kvm_main.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/pgtable.h>
  46. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  47. #include "coalesced_mmio.h"
  48. #endif
  49. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  50. #include <linux/pci.h>
  51. #include <linux/interrupt.h>
  52. #include "irq.h"
  53. #endif
  54. MODULE_AUTHOR("Qumranet");
  55. MODULE_LICENSE("GPL");
  56. DEFINE_SPINLOCK(kvm_lock);
  57. LIST_HEAD(vm_list);
  58. static cpumask_t cpus_hardware_enabled;
  59. struct kmem_cache *kvm_vcpu_cache;
  60. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  61. static __read_mostly struct preempt_ops kvm_preempt_ops;
  62. struct dentry *kvm_debugfs_dir;
  63. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  64. unsigned long arg);
  65. bool kvm_rebooting;
  66. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  67. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  68. int assigned_dev_id)
  69. {
  70. struct list_head *ptr;
  71. struct kvm_assigned_dev_kernel *match;
  72. list_for_each(ptr, head) {
  73. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  74. if (match->assigned_dev_id == assigned_dev_id)
  75. return match;
  76. }
  77. return NULL;
  78. }
  79. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  80. {
  81. struct kvm_assigned_dev_kernel *assigned_dev;
  82. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  83. interrupt_work);
  84. /* This is taken to safely inject irq inside the guest. When
  85. * the interrupt injection (or the ioapic code) uses a
  86. * finer-grained lock, update this
  87. */
  88. mutex_lock(&assigned_dev->kvm->lock);
  89. kvm_set_irq(assigned_dev->kvm,
  90. assigned_dev->irq_source_id,
  91. assigned_dev->guest_irq, 1);
  92. mutex_unlock(&assigned_dev->kvm->lock);
  93. kvm_put_kvm(assigned_dev->kvm);
  94. }
  95. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  96. {
  97. struct kvm_assigned_dev_kernel *assigned_dev =
  98. (struct kvm_assigned_dev_kernel *) dev_id;
  99. kvm_get_kvm(assigned_dev->kvm);
  100. schedule_work(&assigned_dev->interrupt_work);
  101. disable_irq_nosync(irq);
  102. return IRQ_HANDLED;
  103. }
  104. /* Ack the irq line for an assigned device */
  105. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  106. {
  107. struct kvm_assigned_dev_kernel *dev;
  108. if (kian->gsi == -1)
  109. return;
  110. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  111. ack_notifier);
  112. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  113. enable_irq(dev->host_irq);
  114. }
  115. static void kvm_free_assigned_device(struct kvm *kvm,
  116. struct kvm_assigned_dev_kernel
  117. *assigned_dev)
  118. {
  119. if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested_type)
  120. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  121. kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
  122. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  123. if (cancel_work_sync(&assigned_dev->interrupt_work))
  124. /* We had pending work. That means we will have to take
  125. * care of kvm_put_kvm.
  126. */
  127. kvm_put_kvm(kvm);
  128. pci_reset_function(assigned_dev->dev);
  129. pci_release_regions(assigned_dev->dev);
  130. pci_disable_device(assigned_dev->dev);
  131. pci_dev_put(assigned_dev->dev);
  132. list_del(&assigned_dev->list);
  133. kfree(assigned_dev);
  134. }
  135. void kvm_free_all_assigned_devices(struct kvm *kvm)
  136. {
  137. struct list_head *ptr, *ptr2;
  138. struct kvm_assigned_dev_kernel *assigned_dev;
  139. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  140. assigned_dev = list_entry(ptr,
  141. struct kvm_assigned_dev_kernel,
  142. list);
  143. kvm_free_assigned_device(kvm, assigned_dev);
  144. }
  145. }
  146. static int assigned_device_update_intx(struct kvm *kvm,
  147. struct kvm_assigned_dev_kernel *adev,
  148. struct kvm_assigned_irq *airq)
  149. {
  150. if (adev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX) {
  151. adev->guest_irq = airq->guest_irq;
  152. adev->ack_notifier.gsi = airq->guest_irq;
  153. return 0;
  154. }
  155. if (irqchip_in_kernel(kvm)) {
  156. if (!capable(CAP_SYS_RAWIO))
  157. return -EPERM;
  158. if (airq->host_irq)
  159. adev->host_irq = airq->host_irq;
  160. else
  161. adev->host_irq = adev->dev->irq;
  162. adev->guest_irq = airq->guest_irq;
  163. adev->ack_notifier.gsi = airq->guest_irq;
  164. /* Even though this is PCI, we don't want to use shared
  165. * interrupts. Sharing host devices with guest-assigned devices
  166. * on the same interrupt line is not a happy situation: there
  167. * are going to be long delays in accepting, acking, etc.
  168. */
  169. if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
  170. 0, "kvm_assigned_intx_device", (void *)adev))
  171. return -EIO;
  172. }
  173. adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
  174. KVM_ASSIGNED_DEV_HOST_INTX;
  175. return 0;
  176. }
  177. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  178. struct kvm_assigned_irq
  179. *assigned_irq)
  180. {
  181. int r = 0;
  182. struct kvm_assigned_dev_kernel *match;
  183. mutex_lock(&kvm->lock);
  184. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  185. assigned_irq->assigned_dev_id);
  186. if (!match) {
  187. mutex_unlock(&kvm->lock);
  188. return -EINVAL;
  189. }
  190. if (!match->irq_requested_type) {
  191. INIT_WORK(&match->interrupt_work,
  192. kvm_assigned_dev_interrupt_work_handler);
  193. if (irqchip_in_kernel(kvm)) {
  194. /* Register ack nofitier */
  195. match->ack_notifier.gsi = -1;
  196. match->ack_notifier.irq_acked =
  197. kvm_assigned_dev_ack_irq;
  198. kvm_register_irq_ack_notifier(kvm,
  199. &match->ack_notifier);
  200. /* Request IRQ source ID */
  201. r = kvm_request_irq_source_id(kvm);
  202. if (r < 0)
  203. goto out_release;
  204. else
  205. match->irq_source_id = r;
  206. }
  207. }
  208. r = assigned_device_update_intx(kvm, match, assigned_irq);
  209. if (r)
  210. goto out_release;
  211. mutex_unlock(&kvm->lock);
  212. return r;
  213. out_release:
  214. mutex_unlock(&kvm->lock);
  215. kvm_free_assigned_device(kvm, match);
  216. return r;
  217. }
  218. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  219. struct kvm_assigned_pci_dev *assigned_dev)
  220. {
  221. int r = 0;
  222. struct kvm_assigned_dev_kernel *match;
  223. struct pci_dev *dev;
  224. mutex_lock(&kvm->lock);
  225. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  226. assigned_dev->assigned_dev_id);
  227. if (match) {
  228. /* device already assigned */
  229. r = -EINVAL;
  230. goto out;
  231. }
  232. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  233. if (match == NULL) {
  234. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  235. __func__);
  236. r = -ENOMEM;
  237. goto out;
  238. }
  239. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  240. assigned_dev->devfn);
  241. if (!dev) {
  242. printk(KERN_INFO "%s: host device not found\n", __func__);
  243. r = -EINVAL;
  244. goto out_free;
  245. }
  246. if (pci_enable_device(dev)) {
  247. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  248. r = -EBUSY;
  249. goto out_put;
  250. }
  251. r = pci_request_regions(dev, "kvm_assigned_device");
  252. if (r) {
  253. printk(KERN_INFO "%s: Could not get access to device regions\n",
  254. __func__);
  255. goto out_disable;
  256. }
  257. pci_reset_function(dev);
  258. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  259. match->host_busnr = assigned_dev->busnr;
  260. match->host_devfn = assigned_dev->devfn;
  261. match->dev = dev;
  262. match->kvm = kvm;
  263. list_add(&match->list, &kvm->arch.assigned_dev_head);
  264. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  265. r = kvm_iommu_map_guest(kvm, match);
  266. if (r)
  267. goto out_list_del;
  268. }
  269. out:
  270. mutex_unlock(&kvm->lock);
  271. return r;
  272. out_list_del:
  273. list_del(&match->list);
  274. pci_release_regions(dev);
  275. out_disable:
  276. pci_disable_device(dev);
  277. out_put:
  278. pci_dev_put(dev);
  279. out_free:
  280. kfree(match);
  281. mutex_unlock(&kvm->lock);
  282. return r;
  283. }
  284. #endif
  285. static inline int valid_vcpu(int n)
  286. {
  287. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  288. }
  289. inline int kvm_is_mmio_pfn(pfn_t pfn)
  290. {
  291. if (pfn_valid(pfn))
  292. return PageReserved(pfn_to_page(pfn));
  293. return true;
  294. }
  295. /*
  296. * Switches to specified vcpu, until a matching vcpu_put()
  297. */
  298. void vcpu_load(struct kvm_vcpu *vcpu)
  299. {
  300. int cpu;
  301. mutex_lock(&vcpu->mutex);
  302. cpu = get_cpu();
  303. preempt_notifier_register(&vcpu->preempt_notifier);
  304. kvm_arch_vcpu_load(vcpu, cpu);
  305. put_cpu();
  306. }
  307. void vcpu_put(struct kvm_vcpu *vcpu)
  308. {
  309. preempt_disable();
  310. kvm_arch_vcpu_put(vcpu);
  311. preempt_notifier_unregister(&vcpu->preempt_notifier);
  312. preempt_enable();
  313. mutex_unlock(&vcpu->mutex);
  314. }
  315. static void ack_flush(void *_completed)
  316. {
  317. }
  318. void kvm_flush_remote_tlbs(struct kvm *kvm)
  319. {
  320. int i, cpu, me;
  321. cpumask_t cpus;
  322. struct kvm_vcpu *vcpu;
  323. me = get_cpu();
  324. cpus_clear(cpus);
  325. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  326. vcpu = kvm->vcpus[i];
  327. if (!vcpu)
  328. continue;
  329. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  330. continue;
  331. cpu = vcpu->cpu;
  332. if (cpu != -1 && cpu != me)
  333. cpu_set(cpu, cpus);
  334. }
  335. if (cpus_empty(cpus))
  336. goto out;
  337. ++kvm->stat.remote_tlb_flush;
  338. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  339. out:
  340. put_cpu();
  341. }
  342. void kvm_reload_remote_mmus(struct kvm *kvm)
  343. {
  344. int i, cpu, me;
  345. cpumask_t cpus;
  346. struct kvm_vcpu *vcpu;
  347. me = get_cpu();
  348. cpus_clear(cpus);
  349. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  350. vcpu = kvm->vcpus[i];
  351. if (!vcpu)
  352. continue;
  353. if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  354. continue;
  355. cpu = vcpu->cpu;
  356. if (cpu != -1 && cpu != me)
  357. cpu_set(cpu, cpus);
  358. }
  359. if (cpus_empty(cpus))
  360. goto out;
  361. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  362. out:
  363. put_cpu();
  364. }
  365. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  366. {
  367. struct page *page;
  368. int r;
  369. mutex_init(&vcpu->mutex);
  370. vcpu->cpu = -1;
  371. vcpu->kvm = kvm;
  372. vcpu->vcpu_id = id;
  373. init_waitqueue_head(&vcpu->wq);
  374. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  375. if (!page) {
  376. r = -ENOMEM;
  377. goto fail;
  378. }
  379. vcpu->run = page_address(page);
  380. r = kvm_arch_vcpu_init(vcpu);
  381. if (r < 0)
  382. goto fail_free_run;
  383. return 0;
  384. fail_free_run:
  385. free_page((unsigned long)vcpu->run);
  386. fail:
  387. return r;
  388. }
  389. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  390. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  391. {
  392. kvm_arch_vcpu_uninit(vcpu);
  393. free_page((unsigned long)vcpu->run);
  394. }
  395. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  396. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  397. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  398. {
  399. return container_of(mn, struct kvm, mmu_notifier);
  400. }
  401. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  402. struct mm_struct *mm,
  403. unsigned long address)
  404. {
  405. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  406. int need_tlb_flush;
  407. /*
  408. * When ->invalidate_page runs, the linux pte has been zapped
  409. * already but the page is still allocated until
  410. * ->invalidate_page returns. So if we increase the sequence
  411. * here the kvm page fault will notice if the spte can't be
  412. * established because the page is going to be freed. If
  413. * instead the kvm page fault establishes the spte before
  414. * ->invalidate_page runs, kvm_unmap_hva will release it
  415. * before returning.
  416. *
  417. * The sequence increase only need to be seen at spin_unlock
  418. * time, and not at spin_lock time.
  419. *
  420. * Increasing the sequence after the spin_unlock would be
  421. * unsafe because the kvm page fault could then establish the
  422. * pte after kvm_unmap_hva returned, without noticing the page
  423. * is going to be freed.
  424. */
  425. spin_lock(&kvm->mmu_lock);
  426. kvm->mmu_notifier_seq++;
  427. need_tlb_flush = kvm_unmap_hva(kvm, address);
  428. spin_unlock(&kvm->mmu_lock);
  429. /* we've to flush the tlb before the pages can be freed */
  430. if (need_tlb_flush)
  431. kvm_flush_remote_tlbs(kvm);
  432. }
  433. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  434. struct mm_struct *mm,
  435. unsigned long start,
  436. unsigned long end)
  437. {
  438. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  439. int need_tlb_flush = 0;
  440. spin_lock(&kvm->mmu_lock);
  441. /*
  442. * The count increase must become visible at unlock time as no
  443. * spte can be established without taking the mmu_lock and
  444. * count is also read inside the mmu_lock critical section.
  445. */
  446. kvm->mmu_notifier_count++;
  447. for (; start < end; start += PAGE_SIZE)
  448. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  449. spin_unlock(&kvm->mmu_lock);
  450. /* we've to flush the tlb before the pages can be freed */
  451. if (need_tlb_flush)
  452. kvm_flush_remote_tlbs(kvm);
  453. }
  454. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  455. struct mm_struct *mm,
  456. unsigned long start,
  457. unsigned long end)
  458. {
  459. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  460. spin_lock(&kvm->mmu_lock);
  461. /*
  462. * This sequence increase will notify the kvm page fault that
  463. * the page that is going to be mapped in the spte could have
  464. * been freed.
  465. */
  466. kvm->mmu_notifier_seq++;
  467. /*
  468. * The above sequence increase must be visible before the
  469. * below count decrease but both values are read by the kvm
  470. * page fault under mmu_lock spinlock so we don't need to add
  471. * a smb_wmb() here in between the two.
  472. */
  473. kvm->mmu_notifier_count--;
  474. spin_unlock(&kvm->mmu_lock);
  475. BUG_ON(kvm->mmu_notifier_count < 0);
  476. }
  477. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  478. struct mm_struct *mm,
  479. unsigned long address)
  480. {
  481. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  482. int young;
  483. spin_lock(&kvm->mmu_lock);
  484. young = kvm_age_hva(kvm, address);
  485. spin_unlock(&kvm->mmu_lock);
  486. if (young)
  487. kvm_flush_remote_tlbs(kvm);
  488. return young;
  489. }
  490. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  491. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  492. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  493. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  494. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  495. };
  496. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  497. static struct kvm *kvm_create_vm(void)
  498. {
  499. struct kvm *kvm = kvm_arch_create_vm();
  500. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  501. struct page *page;
  502. #endif
  503. if (IS_ERR(kvm))
  504. goto out;
  505. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  506. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  507. if (!page) {
  508. kfree(kvm);
  509. return ERR_PTR(-ENOMEM);
  510. }
  511. kvm->coalesced_mmio_ring =
  512. (struct kvm_coalesced_mmio_ring *)page_address(page);
  513. #endif
  514. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  515. {
  516. int err;
  517. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  518. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  519. if (err) {
  520. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  521. put_page(page);
  522. #endif
  523. kfree(kvm);
  524. return ERR_PTR(err);
  525. }
  526. }
  527. #endif
  528. kvm->mm = current->mm;
  529. atomic_inc(&kvm->mm->mm_count);
  530. spin_lock_init(&kvm->mmu_lock);
  531. kvm_io_bus_init(&kvm->pio_bus);
  532. mutex_init(&kvm->lock);
  533. kvm_io_bus_init(&kvm->mmio_bus);
  534. init_rwsem(&kvm->slots_lock);
  535. atomic_set(&kvm->users_count, 1);
  536. spin_lock(&kvm_lock);
  537. list_add(&kvm->vm_list, &vm_list);
  538. spin_unlock(&kvm_lock);
  539. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  540. kvm_coalesced_mmio_init(kvm);
  541. #endif
  542. out:
  543. return kvm;
  544. }
  545. /*
  546. * Free any memory in @free but not in @dont.
  547. */
  548. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  549. struct kvm_memory_slot *dont)
  550. {
  551. if (!dont || free->rmap != dont->rmap)
  552. vfree(free->rmap);
  553. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  554. vfree(free->dirty_bitmap);
  555. if (!dont || free->lpage_info != dont->lpage_info)
  556. vfree(free->lpage_info);
  557. free->npages = 0;
  558. free->dirty_bitmap = NULL;
  559. free->rmap = NULL;
  560. free->lpage_info = NULL;
  561. }
  562. void kvm_free_physmem(struct kvm *kvm)
  563. {
  564. int i;
  565. for (i = 0; i < kvm->nmemslots; ++i)
  566. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  567. }
  568. static void kvm_destroy_vm(struct kvm *kvm)
  569. {
  570. struct mm_struct *mm = kvm->mm;
  571. spin_lock(&kvm_lock);
  572. list_del(&kvm->vm_list);
  573. spin_unlock(&kvm_lock);
  574. kvm_io_bus_destroy(&kvm->pio_bus);
  575. kvm_io_bus_destroy(&kvm->mmio_bus);
  576. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  577. if (kvm->coalesced_mmio_ring != NULL)
  578. free_page((unsigned long)kvm->coalesced_mmio_ring);
  579. #endif
  580. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  581. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  582. #endif
  583. kvm_arch_destroy_vm(kvm);
  584. mmdrop(mm);
  585. }
  586. void kvm_get_kvm(struct kvm *kvm)
  587. {
  588. atomic_inc(&kvm->users_count);
  589. }
  590. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  591. void kvm_put_kvm(struct kvm *kvm)
  592. {
  593. if (atomic_dec_and_test(&kvm->users_count))
  594. kvm_destroy_vm(kvm);
  595. }
  596. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  597. static int kvm_vm_release(struct inode *inode, struct file *filp)
  598. {
  599. struct kvm *kvm = filp->private_data;
  600. kvm_put_kvm(kvm);
  601. return 0;
  602. }
  603. /*
  604. * Allocate some memory and give it an address in the guest physical address
  605. * space.
  606. *
  607. * Discontiguous memory is allowed, mostly for framebuffers.
  608. *
  609. * Must be called holding mmap_sem for write.
  610. */
  611. int __kvm_set_memory_region(struct kvm *kvm,
  612. struct kvm_userspace_memory_region *mem,
  613. int user_alloc)
  614. {
  615. int r;
  616. gfn_t base_gfn;
  617. unsigned long npages;
  618. unsigned long i;
  619. struct kvm_memory_slot *memslot;
  620. struct kvm_memory_slot old, new;
  621. r = -EINVAL;
  622. /* General sanity checks */
  623. if (mem->memory_size & (PAGE_SIZE - 1))
  624. goto out;
  625. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  626. goto out;
  627. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  628. goto out;
  629. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  630. goto out;
  631. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  632. goto out;
  633. memslot = &kvm->memslots[mem->slot];
  634. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  635. npages = mem->memory_size >> PAGE_SHIFT;
  636. if (!npages)
  637. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  638. new = old = *memslot;
  639. new.base_gfn = base_gfn;
  640. new.npages = npages;
  641. new.flags = mem->flags;
  642. /* Disallow changing a memory slot's size. */
  643. r = -EINVAL;
  644. if (npages && old.npages && npages != old.npages)
  645. goto out_free;
  646. /* Check for overlaps */
  647. r = -EEXIST;
  648. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  649. struct kvm_memory_slot *s = &kvm->memslots[i];
  650. if (s == memslot)
  651. continue;
  652. if (!((base_gfn + npages <= s->base_gfn) ||
  653. (base_gfn >= s->base_gfn + s->npages)))
  654. goto out_free;
  655. }
  656. /* Free page dirty bitmap if unneeded */
  657. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  658. new.dirty_bitmap = NULL;
  659. r = -ENOMEM;
  660. /* Allocate if a slot is being created */
  661. #ifndef CONFIG_S390
  662. if (npages && !new.rmap) {
  663. new.rmap = vmalloc(npages * sizeof(struct page *));
  664. if (!new.rmap)
  665. goto out_free;
  666. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  667. new.user_alloc = user_alloc;
  668. /*
  669. * hva_to_rmmap() serialzies with the mmu_lock and to be
  670. * safe it has to ignore memslots with !user_alloc &&
  671. * !userspace_addr.
  672. */
  673. if (user_alloc)
  674. new.userspace_addr = mem->userspace_addr;
  675. else
  676. new.userspace_addr = 0;
  677. }
  678. if (npages && !new.lpage_info) {
  679. int largepages = npages / KVM_PAGES_PER_HPAGE;
  680. if (npages % KVM_PAGES_PER_HPAGE)
  681. largepages++;
  682. if (base_gfn % KVM_PAGES_PER_HPAGE)
  683. largepages++;
  684. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  685. if (!new.lpage_info)
  686. goto out_free;
  687. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  688. if (base_gfn % KVM_PAGES_PER_HPAGE)
  689. new.lpage_info[0].write_count = 1;
  690. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  691. new.lpage_info[largepages-1].write_count = 1;
  692. }
  693. /* Allocate page dirty bitmap if needed */
  694. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  695. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  696. new.dirty_bitmap = vmalloc(dirty_bytes);
  697. if (!new.dirty_bitmap)
  698. goto out_free;
  699. memset(new.dirty_bitmap, 0, dirty_bytes);
  700. }
  701. #endif /* not defined CONFIG_S390 */
  702. if (!npages)
  703. kvm_arch_flush_shadow(kvm);
  704. spin_lock(&kvm->mmu_lock);
  705. if (mem->slot >= kvm->nmemslots)
  706. kvm->nmemslots = mem->slot + 1;
  707. *memslot = new;
  708. spin_unlock(&kvm->mmu_lock);
  709. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  710. if (r) {
  711. spin_lock(&kvm->mmu_lock);
  712. *memslot = old;
  713. spin_unlock(&kvm->mmu_lock);
  714. goto out_free;
  715. }
  716. kvm_free_physmem_slot(&old, &new);
  717. #ifdef CONFIG_DMAR
  718. /* map the pages in iommu page table */
  719. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  720. if (r)
  721. goto out;
  722. #endif
  723. return 0;
  724. out_free:
  725. kvm_free_physmem_slot(&new, &old);
  726. out:
  727. return r;
  728. }
  729. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  730. int kvm_set_memory_region(struct kvm *kvm,
  731. struct kvm_userspace_memory_region *mem,
  732. int user_alloc)
  733. {
  734. int r;
  735. down_write(&kvm->slots_lock);
  736. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  737. up_write(&kvm->slots_lock);
  738. return r;
  739. }
  740. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  741. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  742. struct
  743. kvm_userspace_memory_region *mem,
  744. int user_alloc)
  745. {
  746. if (mem->slot >= KVM_MEMORY_SLOTS)
  747. return -EINVAL;
  748. return kvm_set_memory_region(kvm, mem, user_alloc);
  749. }
  750. int kvm_get_dirty_log(struct kvm *kvm,
  751. struct kvm_dirty_log *log, int *is_dirty)
  752. {
  753. struct kvm_memory_slot *memslot;
  754. int r, i;
  755. int n;
  756. unsigned long any = 0;
  757. r = -EINVAL;
  758. if (log->slot >= KVM_MEMORY_SLOTS)
  759. goto out;
  760. memslot = &kvm->memslots[log->slot];
  761. r = -ENOENT;
  762. if (!memslot->dirty_bitmap)
  763. goto out;
  764. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  765. for (i = 0; !any && i < n/sizeof(long); ++i)
  766. any = memslot->dirty_bitmap[i];
  767. r = -EFAULT;
  768. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  769. goto out;
  770. if (any)
  771. *is_dirty = 1;
  772. r = 0;
  773. out:
  774. return r;
  775. }
  776. int is_error_page(struct page *page)
  777. {
  778. return page == bad_page;
  779. }
  780. EXPORT_SYMBOL_GPL(is_error_page);
  781. int is_error_pfn(pfn_t pfn)
  782. {
  783. return pfn == bad_pfn;
  784. }
  785. EXPORT_SYMBOL_GPL(is_error_pfn);
  786. static inline unsigned long bad_hva(void)
  787. {
  788. return PAGE_OFFSET;
  789. }
  790. int kvm_is_error_hva(unsigned long addr)
  791. {
  792. return addr == bad_hva();
  793. }
  794. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  795. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  796. {
  797. int i;
  798. for (i = 0; i < kvm->nmemslots; ++i) {
  799. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  800. if (gfn >= memslot->base_gfn
  801. && gfn < memslot->base_gfn + memslot->npages)
  802. return memslot;
  803. }
  804. return NULL;
  805. }
  806. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  807. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  808. {
  809. gfn = unalias_gfn(kvm, gfn);
  810. return gfn_to_memslot_unaliased(kvm, gfn);
  811. }
  812. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  813. {
  814. int i;
  815. gfn = unalias_gfn(kvm, gfn);
  816. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  817. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  818. if (gfn >= memslot->base_gfn
  819. && gfn < memslot->base_gfn + memslot->npages)
  820. return 1;
  821. }
  822. return 0;
  823. }
  824. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  825. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  826. {
  827. struct kvm_memory_slot *slot;
  828. gfn = unalias_gfn(kvm, gfn);
  829. slot = gfn_to_memslot_unaliased(kvm, gfn);
  830. if (!slot)
  831. return bad_hva();
  832. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  833. }
  834. EXPORT_SYMBOL_GPL(gfn_to_hva);
  835. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  836. {
  837. struct page *page[1];
  838. unsigned long addr;
  839. int npages;
  840. pfn_t pfn;
  841. might_sleep();
  842. addr = gfn_to_hva(kvm, gfn);
  843. if (kvm_is_error_hva(addr)) {
  844. get_page(bad_page);
  845. return page_to_pfn(bad_page);
  846. }
  847. npages = get_user_pages_fast(addr, 1, 1, page);
  848. if (unlikely(npages != 1)) {
  849. struct vm_area_struct *vma;
  850. down_read(&current->mm->mmap_sem);
  851. vma = find_vma(current->mm, addr);
  852. if (vma == NULL || addr < vma->vm_start ||
  853. !(vma->vm_flags & VM_PFNMAP)) {
  854. up_read(&current->mm->mmap_sem);
  855. get_page(bad_page);
  856. return page_to_pfn(bad_page);
  857. }
  858. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  859. up_read(&current->mm->mmap_sem);
  860. BUG_ON(!kvm_is_mmio_pfn(pfn));
  861. } else
  862. pfn = page_to_pfn(page[0]);
  863. return pfn;
  864. }
  865. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  866. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  867. {
  868. pfn_t pfn;
  869. pfn = gfn_to_pfn(kvm, gfn);
  870. if (!kvm_is_mmio_pfn(pfn))
  871. return pfn_to_page(pfn);
  872. WARN_ON(kvm_is_mmio_pfn(pfn));
  873. get_page(bad_page);
  874. return bad_page;
  875. }
  876. EXPORT_SYMBOL_GPL(gfn_to_page);
  877. void kvm_release_page_clean(struct page *page)
  878. {
  879. kvm_release_pfn_clean(page_to_pfn(page));
  880. }
  881. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  882. void kvm_release_pfn_clean(pfn_t pfn)
  883. {
  884. if (!kvm_is_mmio_pfn(pfn))
  885. put_page(pfn_to_page(pfn));
  886. }
  887. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  888. void kvm_release_page_dirty(struct page *page)
  889. {
  890. kvm_release_pfn_dirty(page_to_pfn(page));
  891. }
  892. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  893. void kvm_release_pfn_dirty(pfn_t pfn)
  894. {
  895. kvm_set_pfn_dirty(pfn);
  896. kvm_release_pfn_clean(pfn);
  897. }
  898. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  899. void kvm_set_page_dirty(struct page *page)
  900. {
  901. kvm_set_pfn_dirty(page_to_pfn(page));
  902. }
  903. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  904. void kvm_set_pfn_dirty(pfn_t pfn)
  905. {
  906. if (!kvm_is_mmio_pfn(pfn)) {
  907. struct page *page = pfn_to_page(pfn);
  908. if (!PageReserved(page))
  909. SetPageDirty(page);
  910. }
  911. }
  912. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  913. void kvm_set_pfn_accessed(pfn_t pfn)
  914. {
  915. if (!kvm_is_mmio_pfn(pfn))
  916. mark_page_accessed(pfn_to_page(pfn));
  917. }
  918. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  919. void kvm_get_pfn(pfn_t pfn)
  920. {
  921. if (!kvm_is_mmio_pfn(pfn))
  922. get_page(pfn_to_page(pfn));
  923. }
  924. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  925. static int next_segment(unsigned long len, int offset)
  926. {
  927. if (len > PAGE_SIZE - offset)
  928. return PAGE_SIZE - offset;
  929. else
  930. return len;
  931. }
  932. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  933. int len)
  934. {
  935. int r;
  936. unsigned long addr;
  937. addr = gfn_to_hva(kvm, gfn);
  938. if (kvm_is_error_hva(addr))
  939. return -EFAULT;
  940. r = copy_from_user(data, (void __user *)addr + offset, len);
  941. if (r)
  942. return -EFAULT;
  943. return 0;
  944. }
  945. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  946. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  947. {
  948. gfn_t gfn = gpa >> PAGE_SHIFT;
  949. int seg;
  950. int offset = offset_in_page(gpa);
  951. int ret;
  952. while ((seg = next_segment(len, offset)) != 0) {
  953. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  954. if (ret < 0)
  955. return ret;
  956. offset = 0;
  957. len -= seg;
  958. data += seg;
  959. ++gfn;
  960. }
  961. return 0;
  962. }
  963. EXPORT_SYMBOL_GPL(kvm_read_guest);
  964. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  965. unsigned long len)
  966. {
  967. int r;
  968. unsigned long addr;
  969. gfn_t gfn = gpa >> PAGE_SHIFT;
  970. int offset = offset_in_page(gpa);
  971. addr = gfn_to_hva(kvm, gfn);
  972. if (kvm_is_error_hva(addr))
  973. return -EFAULT;
  974. pagefault_disable();
  975. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  976. pagefault_enable();
  977. if (r)
  978. return -EFAULT;
  979. return 0;
  980. }
  981. EXPORT_SYMBOL(kvm_read_guest_atomic);
  982. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  983. int offset, int len)
  984. {
  985. int r;
  986. unsigned long addr;
  987. addr = gfn_to_hva(kvm, gfn);
  988. if (kvm_is_error_hva(addr))
  989. return -EFAULT;
  990. r = copy_to_user((void __user *)addr + offset, data, len);
  991. if (r)
  992. return -EFAULT;
  993. mark_page_dirty(kvm, gfn);
  994. return 0;
  995. }
  996. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  997. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  998. unsigned long len)
  999. {
  1000. gfn_t gfn = gpa >> PAGE_SHIFT;
  1001. int seg;
  1002. int offset = offset_in_page(gpa);
  1003. int ret;
  1004. while ((seg = next_segment(len, offset)) != 0) {
  1005. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1006. if (ret < 0)
  1007. return ret;
  1008. offset = 0;
  1009. len -= seg;
  1010. data += seg;
  1011. ++gfn;
  1012. }
  1013. return 0;
  1014. }
  1015. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1016. {
  1017. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1018. }
  1019. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1020. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1021. {
  1022. gfn_t gfn = gpa >> PAGE_SHIFT;
  1023. int seg;
  1024. int offset = offset_in_page(gpa);
  1025. int ret;
  1026. while ((seg = next_segment(len, offset)) != 0) {
  1027. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1028. if (ret < 0)
  1029. return ret;
  1030. offset = 0;
  1031. len -= seg;
  1032. ++gfn;
  1033. }
  1034. return 0;
  1035. }
  1036. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1037. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1038. {
  1039. struct kvm_memory_slot *memslot;
  1040. gfn = unalias_gfn(kvm, gfn);
  1041. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1042. if (memslot && memslot->dirty_bitmap) {
  1043. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1044. /* avoid RMW */
  1045. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1046. set_bit(rel_gfn, memslot->dirty_bitmap);
  1047. }
  1048. }
  1049. /*
  1050. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1051. */
  1052. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1053. {
  1054. DEFINE_WAIT(wait);
  1055. for (;;) {
  1056. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1057. if (kvm_cpu_has_interrupt(vcpu) ||
  1058. kvm_cpu_has_pending_timer(vcpu) ||
  1059. kvm_arch_vcpu_runnable(vcpu)) {
  1060. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1061. break;
  1062. }
  1063. if (signal_pending(current))
  1064. break;
  1065. vcpu_put(vcpu);
  1066. schedule();
  1067. vcpu_load(vcpu);
  1068. }
  1069. finish_wait(&vcpu->wq, &wait);
  1070. }
  1071. void kvm_resched(struct kvm_vcpu *vcpu)
  1072. {
  1073. if (!need_resched())
  1074. return;
  1075. cond_resched();
  1076. }
  1077. EXPORT_SYMBOL_GPL(kvm_resched);
  1078. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1079. {
  1080. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1081. struct page *page;
  1082. if (vmf->pgoff == 0)
  1083. page = virt_to_page(vcpu->run);
  1084. #ifdef CONFIG_X86
  1085. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1086. page = virt_to_page(vcpu->arch.pio_data);
  1087. #endif
  1088. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1089. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1090. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1091. #endif
  1092. else
  1093. return VM_FAULT_SIGBUS;
  1094. get_page(page);
  1095. vmf->page = page;
  1096. return 0;
  1097. }
  1098. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1099. .fault = kvm_vcpu_fault,
  1100. };
  1101. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1102. {
  1103. vma->vm_ops = &kvm_vcpu_vm_ops;
  1104. return 0;
  1105. }
  1106. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1107. {
  1108. struct kvm_vcpu *vcpu = filp->private_data;
  1109. kvm_put_kvm(vcpu->kvm);
  1110. return 0;
  1111. }
  1112. static const struct file_operations kvm_vcpu_fops = {
  1113. .release = kvm_vcpu_release,
  1114. .unlocked_ioctl = kvm_vcpu_ioctl,
  1115. .compat_ioctl = kvm_vcpu_ioctl,
  1116. .mmap = kvm_vcpu_mmap,
  1117. };
  1118. /*
  1119. * Allocates an inode for the vcpu.
  1120. */
  1121. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1122. {
  1123. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1124. if (fd < 0)
  1125. kvm_put_kvm(vcpu->kvm);
  1126. return fd;
  1127. }
  1128. /*
  1129. * Creates some virtual cpus. Good luck creating more than one.
  1130. */
  1131. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1132. {
  1133. int r;
  1134. struct kvm_vcpu *vcpu;
  1135. if (!valid_vcpu(n))
  1136. return -EINVAL;
  1137. vcpu = kvm_arch_vcpu_create(kvm, n);
  1138. if (IS_ERR(vcpu))
  1139. return PTR_ERR(vcpu);
  1140. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1141. r = kvm_arch_vcpu_setup(vcpu);
  1142. if (r)
  1143. return r;
  1144. mutex_lock(&kvm->lock);
  1145. if (kvm->vcpus[n]) {
  1146. r = -EEXIST;
  1147. goto vcpu_destroy;
  1148. }
  1149. kvm->vcpus[n] = vcpu;
  1150. mutex_unlock(&kvm->lock);
  1151. /* Now it's all set up, let userspace reach it */
  1152. kvm_get_kvm(kvm);
  1153. r = create_vcpu_fd(vcpu);
  1154. if (r < 0)
  1155. goto unlink;
  1156. return r;
  1157. unlink:
  1158. mutex_lock(&kvm->lock);
  1159. kvm->vcpus[n] = NULL;
  1160. vcpu_destroy:
  1161. mutex_unlock(&kvm->lock);
  1162. kvm_arch_vcpu_destroy(vcpu);
  1163. return r;
  1164. }
  1165. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1166. {
  1167. if (sigset) {
  1168. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1169. vcpu->sigset_active = 1;
  1170. vcpu->sigset = *sigset;
  1171. } else
  1172. vcpu->sigset_active = 0;
  1173. return 0;
  1174. }
  1175. static long kvm_vcpu_ioctl(struct file *filp,
  1176. unsigned int ioctl, unsigned long arg)
  1177. {
  1178. struct kvm_vcpu *vcpu = filp->private_data;
  1179. void __user *argp = (void __user *)arg;
  1180. int r;
  1181. struct kvm_fpu *fpu = NULL;
  1182. struct kvm_sregs *kvm_sregs = NULL;
  1183. if (vcpu->kvm->mm != current->mm)
  1184. return -EIO;
  1185. switch (ioctl) {
  1186. case KVM_RUN:
  1187. r = -EINVAL;
  1188. if (arg)
  1189. goto out;
  1190. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1191. break;
  1192. case KVM_GET_REGS: {
  1193. struct kvm_regs *kvm_regs;
  1194. r = -ENOMEM;
  1195. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1196. if (!kvm_regs)
  1197. goto out;
  1198. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1199. if (r)
  1200. goto out_free1;
  1201. r = -EFAULT;
  1202. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1203. goto out_free1;
  1204. r = 0;
  1205. out_free1:
  1206. kfree(kvm_regs);
  1207. break;
  1208. }
  1209. case KVM_SET_REGS: {
  1210. struct kvm_regs *kvm_regs;
  1211. r = -ENOMEM;
  1212. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1213. if (!kvm_regs)
  1214. goto out;
  1215. r = -EFAULT;
  1216. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1217. goto out_free2;
  1218. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1219. if (r)
  1220. goto out_free2;
  1221. r = 0;
  1222. out_free2:
  1223. kfree(kvm_regs);
  1224. break;
  1225. }
  1226. case KVM_GET_SREGS: {
  1227. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1228. r = -ENOMEM;
  1229. if (!kvm_sregs)
  1230. goto out;
  1231. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1232. if (r)
  1233. goto out;
  1234. r = -EFAULT;
  1235. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1236. goto out;
  1237. r = 0;
  1238. break;
  1239. }
  1240. case KVM_SET_SREGS: {
  1241. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1242. r = -ENOMEM;
  1243. if (!kvm_sregs)
  1244. goto out;
  1245. r = -EFAULT;
  1246. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1247. goto out;
  1248. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1249. if (r)
  1250. goto out;
  1251. r = 0;
  1252. break;
  1253. }
  1254. case KVM_GET_MP_STATE: {
  1255. struct kvm_mp_state mp_state;
  1256. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1257. if (r)
  1258. goto out;
  1259. r = -EFAULT;
  1260. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1261. goto out;
  1262. r = 0;
  1263. break;
  1264. }
  1265. case KVM_SET_MP_STATE: {
  1266. struct kvm_mp_state mp_state;
  1267. r = -EFAULT;
  1268. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1269. goto out;
  1270. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1271. if (r)
  1272. goto out;
  1273. r = 0;
  1274. break;
  1275. }
  1276. case KVM_TRANSLATE: {
  1277. struct kvm_translation tr;
  1278. r = -EFAULT;
  1279. if (copy_from_user(&tr, argp, sizeof tr))
  1280. goto out;
  1281. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1282. if (r)
  1283. goto out;
  1284. r = -EFAULT;
  1285. if (copy_to_user(argp, &tr, sizeof tr))
  1286. goto out;
  1287. r = 0;
  1288. break;
  1289. }
  1290. case KVM_DEBUG_GUEST: {
  1291. struct kvm_debug_guest dbg;
  1292. r = -EFAULT;
  1293. if (copy_from_user(&dbg, argp, sizeof dbg))
  1294. goto out;
  1295. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  1296. if (r)
  1297. goto out;
  1298. r = 0;
  1299. break;
  1300. }
  1301. case KVM_SET_SIGNAL_MASK: {
  1302. struct kvm_signal_mask __user *sigmask_arg = argp;
  1303. struct kvm_signal_mask kvm_sigmask;
  1304. sigset_t sigset, *p;
  1305. p = NULL;
  1306. if (argp) {
  1307. r = -EFAULT;
  1308. if (copy_from_user(&kvm_sigmask, argp,
  1309. sizeof kvm_sigmask))
  1310. goto out;
  1311. r = -EINVAL;
  1312. if (kvm_sigmask.len != sizeof sigset)
  1313. goto out;
  1314. r = -EFAULT;
  1315. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1316. sizeof sigset))
  1317. goto out;
  1318. p = &sigset;
  1319. }
  1320. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1321. break;
  1322. }
  1323. case KVM_GET_FPU: {
  1324. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1325. r = -ENOMEM;
  1326. if (!fpu)
  1327. goto out;
  1328. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1329. if (r)
  1330. goto out;
  1331. r = -EFAULT;
  1332. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1333. goto out;
  1334. r = 0;
  1335. break;
  1336. }
  1337. case KVM_SET_FPU: {
  1338. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1339. r = -ENOMEM;
  1340. if (!fpu)
  1341. goto out;
  1342. r = -EFAULT;
  1343. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1344. goto out;
  1345. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1346. if (r)
  1347. goto out;
  1348. r = 0;
  1349. break;
  1350. }
  1351. default:
  1352. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1353. }
  1354. out:
  1355. kfree(fpu);
  1356. kfree(kvm_sregs);
  1357. return r;
  1358. }
  1359. static long kvm_vm_ioctl(struct file *filp,
  1360. unsigned int ioctl, unsigned long arg)
  1361. {
  1362. struct kvm *kvm = filp->private_data;
  1363. void __user *argp = (void __user *)arg;
  1364. int r;
  1365. if (kvm->mm != current->mm)
  1366. return -EIO;
  1367. switch (ioctl) {
  1368. case KVM_CREATE_VCPU:
  1369. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1370. if (r < 0)
  1371. goto out;
  1372. break;
  1373. case KVM_SET_USER_MEMORY_REGION: {
  1374. struct kvm_userspace_memory_region kvm_userspace_mem;
  1375. r = -EFAULT;
  1376. if (copy_from_user(&kvm_userspace_mem, argp,
  1377. sizeof kvm_userspace_mem))
  1378. goto out;
  1379. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1380. if (r)
  1381. goto out;
  1382. break;
  1383. }
  1384. case KVM_GET_DIRTY_LOG: {
  1385. struct kvm_dirty_log log;
  1386. r = -EFAULT;
  1387. if (copy_from_user(&log, argp, sizeof log))
  1388. goto out;
  1389. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1390. if (r)
  1391. goto out;
  1392. break;
  1393. }
  1394. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1395. case KVM_REGISTER_COALESCED_MMIO: {
  1396. struct kvm_coalesced_mmio_zone zone;
  1397. r = -EFAULT;
  1398. if (copy_from_user(&zone, argp, sizeof zone))
  1399. goto out;
  1400. r = -ENXIO;
  1401. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1402. if (r)
  1403. goto out;
  1404. r = 0;
  1405. break;
  1406. }
  1407. case KVM_UNREGISTER_COALESCED_MMIO: {
  1408. struct kvm_coalesced_mmio_zone zone;
  1409. r = -EFAULT;
  1410. if (copy_from_user(&zone, argp, sizeof zone))
  1411. goto out;
  1412. r = -ENXIO;
  1413. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1414. if (r)
  1415. goto out;
  1416. r = 0;
  1417. break;
  1418. }
  1419. #endif
  1420. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1421. case KVM_ASSIGN_PCI_DEVICE: {
  1422. struct kvm_assigned_pci_dev assigned_dev;
  1423. r = -EFAULT;
  1424. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1425. goto out;
  1426. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1427. if (r)
  1428. goto out;
  1429. break;
  1430. }
  1431. case KVM_ASSIGN_IRQ: {
  1432. struct kvm_assigned_irq assigned_irq;
  1433. r = -EFAULT;
  1434. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1435. goto out;
  1436. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1437. if (r)
  1438. goto out;
  1439. break;
  1440. }
  1441. #endif
  1442. default:
  1443. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1444. }
  1445. out:
  1446. return r;
  1447. }
  1448. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1449. {
  1450. struct page *page[1];
  1451. unsigned long addr;
  1452. int npages;
  1453. gfn_t gfn = vmf->pgoff;
  1454. struct kvm *kvm = vma->vm_file->private_data;
  1455. addr = gfn_to_hva(kvm, gfn);
  1456. if (kvm_is_error_hva(addr))
  1457. return VM_FAULT_SIGBUS;
  1458. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1459. NULL);
  1460. if (unlikely(npages != 1))
  1461. return VM_FAULT_SIGBUS;
  1462. vmf->page = page[0];
  1463. return 0;
  1464. }
  1465. static struct vm_operations_struct kvm_vm_vm_ops = {
  1466. .fault = kvm_vm_fault,
  1467. };
  1468. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1469. {
  1470. vma->vm_ops = &kvm_vm_vm_ops;
  1471. return 0;
  1472. }
  1473. static const struct file_operations kvm_vm_fops = {
  1474. .release = kvm_vm_release,
  1475. .unlocked_ioctl = kvm_vm_ioctl,
  1476. .compat_ioctl = kvm_vm_ioctl,
  1477. .mmap = kvm_vm_mmap,
  1478. };
  1479. static int kvm_dev_ioctl_create_vm(void)
  1480. {
  1481. int fd;
  1482. struct kvm *kvm;
  1483. kvm = kvm_create_vm();
  1484. if (IS_ERR(kvm))
  1485. return PTR_ERR(kvm);
  1486. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1487. if (fd < 0)
  1488. kvm_put_kvm(kvm);
  1489. return fd;
  1490. }
  1491. static long kvm_dev_ioctl(struct file *filp,
  1492. unsigned int ioctl, unsigned long arg)
  1493. {
  1494. long r = -EINVAL;
  1495. switch (ioctl) {
  1496. case KVM_GET_API_VERSION:
  1497. r = -EINVAL;
  1498. if (arg)
  1499. goto out;
  1500. r = KVM_API_VERSION;
  1501. break;
  1502. case KVM_CREATE_VM:
  1503. r = -EINVAL;
  1504. if (arg)
  1505. goto out;
  1506. r = kvm_dev_ioctl_create_vm();
  1507. break;
  1508. case KVM_CHECK_EXTENSION:
  1509. r = kvm_dev_ioctl_check_extension(arg);
  1510. break;
  1511. case KVM_GET_VCPU_MMAP_SIZE:
  1512. r = -EINVAL;
  1513. if (arg)
  1514. goto out;
  1515. r = PAGE_SIZE; /* struct kvm_run */
  1516. #ifdef CONFIG_X86
  1517. r += PAGE_SIZE; /* pio data page */
  1518. #endif
  1519. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1520. r += PAGE_SIZE; /* coalesced mmio ring page */
  1521. #endif
  1522. break;
  1523. case KVM_TRACE_ENABLE:
  1524. case KVM_TRACE_PAUSE:
  1525. case KVM_TRACE_DISABLE:
  1526. r = kvm_trace_ioctl(ioctl, arg);
  1527. break;
  1528. default:
  1529. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1530. }
  1531. out:
  1532. return r;
  1533. }
  1534. static struct file_operations kvm_chardev_ops = {
  1535. .unlocked_ioctl = kvm_dev_ioctl,
  1536. .compat_ioctl = kvm_dev_ioctl,
  1537. };
  1538. static struct miscdevice kvm_dev = {
  1539. KVM_MINOR,
  1540. "kvm",
  1541. &kvm_chardev_ops,
  1542. };
  1543. static void hardware_enable(void *junk)
  1544. {
  1545. int cpu = raw_smp_processor_id();
  1546. if (cpu_isset(cpu, cpus_hardware_enabled))
  1547. return;
  1548. cpu_set(cpu, cpus_hardware_enabled);
  1549. kvm_arch_hardware_enable(NULL);
  1550. }
  1551. static void hardware_disable(void *junk)
  1552. {
  1553. int cpu = raw_smp_processor_id();
  1554. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1555. return;
  1556. cpu_clear(cpu, cpus_hardware_enabled);
  1557. kvm_arch_hardware_disable(NULL);
  1558. }
  1559. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1560. void *v)
  1561. {
  1562. int cpu = (long)v;
  1563. val &= ~CPU_TASKS_FROZEN;
  1564. switch (val) {
  1565. case CPU_DYING:
  1566. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1567. cpu);
  1568. hardware_disable(NULL);
  1569. break;
  1570. case CPU_UP_CANCELED:
  1571. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1572. cpu);
  1573. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1574. break;
  1575. case CPU_ONLINE:
  1576. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1577. cpu);
  1578. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1579. break;
  1580. }
  1581. return NOTIFY_OK;
  1582. }
  1583. asmlinkage void kvm_handle_fault_on_reboot(void)
  1584. {
  1585. if (kvm_rebooting)
  1586. /* spin while reset goes on */
  1587. while (true)
  1588. ;
  1589. /* Fault while not rebooting. We want the trace. */
  1590. BUG();
  1591. }
  1592. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1593. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1594. void *v)
  1595. {
  1596. if (val == SYS_RESTART) {
  1597. /*
  1598. * Some (well, at least mine) BIOSes hang on reboot if
  1599. * in vmx root mode.
  1600. */
  1601. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1602. kvm_rebooting = true;
  1603. on_each_cpu(hardware_disable, NULL, 1);
  1604. }
  1605. return NOTIFY_OK;
  1606. }
  1607. static struct notifier_block kvm_reboot_notifier = {
  1608. .notifier_call = kvm_reboot,
  1609. .priority = 0,
  1610. };
  1611. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1612. {
  1613. memset(bus, 0, sizeof(*bus));
  1614. }
  1615. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1616. {
  1617. int i;
  1618. for (i = 0; i < bus->dev_count; i++) {
  1619. struct kvm_io_device *pos = bus->devs[i];
  1620. kvm_iodevice_destructor(pos);
  1621. }
  1622. }
  1623. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  1624. gpa_t addr, int len, int is_write)
  1625. {
  1626. int i;
  1627. for (i = 0; i < bus->dev_count; i++) {
  1628. struct kvm_io_device *pos = bus->devs[i];
  1629. if (pos->in_range(pos, addr, len, is_write))
  1630. return pos;
  1631. }
  1632. return NULL;
  1633. }
  1634. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1635. {
  1636. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1637. bus->devs[bus->dev_count++] = dev;
  1638. }
  1639. static struct notifier_block kvm_cpu_notifier = {
  1640. .notifier_call = kvm_cpu_hotplug,
  1641. .priority = 20, /* must be > scheduler priority */
  1642. };
  1643. static int vm_stat_get(void *_offset, u64 *val)
  1644. {
  1645. unsigned offset = (long)_offset;
  1646. struct kvm *kvm;
  1647. *val = 0;
  1648. spin_lock(&kvm_lock);
  1649. list_for_each_entry(kvm, &vm_list, vm_list)
  1650. *val += *(u32 *)((void *)kvm + offset);
  1651. spin_unlock(&kvm_lock);
  1652. return 0;
  1653. }
  1654. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1655. static int vcpu_stat_get(void *_offset, u64 *val)
  1656. {
  1657. unsigned offset = (long)_offset;
  1658. struct kvm *kvm;
  1659. struct kvm_vcpu *vcpu;
  1660. int i;
  1661. *val = 0;
  1662. spin_lock(&kvm_lock);
  1663. list_for_each_entry(kvm, &vm_list, vm_list)
  1664. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1665. vcpu = kvm->vcpus[i];
  1666. if (vcpu)
  1667. *val += *(u32 *)((void *)vcpu + offset);
  1668. }
  1669. spin_unlock(&kvm_lock);
  1670. return 0;
  1671. }
  1672. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1673. static struct file_operations *stat_fops[] = {
  1674. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1675. [KVM_STAT_VM] = &vm_stat_fops,
  1676. };
  1677. static void kvm_init_debug(void)
  1678. {
  1679. struct kvm_stats_debugfs_item *p;
  1680. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1681. for (p = debugfs_entries; p->name; ++p)
  1682. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1683. (void *)(long)p->offset,
  1684. stat_fops[p->kind]);
  1685. }
  1686. static void kvm_exit_debug(void)
  1687. {
  1688. struct kvm_stats_debugfs_item *p;
  1689. for (p = debugfs_entries; p->name; ++p)
  1690. debugfs_remove(p->dentry);
  1691. debugfs_remove(kvm_debugfs_dir);
  1692. }
  1693. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1694. {
  1695. hardware_disable(NULL);
  1696. return 0;
  1697. }
  1698. static int kvm_resume(struct sys_device *dev)
  1699. {
  1700. hardware_enable(NULL);
  1701. return 0;
  1702. }
  1703. static struct sysdev_class kvm_sysdev_class = {
  1704. .name = "kvm",
  1705. .suspend = kvm_suspend,
  1706. .resume = kvm_resume,
  1707. };
  1708. static struct sys_device kvm_sysdev = {
  1709. .id = 0,
  1710. .cls = &kvm_sysdev_class,
  1711. };
  1712. struct page *bad_page;
  1713. pfn_t bad_pfn;
  1714. static inline
  1715. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1716. {
  1717. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1718. }
  1719. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1720. {
  1721. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1722. kvm_arch_vcpu_load(vcpu, cpu);
  1723. }
  1724. static void kvm_sched_out(struct preempt_notifier *pn,
  1725. struct task_struct *next)
  1726. {
  1727. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1728. kvm_arch_vcpu_put(vcpu);
  1729. }
  1730. int kvm_init(void *opaque, unsigned int vcpu_size,
  1731. struct module *module)
  1732. {
  1733. int r;
  1734. int cpu;
  1735. kvm_init_debug();
  1736. r = kvm_arch_init(opaque);
  1737. if (r)
  1738. goto out_fail;
  1739. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1740. if (bad_page == NULL) {
  1741. r = -ENOMEM;
  1742. goto out;
  1743. }
  1744. bad_pfn = page_to_pfn(bad_page);
  1745. r = kvm_arch_hardware_setup();
  1746. if (r < 0)
  1747. goto out_free_0;
  1748. for_each_online_cpu(cpu) {
  1749. smp_call_function_single(cpu,
  1750. kvm_arch_check_processor_compat,
  1751. &r, 1);
  1752. if (r < 0)
  1753. goto out_free_1;
  1754. }
  1755. on_each_cpu(hardware_enable, NULL, 1);
  1756. r = register_cpu_notifier(&kvm_cpu_notifier);
  1757. if (r)
  1758. goto out_free_2;
  1759. register_reboot_notifier(&kvm_reboot_notifier);
  1760. r = sysdev_class_register(&kvm_sysdev_class);
  1761. if (r)
  1762. goto out_free_3;
  1763. r = sysdev_register(&kvm_sysdev);
  1764. if (r)
  1765. goto out_free_4;
  1766. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1767. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1768. __alignof__(struct kvm_vcpu),
  1769. 0, NULL);
  1770. if (!kvm_vcpu_cache) {
  1771. r = -ENOMEM;
  1772. goto out_free_5;
  1773. }
  1774. kvm_chardev_ops.owner = module;
  1775. r = misc_register(&kvm_dev);
  1776. if (r) {
  1777. printk(KERN_ERR "kvm: misc device register failed\n");
  1778. goto out_free;
  1779. }
  1780. kvm_preempt_ops.sched_in = kvm_sched_in;
  1781. kvm_preempt_ops.sched_out = kvm_sched_out;
  1782. return 0;
  1783. out_free:
  1784. kmem_cache_destroy(kvm_vcpu_cache);
  1785. out_free_5:
  1786. sysdev_unregister(&kvm_sysdev);
  1787. out_free_4:
  1788. sysdev_class_unregister(&kvm_sysdev_class);
  1789. out_free_3:
  1790. unregister_reboot_notifier(&kvm_reboot_notifier);
  1791. unregister_cpu_notifier(&kvm_cpu_notifier);
  1792. out_free_2:
  1793. on_each_cpu(hardware_disable, NULL, 1);
  1794. out_free_1:
  1795. kvm_arch_hardware_unsetup();
  1796. out_free_0:
  1797. __free_page(bad_page);
  1798. out:
  1799. kvm_arch_exit();
  1800. kvm_exit_debug();
  1801. out_fail:
  1802. return r;
  1803. }
  1804. EXPORT_SYMBOL_GPL(kvm_init);
  1805. void kvm_exit(void)
  1806. {
  1807. kvm_trace_cleanup();
  1808. misc_deregister(&kvm_dev);
  1809. kmem_cache_destroy(kvm_vcpu_cache);
  1810. sysdev_unregister(&kvm_sysdev);
  1811. sysdev_class_unregister(&kvm_sysdev_class);
  1812. unregister_reboot_notifier(&kvm_reboot_notifier);
  1813. unregister_cpu_notifier(&kvm_cpu_notifier);
  1814. on_each_cpu(hardware_disable, NULL, 1);
  1815. kvm_arch_hardware_unsetup();
  1816. kvm_arch_exit();
  1817. kvm_exit_debug();
  1818. __free_page(bad_page);
  1819. }
  1820. EXPORT_SYMBOL_GPL(kvm_exit);