. } else {
  2757. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2758. val += delta;
  2759. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2760. }
  2761. }
  2762. io->count -= io->cur_count;
  2763. io->cur_count = 0;
  2764. return 0;
  2765. }
  2766. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2767. {
  2768. /* TODO: String I/O for in kernel device */
  2769. int r;
  2770. if (vcpu->arch.pio.in)
  2771. r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2772. vcpu->arch.pio.size, pd);
  2773. else
  2774. r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2775. vcpu->arch.pio.size, pd);
  2776. return r;
  2777. }
  2778. static int pio_string_write(struct kvm_vcpu *vcpu)
  2779. {
  2780. struct kvm_pio_request *io = &vcpu->arch.pio;
  2781. void *pd = vcpu->arch.pio_data;
  2782. int i, r = 0;
  2783. for (i = 0; i < io->cur_count; i++) {
  2784. if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
  2785. io->port, io->size, pd)) {
  2786. r = -EOPNOTSUPP;
  2787. break;
  2788. }
  2789. pd += io->size;
  2790. }
  2791. return r;
  2792. }
  2793. int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
  2794. {
  2795. unsigned long val;
  2796. vcpu->run->exit_reason = KVM_EXIT_IO;
  2797. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2798. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2799. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2800. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2801. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2802. vcpu->arch.pio.in = in;
  2803. vcpu->arch.pio.string = 0;
  2804. vcpu->arch.pio.down = 0;
  2805. vcpu->arch.pio.rep = 0;
  2806. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2807. size, 1);
  2808. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2809. memcpy(vcpu->arch.pio_data, &val, 4);
  2810. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2811. complete_pio(vcpu);
  2812. return 1;
  2813. }
  2814. return 0;
  2815. }
  2816. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2817. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
  2818. int size, unsigned long count, int down,
  2819. gva_t address, int rep, unsigned port)
  2820. {
  2821. unsigned now, in_page;
  2822. int ret = 0;
  2823. vcpu->run->exit_reason = KVM_EXIT_IO;
  2824. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2825. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2826. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2827. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2828. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2829. vcpu->arch.pio.in = in;
  2830. vcpu->arch.pio.string = 1;
  2831. vcpu->arch.pio.down = down;
  2832. vcpu->arch.pio.rep = rep;
  2833. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2834. size, count);
  2835. if (!count) {
  2836. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2837. return 1;
  2838. }
  2839. if (!down)
  2840. in_page = PAGE_SIZE - offset_in_page(address);
  2841. else
  2842. in_page = offset_in_page(address) + size;
  2843. now = min(count, (unsigned long)in_page / size);
  2844. if (!now)
  2845. now = 1;
  2846. if (down) {
  2847. /*
  2848. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2849. */
  2850. pr_unimpl(vcpu, "guest string pio down\n");
  2851. kvm_inject_gp(vcpu, 0);
  2852. return 1;
  2853. }
  2854. vcpu->run->io.count = now;
  2855. vcpu->arch.pio.cur_count = now;
  2856. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2857. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2858. vcpu->arch.pio.guest_gva = address;
  2859. if (!vcpu->arch.pio.in) {
  2860. /* string PIO write */
  2861. ret = pio_copy_data(vcpu);
  2862. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2863. kvm_inject_gp(vcpu, 0);
  2864. return 1;
  2865. }
  2866. if (ret == 0 && !pio_string_write(vcpu)) {
  2867. complete_pio(vcpu);
  2868. if (vcpu->arch.pio.count == 0)
  2869. ret = 1;
  2870. }
  2871. }
  2872. /* no string PIO read support yet */
  2873. return ret;
  2874. }
  2875. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2876. static void bounce_off(void *info)
  2877. {
  2878. /* nothing */
  2879. }
  2880. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2881. void *data)
  2882. {
  2883. struct cpufreq_freqs *freq = data;
  2884. struct kvm *kvm;
  2885. struct kvm_vcpu *vcpu;
  2886. int i, send_ipi = 0;
  2887. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2888. return 0;
  2889. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2890. return 0;
  2891. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  2892. spin_lock(&kvm_lock);
  2893. list_for_each_entry(kvm, &vm_list, vm_list) {
  2894. kvm_for_each_vcpu(i, vcpu, kvm) {
  2895. if (vcpu->cpu != freq->cpu)
  2896. continue;
  2897. if (!kvm_request_guest_time_update(vcpu))
  2898. continue;
  2899. if (vcpu->cpu != smp_processor_id())
  2900. send_ipi++;
  2901. }
  2902. }
  2903. spin_unlock(&kvm_lock);
  2904. if (freq->old < freq->new && send_ipi) {
  2905. /*
  2906. * We upscale the frequency. Must make the guest
  2907. * doesn't see old kvmclock values while running with
  2908. * the new frequency, otherwise we risk the guest sees
  2909. * time go backwards.
  2910. *
  2911. * In case we update the frequency for another cpu
  2912. * (which might be in guest context) send an interrupt
  2913. * to kick the cpu out of guest context. Next time
  2914. * guest context is entered kvmclock will be updated,
  2915. * so the guest will not see stale values.
  2916. */
  2917. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2918. }
  2919. return 0;
  2920. }
  2921. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2922. .notifier_call = kvmclock_cpufreq_notifier
  2923. };
  2924. static void kvm_timer_init(void)
  2925. {
  2926. int cpu;
  2927. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2928. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2929. CPUFREQ_TRANSITION_NOTIFIER);
  2930. for_each_online_cpu(cpu) {
  2931. unsigned long khz = cpufreq_get(cpu);
  2932. if (!khz)
  2933. khz = tsc_khz;
  2934. per_cpu(cpu_tsc_khz, cpu) = khz;
  2935. }
  2936. } else {
  2937. for_each_possible_cpu(cpu)
  2938. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2939. }
  2940. }
  2941. int kvm_arch_init(void *opaque)
  2942. {
  2943. int r;
  2944. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2945. if (kvm_x86_ops) {
  2946. printk(KERN_ERR "kvm: already loaded the other module\n");
  2947. r = -EEXIST;
  2948. goto out;
  2949. }
  2950. if (!ops->cpu_has_kvm_support()) {
  2951. printk(KERN_ERR "kvm: no hardware support\n");
  2952. r = -EOPNOTSUPP;
  2953. goto out;
  2954. }
  2955. if (ops->disabled_by_bios()) {
  2956. printk(KERN_ERR "kvm: disabled by bios\n");
  2957. r = -EOPNOTSUPP;
  2958. goto out;
  2959. }
  2960. r = kvm_mmu_module_init();
  2961. if (r)
  2962. goto out;
  2963. kvm_init_msr_list();
  2964. kvm_x86_ops = ops;
  2965. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2966. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2967. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2968. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2969. kvm_timer_init();
  2970. return 0;
  2971. out:
  2972. return r;
  2973. }
  2974. void kvm_arch_exit(void)
  2975. {
  2976. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2977. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2978. CPUFREQ_TRANSITION_NOTIFIER);
  2979. kvm_x86_ops = NULL;
  2980. kvm_mmu_module_exit();
  2981. }
  2982. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2983. {
  2984. ++vcpu->stat.halt_exits;
  2985. if (irqchip_in_kernel(vcpu->kvm)) {
  2986. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2987. return 1;
  2988. } else {
  2989. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2990. return 0;
  2991. }
  2992. }
  2993. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2994. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2995. unsigned long a1)
  2996. {
  2997. if (is_long_mode(vcpu))
  2998. return a0;
  2999. else
  3000. return a0 | ((gpa_t)a1 << 32);
  3001. }
  3002. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3003. {
  3004. unsigned long nr, a0, a1, a2, a3, ret;
  3005. int r = 1;
  3006. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3007. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3008. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3009. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3010. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3011. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3012. if (!is_long_mode(vcpu)) {
  3013. nr &= 0xFFFFFFFF;
  3014. a0 &= 0xFFFFFFFF;
  3015. a1 &= 0xFFFFFFFF;
  3016. a2 &= 0xFFFFFFFF;
  3017. a3 &= 0xFFFFFFFF;
  3018. }
  3019. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3020. ret = -KVM_EPERM;
  3021. goto out;
  3022. }
  3023. switch (nr) {
  3024. case KVM_HC_VAPIC_POLL_IRQ:
  3025. ret = 0;
  3026. break;
  3027. case KVM_HC_MMU_OP:
  3028. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3029. break;
  3030. default:
  3031. ret = -KVM_ENOSYS;
  3032. break;
  3033. }
  3034. out:
  3035. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3036. ++vcpu->stat.hypercalls;
  3037. return r;
  3038. }
  3039. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3040. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3041. {
  3042. char instruction[3];
  3043. int ret = 0;
  3044. unsigned long rip = kvm_rip_read(vcpu);
  3045. /*
  3046. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3047. * to ensure that the updated hypercall appears atomically across all
  3048. * VCPUs.
  3049. */
  3050. kvm_mmu_zap_all(vcpu->kvm);
  3051. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3052. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  3053. != X86EMUL_CONTINUE)
  3054. ret = -EFAULT;
  3055. return ret;
  3056. }
  3057. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3058. {
  3059. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3060. }
  3061. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3062. {
  3063. struct descriptor_table dt = { limit, base };
  3064. kvm_x86_ops->set_gdt(vcpu, &dt);
  3065. }
  3066. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3067. {
  3068. struct descriptor_table dt = { limit, base };
  3069. kvm_x86_ops->set_idt(vcpu, &dt);
  3070. }
  3071. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  3072. unsigned long *rflags)
  3073. {
  3074. kvm_lmsw(vcpu, msw);
  3075. *rflags = kvm_get_rflags(vcpu);
  3076. }
  3077. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  3078. {
  3079. unsigned long value;
  3080. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3081. switch (cr) {
  3082. case 0:
  3083. value = vcpu->arch.cr0;
  3084. break;
  3085. case 2:
  3086. value = vcpu->arch.cr2;
  3087. break;
  3088. case 3:
  3089. value = vcpu->arch.cr3;
  3090. break;
  3091. case 4:
  3092. value = vcpu->arch.cr4;
  3093. break;
  3094. case 8:
  3095. value = kvm_get_cr8(vcpu);
  3096. break;
  3097. default:
  3098. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3099. return 0;
  3100. }
  3101. return value;
  3102. }
  3103. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  3104. unsigned long *rflags)
  3105. {
  3106. switch (cr) {
  3107. case 0:
  3108. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  3109. *rflags = kvm_get_rflags(vcpu);
  3110. break;
  3111. case 2:
  3112. vcpu->arch.cr2 = val;
  3113. break;
  3114. case 3:
  3115. kvm_set_cr3(vcpu, val);
  3116. break;
  3117. case 4:
  3118. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  3119. break;
  3120. case 8:
  3121. kvm_set_cr8(vcpu, val & 0xfUL);
  3122. break;
  3123. default:
  3124. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3125. }
  3126. }
  3127. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3128. {
  3129. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3130. int j, nent = vcpu->arch.cpuid_nent;
  3131. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3132. /* when no next entry is found, the current entry[i] is reselected */
  3133. for (j = i + 1; ; j = (j + 1) % nent) {
  3134. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3135. if (ej->function == e->function) {
  3136. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3137. return j;
  3138. }
  3139. }
  3140. return 0; /* silence gcc, even though control never reaches here */
  3141. }
  3142. /* find an entry with matching function, matching index (if needed), and that
  3143. * should be read next (if it's stateful) */
  3144. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3145. u32 function, u32 index)
  3146. {
  3147. if (e->function != function)
  3148. return 0;
  3149. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3150. return 0;
  3151. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3152. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3153. return 0;
  3154. return 1;
  3155. }
  3156. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3157. u32 function, u32 index)
  3158. {
  3159. int i;
  3160. struct kvm_cpuid_entry2 *best = NULL;
  3161. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3162. struct kvm_cpuid_entry2 *e;
  3163. e = &vcpu->arch.cpuid_entries[i];
  3164. if (is_matching_cpuid_entry(e, function, index)) {
  3165. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3166. move_to_next_stateful_cpuid_entry(vcpu, i);
  3167. best = e;
  3168. break;
  3169. }
  3170. /*
  3171. * Both basic or both extended?
  3172. */
  3173. if (((e->function ^ function) & 0x80000000) == 0)
  3174. if (!best || e->function > best->function)
  3175. best = e;
  3176. }
  3177. return best;
  3178. }
  3179. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3180. {
  3181. struct kvm_cpuid_entry2 *best;
  3182. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3183. if (best)
  3184. return best->eax & 0xff;
  3185. return 36;
  3186. }
  3187. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3188. {
  3189. u32 function, index;
  3190. struct kvm_cpuid_entry2 *best;
  3191. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3192. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3193. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3194. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3195. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3196. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3197. best = kvm_find_cpuid_entry(vcpu, function, index);
  3198. if (best) {
  3199. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3200. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3201. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3202. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3203. }
  3204. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3205. trace_kvm_cpuid(function,
  3206. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3207. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3208. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3209. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3210. }
  3211. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3212. /*
  3213. * Check if userspace requested an interrupt window, and that the
  3214. * interrupt window is open.
  3215. *
  3216. * No need to exit to userspace if we already have an interrupt queued.
  3217. */
  3218. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3219. {
  3220. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3221. vcpu->run->request_interrupt_window &&
  3222. kvm_arch_interrupt_allowed(vcpu));
  3223. }
  3224. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3225. {
  3226. struct kvm_run *kvm_run = vcpu->run;
  3227. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3228. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3229. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3230. if (irqchip_in_kernel(vcpu->kvm))
  3231. kvm_run->ready_for_interrupt_injection = 1;
  3232. else
  3233. kvm_run->ready_for_interrupt_injection =
  3234. kvm_arch_interrupt_allowed(vcpu) &&
  3235. !kvm_cpu_has_interrupt(vcpu) &&
  3236. !kvm_event_needs_reinjection(vcpu);
  3237. }
  3238. static void vapic_enter(struct kvm_vcpu *vcpu)
  3239. {
  3240. struct kvm_lapic *apic = vcpu->arch.apic;
  3241. struct page *page;
  3242. if (!apic || !apic->vapic_addr)
  3243. return;
  3244. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3245. vcpu->arch.apic->vapic_page = page;
  3246. }
  3247. static void vapic_exit(struct kvm_vcpu *vcpu)
  3248. {
  3249. struct kvm_lapic *apic = vcpu->arch.apic;
  3250. if (!apic || !apic->vapic_addr)
  3251. return;
  3252. down_read(&vcpu->kvm->slots_lock);
  3253. kvm_release_page_dirty(apic->vapic_page);
  3254. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3255. up_read(&vcpu->kvm->slots_lock);
  3256. }
  3257. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3258. {
  3259. int max_irr, tpr;
  3260. if (!kvm_x86_ops->update_cr8_intercept)
  3261. return;
  3262. if (!vcpu->arch.apic)
  3263. return;
  3264. if (!vcpu->arch.apic->vapic_addr)
  3265. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3266. else
  3267. max_irr = -1;
  3268. if (max_irr != -1)
  3269. max_irr >>= 4;
  3270. tpr = kvm_lapic_get_cr8(vcpu);
  3271. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3272. }
  3273. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3274. {
  3275. /* try to reinject previous events if any */
  3276. if (vcpu->arch.exception.pending) {
  3277. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3278. vcpu->arch.exception.has_error_code,
  3279. vcpu->arch.exception.error_code);
  3280. return;
  3281. }
  3282. if (vcpu->arch.nmi_injected) {
  3283. kvm_x86_ops->set_nmi(vcpu);
  3284. return;
  3285. }
  3286. if (vcpu->arch.interrupt.pending) {
  3287. kvm_x86_ops->set_irq(vcpu);
  3288. return;
  3289. }
  3290. /* try to inject new event if pending */
  3291. if (vcpu->arch.nmi_pending) {
  3292. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3293. vcpu->arch.nmi_pending = false;
  3294. vcpu->arch.nmi_injected = true;
  3295. kvm_x86_ops->set_nmi(vcpu);
  3296. }
  3297. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3298. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3299. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3300. false);
  3301. kvm_x86_ops->set_irq(vcpu);
  3302. }
  3303. }
  3304. }
  3305. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3306. {
  3307. int r;
  3308. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3309. vcpu->run->request_interrupt_window;
  3310. if (vcpu->requests)
  3311. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3312. kvm_mmu_unload(vcpu);
  3313. r = kvm_mmu_reload(vcpu);
  3314. if (unlikely(r))
  3315. goto out;
  3316. if (vcpu->requests) {
  3317. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3318. __kvm_migrate_timers(vcpu);
  3319. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3320. kvm_write_guest_time(vcpu);
  3321. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3322. kvm_mmu_sync_roots(vcpu);
  3323. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3324. kvm_x86_ops->tlb_flush(vcpu);
  3325. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3326. &vcpu->requests)) {
  3327. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3328. r = 0;
  3329. goto out;
  3330. }
  3331. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3332. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3333. r = 0;
  3334. goto out;
  3335. }
  3336. }
  3337. preempt_disable();
  3338. kvm_x86_ops->prepare_guest_switch(vcpu);
  3339. kvm_load_guest_fpu(vcpu);
  3340. local_irq_disable();
  3341. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3342. smp_mb__after_clear_bit();
  3343. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3344. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3345. local_irq_enable();
  3346. preempt_enable();
  3347. r = 1;
  3348. goto out;
  3349. }
  3350. inject_pending_event(vcpu);
  3351. /* enable NMI/IRQ window open exits if needed */
  3352. if (vcpu->arch.nmi_pending)
  3353. kvm_x86_ops->enable_nmi_window(vcpu);
  3354. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3355. kvm_x86_ops->enable_irq_window(vcpu);
  3356. if (kvm_lapic_enabled(vcpu)) {
  3357. update_cr8_intercept(vcpu);
  3358. kvm_lapic_sync_to_vapic(vcpu);
  3359. }
  3360. up_read(&vcpu->kvm->slots_lock);
  3361. kvm_guest_enter();
  3362. if (unlikely(vcpu->arch.switch_db_regs)) {
  3363. set_debugreg(0, 7);
  3364. set_debugreg(vcpu->arch.eff_db[0], 0);
  3365. set_debugreg(vcpu->arch.eff_db[1], 1);
  3366. set_debugreg(vcpu->arch.eff_db[2], 2);
  3367. set_debugreg(vcpu->arch.eff_db[3], 3);
  3368. }
  3369. trace_kvm_entry(vcpu->vcpu_id);
  3370. kvm_x86_ops->run(vcpu);
  3371. if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
  3372. set_debugreg(current->thread.debugreg0, 0);
  3373. set_debugreg(current->thread.debugreg1, 1);
  3374. set_debugreg(current->thread.debugreg2, 2);
  3375. set_debugreg(current->thread.debugreg3, 3);
  3376. set_debugreg(current->thread.debugreg6, 6);
  3377. set_debugreg(current->thread.debugreg7, 7);
  3378. }
  3379. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3380. local_irq_enable();
  3381. ++vcpu->stat.exits;
  3382. /*
  3383. * We must have an instruction between local_irq_enable() and
  3384. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3385. * the interrupt shadow. The stat.exits increment will do nicely.
  3386. * But we need to prevent reordering, hence this barrier():
  3387. */
  3388. barrier();
  3389. kvm_guest_exit();
  3390. preempt_enable();
  3391. down_read(&vcpu->kvm->slots_lock);
  3392. /*
  3393. * Profile KVM exit RIPs:
  3394. */
  3395. if (unlikely(prof_on == KVM_PROFILING)) {
  3396. unsigned long rip = kvm_rip_read(vcpu);
  3397. profile_hit(KVM_PROFILING, (void *)rip);
  3398. }
  3399. kvm_lapic_sync_from_vapic(vcpu);
  3400. r = kvm_x86_ops->handle_exit(vcpu);
  3401. out:
  3402. return r;
  3403. }
  3404. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3405. {
  3406. int r;
  3407. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3408. pr_debug("vcpu %d received sipi with vector # %x\n",
  3409. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3410. kvm_lapic_reset(vcpu);
  3411. r = kvm_arch_vcpu_reset(vcpu);
  3412. if (r)
  3413. return r;
  3414. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3415. }
  3416. down_read(&vcpu->kvm->slots_lock);
  3417. vapic_enter(vcpu);
  3418. r = 1;
  3419. while (r > 0) {
  3420. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3421. r = vcpu_enter_guest(vcpu);
  3422. else {
  3423. up_read(&vcpu->kvm->slots_lock);
  3424. kvm_vcpu_block(vcpu);
  3425. down_read(&vcpu->kvm->slots_lock);
  3426. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3427. {
  3428. switch(vcpu->arch.mp_state) {
  3429. case KVM_MP_STATE_HALTED:
  3430. vcpu->arch.mp_state =
  3431. KVM_MP_STATE_RUNNABLE;
  3432. case KVM_MP_STATE_RUNNABLE:
  3433. break;
  3434. case KVM_MP_STATE_SIPI_RECEIVED:
  3435. default:
  3436. r = -EINTR;
  3437. break;
  3438. }
  3439. }
  3440. }
  3441. if (r <= 0)
  3442. break;
  3443. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3444. if (kvm_cpu_has_pending_timer(vcpu))
  3445. kvm_inject_pending_timer_irqs(vcpu);
  3446. if (dm_request_for_irq_injection(vcpu)) {
  3447. r = -EINTR;
  3448. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3449. ++vcpu->stat.request_irq_exits;
  3450. }
  3451. if (signal_pending(current)) {
  3452. r = -EINTR;
  3453. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3454. ++vcpu->stat.signal_exits;
  3455. }
  3456. if (need_resched()) {
  3457. up_read(&vcpu->kvm->slots_lock);
  3458. kvm_resched(vcpu);
  3459. down_read(&vcpu->kvm->slots_lock);
  3460. }
  3461. }
  3462. up_read(&vcpu->kvm->slots_lock);
  3463. post_kvm_run_save(vcpu);
  3464. vapic_exit(vcpu);
  3465. return r;
  3466. }
  3467. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3468. {
  3469. int r;
  3470. sigset_t sigsaved;
  3471. vcpu_load(vcpu);
  3472. if (vcpu->sigset_active)
  3473. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3474. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3475. kvm_vcpu_block(vcpu);
  3476. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3477. r = -EAGAIN;
  3478. goto out;
  3479. }
  3480. /* re-sync apic's tpr */
  3481. if (!irqchip_in_kernel(vcpu->kvm))
  3482. kvm_set_cr8(vcpu, kvm_run->cr8);
  3483. if (vcpu->arch.pio.cur_count) {
  3484. r = complete_pio(vcpu);
  3485. if (r)
  3486. goto out;
  3487. }
  3488. if (vcpu->mmio_needed) {
  3489. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3490. vcpu->mmio_read_completed = 1;
  3491. vcpu->mmio_needed = 0;
  3492. down_read(&vcpu->kvm->slots_lock);
  3493. r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
  3494. EMULTYPE_NO_DECODE);
  3495. up_read(&vcpu->kvm->slots_lock);
  3496. if (r == EMULATE_DO_MMIO) {
  3497. /*
  3498. * Read-modify-write. Back to userspace.
  3499. */
  3500. r = 0;
  3501. goto out;
  3502. }
  3503. }
  3504. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3505. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3506. kvm_run->hypercall.ret);
  3507. r = __vcpu_run(vcpu);
  3508. out:
  3509. if (vcpu->sigset_active)
  3510. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3511. vcpu_put(vcpu);
  3512. return r;
  3513. }
  3514. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3515. {
  3516. vcpu_load(vcpu);
  3517. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3518. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3519. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3520. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3521. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3522. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3523. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3524. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3525. #ifdef CONFIG_X86_64
  3526. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3527. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3528. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3529. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3530. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3531. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3532. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3533. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3534. #endif
  3535. regs->rip = kvm_rip_read(vcpu);
  3536. regs->rflags = kvm_get_rflags(vcpu);
  3537. vcpu_put(vcpu);
  3538. return 0;
  3539. }
  3540. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3541. {
  3542. vcpu_load(vcpu);
  3543. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3544. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3545. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3546. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3547. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3548. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3549. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3550. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3551. #ifdef CONFIG_X86_64
  3552. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3553. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3554. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3555. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3556. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3557. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3558. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3559. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3560. #endif
  3561. kvm_rip_write(vcpu, regs->rip);
  3562. kvm_set_rflags(vcpu, regs->rflags);
  3563. vcpu->arch.exception.pending = false;
  3564. vcpu_put(vcpu);
  3565. return 0;
  3566. }
  3567. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3568. struct kvm_segment *var, int seg)
  3569. {
  3570. kvm_x86_ops->get_segment(vcpu, var, seg);
  3571. }
  3572. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3573. {
  3574. struct kvm_segment cs;
  3575. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3576. *db = cs.db;
  3577. *l = cs.l;
  3578. }
  3579. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3580. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3581. struct kvm_sregs *sregs)
  3582. {
  3583. struct descriptor_table dt;
  3584. vcpu_load(vcpu);
  3585. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3586. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3587. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3588. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3589. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3590. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3591. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3592. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3593. kvm_x86_ops->get_idt(vcpu, &dt);
  3594. sregs->idt.limit = dt.limit;
  3595. sregs->idt.base = dt.base;
  3596. kvm_x86_ops->get_gdt(vcpu, &dt);
  3597. sregs->gdt.limit = dt.limit;
  3598. sregs->gdt.base = dt.base;
  3599. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3600. sregs->cr0 = vcpu->arch.cr0;
  3601. sregs->cr2 = vcpu->arch.cr2;
  3602. sregs->cr3 = vcpu->arch.cr3;
  3603. sregs->cr4 = vcpu->arch.cr4;
  3604. sregs->cr8 = kvm_get_cr8(vcpu);
  3605. sregs->efer = vcpu->arch.shadow_efer;
  3606. sregs->apic_base = kvm_get_apic_base(vcpu);
  3607. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3608. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3609. set_bit(vcpu->arch.interrupt.nr,
  3610. (unsigned long *)sregs->interrupt_bitmap);
  3611. vcpu_put(vcpu);
  3612. return 0;
  3613. }
  3614. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3615. struct kvm_mp_state *mp_state)
  3616. {
  3617. vcpu_load(vcpu);
  3618. mp_state->mp_state = vcpu->arch.mp_state;
  3619. vcpu_put(vcpu);
  3620. return 0;
  3621. }
  3622. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3623. struct kvm_mp_state *mp_state)
  3624. {
  3625. vcpu_load(vcpu);
  3626. vcpu->arch.mp_state = mp_state->mp_state;
  3627. vcpu_put(vcpu);
  3628. return 0;
  3629. }
  3630. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3631. struct kvm_segment *var, int seg)
  3632. {
  3633. kvm_x86_ops->set_segment(vcpu, var, seg);
  3634. }
  3635. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3636. struct kvm_segment *kvm_desct)
  3637. {
  3638. kvm_desct->base = get_desc_base(seg_desc);
  3639. kvm_desct->limit = get_desc_limit(seg_desc);
  3640. if (seg_desc->g) {
  3641. kvm_desct->limit <<= 12;
  3642. kvm_desct->limit |= 0xfff;
  3643. }
  3644. kvm_desct->selector = selector;
  3645. kvm_desct->type = seg_desc->type;
  3646. kvm_desct->present = seg_desc->p;
  3647. kvm_desct->dpl = seg_desc->dpl;
  3648. kvm_desct->db = seg_desc->d;
  3649. kvm_desct->s = seg_desc->s;
  3650. kvm_desct->l = seg_desc->l;
  3651. kvm_desct->g = seg_desc->g;
  3652. kvm_desct->avl = seg_desc->avl;
  3653. if (!selector)
  3654. kvm_desct->unusable = 1;
  3655. else
  3656. kvm_desct->unusable = 0;
  3657. kvm_desct->padding = 0;
  3658. }
  3659. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3660. u16 selector,
  3661. struct descriptor_table *dtable)
  3662. {
  3663. if (selector & 1 << 2) {
  3664. struct kvm_segment kvm_seg;
  3665. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3666. if (kvm_seg.unusable)
  3667. dtable->limit = 0;
  3668. else
  3669. dtable->limit = kvm_seg.limit;
  3670. dtable->base = kvm_seg.base;
  3671. }
  3672. else
  3673. kvm_x86_ops->get_gdt(vcpu, dtable);
  3674. }
  3675. /* allowed just for 8 bytes segments */
  3676. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3677. struct desc_struct *seg_desc)
  3678. {
  3679. struct descriptor_table dtable;
  3680. u16 index = selector >> 3;
  3681. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3682. if (dtable.limit < index * 8 + 7) {
  3683. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3684. return 1;
  3685. }
  3686. return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3687. }
  3688. /* allowed just for 8 bytes segments */
  3689. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3690. struct desc_struct *seg_desc)
  3691. {
  3692. struct descriptor_table dtable;
  3693. u16 index = selector >> 3;
  3694. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3695. if (dtable.limit < index * 8 + 7)
  3696. return 1;
  3697. return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3698. }
  3699. static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
  3700. struct desc_struct *seg_desc)
  3701. {
  3702. u32 base_addr = get_desc_base(seg_desc);
  3703. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3704. }
  3705. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3706. {
  3707. struct kvm_segment kvm_seg;
  3708. kvm_get_segment(vcpu, &kvm_seg, seg);
  3709. return kvm_seg.selector;
  3710. }
  3711. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3712. u16 selector,
  3713. struct kvm_segment *kvm_seg)
  3714. {
  3715. struct desc_struct seg_desc;
  3716. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3717. return 1;
  3718. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3719. return 0;
  3720. }
  3721. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3722. {
  3723. struct kvm_segment segvar = {
  3724. .base = selector << 4,
  3725. .limit = 0xffff,
  3726. .selector = selector,
  3727. .type = 3,
  3728. .present = 1,
  3729. .dpl = 3,
  3730. .db = 0,
  3731. .s = 1,
  3732. .l = 0,
  3733. .g = 0,
  3734. .avl = 0,
  3735. .unusable = 0,
  3736. };
  3737. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3738. return 0;
  3739. }
  3740. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  3741. {
  3742. return (seg != VCPU_SREG_LDTR) &&
  3743. (seg != VCPU_SREG_TR) &&
  3744. (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
  3745. }
  3746. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3747. int type_bits, int seg)
  3748. {
  3749. struct kvm_segment kvm_seg;
  3750. if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
  3751. return kvm_load_realmode_segment(vcpu, selector, seg);
  3752. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3753. return 1;
  3754. kvm_seg.type |= type_bits;
  3755. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3756. seg != VCPU_SREG_LDTR)
  3757. if (!kvm_seg.s)
  3758. kvm_seg.unusable = 1;
  3759. kvm_set_segment(vcpu, &kvm_seg, seg);
  3760. return 0;
  3761. }
  3762. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3763. struct tss_segment_32 *tss)
  3764. {
  3765. tss->cr3 = vcpu->arch.cr3;
  3766. tss->eip = kvm_rip_read(vcpu);
  3767. tss->eflags = kvm_get_rflags(vcpu);
  3768. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3769. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3770. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3771. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3772. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3773. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3774. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3775. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3776. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3777. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3778. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3779. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3780. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3781. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3782. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3783. }
  3784. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3785. struct tss_segment_32 *tss)
  3786. {
  3787. kvm_set_cr3(vcpu, tss->cr3);
  3788. kvm_rip_write(vcpu, tss->eip);
  3789. kvm_set_rflags(vcpu, tss->eflags | 2);
  3790. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3791. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3792. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3793. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3794. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3795. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3796. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3797. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3798. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3799. return 1;
  3800. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3801. return 1;
  3802. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3803. return 1;
  3804. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3805. return 1;
  3806. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3807. return 1;
  3808. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3809. return 1;
  3810. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3811. return 1;
  3812. return 0;
  3813. }
  3814. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3815. struct tss_segment_16 *tss)
  3816. {
  3817. tss->ip = kvm_rip_read(vcpu);
  3818. tss->flag = kvm_get_rflags(vcpu);
  3819. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3820. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3821. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3822. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3823. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3824. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3825. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3826. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3827. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3828. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3829. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3830. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3831. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3832. }
  3833. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3834. struct tss_segment_16 *tss)
  3835. {
  3836. kvm_rip_write(vcpu, tss->ip);
  3837. kvm_set_rflags(vcpu, tss->flag | 2);
  3838. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3839. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3840. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3841. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3842. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3843. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3844. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3845. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3846. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3847. return 1;
  3848. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3849. return 1;
  3850. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3851. return 1;
  3852. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3853. return 1;
  3854. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3855. return 1;
  3856. return 0;
  3857. }
  3858. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3859. u16 old_tss_sel, u32 old_tss_base,
  3860. struct desc_struct *nseg_desc)
  3861. {
  3862. struct tss_segment_16 tss_segment_16;
  3863. int ret = 0;
  3864. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3865. sizeof tss_segment_16))
  3866. goto out;
  3867. save_state_to_tss16(vcpu, &tss_segment_16);
  3868. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3869. sizeof tss_segment_16))
  3870. goto out;
  3871. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3872. &tss_segment_16, sizeof tss_segment_16))
  3873. goto out;
  3874. if (old_tss_sel != 0xffff) {
  3875. tss_segment_16.prev_task_link = old_tss_sel;
  3876. if (kvm_write_guest(vcpu->kvm,
  3877. get_tss_base_addr(vcpu, nseg_desc),
  3878. &tss_segment_16.prev_task_link,
  3879. sizeof tss_segment_16.prev_task_link))
  3880. goto out;
  3881. }
  3882. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3883. goto out;
  3884. ret = 1;
  3885. out:
  3886. return ret;
  3887. }
  3888. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3889. u16 old_tss_sel, u32 old_tss_base,
  3890. struct desc_struct *nseg_desc)
  3891. {
  3892. struct tss_segment_32 tss_segment_32;
  3893. int ret = 0;
  3894. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3895. sizeof tss_segment_32))
  3896. goto out;
  3897. save_state_to_tss32(vcpu, &tss_segment_32);
  3898. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3899. sizeof tss_segment_32))
  3900. goto out;
  3901. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3902. &tss_segment_32, sizeof tss_segment_32))
  3903. goto out;
  3904. if (old_tss_sel != 0xffff) {
  3905. tss_segment_32.prev_task_link = old_tss_sel;
  3906. if (kvm_write_guest(vcpu->kvm,
  3907. get_tss_base_addr(vcpu, nseg_desc),
  3908. &tss_segment_32.prev_task_link,
  3909. sizeof tss_segment_32.prev_task_link))
  3910. goto out;
  3911. }
  3912. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3913. goto out;
  3914. ret = 1;
  3915. out:
  3916. return ret;
  3917. }
  3918. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3919. {
  3920. struct kvm_segment tr_seg;
  3921. struct desc_struct cseg_desc;
  3922. struct desc_struct nseg_desc;
  3923. int ret = 0;
  3924. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3925. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3926. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3927. /* FIXME: Handle errors. Failure to read either TSS or their
  3928. * descriptors should generate a pagefault.
  3929. */
  3930. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3931. goto out;
  3932. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3933. goto out;
  3934. if (reason != TASK_SWITCH_IRET) {
  3935. int cpl;
  3936. cpl = kvm_x86_ops->get_cpl(vcpu);
  3937. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3938. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3939. return 1;
  3940. }
  3941. }
  3942. if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
  3943. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3944. return 1;
  3945. }
  3946. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3947. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3948. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3949. }
  3950. if (reason == TASK_SWITCH_IRET) {
  3951. u32 eflags = kvm_get_rflags(vcpu);
  3952. kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3953. }
  3954. /* set back link to prev task only if NT bit is set in eflags
  3955. note that old_tss_sel is not used afetr this point */
  3956. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3957. old_tss_sel = 0xffff;
  3958. if (nseg_desc.type & 8)
  3959. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3960. old_tss_base, &nseg_desc);
  3961. else
  3962. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3963. old_tss_base, &nseg_desc);
  3964. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3965. u32 eflags = kvm_get_rflags(vcpu);
  3966. kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3967. }
  3968. if (reason != TASK_SWITCH_IRET) {
  3969. nseg_desc.type |= (1 << 1);
  3970. save_guest_segment_descriptor(vcpu, tss_selector,
  3971. &nseg_desc);
  3972. }
  3973. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3974. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3975. tr_seg.type = 11;
  3976. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3977. out:
  3978. return ret;
  3979. }
  3980. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3981. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3982. struct kvm_sregs *sregs)
  3983. {
  3984. int mmu_reset_needed = 0;
  3985. int pending_vec, max_bits;
  3986. struct descriptor_table dt;
  3987. vcpu_load(vcpu);
  3988. dt.limit = sregs->idt.limit;
  3989. dt.base = sregs->idt.base;
  3990. kvm_x86_ops->set_idt(vcpu, &dt);
  3991. dt.limit = sregs->gdt.limit;
  3992. dt.base = sregs->gdt.base;
  3993. kvm_x86_ops->set_gdt(vcpu, &dt);
  3994. vcpu->arch.cr2 = sregs->cr2;
  3995. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3996. vcpu->arch.cr3 = sregs->cr3;
  3997. kvm_set_cr8(vcpu, sregs->cr8);
  3998. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3999. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4000. kvm_set_apic_base(vcpu, sregs->apic_base);
  4001. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  4002. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  4003. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4004. vcpu->arch.cr0 = sregs->cr0;
  4005. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  4006. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4007. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4008. load_pdptrs(vcpu, vcpu->arch.cr3);
  4009. mmu_reset_needed = 1;
  4010. }
  4011. if (mmu_reset_needed)
  4012. kvm_mmu_reset_context(vcpu);
  4013. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4014. pending_vec = find_first_bit(
  4015. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4016. if (pending_vec < max_bits) {
  4017. kvm_queue_interrupt(vcpu, pending_vec, false);
  4018. pr_debug("Set back pending irq %d\n", pending_vec);
  4019. if (irqchip_in_kernel(vcpu->kvm))
  4020. kvm_pic_clear_isr_ack(vcpu->kvm);
  4021. }
  4022. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4023. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4024. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4025. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4026. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4027. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4028. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4029. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4030. update_cr8_intercept(vcpu);
  4031. /* Older userspace won't unhalt the vcpu on reset. */
  4032. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4033. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4034. !(vcpu->arch.cr0 & X86_CR0_PE))
  4035. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4036. vcpu_put(vcpu);
  4037. return 0;
  4038. }
  4039. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4040. struct kvm_guest_debug *dbg)
  4041. {
  4042. unsigned long rflags;
  4043. int i, r;
  4044. vcpu_load(vcpu);
  4045. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4046. r = -EBUSY;
  4047. if (vcpu->arch.exception.pending)
  4048. goto unlock_out;
  4049. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4050. kvm_queue_exception(vcpu, DB_VECTOR);
  4051. else
  4052. kvm_queue_exception(vcpu, BP_VECTOR);
  4053. }
  4054. /*
  4055. * Read rflags as long as potentially injected trace flags are still
  4056. * filtered out.
  4057. */
  4058. rflags = kvm_get_rflags(vcpu);
  4059. vcpu->guest_debug = dbg->control;
  4060. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4061. vcpu->guest_debug = 0;
  4062. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4063. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4064. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4065. vcpu->arch.switch_db_regs =
  4066. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4067. } else {
  4068. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4069. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4070. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4071. }
  4072. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
  4073. vcpu->arch.singlestep_cs =
  4074. get_segment_selector(vcpu, VCPU_SREG_CS);
  4075. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
  4076. }
  4077. /*
  4078. * Trigger an rflags update that will inject or remove the trace
  4079. * flags.
  4080. */
  4081. kvm_set_rflags(vcpu, rflags);
  4082. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4083. r = 0;
  4084. unlock_out:
  4085. vcpu_put(vcpu);
  4086. return r;
  4087. }
  4088. /*
  4089. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  4090. * we have asm/x86/processor.h
  4091. */
  4092. struct fxsave {
  4093. u16 cwd;
  4094. u16 swd;
  4095. u16 twd;
  4096. u16 fop;
  4097. u64 rip;
  4098. u64 rdp;
  4099. u32 mxcsr;
  4100. u32 mxcsr_mask;
  4101. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  4102. #ifdef CONFIG_X86_64
  4103. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  4104. #else
  4105. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  4106. #endif
  4107. };
  4108. /*
  4109. * Translate a guest virtual address to a guest physical address.
  4110. */
  4111. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4112. struct kvm_translation *tr)
  4113. {
  4114. unsigned long vaddr = tr->linear_address;
  4115. gpa_t gpa;
  4116. vcpu_load(vcpu);
  4117. down_read(&vcpu->kvm->slots_lock);
  4118. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  4119. up_read(&vcpu->kvm->slots_lock);
  4120. tr->physical_address = gpa;
  4121. tr->valid = gpa != UNMAPPED_GVA;
  4122. tr->writeable = 1;
  4123. tr->usermode = 0;
  4124. vcpu_put(vcpu);
  4125. return 0;
  4126. }
  4127. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4128. {
  4129. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4130. vcpu_load(vcpu);
  4131. memcpy(fpu->fpr, fxsave->st_space, 128);
  4132. fpu->fcw = fxsave->cwd;
  4133. fpu->fsw = fxsave->swd;
  4134. fpu->ftwx = fxsave->twd;
  4135. fpu->last_opcode = fxsave->fop;
  4136. fpu->last_ip = fxsave->rip;
  4137. fpu->last_dp = fxsave->rdp;
  4138. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4139. vcpu_put(vcpu);
  4140. return 0;
  4141. }
  4142. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4143. {
  4144. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4145. vcpu_load(vcpu);
  4146. memcpy(fxsave->st_space, fpu->fpr, 128);
  4147. fxsave->cwd = fpu->fcw;
  4148. fxsave->swd = fpu->fsw;
  4149. fxsave->twd = fpu->ftwx;
  4150. fxsave->fop = fpu->last_opcode;
  4151. fxsave->rip = fpu->last_ip;
  4152. fxsave->rdp = fpu->last_dp;
  4153. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4154. vcpu_put(vcpu);
  4155. return 0;
  4156. }
  4157. void fx_init(struct kvm_vcpu *vcpu)
  4158. {
  4159. unsigned after_mxcsr_mask;
  4160. /*
  4161. * Touch the fpu the first time in non atomic context as if
  4162. * this is the first fpu instruction the exception handler
  4163. * will fire before the instruction returns and it'll have to
  4164. * allocate ram with GFP_KERNEL.
  4165. */
  4166. if (!used_math())
  4167. kvm_fx_save(&vcpu->arch.host_fx_image);
  4168. /* Initialize guest FPU by resetting ours and saving into guest's */
  4169. preempt_disable();
  4170. kvm_fx_save(&vcpu->arch.host_fx_image);
  4171. kvm_fx_finit();
  4172. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4173. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4174. preempt_enable();
  4175. vcpu->arch.cr0 |= X86_CR0_ET;
  4176. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4177. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4178. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4179. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4180. }
  4181. EXPORT_SYMBOL_GPL(fx_init);
  4182. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4183. {
  4184. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  4185. return;
  4186. vcpu->guest_fpu_loaded = 1;
  4187. kvm_fx_save(&vcpu->arch.host_fx_image);
  4188. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4189. }
  4190. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  4191. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4192. {
  4193. if (!vcpu->guest_fpu_loaded)
  4194. return;
  4195. vcpu->guest_fpu_loaded = 0;
  4196. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4197. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4198. ++vcpu->stat.fpu_reload;
  4199. }
  4200. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  4201. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4202. {
  4203. if (vcpu->arch.time_page) {
  4204. kvm_release_page_dirty(vcpu->arch.time_page);
  4205. vcpu->arch.time_page = NULL;
  4206. }
  4207. kvm_x86_ops->vcpu_free(vcpu);
  4208. }
  4209. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4210. unsigned int id)
  4211. {
  4212. return kvm_x86_ops->vcpu_create(kvm, id);
  4213. }
  4214. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4215. {
  4216. int r;
  4217. /* We do fxsave: this must be aligned. */
  4218. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4219. vcpu->arch.mtrr_state.have_fixed = 1;
  4220. vcpu_load(vcpu);
  4221. r = kvm_arch_vcpu_reset(vcpu);
  4222. if (r == 0)
  4223. r = kvm_mmu_setup(vcpu);
  4224. vcpu_put(vcpu);
  4225. if (r < 0)
  4226. goto free_vcpu;
  4227. return 0;
  4228. free_vcpu:
  4229. kvm_x86_ops->vcpu_free(vcpu);
  4230. return r;
  4231. }
  4232. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4233. {
  4234. vcpu_load(vcpu);
  4235. kvm_mmu_unload(vcpu);
  4236. vcpu_put(vcpu);
  4237. kvm_x86_ops->vcpu_free(vcpu);
  4238. }
  4239. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4240. {
  4241. vcpu->arch.nmi_pending = false;
  4242. vcpu->arch.nmi_injected = false;
  4243. vcpu->arch.switch_db_regs = 0;
  4244. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4245. vcpu->arch.dr6 = DR6_FIXED_1;
  4246. vcpu->arch.dr7 = DR7_FIXED_1;
  4247. return kvm_x86_ops->vcpu_reset(vcpu);
  4248. }
  4249. int kvm_arch_hardware_enable(void *garbage)
  4250. {
  4251. /*
  4252. * Since this may be called from a hotplug notifcation,
  4253. * we can't get the CPU frequency directly.
  4254. */
  4255. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4256. int cpu = raw_smp_processor_id();
  4257. per_cpu(cpu_tsc_khz, cpu) = 0;
  4258. }
  4259. kvm_shared_msr_cpu_online();
  4260. return kvm_x86_ops->hardware_enable(garbage);
  4261. }
  4262. void kvm_arch_hardware_disable(void *garbage)
  4263. {
  4264. kvm_x86_ops->hardware_disable(garbage);
  4265. }
  4266. int kvm_arch_hardware_setup(void)
  4267. {
  4268. return kvm_x86_ops->hardware_setup();
  4269. }
  4270. void kvm_arch_hardware_unsetup(void)
  4271. {
  4272. kvm_x86_ops->hardware_unsetup();
  4273. }
  4274. void kvm_arch_check_processor_compat(void *rtn)
  4275. {
  4276. kvm_x86_ops->check_processor_compatibility(rtn);
  4277. }
  4278. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4279. {
  4280. struct page *page;
  4281. struct kvm *kvm;
  4282. int r;
  4283. BUG_ON(vcpu->kvm == NULL);
  4284. kvm = vcpu->kvm;
  4285. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4286. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4287. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4288. else
  4289. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4290. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4291. if (!page) {
  4292. r = -ENOMEM;
  4293. goto fail;
  4294. }
  4295. vcpu->arch.pio_data = page_address(page);
  4296. r = kvm_mmu_create(vcpu);
  4297. if (r < 0)
  4298. goto fail_free_pio_data;
  4299. if (irqchip_in_kernel(kvm)) {
  4300. r = kvm_create_lapic(vcpu);
  4301. if (r < 0)
  4302. goto fail_mmu_destroy;
  4303. }
  4304. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4305. GFP_KERNEL);
  4306. if (!vcpu->arch.mce_banks) {
  4307. r = -ENOMEM;
  4308. goto fail_mmu_destroy;
  4309. }
  4310. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4311. return 0;
  4312. fail_mmu_destroy:
  4313. kvm_mmu_destroy(vcpu);
  4314. fail_free_pio_data:
  4315. free_page((unsigned long)vcpu->arch.pio_data);
  4316. fail:
  4317. return r;
  4318. }
  4319. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4320. {
  4321. kvm_free_lapic(vcpu);
  4322. down_read(&vcpu->kvm->slots_lock);
  4323. kvm_mmu_destroy(vcpu);
  4324. up_read(&vcpu->kvm->slots_lock);
  4325. free_page((unsigned long)vcpu->arch.pio_data);
  4326. }
  4327. struct kvm *kvm_arch_create_vm(void)
  4328. {
  4329. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4330. if (!kvm)
  4331. return ERR_PTR(-ENOMEM);
  4332. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4333. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4334. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4335. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4336. rdtscll(kvm->arch.vm_init_tsc);
  4337. return kvm;
  4338. }
  4339. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4340. {
  4341. vcpu_load(vcpu);
  4342. kvm_mmu_unload(vcpu);
  4343. vcpu_put(vcpu);
  4344. }
  4345. static void kvm_free_vcpus(struct kvm *kvm)
  4346. {
  4347. unsigned int i;
  4348. struct kvm_vcpu *vcpu;
  4349. /*
  4350. * Unpin any mmu pages first.
  4351. */
  4352. kvm_for_each_vcpu(i, vcpu, kvm)
  4353. kvm_unload_vcpu_mmu(vcpu);
  4354. kvm_for_each_vcpu(i, vcpu, kvm)
  4355. kvm_arch_vcpu_free(vcpu);
  4356. mutex_lock(&kvm->lock);
  4357. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4358. kvm->vcpus[i] = NULL;
  4359. atomic_set(&kvm->online_vcpus, 0);
  4360. mutex_unlock(&kvm->lock);
  4361. }
  4362. void kvm_arch_sync_events(struct kvm *kvm)
  4363. {
  4364. kvm_free_all_assigned_devices(kvm);
  4365. }
  4366. void kvm_arch_destroy_vm(struct kvm *kvm)
  4367. {
  4368. kvm_iommu_unmap_guest(kvm);
  4369. kvm_free_pit(kvm);
  4370. kfree(kvm->arch.vpic);
  4371. kfree(kvm->arch.vioapic);
  4372. kvm_free_vcpus(kvm);
  4373. kvm_free_physmem(kvm);
  4374. if (kvm->arch.apic_access_page)
  4375. put_page(kvm->arch.apic_access_page);
  4376. if (kvm->arch.ept_identity_pagetable)
  4377. put_page(kvm->arch.ept_identity_pagetable);
  4378. kfree(kvm);
  4379. }
  4380. int kvm_arch_set_memory_region(struct kvm *kvm,
  4381. struct kvm_userspace_memory_region *mem,
  4382. struct kvm_memory_slot old,
  4383. int user_alloc)
  4384. {
  4385. int npages = mem->memory_size >> PAGE_SHIFT;
  4386. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4387. /*To keep backward compatibility with older userspace,
  4388. *x86 needs to hanlde !user_alloc case.
  4389. */
  4390. if (!user_alloc) {
  4391. if (npages && !old.rmap) {
  4392. unsigned long userspace_addr;
  4393. down_write(&current->mm->mmap_sem);
  4394. userspace_addr = do_mmap(NULL, 0,
  4395. npages * PAGE_SIZE,
  4396. PROT_READ | PROT_WRITE,
  4397. MAP_PRIVATE | MAP_ANONYMOUS,
  4398. 0);
  4399. up_write(&current->mm->mmap_sem);
  4400. if (IS_ERR((void *)userspace_addr))
  4401. return PTR_ERR((void *)userspace_addr);
  4402. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4403. spin_lock(&kvm->mmu_lock);
  4404. memslot->userspace_addr = userspace_addr;
  4405. spin_unlock(&kvm->mmu_lock);
  4406. } else {
  4407. if (!old.user_alloc && old.rmap) {
  4408. int ret;
  4409. down_write(&current->mm->mmap_sem);
  4410. ret = do_munmap(current->mm, old.userspace_addr,
  4411. old.npages * PAGE_SIZE);
  4412. up_write(&current->mm->mmap_sem);
  4413. if (ret < 0)
  4414. printk(KERN_WARNING
  4415. "kvm_vm_ioctl_set_memory_region: "
  4416. "failed to munmap memory\n");
  4417. }
  4418. }
  4419. }
  4420. spin_lock(&kvm->mmu_lock);
  4421. if (!kvm->arch.n_requested_mmu_pages) {
  4422. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4423. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4424. }
  4425. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4426. spin_unlock(&kvm->mmu_lock);
  4427. return 0;
  4428. }
  4429. void kvm_arch_flush_shadow(struct kvm *kvm)
  4430. {
  4431. kvm_mmu_zap_all(kvm);
  4432. kvm_reload_remote_mmus(kvm);
  4433. }
  4434. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4435. {
  4436. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4437. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4438. || vcpu->arch.nmi_pending ||
  4439. (kvm_arch_interrupt_allowed(vcpu) &&
  4440. kvm_cpu_has_interrupt(vcpu));
  4441. }
  4442. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4443. {
  4444. int me;
  4445. int cpu = vcpu->cpu;
  4446. if (waitqueue_active(&vcpu->wq)) {
  4447. wake_up_interruptible(&vcpu->wq);
  4448. ++vcpu->stat.halt_wakeup;
  4449. }
  4450. me = get_cpu();
  4451. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4452. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4453. smp_send_reschedule(cpu);
  4454. put_cpu();
  4455. }
  4456. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4457. {
  4458. return kvm_x86_ops->interrupt_allowed(vcpu);
  4459. }
  4460. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  4461. {
  4462. unsigned long rflags;
  4463. rflags = kvm_x86_ops->get_rflags(vcpu);
  4464. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4465. rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
  4466. return rflags;
  4467. }
  4468. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  4469. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  4470. {
  4471. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  4472. vcpu->arch.singlestep_cs ==
  4473. get_segment_selector(vcpu, VCPU_SREG_CS) &&
  4474. vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
  4475. rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  4476. kvm_x86_ops->set_rflags(vcpu, rflags);
  4477. }
  4478. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  4479. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4480. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4481. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4482. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4483. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4484. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4485. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4486. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  4487. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  4488. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  4489. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);