cfq-iosched.c 95 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "blk.h"
  18. #include "cfq.h"
  19. static struct blkio_policy_type blkio_policy_cfq;
  20. /*
  21. * tunables
  22. */
  23. /* max queue in one round of service */
  24. static const int cfq_quantum = 8;
  25. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  26. /* maximum backwards seek, in KiB */
  27. static const int cfq_back_max = 16 * 1024;
  28. /* penalty of a backwards seek */
  29. static const int cfq_back_penalty = 2;
  30. static const int cfq_slice_sync = HZ / 10;
  31. static int cfq_slice_async = HZ / 25;
  32. static const int cfq_slice_async_rq = 2;
  33. static int cfq_slice_idle = HZ / 125;
  34. static int cfq_group_idle = HZ / 125;
  35. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  36. static const int cfq_hist_divisor = 4;
  37. /*
  38. * offset from end of service tree
  39. */
  40. #define CFQ_IDLE_DELAY (HZ / 5)
  41. /*
  42. * below this threshold, we consider thinktime immediate
  43. */
  44. #define CFQ_MIN_TT (2)
  45. #define CFQ_SLICE_SCALE (5)
  46. #define CFQ_HW_QUEUE_MIN (5)
  47. #define CFQ_SERVICE_SHIFT 12
  48. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  49. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  50. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  51. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  52. #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
  53. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
  54. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
  55. static struct kmem_cache *cfq_pool;
  56. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  57. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  58. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  59. #define sample_valid(samples) ((samples) > 80)
  60. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  61. struct cfq_ttime {
  62. unsigned long last_end_request;
  63. unsigned long ttime_total;
  64. unsigned long ttime_samples;
  65. unsigned long ttime_mean;
  66. };
  67. /*
  68. * Most of our rbtree usage is for sorting with min extraction, so
  69. * if we cache the leftmost node we don't have to walk down the tree
  70. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  71. * move this into the elevator for the rq sorting as well.
  72. */
  73. struct cfq_rb_root {
  74. struct rb_root rb;
  75. struct rb_node *left;
  76. unsigned count;
  77. unsigned total_weight;
  78. u64 min_vdisktime;
  79. struct cfq_ttime ttime;
  80. };
  81. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
  82. .ttime = {.last_end_request = jiffies,},}
  83. /*
  84. * Per process-grouping structure
  85. */
  86. struct cfq_queue {
  87. /* reference count */
  88. int ref;
  89. /* various state flags, see below */
  90. unsigned int flags;
  91. /* parent cfq_data */
  92. struct cfq_data *cfqd;
  93. /* service_tree member */
  94. struct rb_node rb_node;
  95. /* service_tree key */
  96. unsigned long rb_key;
  97. /* prio tree member */
  98. struct rb_node p_node;
  99. /* prio tree root we belong to, if any */
  100. struct rb_root *p_root;
  101. /* sorted list of pending requests */
  102. struct rb_root sort_list;
  103. /* if fifo isn't expired, next request to serve */
  104. struct request *next_rq;
  105. /* requests queued in sort_list */
  106. int queued[2];
  107. /* currently allocated requests */
  108. int allocated[2];
  109. /* fifo list of requests in sort_list */
  110. struct list_head fifo;
  111. /* time when queue got scheduled in to dispatch first request. */
  112. unsigned long dispatch_start;
  113. unsigned int allocated_slice;
  114. unsigned int slice_dispatch;
  115. /* time when first request from queue completed and slice started. */
  116. unsigned long slice_start;
  117. unsigned long slice_end;
  118. long slice_resid;
  119. /* pending priority requests */
  120. int prio_pending;
  121. /* number of requests that are on the dispatch list or inside driver */
  122. int dispatched;
  123. /* io prio of this group */
  124. unsigned short ioprio, org_ioprio;
  125. unsigned short ioprio_class;
  126. pid_t pid;
  127. u32 seek_history;
  128. sector_t last_request_pos;
  129. struct cfq_rb_root *service_tree;
  130. struct cfq_queue *new_cfqq;
  131. struct cfq_group *cfqg;
  132. /* Number of sectors dispatched from queue in single dispatch round */
  133. unsigned long nr_sectors;
  134. };
  135. /*
  136. * First index in the service_trees.
  137. * IDLE is handled separately, so it has negative index
  138. */
  139. enum wl_prio_t {
  140. BE_WORKLOAD = 0,
  141. RT_WORKLOAD = 1,
  142. IDLE_WORKLOAD = 2,
  143. CFQ_PRIO_NR,
  144. };
  145. /*
  146. * Second index in the service_trees.
  147. */
  148. enum wl_type_t {
  149. ASYNC_WORKLOAD = 0,
  150. SYNC_NOIDLE_WORKLOAD = 1,
  151. SYNC_WORKLOAD = 2
  152. };
  153. /* This is per cgroup per device grouping structure */
  154. struct cfq_group {
  155. /* group service_tree member */
  156. struct rb_node rb_node;
  157. /* group service_tree key */
  158. u64 vdisktime;
  159. unsigned int weight;
  160. unsigned int new_weight;
  161. bool needs_update;
  162. /* number of cfqq currently on this group */
  163. int nr_cfqq;
  164. /*
  165. * Per group busy queues average. Useful for workload slice calc. We
  166. * create the array for each prio class but at run time it is used
  167. * only for RT and BE class and slot for IDLE class remains unused.
  168. * This is primarily done to avoid confusion and a gcc warning.
  169. */
  170. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  171. /*
  172. * rr lists of queues with requests. We maintain service trees for
  173. * RT and BE classes. These trees are subdivided in subclasses
  174. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  175. * class there is no subclassification and all the cfq queues go on
  176. * a single tree service_tree_idle.
  177. * Counts are embedded in the cfq_rb_root
  178. */
  179. struct cfq_rb_root service_trees[2][3];
  180. struct cfq_rb_root service_tree_idle;
  181. unsigned long saved_workload_slice;
  182. enum wl_type_t saved_workload;
  183. enum wl_prio_t saved_serving_prio;
  184. /* number of requests that are on the dispatch list or inside driver */
  185. int dispatched;
  186. struct cfq_ttime ttime;
  187. };
  188. struct cfq_io_cq {
  189. struct io_cq icq; /* must be the first member */
  190. struct cfq_queue *cfqq[2];
  191. struct cfq_ttime ttime;
  192. };
  193. /*
  194. * Per block device queue structure
  195. */
  196. struct cfq_data {
  197. struct request_queue *queue;
  198. /* Root service tree for cfq_groups */
  199. struct cfq_rb_root grp_service_tree;
  200. struct cfq_group *root_group;
  201. /*
  202. * The priority currently being served
  203. */
  204. enum wl_prio_t serving_prio;
  205. enum wl_type_t serving_type;
  206. unsigned long workload_expires;
  207. struct cfq_group *serving_group;
  208. /*
  209. * Each priority tree is sorted by next_request position. These
  210. * trees are used when determining if two or more queues are
  211. * interleaving requests (see cfq_close_cooperator).
  212. */
  213. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  214. unsigned int busy_queues;
  215. unsigned int busy_sync_queues;
  216. int rq_in_driver;
  217. int rq_in_flight[2];
  218. /*
  219. * queue-depth detection
  220. */
  221. int rq_queued;
  222. int hw_tag;
  223. /*
  224. * hw_tag can be
  225. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  226. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  227. * 0 => no NCQ
  228. */
  229. int hw_tag_est_depth;
  230. unsigned int hw_tag_samples;
  231. /*
  232. * idle window management
  233. */
  234. struct timer_list idle_slice_timer;
  235. struct work_struct unplug_work;
  236. struct cfq_queue *active_queue;
  237. struct cfq_io_cq *active_cic;
  238. /*
  239. * async queue for each priority case
  240. */
  241. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  242. struct cfq_queue *async_idle_cfqq;
  243. sector_t last_position;
  244. /*
  245. * tunables, see top of file
  246. */
  247. unsigned int cfq_quantum;
  248. unsigned int cfq_fifo_expire[2];
  249. unsigned int cfq_back_penalty;
  250. unsigned int cfq_back_max;
  251. unsigned int cfq_slice[2];
  252. unsigned int cfq_slice_async_rq;
  253. unsigned int cfq_slice_idle;
  254. unsigned int cfq_group_idle;
  255. unsigned int cfq_latency;
  256. /*
  257. * Fallback dummy cfqq for extreme OOM conditions
  258. */
  259. struct cfq_queue oom_cfqq;
  260. unsigned long last_delayed_sync;
  261. };
  262. static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg)
  263. {
  264. return blkg_to_pdata(blkg, &blkio_policy_cfq);
  265. }
  266. static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg)
  267. {
  268. return pdata_to_blkg(cfqg, &blkio_policy_cfq);
  269. }
  270. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  271. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  272. enum wl_prio_t prio,
  273. enum wl_type_t type)
  274. {
  275. if (!cfqg)
  276. return NULL;
  277. if (prio == IDLE_WORKLOAD)
  278. return &cfqg->service_tree_idle;
  279. return &cfqg->service_trees[prio][type];
  280. }
  281. enum cfqq_state_flags {
  282. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  283. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  284. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  285. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  286. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  287. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  288. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  289. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  290. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  291. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  292. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  293. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  294. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  295. };
  296. #define CFQ_CFQQ_FNS(name) \
  297. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  298. { \
  299. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  300. } \
  301. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  302. { \
  303. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  304. } \
  305. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  306. { \
  307. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  308. }
  309. CFQ_CFQQ_FNS(on_rr);
  310. CFQ_CFQQ_FNS(wait_request);
  311. CFQ_CFQQ_FNS(must_dispatch);
  312. CFQ_CFQQ_FNS(must_alloc_slice);
  313. CFQ_CFQQ_FNS(fifo_expire);
  314. CFQ_CFQQ_FNS(idle_window);
  315. CFQ_CFQQ_FNS(prio_changed);
  316. CFQ_CFQQ_FNS(slice_new);
  317. CFQ_CFQQ_FNS(sync);
  318. CFQ_CFQQ_FNS(coop);
  319. CFQ_CFQQ_FNS(split_coop);
  320. CFQ_CFQQ_FNS(deep);
  321. CFQ_CFQQ_FNS(wait_busy);
  322. #undef CFQ_CFQQ_FNS
  323. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  324. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  325. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  326. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  327. blkg_path(cfqg_to_blkg((cfqq)->cfqg)), ##args)
  328. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  329. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  330. blkg_path(cfqg_to_blkg((cfqg))), ##args) \
  331. #else
  332. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  333. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  334. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  335. #endif
  336. #define cfq_log(cfqd, fmt, args...) \
  337. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  338. /* Traverses through cfq group service trees */
  339. #define for_each_cfqg_st(cfqg, i, j, st) \
  340. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  341. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  342. : &cfqg->service_tree_idle; \
  343. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  344. (i == IDLE_WORKLOAD && j == 0); \
  345. j++, st = i < IDLE_WORKLOAD ? \
  346. &cfqg->service_trees[i][j]: NULL) \
  347. static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
  348. struct cfq_ttime *ttime, bool group_idle)
  349. {
  350. unsigned long slice;
  351. if (!sample_valid(ttime->ttime_samples))
  352. return false;
  353. if (group_idle)
  354. slice = cfqd->cfq_group_idle;
  355. else
  356. slice = cfqd->cfq_slice_idle;
  357. return ttime->ttime_mean > slice;
  358. }
  359. static inline bool iops_mode(struct cfq_data *cfqd)
  360. {
  361. /*
  362. * If we are not idling on queues and it is a NCQ drive, parallel
  363. * execution of requests is on and measuring time is not possible
  364. * in most of the cases until and unless we drive shallower queue
  365. * depths and that becomes a performance bottleneck. In such cases
  366. * switch to start providing fairness in terms of number of IOs.
  367. */
  368. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  369. return true;
  370. else
  371. return false;
  372. }
  373. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  374. {
  375. if (cfq_class_idle(cfqq))
  376. return IDLE_WORKLOAD;
  377. if (cfq_class_rt(cfqq))
  378. return RT_WORKLOAD;
  379. return BE_WORKLOAD;
  380. }
  381. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  382. {
  383. if (!cfq_cfqq_sync(cfqq))
  384. return ASYNC_WORKLOAD;
  385. if (!cfq_cfqq_idle_window(cfqq))
  386. return SYNC_NOIDLE_WORKLOAD;
  387. return SYNC_WORKLOAD;
  388. }
  389. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  390. struct cfq_data *cfqd,
  391. struct cfq_group *cfqg)
  392. {
  393. if (wl == IDLE_WORKLOAD)
  394. return cfqg->service_tree_idle.count;
  395. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  396. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  397. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  398. }
  399. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  400. struct cfq_group *cfqg)
  401. {
  402. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  403. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  404. }
  405. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  406. static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
  407. struct io_context *ioc, struct bio *bio,
  408. gfp_t gfp_mask);
  409. static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
  410. {
  411. /* cic->icq is the first member, %NULL will convert to %NULL */
  412. return container_of(icq, struct cfq_io_cq, icq);
  413. }
  414. static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
  415. struct io_context *ioc)
  416. {
  417. if (ioc)
  418. return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
  419. return NULL;
  420. }
  421. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
  422. {
  423. return cic->cfqq[is_sync];
  424. }
  425. static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
  426. bool is_sync)
  427. {
  428. cic->cfqq[is_sync] = cfqq;
  429. }
  430. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
  431. {
  432. return cic->icq.q->elevator->elevator_data;
  433. }
  434. /*
  435. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  436. * set (in which case it could also be direct WRITE).
  437. */
  438. static inline bool cfq_bio_sync(struct bio *bio)
  439. {
  440. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  441. }
  442. /*
  443. * scheduler run of queue, if there are requests pending and no one in the
  444. * driver that will restart queueing
  445. */
  446. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  447. {
  448. if (cfqd->busy_queues) {
  449. cfq_log(cfqd, "schedule dispatch");
  450. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  451. }
  452. }
  453. /*
  454. * Scale schedule slice based on io priority. Use the sync time slice only
  455. * if a queue is marked sync and has sync io queued. A sync queue with async
  456. * io only, should not get full sync slice length.
  457. */
  458. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  459. unsigned short prio)
  460. {
  461. const int base_slice = cfqd->cfq_slice[sync];
  462. WARN_ON(prio >= IOPRIO_BE_NR);
  463. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  464. }
  465. static inline int
  466. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  467. {
  468. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  469. }
  470. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  471. {
  472. u64 d = delta << CFQ_SERVICE_SHIFT;
  473. d = d * BLKIO_WEIGHT_DEFAULT;
  474. do_div(d, cfqg->weight);
  475. return d;
  476. }
  477. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  478. {
  479. s64 delta = (s64)(vdisktime - min_vdisktime);
  480. if (delta > 0)
  481. min_vdisktime = vdisktime;
  482. return min_vdisktime;
  483. }
  484. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  485. {
  486. s64 delta = (s64)(vdisktime - min_vdisktime);
  487. if (delta < 0)
  488. min_vdisktime = vdisktime;
  489. return min_vdisktime;
  490. }
  491. static void update_min_vdisktime(struct cfq_rb_root *st)
  492. {
  493. struct cfq_group *cfqg;
  494. if (st->left) {
  495. cfqg = rb_entry_cfqg(st->left);
  496. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  497. cfqg->vdisktime);
  498. }
  499. }
  500. /*
  501. * get averaged number of queues of RT/BE priority.
  502. * average is updated, with a formula that gives more weight to higher numbers,
  503. * to quickly follows sudden increases and decrease slowly
  504. */
  505. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  506. struct cfq_group *cfqg, bool rt)
  507. {
  508. unsigned min_q, max_q;
  509. unsigned mult = cfq_hist_divisor - 1;
  510. unsigned round = cfq_hist_divisor / 2;
  511. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  512. min_q = min(cfqg->busy_queues_avg[rt], busy);
  513. max_q = max(cfqg->busy_queues_avg[rt], busy);
  514. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  515. cfq_hist_divisor;
  516. return cfqg->busy_queues_avg[rt];
  517. }
  518. static inline unsigned
  519. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  520. {
  521. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  522. return cfq_target_latency * cfqg->weight / st->total_weight;
  523. }
  524. static inline unsigned
  525. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  526. {
  527. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  528. if (cfqd->cfq_latency) {
  529. /*
  530. * interested queues (we consider only the ones with the same
  531. * priority class in the cfq group)
  532. */
  533. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  534. cfq_class_rt(cfqq));
  535. unsigned sync_slice = cfqd->cfq_slice[1];
  536. unsigned expect_latency = sync_slice * iq;
  537. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  538. if (expect_latency > group_slice) {
  539. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  540. /* scale low_slice according to IO priority
  541. * and sync vs async */
  542. unsigned low_slice =
  543. min(slice, base_low_slice * slice / sync_slice);
  544. /* the adapted slice value is scaled to fit all iqs
  545. * into the target latency */
  546. slice = max(slice * group_slice / expect_latency,
  547. low_slice);
  548. }
  549. }
  550. return slice;
  551. }
  552. static inline void
  553. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  554. {
  555. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  556. cfqq->slice_start = jiffies;
  557. cfqq->slice_end = jiffies + slice;
  558. cfqq->allocated_slice = slice;
  559. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  560. }
  561. /*
  562. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  563. * isn't valid until the first request from the dispatch is activated
  564. * and the slice time set.
  565. */
  566. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  567. {
  568. if (cfq_cfqq_slice_new(cfqq))
  569. return false;
  570. if (time_before(jiffies, cfqq->slice_end))
  571. return false;
  572. return true;
  573. }
  574. /*
  575. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  576. * We choose the request that is closest to the head right now. Distance
  577. * behind the head is penalized and only allowed to a certain extent.
  578. */
  579. static struct request *
  580. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  581. {
  582. sector_t s1, s2, d1 = 0, d2 = 0;
  583. unsigned long back_max;
  584. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  585. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  586. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  587. if (rq1 == NULL || rq1 == rq2)
  588. return rq2;
  589. if (rq2 == NULL)
  590. return rq1;
  591. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  592. return rq_is_sync(rq1) ? rq1 : rq2;
  593. if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
  594. return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
  595. s1 = blk_rq_pos(rq1);
  596. s2 = blk_rq_pos(rq2);
  597. /*
  598. * by definition, 1KiB is 2 sectors
  599. */
  600. back_max = cfqd->cfq_back_max * 2;
  601. /*
  602. * Strict one way elevator _except_ in the case where we allow
  603. * short backward seeks which are biased as twice the cost of a
  604. * similar forward seek.
  605. */
  606. if (s1 >= last)
  607. d1 = s1 - last;
  608. else if (s1 + back_max >= last)
  609. d1 = (last - s1) * cfqd->cfq_back_penalty;
  610. else
  611. wrap |= CFQ_RQ1_WRAP;
  612. if (s2 >= last)
  613. d2 = s2 - last;
  614. else if (s2 + back_max >= last)
  615. d2 = (last - s2) * cfqd->cfq_back_penalty;
  616. else
  617. wrap |= CFQ_RQ2_WRAP;
  618. /* Found required data */
  619. /*
  620. * By doing switch() on the bit mask "wrap" we avoid having to
  621. * check two variables for all permutations: --> faster!
  622. */
  623. switch (wrap) {
  624. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  625. if (d1 < d2)
  626. return rq1;
  627. else if (d2 < d1)
  628. return rq2;
  629. else {
  630. if (s1 >= s2)
  631. return rq1;
  632. else
  633. return rq2;
  634. }
  635. case CFQ_RQ2_WRAP:
  636. return rq1;
  637. case CFQ_RQ1_WRAP:
  638. return rq2;
  639. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  640. default:
  641. /*
  642. * Since both rqs are wrapped,
  643. * start with the one that's further behind head
  644. * (--> only *one* back seek required),
  645. * since back seek takes more time than forward.
  646. */
  647. if (s1 <= s2)
  648. return rq1;
  649. else
  650. return rq2;
  651. }
  652. }
  653. /*
  654. * The below is leftmost cache rbtree addon
  655. */
  656. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  657. {
  658. /* Service tree is empty */
  659. if (!root->count)
  660. return NULL;
  661. if (!root->left)
  662. root->left = rb_first(&root->rb);
  663. if (root->left)
  664. return rb_entry(root->left, struct cfq_queue, rb_node);
  665. return NULL;
  666. }
  667. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  668. {
  669. if (!root->left)
  670. root->left = rb_first(&root->rb);
  671. if (root->left)
  672. return rb_entry_cfqg(root->left);
  673. return NULL;
  674. }
  675. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  676. {
  677. rb_erase(n, root);
  678. RB_CLEAR_NODE(n);
  679. }
  680. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  681. {
  682. if (root->left == n)
  683. root->left = NULL;
  684. rb_erase_init(n, &root->rb);
  685. --root->count;
  686. }
  687. /*
  688. * would be nice to take fifo expire time into account as well
  689. */
  690. static struct request *
  691. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  692. struct request *last)
  693. {
  694. struct rb_node *rbnext = rb_next(&last->rb_node);
  695. struct rb_node *rbprev = rb_prev(&last->rb_node);
  696. struct request *next = NULL, *prev = NULL;
  697. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  698. if (rbprev)
  699. prev = rb_entry_rq(rbprev);
  700. if (rbnext)
  701. next = rb_entry_rq(rbnext);
  702. else {
  703. rbnext = rb_first(&cfqq->sort_list);
  704. if (rbnext && rbnext != &last->rb_node)
  705. next = rb_entry_rq(rbnext);
  706. }
  707. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  708. }
  709. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  710. struct cfq_queue *cfqq)
  711. {
  712. /*
  713. * just an approximation, should be ok.
  714. */
  715. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  716. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  717. }
  718. static inline s64
  719. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  720. {
  721. return cfqg->vdisktime - st->min_vdisktime;
  722. }
  723. static void
  724. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  725. {
  726. struct rb_node **node = &st->rb.rb_node;
  727. struct rb_node *parent = NULL;
  728. struct cfq_group *__cfqg;
  729. s64 key = cfqg_key(st, cfqg);
  730. int left = 1;
  731. while (*node != NULL) {
  732. parent = *node;
  733. __cfqg = rb_entry_cfqg(parent);
  734. if (key < cfqg_key(st, __cfqg))
  735. node = &parent->rb_left;
  736. else {
  737. node = &parent->rb_right;
  738. left = 0;
  739. }
  740. }
  741. if (left)
  742. st->left = &cfqg->rb_node;
  743. rb_link_node(&cfqg->rb_node, parent, node);
  744. rb_insert_color(&cfqg->rb_node, &st->rb);
  745. }
  746. static void
  747. cfq_update_group_weight(struct cfq_group *cfqg)
  748. {
  749. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  750. if (cfqg->needs_update) {
  751. cfqg->weight = cfqg->new_weight;
  752. cfqg->needs_update = false;
  753. }
  754. }
  755. static void
  756. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  757. {
  758. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  759. cfq_update_group_weight(cfqg);
  760. __cfq_group_service_tree_add(st, cfqg);
  761. st->total_weight += cfqg->weight;
  762. }
  763. static void
  764. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  765. {
  766. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  767. struct cfq_group *__cfqg;
  768. struct rb_node *n;
  769. cfqg->nr_cfqq++;
  770. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  771. return;
  772. /*
  773. * Currently put the group at the end. Later implement something
  774. * so that groups get lesser vtime based on their weights, so that
  775. * if group does not loose all if it was not continuously backlogged.
  776. */
  777. n = rb_last(&st->rb);
  778. if (n) {
  779. __cfqg = rb_entry_cfqg(n);
  780. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  781. } else
  782. cfqg->vdisktime = st->min_vdisktime;
  783. cfq_group_service_tree_add(st, cfqg);
  784. }
  785. static void
  786. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  787. {
  788. st->total_weight -= cfqg->weight;
  789. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  790. cfq_rb_erase(&cfqg->rb_node, st);
  791. }
  792. static void
  793. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  794. {
  795. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  796. BUG_ON(cfqg->nr_cfqq < 1);
  797. cfqg->nr_cfqq--;
  798. /* If there are other cfq queues under this group, don't delete it */
  799. if (cfqg->nr_cfqq)
  800. return;
  801. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  802. cfq_group_service_tree_del(st, cfqg);
  803. cfqg->saved_workload_slice = 0;
  804. cfq_blkiocg_update_dequeue_stats(cfqg_to_blkg(cfqg),
  805. &blkio_policy_cfq, 1);
  806. }
  807. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  808. unsigned int *unaccounted_time)
  809. {
  810. unsigned int slice_used;
  811. /*
  812. * Queue got expired before even a single request completed or
  813. * got expired immediately after first request completion.
  814. */
  815. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  816. /*
  817. * Also charge the seek time incurred to the group, otherwise
  818. * if there are mutiple queues in the group, each can dispatch
  819. * a single request on seeky media and cause lots of seek time
  820. * and group will never know it.
  821. */
  822. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  823. 1);
  824. } else {
  825. slice_used = jiffies - cfqq->slice_start;
  826. if (slice_used > cfqq->allocated_slice) {
  827. *unaccounted_time = slice_used - cfqq->allocated_slice;
  828. slice_used = cfqq->allocated_slice;
  829. }
  830. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  831. *unaccounted_time += cfqq->slice_start -
  832. cfqq->dispatch_start;
  833. }
  834. return slice_used;
  835. }
  836. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  837. struct cfq_queue *cfqq)
  838. {
  839. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  840. unsigned int used_sl, charge, unaccounted_sl = 0;
  841. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  842. - cfqg->service_tree_idle.count;
  843. BUG_ON(nr_sync < 0);
  844. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  845. if (iops_mode(cfqd))
  846. charge = cfqq->slice_dispatch;
  847. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  848. charge = cfqq->allocated_slice;
  849. /* Can't update vdisktime while group is on service tree */
  850. cfq_group_service_tree_del(st, cfqg);
  851. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  852. /* If a new weight was requested, update now, off tree */
  853. cfq_group_service_tree_add(st, cfqg);
  854. /* This group is being expired. Save the context */
  855. if (time_after(cfqd->workload_expires, jiffies)) {
  856. cfqg->saved_workload_slice = cfqd->workload_expires
  857. - jiffies;
  858. cfqg->saved_workload = cfqd->serving_type;
  859. cfqg->saved_serving_prio = cfqd->serving_prio;
  860. } else
  861. cfqg->saved_workload_slice = 0;
  862. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  863. st->min_vdisktime);
  864. cfq_log_cfqq(cfqq->cfqd, cfqq,
  865. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  866. used_sl, cfqq->slice_dispatch, charge,
  867. iops_mode(cfqd), cfqq->nr_sectors);
  868. cfq_blkiocg_update_timeslice_used(cfqg_to_blkg(cfqg), &blkio_policy_cfq,
  869. used_sl, unaccounted_sl);
  870. cfq_blkiocg_set_start_empty_time(cfqg_to_blkg(cfqg), &blkio_policy_cfq);
  871. }
  872. /**
  873. * cfq_init_cfqg_base - initialize base part of a cfq_group
  874. * @cfqg: cfq_group to initialize
  875. *
  876. * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
  877. * is enabled or not.
  878. */
  879. static void cfq_init_cfqg_base(struct cfq_group *cfqg)
  880. {
  881. struct cfq_rb_root *st;
  882. int i, j;
  883. for_each_cfqg_st(cfqg, i, j, st)
  884. *st = CFQ_RB_ROOT;
  885. RB_CLEAR_NODE(&cfqg->rb_node);
  886. cfqg->ttime.last_end_request = jiffies;
  887. }
  888. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  889. static void cfq_update_blkio_group_weight(struct request_queue *q,
  890. struct blkio_group *blkg,
  891. unsigned int weight)
  892. {
  893. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  894. cfqg->new_weight = weight;
  895. cfqg->needs_update = true;
  896. }
  897. static void cfq_init_blkio_group(struct blkio_group *blkg)
  898. {
  899. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  900. cfq_init_cfqg_base(cfqg);
  901. cfqg->weight = blkg->blkcg->weight;
  902. }
  903. /*
  904. * Search for the cfq group current task belongs to. request_queue lock must
  905. * be held.
  906. */
  907. static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
  908. struct blkio_cgroup *blkcg)
  909. {
  910. struct request_queue *q = cfqd->queue;
  911. struct cfq_group *cfqg = NULL;
  912. /* avoid lookup for the common case where there's no blkio cgroup */
  913. if (blkcg == &blkio_root_cgroup) {
  914. cfqg = cfqd->root_group;
  915. } else {
  916. struct blkio_group *blkg;
  917. blkg = blkg_lookup_create(blkcg, q, BLKIO_POLICY_PROP, false);
  918. if (!IS_ERR(blkg))
  919. cfqg = blkg_to_cfqg(blkg);
  920. }
  921. return cfqg;
  922. }
  923. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  924. {
  925. /* Currently, all async queues are mapped to root group */
  926. if (!cfq_cfqq_sync(cfqq))
  927. cfqg = cfqq->cfqd->root_group;
  928. cfqq->cfqg = cfqg;
  929. /* cfqq reference on cfqg */
  930. blkg_get(cfqg_to_blkg(cfqg));
  931. }
  932. #else /* GROUP_IOSCHED */
  933. static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
  934. struct blkio_cgroup *blkcg)
  935. {
  936. return cfqd->root_group;
  937. }
  938. static inline void
  939. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  940. cfqq->cfqg = cfqg;
  941. }
  942. #endif /* GROUP_IOSCHED */
  943. /*
  944. * The cfqd->service_trees holds all pending cfq_queue's that have
  945. * requests waiting to be processed. It is sorted in the order that
  946. * we will service the queues.
  947. */
  948. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  949. bool add_front)
  950. {
  951. struct rb_node **p, *parent;
  952. struct cfq_queue *__cfqq;
  953. unsigned long rb_key;
  954. struct cfq_rb_root *service_tree;
  955. int left;
  956. int new_cfqq = 1;
  957. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  958. cfqq_type(cfqq));
  959. if (cfq_class_idle(cfqq)) {
  960. rb_key = CFQ_IDLE_DELAY;
  961. parent = rb_last(&service_tree->rb);
  962. if (parent && parent != &cfqq->rb_node) {
  963. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  964. rb_key += __cfqq->rb_key;
  965. } else
  966. rb_key += jiffies;
  967. } else if (!add_front) {
  968. /*
  969. * Get our rb key offset. Subtract any residual slice
  970. * value carried from last service. A negative resid
  971. * count indicates slice overrun, and this should position
  972. * the next service time further away in the tree.
  973. */
  974. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  975. rb_key -= cfqq->slice_resid;
  976. cfqq->slice_resid = 0;
  977. } else {
  978. rb_key = -HZ;
  979. __cfqq = cfq_rb_first(service_tree);
  980. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  981. }
  982. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  983. new_cfqq = 0;
  984. /*
  985. * same position, nothing more to do
  986. */
  987. if (rb_key == cfqq->rb_key &&
  988. cfqq->service_tree == service_tree)
  989. return;
  990. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  991. cfqq->service_tree = NULL;
  992. }
  993. left = 1;
  994. parent = NULL;
  995. cfqq->service_tree = service_tree;
  996. p = &service_tree->rb.rb_node;
  997. while (*p) {
  998. struct rb_node **n;
  999. parent = *p;
  1000. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1001. /*
  1002. * sort by key, that represents service time.
  1003. */
  1004. if (time_before(rb_key, __cfqq->rb_key))
  1005. n = &(*p)->rb_left;
  1006. else {
  1007. n = &(*p)->rb_right;
  1008. left = 0;
  1009. }
  1010. p = n;
  1011. }
  1012. if (left)
  1013. service_tree->left = &cfqq->rb_node;
  1014. cfqq->rb_key = rb_key;
  1015. rb_link_node(&cfqq->rb_node, parent, p);
  1016. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1017. service_tree->count++;
  1018. if (add_front || !new_cfqq)
  1019. return;
  1020. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1021. }
  1022. static struct cfq_queue *
  1023. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1024. sector_t sector, struct rb_node **ret_parent,
  1025. struct rb_node ***rb_link)
  1026. {
  1027. struct rb_node **p, *parent;
  1028. struct cfq_queue *cfqq = NULL;
  1029. parent = NULL;
  1030. p = &root->rb_node;
  1031. while (*p) {
  1032. struct rb_node **n;
  1033. parent = *p;
  1034. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1035. /*
  1036. * Sort strictly based on sector. Smallest to the left,
  1037. * largest to the right.
  1038. */
  1039. if (sector > blk_rq_pos(cfqq->next_rq))
  1040. n = &(*p)->rb_right;
  1041. else if (sector < blk_rq_pos(cfqq->next_rq))
  1042. n = &(*p)->rb_left;
  1043. else
  1044. break;
  1045. p = n;
  1046. cfqq = NULL;
  1047. }
  1048. *ret_parent = parent;
  1049. if (rb_link)
  1050. *rb_link = p;
  1051. return cfqq;
  1052. }
  1053. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1054. {
  1055. struct rb_node **p, *parent;
  1056. struct cfq_queue *__cfqq;
  1057. if (cfqq->p_root) {
  1058. rb_erase(&cfqq->p_node, cfqq->p_root);
  1059. cfqq->p_root = NULL;
  1060. }
  1061. if (cfq_class_idle(cfqq))
  1062. return;
  1063. if (!cfqq->next_rq)
  1064. return;
  1065. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1066. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1067. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1068. if (!__cfqq) {
  1069. rb_link_node(&cfqq->p_node, parent, p);
  1070. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1071. } else
  1072. cfqq->p_root = NULL;
  1073. }
  1074. /*
  1075. * Update cfqq's position in the service tree.
  1076. */
  1077. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1078. {
  1079. /*
  1080. * Resorting requires the cfqq to be on the RR list already.
  1081. */
  1082. if (cfq_cfqq_on_rr(cfqq)) {
  1083. cfq_service_tree_add(cfqd, cfqq, 0);
  1084. cfq_prio_tree_add(cfqd, cfqq);
  1085. }
  1086. }
  1087. /*
  1088. * add to busy list of queues for service, trying to be fair in ordering
  1089. * the pending list according to last request service
  1090. */
  1091. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1092. {
  1093. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1094. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1095. cfq_mark_cfqq_on_rr(cfqq);
  1096. cfqd->busy_queues++;
  1097. if (cfq_cfqq_sync(cfqq))
  1098. cfqd->busy_sync_queues++;
  1099. cfq_resort_rr_list(cfqd, cfqq);
  1100. }
  1101. /*
  1102. * Called when the cfqq no longer has requests pending, remove it from
  1103. * the service tree.
  1104. */
  1105. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1106. {
  1107. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1108. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1109. cfq_clear_cfqq_on_rr(cfqq);
  1110. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1111. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1112. cfqq->service_tree = NULL;
  1113. }
  1114. if (cfqq->p_root) {
  1115. rb_erase(&cfqq->p_node, cfqq->p_root);
  1116. cfqq->p_root = NULL;
  1117. }
  1118. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1119. BUG_ON(!cfqd->busy_queues);
  1120. cfqd->busy_queues--;
  1121. if (cfq_cfqq_sync(cfqq))
  1122. cfqd->busy_sync_queues--;
  1123. }
  1124. /*
  1125. * rb tree support functions
  1126. */
  1127. static void cfq_del_rq_rb(struct request *rq)
  1128. {
  1129. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1130. const int sync = rq_is_sync(rq);
  1131. BUG_ON(!cfqq->queued[sync]);
  1132. cfqq->queued[sync]--;
  1133. elv_rb_del(&cfqq->sort_list, rq);
  1134. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1135. /*
  1136. * Queue will be deleted from service tree when we actually
  1137. * expire it later. Right now just remove it from prio tree
  1138. * as it is empty.
  1139. */
  1140. if (cfqq->p_root) {
  1141. rb_erase(&cfqq->p_node, cfqq->p_root);
  1142. cfqq->p_root = NULL;
  1143. }
  1144. }
  1145. }
  1146. static void cfq_add_rq_rb(struct request *rq)
  1147. {
  1148. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1149. struct cfq_data *cfqd = cfqq->cfqd;
  1150. struct request *prev;
  1151. cfqq->queued[rq_is_sync(rq)]++;
  1152. elv_rb_add(&cfqq->sort_list, rq);
  1153. if (!cfq_cfqq_on_rr(cfqq))
  1154. cfq_add_cfqq_rr(cfqd, cfqq);
  1155. /*
  1156. * check if this request is a better next-serve candidate
  1157. */
  1158. prev = cfqq->next_rq;
  1159. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1160. /*
  1161. * adjust priority tree position, if ->next_rq changes
  1162. */
  1163. if (prev != cfqq->next_rq)
  1164. cfq_prio_tree_add(cfqd, cfqq);
  1165. BUG_ON(!cfqq->next_rq);
  1166. }
  1167. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1168. {
  1169. elv_rb_del(&cfqq->sort_list, rq);
  1170. cfqq->queued[rq_is_sync(rq)]--;
  1171. cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1172. &blkio_policy_cfq, rq_data_dir(rq),
  1173. rq_is_sync(rq));
  1174. cfq_add_rq_rb(rq);
  1175. cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1176. &blkio_policy_cfq,
  1177. cfqg_to_blkg(cfqq->cfqd->serving_group),
  1178. rq_data_dir(rq), rq_is_sync(rq));
  1179. }
  1180. static struct request *
  1181. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1182. {
  1183. struct task_struct *tsk = current;
  1184. struct cfq_io_cq *cic;
  1185. struct cfq_queue *cfqq;
  1186. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1187. if (!cic)
  1188. return NULL;
  1189. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1190. if (cfqq) {
  1191. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1192. return elv_rb_find(&cfqq->sort_list, sector);
  1193. }
  1194. return NULL;
  1195. }
  1196. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1197. {
  1198. struct cfq_data *cfqd = q->elevator->elevator_data;
  1199. cfqd->rq_in_driver++;
  1200. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1201. cfqd->rq_in_driver);
  1202. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1203. }
  1204. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1205. {
  1206. struct cfq_data *cfqd = q->elevator->elevator_data;
  1207. WARN_ON(!cfqd->rq_in_driver);
  1208. cfqd->rq_in_driver--;
  1209. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1210. cfqd->rq_in_driver);
  1211. }
  1212. static void cfq_remove_request(struct request *rq)
  1213. {
  1214. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1215. if (cfqq->next_rq == rq)
  1216. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1217. list_del_init(&rq->queuelist);
  1218. cfq_del_rq_rb(rq);
  1219. cfqq->cfqd->rq_queued--;
  1220. cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1221. &blkio_policy_cfq, rq_data_dir(rq),
  1222. rq_is_sync(rq));
  1223. if (rq->cmd_flags & REQ_PRIO) {
  1224. WARN_ON(!cfqq->prio_pending);
  1225. cfqq->prio_pending--;
  1226. }
  1227. }
  1228. static int cfq_merge(struct request_queue *q, struct request **req,
  1229. struct bio *bio)
  1230. {
  1231. struct cfq_data *cfqd = q->elevator->elevator_data;
  1232. struct request *__rq;
  1233. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1234. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1235. *req = __rq;
  1236. return ELEVATOR_FRONT_MERGE;
  1237. }
  1238. return ELEVATOR_NO_MERGE;
  1239. }
  1240. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1241. int type)
  1242. {
  1243. if (type == ELEVATOR_FRONT_MERGE) {
  1244. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1245. cfq_reposition_rq_rb(cfqq, req);
  1246. }
  1247. }
  1248. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1249. struct bio *bio)
  1250. {
  1251. cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(req)),
  1252. &blkio_policy_cfq, bio_data_dir(bio),
  1253. cfq_bio_sync(bio));
  1254. }
  1255. static void
  1256. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1257. struct request *next)
  1258. {
  1259. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1260. struct cfq_data *cfqd = q->elevator->elevator_data;
  1261. /*
  1262. * reposition in fifo if next is older than rq
  1263. */
  1264. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1265. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1266. list_move(&rq->queuelist, &next->queuelist);
  1267. rq_set_fifo_time(rq, rq_fifo_time(next));
  1268. }
  1269. if (cfqq->next_rq == next)
  1270. cfqq->next_rq = rq;
  1271. cfq_remove_request(next);
  1272. cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1273. &blkio_policy_cfq, rq_data_dir(next),
  1274. rq_is_sync(next));
  1275. cfqq = RQ_CFQQ(next);
  1276. /*
  1277. * all requests of this queue are merged to other queues, delete it
  1278. * from the service tree. If it's the active_queue,
  1279. * cfq_dispatch_requests() will choose to expire it or do idle
  1280. */
  1281. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
  1282. cfqq != cfqd->active_queue)
  1283. cfq_del_cfqq_rr(cfqd, cfqq);
  1284. }
  1285. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1286. struct bio *bio)
  1287. {
  1288. struct cfq_data *cfqd = q->elevator->elevator_data;
  1289. struct cfq_io_cq *cic;
  1290. struct cfq_queue *cfqq;
  1291. /*
  1292. * Disallow merge of a sync bio into an async request.
  1293. */
  1294. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1295. return false;
  1296. /*
  1297. * Lookup the cfqq that this bio will be queued with and allow
  1298. * merge only if rq is queued there.
  1299. */
  1300. cic = cfq_cic_lookup(cfqd, current->io_context);
  1301. if (!cic)
  1302. return false;
  1303. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1304. return cfqq == RQ_CFQQ(rq);
  1305. }
  1306. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1307. {
  1308. del_timer(&cfqd->idle_slice_timer);
  1309. cfq_blkiocg_update_idle_time_stats(cfqg_to_blkg(cfqq->cfqg),
  1310. &blkio_policy_cfq);
  1311. }
  1312. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1313. struct cfq_queue *cfqq)
  1314. {
  1315. if (cfqq) {
  1316. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1317. cfqd->serving_prio, cfqd->serving_type);
  1318. cfq_blkiocg_update_avg_queue_size_stats(cfqg_to_blkg(cfqq->cfqg),
  1319. &blkio_policy_cfq);
  1320. cfqq->slice_start = 0;
  1321. cfqq->dispatch_start = jiffies;
  1322. cfqq->allocated_slice = 0;
  1323. cfqq->slice_end = 0;
  1324. cfqq->slice_dispatch = 0;
  1325. cfqq->nr_sectors = 0;
  1326. cfq_clear_cfqq_wait_request(cfqq);
  1327. cfq_clear_cfqq_must_dispatch(cfqq);
  1328. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1329. cfq_clear_cfqq_fifo_expire(cfqq);
  1330. cfq_mark_cfqq_slice_new(cfqq);
  1331. cfq_del_timer(cfqd, cfqq);
  1332. }
  1333. cfqd->active_queue = cfqq;
  1334. }
  1335. /*
  1336. * current cfqq expired its slice (or was too idle), select new one
  1337. */
  1338. static void
  1339. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1340. bool timed_out)
  1341. {
  1342. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1343. if (cfq_cfqq_wait_request(cfqq))
  1344. cfq_del_timer(cfqd, cfqq);
  1345. cfq_clear_cfqq_wait_request(cfqq);
  1346. cfq_clear_cfqq_wait_busy(cfqq);
  1347. /*
  1348. * If this cfqq is shared between multiple processes, check to
  1349. * make sure that those processes are still issuing I/Os within
  1350. * the mean seek distance. If not, it may be time to break the
  1351. * queues apart again.
  1352. */
  1353. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1354. cfq_mark_cfqq_split_coop(cfqq);
  1355. /*
  1356. * store what was left of this slice, if the queue idled/timed out
  1357. */
  1358. if (timed_out) {
  1359. if (cfq_cfqq_slice_new(cfqq))
  1360. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1361. else
  1362. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1363. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1364. }
  1365. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1366. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1367. cfq_del_cfqq_rr(cfqd, cfqq);
  1368. cfq_resort_rr_list(cfqd, cfqq);
  1369. if (cfqq == cfqd->active_queue)
  1370. cfqd->active_queue = NULL;
  1371. if (cfqd->active_cic) {
  1372. put_io_context(cfqd->active_cic->icq.ioc);
  1373. cfqd->active_cic = NULL;
  1374. }
  1375. }
  1376. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1377. {
  1378. struct cfq_queue *cfqq = cfqd->active_queue;
  1379. if (cfqq)
  1380. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1381. }
  1382. /*
  1383. * Get next queue for service. Unless we have a queue preemption,
  1384. * we'll simply select the first cfqq in the service tree.
  1385. */
  1386. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1387. {
  1388. struct cfq_rb_root *service_tree =
  1389. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1390. cfqd->serving_type);
  1391. if (!cfqd->rq_queued)
  1392. return NULL;
  1393. /* There is nothing to dispatch */
  1394. if (!service_tree)
  1395. return NULL;
  1396. if (RB_EMPTY_ROOT(&service_tree->rb))
  1397. return NULL;
  1398. return cfq_rb_first(service_tree);
  1399. }
  1400. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1401. {
  1402. struct cfq_group *cfqg;
  1403. struct cfq_queue *cfqq;
  1404. int i, j;
  1405. struct cfq_rb_root *st;
  1406. if (!cfqd->rq_queued)
  1407. return NULL;
  1408. cfqg = cfq_get_next_cfqg(cfqd);
  1409. if (!cfqg)
  1410. return NULL;
  1411. for_each_cfqg_st(cfqg, i, j, st)
  1412. if ((cfqq = cfq_rb_first(st)) != NULL)
  1413. return cfqq;
  1414. return NULL;
  1415. }
  1416. /*
  1417. * Get and set a new active queue for service.
  1418. */
  1419. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1420. struct cfq_queue *cfqq)
  1421. {
  1422. if (!cfqq)
  1423. cfqq = cfq_get_next_queue(cfqd);
  1424. __cfq_set_active_queue(cfqd, cfqq);
  1425. return cfqq;
  1426. }
  1427. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1428. struct request *rq)
  1429. {
  1430. if (blk_rq_pos(rq) >= cfqd->last_position)
  1431. return blk_rq_pos(rq) - cfqd->last_position;
  1432. else
  1433. return cfqd->last_position - blk_rq_pos(rq);
  1434. }
  1435. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1436. struct request *rq)
  1437. {
  1438. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1439. }
  1440. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1441. struct cfq_queue *cur_cfqq)
  1442. {
  1443. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1444. struct rb_node *parent, *node;
  1445. struct cfq_queue *__cfqq;
  1446. sector_t sector = cfqd->last_position;
  1447. if (RB_EMPTY_ROOT(root))
  1448. return NULL;
  1449. /*
  1450. * First, if we find a request starting at the end of the last
  1451. * request, choose it.
  1452. */
  1453. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1454. if (__cfqq)
  1455. return __cfqq;
  1456. /*
  1457. * If the exact sector wasn't found, the parent of the NULL leaf
  1458. * will contain the closest sector.
  1459. */
  1460. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1461. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1462. return __cfqq;
  1463. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1464. node = rb_next(&__cfqq->p_node);
  1465. else
  1466. node = rb_prev(&__cfqq->p_node);
  1467. if (!node)
  1468. return NULL;
  1469. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1470. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1471. return __cfqq;
  1472. return NULL;
  1473. }
  1474. /*
  1475. * cfqd - obvious
  1476. * cur_cfqq - passed in so that we don't decide that the current queue is
  1477. * closely cooperating with itself.
  1478. *
  1479. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1480. * one request, and that cfqd->last_position reflects a position on the disk
  1481. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1482. * assumption.
  1483. */
  1484. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1485. struct cfq_queue *cur_cfqq)
  1486. {
  1487. struct cfq_queue *cfqq;
  1488. if (cfq_class_idle(cur_cfqq))
  1489. return NULL;
  1490. if (!cfq_cfqq_sync(cur_cfqq))
  1491. return NULL;
  1492. if (CFQQ_SEEKY(cur_cfqq))
  1493. return NULL;
  1494. /*
  1495. * Don't search priority tree if it's the only queue in the group.
  1496. */
  1497. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1498. return NULL;
  1499. /*
  1500. * We should notice if some of the queues are cooperating, eg
  1501. * working closely on the same area of the disk. In that case,
  1502. * we can group them together and don't waste time idling.
  1503. */
  1504. cfqq = cfqq_close(cfqd, cur_cfqq);
  1505. if (!cfqq)
  1506. return NULL;
  1507. /* If new queue belongs to different cfq_group, don't choose it */
  1508. if (cur_cfqq->cfqg != cfqq->cfqg)
  1509. return NULL;
  1510. /*
  1511. * It only makes sense to merge sync queues.
  1512. */
  1513. if (!cfq_cfqq_sync(cfqq))
  1514. return NULL;
  1515. if (CFQQ_SEEKY(cfqq))
  1516. return NULL;
  1517. /*
  1518. * Do not merge queues of different priority classes
  1519. */
  1520. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1521. return NULL;
  1522. return cfqq;
  1523. }
  1524. /*
  1525. * Determine whether we should enforce idle window for this queue.
  1526. */
  1527. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1528. {
  1529. enum wl_prio_t prio = cfqq_prio(cfqq);
  1530. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1531. BUG_ON(!service_tree);
  1532. BUG_ON(!service_tree->count);
  1533. if (!cfqd->cfq_slice_idle)
  1534. return false;
  1535. /* We never do for idle class queues. */
  1536. if (prio == IDLE_WORKLOAD)
  1537. return false;
  1538. /* We do for queues that were marked with idle window flag. */
  1539. if (cfq_cfqq_idle_window(cfqq) &&
  1540. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1541. return true;
  1542. /*
  1543. * Otherwise, we do only if they are the last ones
  1544. * in their service tree.
  1545. */
  1546. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
  1547. !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
  1548. return true;
  1549. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1550. service_tree->count);
  1551. return false;
  1552. }
  1553. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1554. {
  1555. struct cfq_queue *cfqq = cfqd->active_queue;
  1556. struct cfq_io_cq *cic;
  1557. unsigned long sl, group_idle = 0;
  1558. /*
  1559. * SSD device without seek penalty, disable idling. But only do so
  1560. * for devices that support queuing, otherwise we still have a problem
  1561. * with sync vs async workloads.
  1562. */
  1563. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1564. return;
  1565. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1566. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1567. /*
  1568. * idle is disabled, either manually or by past process history
  1569. */
  1570. if (!cfq_should_idle(cfqd, cfqq)) {
  1571. /* no queue idling. Check for group idling */
  1572. if (cfqd->cfq_group_idle)
  1573. group_idle = cfqd->cfq_group_idle;
  1574. else
  1575. return;
  1576. }
  1577. /*
  1578. * still active requests from this queue, don't idle
  1579. */
  1580. if (cfqq->dispatched)
  1581. return;
  1582. /*
  1583. * task has exited, don't wait
  1584. */
  1585. cic = cfqd->active_cic;
  1586. if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
  1587. return;
  1588. /*
  1589. * If our average think time is larger than the remaining time
  1590. * slice, then don't idle. This avoids overrunning the allotted
  1591. * time slice.
  1592. */
  1593. if (sample_valid(cic->ttime.ttime_samples) &&
  1594. (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
  1595. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  1596. cic->ttime.ttime_mean);
  1597. return;
  1598. }
  1599. /* There are other queues in the group, don't do group idle */
  1600. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1601. return;
  1602. cfq_mark_cfqq_wait_request(cfqq);
  1603. if (group_idle)
  1604. sl = cfqd->cfq_group_idle;
  1605. else
  1606. sl = cfqd->cfq_slice_idle;
  1607. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1608. cfq_blkiocg_update_set_idle_time_stats(cfqg_to_blkg(cfqq->cfqg),
  1609. &blkio_policy_cfq);
  1610. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1611. group_idle ? 1 : 0);
  1612. }
  1613. /*
  1614. * Move request from internal lists to the request queue dispatch list.
  1615. */
  1616. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1617. {
  1618. struct cfq_data *cfqd = q->elevator->elevator_data;
  1619. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1620. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1621. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1622. cfq_remove_request(rq);
  1623. cfqq->dispatched++;
  1624. (RQ_CFQG(rq))->dispatched++;
  1625. elv_dispatch_sort(q, rq);
  1626. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1627. cfqq->nr_sectors += blk_rq_sectors(rq);
  1628. cfq_blkiocg_update_dispatch_stats(cfqg_to_blkg(cfqq->cfqg),
  1629. &blkio_policy_cfq, blk_rq_bytes(rq),
  1630. rq_data_dir(rq), rq_is_sync(rq));
  1631. }
  1632. /*
  1633. * return expired entry, or NULL to just start from scratch in rbtree
  1634. */
  1635. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1636. {
  1637. struct request *rq = NULL;
  1638. if (cfq_cfqq_fifo_expire(cfqq))
  1639. return NULL;
  1640. cfq_mark_cfqq_fifo_expire(cfqq);
  1641. if (list_empty(&cfqq->fifo))
  1642. return NULL;
  1643. rq = rq_entry_fifo(cfqq->fifo.next);
  1644. if (time_before(jiffies, rq_fifo_time(rq)))
  1645. rq = NULL;
  1646. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1647. return rq;
  1648. }
  1649. static inline int
  1650. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1651. {
  1652. const int base_rq = cfqd->cfq_slice_async_rq;
  1653. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1654. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  1655. }
  1656. /*
  1657. * Must be called with the queue_lock held.
  1658. */
  1659. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1660. {
  1661. int process_refs, io_refs;
  1662. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1663. process_refs = cfqq->ref - io_refs;
  1664. BUG_ON(process_refs < 0);
  1665. return process_refs;
  1666. }
  1667. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1668. {
  1669. int process_refs, new_process_refs;
  1670. struct cfq_queue *__cfqq;
  1671. /*
  1672. * If there are no process references on the new_cfqq, then it is
  1673. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1674. * chain may have dropped their last reference (not just their
  1675. * last process reference).
  1676. */
  1677. if (!cfqq_process_refs(new_cfqq))
  1678. return;
  1679. /* Avoid a circular list and skip interim queue merges */
  1680. while ((__cfqq = new_cfqq->new_cfqq)) {
  1681. if (__cfqq == cfqq)
  1682. return;
  1683. new_cfqq = __cfqq;
  1684. }
  1685. process_refs = cfqq_process_refs(cfqq);
  1686. new_process_refs = cfqq_process_refs(new_cfqq);
  1687. /*
  1688. * If the process for the cfqq has gone away, there is no
  1689. * sense in merging the queues.
  1690. */
  1691. if (process_refs == 0 || new_process_refs == 0)
  1692. return;
  1693. /*
  1694. * Merge in the direction of the lesser amount of work.
  1695. */
  1696. if (new_process_refs >= process_refs) {
  1697. cfqq->new_cfqq = new_cfqq;
  1698. new_cfqq->ref += process_refs;
  1699. } else {
  1700. new_cfqq->new_cfqq = cfqq;
  1701. cfqq->ref += new_process_refs;
  1702. }
  1703. }
  1704. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1705. struct cfq_group *cfqg, enum wl_prio_t prio)
  1706. {
  1707. struct cfq_queue *queue;
  1708. int i;
  1709. bool key_valid = false;
  1710. unsigned long lowest_key = 0;
  1711. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1712. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1713. /* select the one with lowest rb_key */
  1714. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1715. if (queue &&
  1716. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1717. lowest_key = queue->rb_key;
  1718. cur_best = i;
  1719. key_valid = true;
  1720. }
  1721. }
  1722. return cur_best;
  1723. }
  1724. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1725. {
  1726. unsigned slice;
  1727. unsigned count;
  1728. struct cfq_rb_root *st;
  1729. unsigned group_slice;
  1730. enum wl_prio_t original_prio = cfqd->serving_prio;
  1731. /* Choose next priority. RT > BE > IDLE */
  1732. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1733. cfqd->serving_prio = RT_WORKLOAD;
  1734. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1735. cfqd->serving_prio = BE_WORKLOAD;
  1736. else {
  1737. cfqd->serving_prio = IDLE_WORKLOAD;
  1738. cfqd->workload_expires = jiffies + 1;
  1739. return;
  1740. }
  1741. if (original_prio != cfqd->serving_prio)
  1742. goto new_workload;
  1743. /*
  1744. * For RT and BE, we have to choose also the type
  1745. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1746. * expiration time
  1747. */
  1748. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1749. count = st->count;
  1750. /*
  1751. * check workload expiration, and that we still have other queues ready
  1752. */
  1753. if (count && !time_after(jiffies, cfqd->workload_expires))
  1754. return;
  1755. new_workload:
  1756. /* otherwise select new workload type */
  1757. cfqd->serving_type =
  1758. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1759. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1760. count = st->count;
  1761. /*
  1762. * the workload slice is computed as a fraction of target latency
  1763. * proportional to the number of queues in that workload, over
  1764. * all the queues in the same priority class
  1765. */
  1766. group_slice = cfq_group_slice(cfqd, cfqg);
  1767. slice = group_slice * count /
  1768. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1769. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1770. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1771. unsigned int tmp;
  1772. /*
  1773. * Async queues are currently system wide. Just taking
  1774. * proportion of queues with-in same group will lead to higher
  1775. * async ratio system wide as generally root group is going
  1776. * to have higher weight. A more accurate thing would be to
  1777. * calculate system wide asnc/sync ratio.
  1778. */
  1779. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1780. tmp = tmp/cfqd->busy_queues;
  1781. slice = min_t(unsigned, slice, tmp);
  1782. /* async workload slice is scaled down according to
  1783. * the sync/async slice ratio. */
  1784. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1785. } else
  1786. /* sync workload slice is at least 2 * cfq_slice_idle */
  1787. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1788. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1789. cfq_log(cfqd, "workload slice:%d", slice);
  1790. cfqd->workload_expires = jiffies + slice;
  1791. }
  1792. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1793. {
  1794. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1795. struct cfq_group *cfqg;
  1796. if (RB_EMPTY_ROOT(&st->rb))
  1797. return NULL;
  1798. cfqg = cfq_rb_first_group(st);
  1799. update_min_vdisktime(st);
  1800. return cfqg;
  1801. }
  1802. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1803. {
  1804. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1805. cfqd->serving_group = cfqg;
  1806. /* Restore the workload type data */
  1807. if (cfqg->saved_workload_slice) {
  1808. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1809. cfqd->serving_type = cfqg->saved_workload;
  1810. cfqd->serving_prio = cfqg->saved_serving_prio;
  1811. } else
  1812. cfqd->workload_expires = jiffies - 1;
  1813. choose_service_tree(cfqd, cfqg);
  1814. }
  1815. /*
  1816. * Select a queue for service. If we have a current active queue,
  1817. * check whether to continue servicing it, or retrieve and set a new one.
  1818. */
  1819. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1820. {
  1821. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1822. cfqq = cfqd->active_queue;
  1823. if (!cfqq)
  1824. goto new_queue;
  1825. if (!cfqd->rq_queued)
  1826. return NULL;
  1827. /*
  1828. * We were waiting for group to get backlogged. Expire the queue
  1829. */
  1830. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1831. goto expire;
  1832. /*
  1833. * The active queue has run out of time, expire it and select new.
  1834. */
  1835. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1836. /*
  1837. * If slice had not expired at the completion of last request
  1838. * we might not have turned on wait_busy flag. Don't expire
  1839. * the queue yet. Allow the group to get backlogged.
  1840. *
  1841. * The very fact that we have used the slice, that means we
  1842. * have been idling all along on this queue and it should be
  1843. * ok to wait for this request to complete.
  1844. */
  1845. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1846. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1847. cfqq = NULL;
  1848. goto keep_queue;
  1849. } else
  1850. goto check_group_idle;
  1851. }
  1852. /*
  1853. * The active queue has requests and isn't expired, allow it to
  1854. * dispatch.
  1855. */
  1856. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1857. goto keep_queue;
  1858. /*
  1859. * If another queue has a request waiting within our mean seek
  1860. * distance, let it run. The expire code will check for close
  1861. * cooperators and put the close queue at the front of the service
  1862. * tree. If possible, merge the expiring queue with the new cfqq.
  1863. */
  1864. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1865. if (new_cfqq) {
  1866. if (!cfqq->new_cfqq)
  1867. cfq_setup_merge(cfqq, new_cfqq);
  1868. goto expire;
  1869. }
  1870. /*
  1871. * No requests pending. If the active queue still has requests in
  1872. * flight or is idling for a new request, allow either of these
  1873. * conditions to happen (or time out) before selecting a new queue.
  1874. */
  1875. if (timer_pending(&cfqd->idle_slice_timer)) {
  1876. cfqq = NULL;
  1877. goto keep_queue;
  1878. }
  1879. /*
  1880. * This is a deep seek queue, but the device is much faster than
  1881. * the queue can deliver, don't idle
  1882. **/
  1883. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  1884. (cfq_cfqq_slice_new(cfqq) ||
  1885. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  1886. cfq_clear_cfqq_deep(cfqq);
  1887. cfq_clear_cfqq_idle_window(cfqq);
  1888. }
  1889. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1890. cfqq = NULL;
  1891. goto keep_queue;
  1892. }
  1893. /*
  1894. * If group idle is enabled and there are requests dispatched from
  1895. * this group, wait for requests to complete.
  1896. */
  1897. check_group_idle:
  1898. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
  1899. cfqq->cfqg->dispatched &&
  1900. !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
  1901. cfqq = NULL;
  1902. goto keep_queue;
  1903. }
  1904. expire:
  1905. cfq_slice_expired(cfqd, 0);
  1906. new_queue:
  1907. /*
  1908. * Current queue expired. Check if we have to switch to a new
  1909. * service tree
  1910. */
  1911. if (!new_cfqq)
  1912. cfq_choose_cfqg(cfqd);
  1913. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1914. keep_queue:
  1915. return cfqq;
  1916. }
  1917. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1918. {
  1919. int dispatched = 0;
  1920. while (cfqq->next_rq) {
  1921. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1922. dispatched++;
  1923. }
  1924. BUG_ON(!list_empty(&cfqq->fifo));
  1925. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1926. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1927. return dispatched;
  1928. }
  1929. /*
  1930. * Drain our current requests. Used for barriers and when switching
  1931. * io schedulers on-the-fly.
  1932. */
  1933. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1934. {
  1935. struct cfq_queue *cfqq;
  1936. int dispatched = 0;
  1937. /* Expire the timeslice of the current active queue first */
  1938. cfq_slice_expired(cfqd, 0);
  1939. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1940. __cfq_set_active_queue(cfqd, cfqq);
  1941. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1942. }
  1943. BUG_ON(cfqd->busy_queues);
  1944. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1945. return dispatched;
  1946. }
  1947. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  1948. struct cfq_queue *cfqq)
  1949. {
  1950. /* the queue hasn't finished any request, can't estimate */
  1951. if (cfq_cfqq_slice_new(cfqq))
  1952. return true;
  1953. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  1954. cfqq->slice_end))
  1955. return true;
  1956. return false;
  1957. }
  1958. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1959. {
  1960. unsigned int max_dispatch;
  1961. /*
  1962. * Drain async requests before we start sync IO
  1963. */
  1964. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  1965. return false;
  1966. /*
  1967. * If this is an async queue and we have sync IO in flight, let it wait
  1968. */
  1969. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  1970. return false;
  1971. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  1972. if (cfq_class_idle(cfqq))
  1973. max_dispatch = 1;
  1974. /*
  1975. * Does this cfqq already have too much IO in flight?
  1976. */
  1977. if (cfqq->dispatched >= max_dispatch) {
  1978. bool promote_sync = false;
  1979. /*
  1980. * idle queue must always only have a single IO in flight
  1981. */
  1982. if (cfq_class_idle(cfqq))
  1983. return false;
  1984. /*
  1985. * If there is only one sync queue
  1986. * we can ignore async queue here and give the sync
  1987. * queue no dispatch limit. The reason is a sync queue can
  1988. * preempt async queue, limiting the sync queue doesn't make
  1989. * sense. This is useful for aiostress test.
  1990. */
  1991. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  1992. promote_sync = true;
  1993. /*
  1994. * We have other queues, don't allow more IO from this one
  1995. */
  1996. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  1997. !promote_sync)
  1998. return false;
  1999. /*
  2000. * Sole queue user, no limit
  2001. */
  2002. if (cfqd->busy_queues == 1 || promote_sync)
  2003. max_dispatch = -1;
  2004. else
  2005. /*
  2006. * Normally we start throttling cfqq when cfq_quantum/2
  2007. * requests have been dispatched. But we can drive
  2008. * deeper queue depths at the beginning of slice
  2009. * subjected to upper limit of cfq_quantum.
  2010. * */
  2011. max_dispatch = cfqd->cfq_quantum;
  2012. }
  2013. /*
  2014. * Async queues must wait a bit before being allowed dispatch.
  2015. * We also ramp up the dispatch depth gradually for async IO,
  2016. * based on the last sync IO we serviced
  2017. */
  2018. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2019. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2020. unsigned int depth;
  2021. depth = last_sync / cfqd->cfq_slice[1];
  2022. if (!depth && !cfqq->dispatched)
  2023. depth = 1;
  2024. if (depth < max_dispatch)
  2025. max_dispatch = depth;
  2026. }
  2027. /*
  2028. * If we're below the current max, allow a dispatch
  2029. */
  2030. return cfqq->dispatched < max_dispatch;
  2031. }
  2032. /*
  2033. * Dispatch a request from cfqq, moving them to the request queue
  2034. * dispatch list.
  2035. */
  2036. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2037. {
  2038. struct request *rq;
  2039. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2040. if (!cfq_may_dispatch(cfqd, cfqq))
  2041. return false;
  2042. /*
  2043. * follow expired path, else get first next available
  2044. */
  2045. rq = cfq_check_fifo(cfqq);
  2046. if (!rq)
  2047. rq = cfqq->next_rq;
  2048. /*
  2049. * insert request into driver dispatch list
  2050. */
  2051. cfq_dispatch_insert(cfqd->queue, rq);
  2052. if (!cfqd->active_cic) {
  2053. struct cfq_io_cq *cic = RQ_CIC(rq);
  2054. atomic_long_inc(&cic->icq.ioc->refcount);
  2055. cfqd->active_cic = cic;
  2056. }
  2057. return true;
  2058. }
  2059. /*
  2060. * Find the cfqq that we need to service and move a request from that to the
  2061. * dispatch list
  2062. */
  2063. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2064. {
  2065. struct cfq_data *cfqd = q->elevator->elevator_data;
  2066. struct cfq_queue *cfqq;
  2067. if (!cfqd->busy_queues)
  2068. return 0;
  2069. if (unlikely(force))
  2070. return cfq_forced_dispatch(cfqd);
  2071. cfqq = cfq_select_queue(cfqd);
  2072. if (!cfqq)
  2073. return 0;
  2074. /*
  2075. * Dispatch a request from this cfqq, if it is allowed
  2076. */
  2077. if (!cfq_dispatch_request(cfqd, cfqq))
  2078. return 0;
  2079. cfqq->slice_dispatch++;
  2080. cfq_clear_cfqq_must_dispatch(cfqq);
  2081. /*
  2082. * expire an async queue immediately if it has used up its slice. idle
  2083. * queue always expire after 1 dispatch round.
  2084. */
  2085. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2086. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2087. cfq_class_idle(cfqq))) {
  2088. cfqq->slice_end = jiffies + 1;
  2089. cfq_slice_expired(cfqd, 0);
  2090. }
  2091. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2092. return 1;
  2093. }
  2094. /*
  2095. * task holds one reference to the queue, dropped when task exits. each rq
  2096. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2097. *
  2098. * Each cfq queue took a reference on the parent group. Drop it now.
  2099. * queue lock must be held here.
  2100. */
  2101. static void cfq_put_queue(struct cfq_queue *cfqq)
  2102. {
  2103. struct cfq_data *cfqd = cfqq->cfqd;
  2104. struct cfq_group *cfqg;
  2105. BUG_ON(cfqq->ref <= 0);
  2106. cfqq->ref--;
  2107. if (cfqq->ref)
  2108. return;
  2109. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2110. BUG_ON(rb_first(&cfqq->sort_list));
  2111. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2112. cfqg = cfqq->cfqg;
  2113. if (unlikely(cfqd->active_queue == cfqq)) {
  2114. __cfq_slice_expired(cfqd, cfqq, 0);
  2115. cfq_schedule_dispatch(cfqd);
  2116. }
  2117. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2118. kmem_cache_free(cfq_pool, cfqq);
  2119. blkg_put(cfqg_to_blkg(cfqg));
  2120. }
  2121. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2122. {
  2123. struct cfq_queue *__cfqq, *next;
  2124. /*
  2125. * If this queue was scheduled to merge with another queue, be
  2126. * sure to drop the reference taken on that queue (and others in
  2127. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2128. */
  2129. __cfqq = cfqq->new_cfqq;
  2130. while (__cfqq) {
  2131. if (__cfqq == cfqq) {
  2132. WARN(1, "cfqq->new_cfqq loop detected\n");
  2133. break;
  2134. }
  2135. next = __cfqq->new_cfqq;
  2136. cfq_put_queue(__cfqq);
  2137. __cfqq = next;
  2138. }
  2139. }
  2140. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2141. {
  2142. if (unlikely(cfqq == cfqd->active_queue)) {
  2143. __cfq_slice_expired(cfqd, cfqq, 0);
  2144. cfq_schedule_dispatch(cfqd);
  2145. }
  2146. cfq_put_cooperator(cfqq);
  2147. cfq_put_queue(cfqq);
  2148. }
  2149. static void cfq_init_icq(struct io_cq *icq)
  2150. {
  2151. struct cfq_io_cq *cic = icq_to_cic(icq);
  2152. cic->ttime.last_end_request = jiffies;
  2153. }
  2154. static void cfq_exit_icq(struct io_cq *icq)
  2155. {
  2156. struct cfq_io_cq *cic = icq_to_cic(icq);
  2157. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2158. if (cic->cfqq[BLK_RW_ASYNC]) {
  2159. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2160. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2161. }
  2162. if (cic->cfqq[BLK_RW_SYNC]) {
  2163. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2164. cic->cfqq[BLK_RW_SYNC] = NULL;
  2165. }
  2166. }
  2167. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2168. {
  2169. struct task_struct *tsk = current;
  2170. int ioprio_class;
  2171. if (!cfq_cfqq_prio_changed(cfqq))
  2172. return;
  2173. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2174. switch (ioprio_class) {
  2175. default:
  2176. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2177. case IOPRIO_CLASS_NONE:
  2178. /*
  2179. * no prio set, inherit CPU scheduling settings
  2180. */
  2181. cfqq->ioprio = task_nice_ioprio(tsk);
  2182. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2183. break;
  2184. case IOPRIO_CLASS_RT:
  2185. cfqq->ioprio = task_ioprio(ioc);
  2186. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2187. break;
  2188. case IOPRIO_CLASS_BE:
  2189. cfqq->ioprio = task_ioprio(ioc);
  2190. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2191. break;
  2192. case IOPRIO_CLASS_IDLE:
  2193. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2194. cfqq->ioprio = 7;
  2195. cfq_clear_cfqq_idle_window(cfqq);
  2196. break;
  2197. }
  2198. /*
  2199. * keep track of original prio settings in case we have to temporarily
  2200. * elevate the priority of this queue
  2201. */
  2202. cfqq->org_ioprio = cfqq->ioprio;
  2203. cfq_clear_cfqq_prio_changed(cfqq);
  2204. }
  2205. static void changed_ioprio(struct cfq_io_cq *cic, struct bio *bio)
  2206. {
  2207. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2208. struct cfq_queue *cfqq;
  2209. if (unlikely(!cfqd))
  2210. return;
  2211. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2212. if (cfqq) {
  2213. struct cfq_queue *new_cfqq;
  2214. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
  2215. bio, GFP_ATOMIC);
  2216. if (new_cfqq) {
  2217. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2218. cfq_put_queue(cfqq);
  2219. }
  2220. }
  2221. cfqq = cic->cfqq[BLK_RW_SYNC];
  2222. if (cfqq)
  2223. cfq_mark_cfqq_prio_changed(cfqq);
  2224. }
  2225. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2226. pid_t pid, bool is_sync)
  2227. {
  2228. RB_CLEAR_NODE(&cfqq->rb_node);
  2229. RB_CLEAR_NODE(&cfqq->p_node);
  2230. INIT_LIST_HEAD(&cfqq->fifo);
  2231. cfqq->ref = 0;
  2232. cfqq->cfqd = cfqd;
  2233. cfq_mark_cfqq_prio_changed(cfqq);
  2234. if (is_sync) {
  2235. if (!cfq_class_idle(cfqq))
  2236. cfq_mark_cfqq_idle_window(cfqq);
  2237. cfq_mark_cfqq_sync(cfqq);
  2238. }
  2239. cfqq->pid = pid;
  2240. }
  2241. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2242. static void changed_cgroup(struct cfq_io_cq *cic)
  2243. {
  2244. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2245. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2246. struct request_queue *q;
  2247. if (unlikely(!cfqd))
  2248. return;
  2249. q = cfqd->queue;
  2250. if (sync_cfqq) {
  2251. /*
  2252. * Drop reference to sync queue. A new sync queue will be
  2253. * assigned in new group upon arrival of a fresh request.
  2254. */
  2255. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2256. cic_set_cfqq(cic, NULL, 1);
  2257. cfq_put_queue(sync_cfqq);
  2258. }
  2259. }
  2260. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2261. static struct cfq_queue *
  2262. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2263. struct io_context *ioc, struct bio *bio, gfp_t gfp_mask)
  2264. {
  2265. struct blkio_cgroup *blkcg;
  2266. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2267. struct cfq_io_cq *cic;
  2268. struct cfq_group *cfqg;
  2269. retry:
  2270. rcu_read_lock();
  2271. blkcg = bio_blkio_cgroup(bio);
  2272. cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
  2273. cic = cfq_cic_lookup(cfqd, ioc);
  2274. /* cic always exists here */
  2275. cfqq = cic_to_cfqq(cic, is_sync);
  2276. /*
  2277. * Always try a new alloc if we fell back to the OOM cfqq
  2278. * originally, since it should just be a temporary situation.
  2279. */
  2280. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2281. cfqq = NULL;
  2282. if (new_cfqq) {
  2283. cfqq = new_cfqq;
  2284. new_cfqq = NULL;
  2285. } else if (gfp_mask & __GFP_WAIT) {
  2286. rcu_read_unlock();
  2287. spin_unlock_irq(cfqd->queue->queue_lock);
  2288. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2289. gfp_mask | __GFP_ZERO,
  2290. cfqd->queue->node);
  2291. spin_lock_irq(cfqd->queue->queue_lock);
  2292. if (new_cfqq)
  2293. goto retry;
  2294. } else {
  2295. cfqq = kmem_cache_alloc_node(cfq_pool,
  2296. gfp_mask | __GFP_ZERO,
  2297. cfqd->queue->node);
  2298. }
  2299. if (cfqq) {
  2300. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2301. cfq_init_prio_data(cfqq, ioc);
  2302. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2303. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2304. } else
  2305. cfqq = &cfqd->oom_cfqq;
  2306. }
  2307. if (new_cfqq)
  2308. kmem_cache_free(cfq_pool, new_cfqq);
  2309. rcu_read_unlock();
  2310. return cfqq;
  2311. }
  2312. static struct cfq_queue **
  2313. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2314. {
  2315. switch (ioprio_class) {
  2316. case IOPRIO_CLASS_RT:
  2317. return &cfqd->async_cfqq[0][ioprio];
  2318. case IOPRIO_CLASS_BE:
  2319. return &cfqd->async_cfqq[1][ioprio];
  2320. case IOPRIO_CLASS_IDLE:
  2321. return &cfqd->async_idle_cfqq;
  2322. default:
  2323. BUG();
  2324. }
  2325. }
  2326. static struct cfq_queue *
  2327. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2328. struct bio *bio, gfp_t gfp_mask)
  2329. {
  2330. const int ioprio = task_ioprio(ioc);
  2331. const int ioprio_class = task_ioprio_class(ioc);
  2332. struct cfq_queue **async_cfqq = NULL;
  2333. struct cfq_queue *cfqq = NULL;
  2334. if (!is_sync) {
  2335. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2336. cfqq = *async_cfqq;
  2337. }
  2338. if (!cfqq)
  2339. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, bio, gfp_mask);
  2340. /*
  2341. * pin the queue now that it's allocated, scheduler exit will prune it
  2342. */
  2343. if (!is_sync && !(*async_cfqq)) {
  2344. cfqq->ref++;
  2345. *async_cfqq = cfqq;
  2346. }
  2347. cfqq->ref++;
  2348. return cfqq;
  2349. }
  2350. static void
  2351. __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
  2352. {
  2353. unsigned long elapsed = jiffies - ttime->last_end_request;
  2354. elapsed = min(elapsed, 2UL * slice_idle);
  2355. ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
  2356. ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
  2357. ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
  2358. }
  2359. static void
  2360. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2361. struct cfq_io_cq *cic)
  2362. {
  2363. if (cfq_cfqq_sync(cfqq)) {
  2364. __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
  2365. __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
  2366. cfqd->cfq_slice_idle);
  2367. }
  2368. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2369. __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
  2370. #endif
  2371. }
  2372. static void
  2373. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2374. struct request *rq)
  2375. {
  2376. sector_t sdist = 0;
  2377. sector_t n_sec = blk_rq_sectors(rq);
  2378. if (cfqq->last_request_pos) {
  2379. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2380. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2381. else
  2382. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2383. }
  2384. cfqq->seek_history <<= 1;
  2385. if (blk_queue_nonrot(cfqd->queue))
  2386. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2387. else
  2388. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2389. }
  2390. /*
  2391. * Disable idle window if the process thinks too long or seeks so much that
  2392. * it doesn't matter
  2393. */
  2394. static void
  2395. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2396. struct cfq_io_cq *cic)
  2397. {
  2398. int old_idle, enable_idle;
  2399. /*
  2400. * Don't idle for async or idle io prio class
  2401. */
  2402. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2403. return;
  2404. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2405. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2406. cfq_mark_cfqq_deep(cfqq);
  2407. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2408. enable_idle = 0;
  2409. else if (!atomic_read(&cic->icq.ioc->active_ref) ||
  2410. !cfqd->cfq_slice_idle ||
  2411. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2412. enable_idle = 0;
  2413. else if (sample_valid(cic->ttime.ttime_samples)) {
  2414. if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
  2415. enable_idle = 0;
  2416. else
  2417. enable_idle = 1;
  2418. }
  2419. if (old_idle != enable_idle) {
  2420. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2421. if (enable_idle)
  2422. cfq_mark_cfqq_idle_window(cfqq);
  2423. else
  2424. cfq_clear_cfqq_idle_window(cfqq);
  2425. }
  2426. }
  2427. /*
  2428. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2429. * no or if we aren't sure, a 1 will cause a preempt.
  2430. */
  2431. static bool
  2432. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2433. struct request *rq)
  2434. {
  2435. struct cfq_queue *cfqq;
  2436. cfqq = cfqd->active_queue;
  2437. if (!cfqq)
  2438. return false;
  2439. if (cfq_class_idle(new_cfqq))
  2440. return false;
  2441. if (cfq_class_idle(cfqq))
  2442. return true;
  2443. /*
  2444. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2445. */
  2446. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2447. return false;
  2448. /*
  2449. * if the new request is sync, but the currently running queue is
  2450. * not, let the sync request have priority.
  2451. */
  2452. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2453. return true;
  2454. if (new_cfqq->cfqg != cfqq->cfqg)
  2455. return false;
  2456. if (cfq_slice_used(cfqq))
  2457. return true;
  2458. /* Allow preemption only if we are idling on sync-noidle tree */
  2459. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2460. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2461. new_cfqq->service_tree->count == 2 &&
  2462. RB_EMPTY_ROOT(&cfqq->sort_list))
  2463. return true;
  2464. /*
  2465. * So both queues are sync. Let the new request get disk time if
  2466. * it's a metadata request and the current queue is doing regular IO.
  2467. */
  2468. if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
  2469. return true;
  2470. /*
  2471. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2472. */
  2473. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2474. return true;
  2475. /* An idle queue should not be idle now for some reason */
  2476. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2477. return true;
  2478. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2479. return false;
  2480. /*
  2481. * if this request is as-good as one we would expect from the
  2482. * current cfqq, let it preempt
  2483. */
  2484. if (cfq_rq_close(cfqd, cfqq, rq))
  2485. return true;
  2486. return false;
  2487. }
  2488. /*
  2489. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2490. * let it have half of its nominal slice.
  2491. */
  2492. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2493. {
  2494. enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
  2495. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2496. cfq_slice_expired(cfqd, 1);
  2497. /*
  2498. * workload type is changed, don't save slice, otherwise preempt
  2499. * doesn't happen
  2500. */
  2501. if (old_type != cfqq_type(cfqq))
  2502. cfqq->cfqg->saved_workload_slice = 0;
  2503. /*
  2504. * Put the new queue at the front of the of the current list,
  2505. * so we know that it will be selected next.
  2506. */
  2507. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2508. cfq_service_tree_add(cfqd, cfqq, 1);
  2509. cfqq->slice_end = 0;
  2510. cfq_mark_cfqq_slice_new(cfqq);
  2511. }
  2512. /*
  2513. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2514. * something we should do about it
  2515. */
  2516. static void
  2517. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2518. struct request *rq)
  2519. {
  2520. struct cfq_io_cq *cic = RQ_CIC(rq);
  2521. cfqd->rq_queued++;
  2522. if (rq->cmd_flags & REQ_PRIO)
  2523. cfqq->prio_pending++;
  2524. cfq_update_io_thinktime(cfqd, cfqq, cic);
  2525. cfq_update_io_seektime(cfqd, cfqq, rq);
  2526. cfq_update_idle_window(cfqd, cfqq, cic);
  2527. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2528. if (cfqq == cfqd->active_queue) {
  2529. /*
  2530. * Remember that we saw a request from this process, but
  2531. * don't start queuing just yet. Otherwise we risk seeing lots
  2532. * of tiny requests, because we disrupt the normal plugging
  2533. * and merging. If the request is already larger than a single
  2534. * page, let it rip immediately. For that case we assume that
  2535. * merging is already done. Ditto for a busy system that
  2536. * has other work pending, don't risk delaying until the
  2537. * idle timer unplug to continue working.
  2538. */
  2539. if (cfq_cfqq_wait_request(cfqq)) {
  2540. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2541. cfqd->busy_queues > 1) {
  2542. cfq_del_timer(cfqd, cfqq);
  2543. cfq_clear_cfqq_wait_request(cfqq);
  2544. __blk_run_queue(cfqd->queue);
  2545. } else {
  2546. cfq_blkiocg_update_idle_time_stats(
  2547. cfqg_to_blkg(cfqq->cfqg),
  2548. &blkio_policy_cfq);
  2549. cfq_mark_cfqq_must_dispatch(cfqq);
  2550. }
  2551. }
  2552. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2553. /*
  2554. * not the active queue - expire current slice if it is
  2555. * idle and has expired it's mean thinktime or this new queue
  2556. * has some old slice time left and is of higher priority or
  2557. * this new queue is RT and the current one is BE
  2558. */
  2559. cfq_preempt_queue(cfqd, cfqq);
  2560. __blk_run_queue(cfqd->queue);
  2561. }
  2562. }
  2563. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2564. {
  2565. struct cfq_data *cfqd = q->elevator->elevator_data;
  2566. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2567. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2568. cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
  2569. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2570. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2571. cfq_add_rq_rb(rq);
  2572. cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  2573. &blkio_policy_cfq,
  2574. cfqg_to_blkg(cfqd->serving_group),
  2575. rq_data_dir(rq), rq_is_sync(rq));
  2576. cfq_rq_enqueued(cfqd, cfqq, rq);
  2577. }
  2578. /*
  2579. * Update hw_tag based on peak queue depth over 50 samples under
  2580. * sufficient load.
  2581. */
  2582. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2583. {
  2584. struct cfq_queue *cfqq = cfqd->active_queue;
  2585. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2586. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2587. if (cfqd->hw_tag == 1)
  2588. return;
  2589. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2590. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2591. return;
  2592. /*
  2593. * If active queue hasn't enough requests and can idle, cfq might not
  2594. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2595. * case
  2596. */
  2597. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2598. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2599. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2600. return;
  2601. if (cfqd->hw_tag_samples++ < 50)
  2602. return;
  2603. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2604. cfqd->hw_tag = 1;
  2605. else
  2606. cfqd->hw_tag = 0;
  2607. }
  2608. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2609. {
  2610. struct cfq_io_cq *cic = cfqd->active_cic;
  2611. /* If the queue already has requests, don't wait */
  2612. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2613. return false;
  2614. /* If there are other queues in the group, don't wait */
  2615. if (cfqq->cfqg->nr_cfqq > 1)
  2616. return false;
  2617. /* the only queue in the group, but think time is big */
  2618. if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
  2619. return false;
  2620. if (cfq_slice_used(cfqq))
  2621. return true;
  2622. /* if slice left is less than think time, wait busy */
  2623. if (cic && sample_valid(cic->ttime.ttime_samples)
  2624. && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
  2625. return true;
  2626. /*
  2627. * If think times is less than a jiffy than ttime_mean=0 and above
  2628. * will not be true. It might happen that slice has not expired yet
  2629. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2630. * case where think time is less than a jiffy, mark the queue wait
  2631. * busy if only 1 jiffy is left in the slice.
  2632. */
  2633. if (cfqq->slice_end - jiffies == 1)
  2634. return true;
  2635. return false;
  2636. }
  2637. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2638. {
  2639. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2640. struct cfq_data *cfqd = cfqq->cfqd;
  2641. const int sync = rq_is_sync(rq);
  2642. unsigned long now;
  2643. now = jiffies;
  2644. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2645. !!(rq->cmd_flags & REQ_NOIDLE));
  2646. cfq_update_hw_tag(cfqd);
  2647. WARN_ON(!cfqd->rq_in_driver);
  2648. WARN_ON(!cfqq->dispatched);
  2649. cfqd->rq_in_driver--;
  2650. cfqq->dispatched--;
  2651. (RQ_CFQG(rq))->dispatched--;
  2652. cfq_blkiocg_update_completion_stats(cfqg_to_blkg(cfqq->cfqg),
  2653. &blkio_policy_cfq, rq_start_time_ns(rq),
  2654. rq_io_start_time_ns(rq), rq_data_dir(rq),
  2655. rq_is_sync(rq));
  2656. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2657. if (sync) {
  2658. struct cfq_rb_root *service_tree;
  2659. RQ_CIC(rq)->ttime.last_end_request = now;
  2660. if (cfq_cfqq_on_rr(cfqq))
  2661. service_tree = cfqq->service_tree;
  2662. else
  2663. service_tree = service_tree_for(cfqq->cfqg,
  2664. cfqq_prio(cfqq), cfqq_type(cfqq));
  2665. service_tree->ttime.last_end_request = now;
  2666. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2667. cfqd->last_delayed_sync = now;
  2668. }
  2669. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2670. cfqq->cfqg->ttime.last_end_request = now;
  2671. #endif
  2672. /*
  2673. * If this is the active queue, check if it needs to be expired,
  2674. * or if we want to idle in case it has no pending requests.
  2675. */
  2676. if (cfqd->active_queue == cfqq) {
  2677. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2678. if (cfq_cfqq_slice_new(cfqq)) {
  2679. cfq_set_prio_slice(cfqd, cfqq);
  2680. cfq_clear_cfqq_slice_new(cfqq);
  2681. }
  2682. /*
  2683. * Should we wait for next request to come in before we expire
  2684. * the queue.
  2685. */
  2686. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2687. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2688. if (!cfqd->cfq_slice_idle)
  2689. extend_sl = cfqd->cfq_group_idle;
  2690. cfqq->slice_end = jiffies + extend_sl;
  2691. cfq_mark_cfqq_wait_busy(cfqq);
  2692. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2693. }
  2694. /*
  2695. * Idling is not enabled on:
  2696. * - expired queues
  2697. * - idle-priority queues
  2698. * - async queues
  2699. * - queues with still some requests queued
  2700. * - when there is a close cooperator
  2701. */
  2702. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2703. cfq_slice_expired(cfqd, 1);
  2704. else if (sync && cfqq_empty &&
  2705. !cfq_close_cooperator(cfqd, cfqq)) {
  2706. cfq_arm_slice_timer(cfqd);
  2707. }
  2708. }
  2709. if (!cfqd->rq_in_driver)
  2710. cfq_schedule_dispatch(cfqd);
  2711. }
  2712. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2713. {
  2714. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2715. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2716. return ELV_MQUEUE_MUST;
  2717. }
  2718. return ELV_MQUEUE_MAY;
  2719. }
  2720. static int cfq_may_queue(struct request_queue *q, int rw)
  2721. {
  2722. struct cfq_data *cfqd = q->elevator->elevator_data;
  2723. struct task_struct *tsk = current;
  2724. struct cfq_io_cq *cic;
  2725. struct cfq_queue *cfqq;
  2726. /*
  2727. * don't force setup of a queue from here, as a call to may_queue
  2728. * does not necessarily imply that a request actually will be queued.
  2729. * so just lookup a possibly existing queue, or return 'may queue'
  2730. * if that fails
  2731. */
  2732. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2733. if (!cic)
  2734. return ELV_MQUEUE_MAY;
  2735. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2736. if (cfqq) {
  2737. cfq_init_prio_data(cfqq, cic->icq.ioc);
  2738. return __cfq_may_queue(cfqq);
  2739. }
  2740. return ELV_MQUEUE_MAY;
  2741. }
  2742. /*
  2743. * queue lock held here
  2744. */
  2745. static void cfq_put_request(struct request *rq)
  2746. {
  2747. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2748. if (cfqq) {
  2749. const int rw = rq_data_dir(rq);
  2750. BUG_ON(!cfqq->allocated[rw]);
  2751. cfqq->allocated[rw]--;
  2752. /* Put down rq reference on cfqg */
  2753. blkg_put(cfqg_to_blkg(RQ_CFQG(rq)));
  2754. rq->elv.priv[0] = NULL;
  2755. rq->elv.priv[1] = NULL;
  2756. cfq_put_queue(cfqq);
  2757. }
  2758. }
  2759. static struct cfq_queue *
  2760. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
  2761. struct cfq_queue *cfqq)
  2762. {
  2763. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2764. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2765. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2766. cfq_put_queue(cfqq);
  2767. return cic_to_cfqq(cic, 1);
  2768. }
  2769. /*
  2770. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2771. * was the last process referring to said cfqq.
  2772. */
  2773. static struct cfq_queue *
  2774. split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
  2775. {
  2776. if (cfqq_process_refs(cfqq) == 1) {
  2777. cfqq->pid = current->pid;
  2778. cfq_clear_cfqq_coop(cfqq);
  2779. cfq_clear_cfqq_split_coop(cfqq);
  2780. return cfqq;
  2781. }
  2782. cic_set_cfqq(cic, NULL, 1);
  2783. cfq_put_cooperator(cfqq);
  2784. cfq_put_queue(cfqq);
  2785. return NULL;
  2786. }
  2787. /*
  2788. * Allocate cfq data structures associated with this request.
  2789. */
  2790. static int
  2791. cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
  2792. gfp_t gfp_mask)
  2793. {
  2794. struct cfq_data *cfqd = q->elevator->elevator_data;
  2795. struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
  2796. const int rw = rq_data_dir(rq);
  2797. const bool is_sync = rq_is_sync(rq);
  2798. struct cfq_queue *cfqq;
  2799. unsigned int changed;
  2800. might_sleep_if(gfp_mask & __GFP_WAIT);
  2801. spin_lock_irq(q->queue_lock);
  2802. /* handle changed notifications */
  2803. changed = icq_get_changed(&cic->icq);
  2804. if (unlikely(changed & ICQ_IOPRIO_CHANGED))
  2805. changed_ioprio(cic, bio);
  2806. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2807. if (unlikely(changed & ICQ_CGROUP_CHANGED))
  2808. changed_cgroup(cic);
  2809. #endif
  2810. new_queue:
  2811. cfqq = cic_to_cfqq(cic, is_sync);
  2812. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2813. cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, bio, gfp_mask);
  2814. cic_set_cfqq(cic, cfqq, is_sync);
  2815. } else {
  2816. /*
  2817. * If the queue was seeky for too long, break it apart.
  2818. */
  2819. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  2820. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  2821. cfqq = split_cfqq(cic, cfqq);
  2822. if (!cfqq)
  2823. goto new_queue;
  2824. }
  2825. /*
  2826. * Check to see if this queue is scheduled to merge with
  2827. * another, closely cooperating queue. The merging of
  2828. * queues happens here as it must be done in process context.
  2829. * The reference on new_cfqq was taken in merge_cfqqs.
  2830. */
  2831. if (cfqq->new_cfqq)
  2832. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  2833. }
  2834. cfqq->allocated[rw]++;
  2835. cfqq->ref++;
  2836. blkg_get(cfqg_to_blkg(cfqq->cfqg));
  2837. rq->elv.priv[0] = cfqq;
  2838. rq->elv.priv[1] = cfqq->cfqg;
  2839. spin_unlock_irq(q->queue_lock);
  2840. return 0;
  2841. }
  2842. static void cfq_kick_queue(struct work_struct *work)
  2843. {
  2844. struct cfq_data *cfqd =
  2845. container_of(work, struct cfq_data, unplug_work);
  2846. struct request_queue *q = cfqd->queue;
  2847. spin_lock_irq(q->queue_lock);
  2848. __blk_run_queue(cfqd->queue);
  2849. spin_unlock_irq(q->queue_lock);
  2850. }
  2851. /*
  2852. * Timer running if the active_queue is currently idling inside its time slice
  2853. */
  2854. static void cfq_idle_slice_timer(unsigned long data)
  2855. {
  2856. struct cfq_data *cfqd = (struct cfq_data *) data;
  2857. struct cfq_queue *cfqq;
  2858. unsigned long flags;
  2859. int timed_out = 1;
  2860. cfq_log(cfqd, "idle timer fired");
  2861. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2862. cfqq = cfqd->active_queue;
  2863. if (cfqq) {
  2864. timed_out = 0;
  2865. /*
  2866. * We saw a request before the queue expired, let it through
  2867. */
  2868. if (cfq_cfqq_must_dispatch(cfqq))
  2869. goto out_kick;
  2870. /*
  2871. * expired
  2872. */
  2873. if (cfq_slice_used(cfqq))
  2874. goto expire;
  2875. /*
  2876. * only expire and reinvoke request handler, if there are
  2877. * other queues with pending requests
  2878. */
  2879. if (!cfqd->busy_queues)
  2880. goto out_cont;
  2881. /*
  2882. * not expired and it has a request pending, let it dispatch
  2883. */
  2884. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2885. goto out_kick;
  2886. /*
  2887. * Queue depth flag is reset only when the idle didn't succeed
  2888. */
  2889. cfq_clear_cfqq_deep(cfqq);
  2890. }
  2891. expire:
  2892. cfq_slice_expired(cfqd, timed_out);
  2893. out_kick:
  2894. cfq_schedule_dispatch(cfqd);
  2895. out_cont:
  2896. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2897. }
  2898. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  2899. {
  2900. del_timer_sync(&cfqd->idle_slice_timer);
  2901. cancel_work_sync(&cfqd->unplug_work);
  2902. }
  2903. static void cfq_put_async_queues(struct cfq_data *cfqd)
  2904. {
  2905. int i;
  2906. for (i = 0; i < IOPRIO_BE_NR; i++) {
  2907. if (cfqd->async_cfqq[0][i])
  2908. cfq_put_queue(cfqd->async_cfqq[0][i]);
  2909. if (cfqd->async_cfqq[1][i])
  2910. cfq_put_queue(cfqd->async_cfqq[1][i]);
  2911. }
  2912. if (cfqd->async_idle_cfqq)
  2913. cfq_put_queue(cfqd->async_idle_cfqq);
  2914. }
  2915. static void cfq_exit_queue(struct elevator_queue *e)
  2916. {
  2917. struct cfq_data *cfqd = e->elevator_data;
  2918. struct request_queue *q = cfqd->queue;
  2919. cfq_shutdown_timer_wq(cfqd);
  2920. spin_lock_irq(q->queue_lock);
  2921. if (cfqd->active_queue)
  2922. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  2923. cfq_put_async_queues(cfqd);
  2924. spin_unlock_irq(q->queue_lock);
  2925. cfq_shutdown_timer_wq(cfqd);
  2926. #ifndef CONFIG_CFQ_GROUP_IOSCHED
  2927. kfree(cfqd->root_group);
  2928. #endif
  2929. update_root_blkg_pd(q, BLKIO_POLICY_PROP);
  2930. kfree(cfqd);
  2931. }
  2932. static int cfq_init_queue(struct request_queue *q)
  2933. {
  2934. struct cfq_data *cfqd;
  2935. struct blkio_group *blkg __maybe_unused;
  2936. int i;
  2937. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  2938. if (!cfqd)
  2939. return -ENOMEM;
  2940. cfqd->queue = q;
  2941. q->elevator->elevator_data = cfqd;
  2942. /* Init root service tree */
  2943. cfqd->grp_service_tree = CFQ_RB_ROOT;
  2944. /* Init root group and prefer root group over other groups by default */
  2945. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2946. rcu_read_lock();
  2947. spin_lock_irq(q->queue_lock);
  2948. blkg = blkg_lookup_create(&blkio_root_cgroup, q, BLKIO_POLICY_PROP,
  2949. true);
  2950. if (!IS_ERR(blkg))
  2951. cfqd->root_group = blkg_to_cfqg(blkg);
  2952. spin_unlock_irq(q->queue_lock);
  2953. rcu_read_unlock();
  2954. #else
  2955. cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
  2956. GFP_KERNEL, cfqd->queue->node);
  2957. if (cfqd->root_group)
  2958. cfq_init_cfqg_base(cfqd->root_group);
  2959. #endif
  2960. if (!cfqd->root_group) {
  2961. kfree(cfqd);
  2962. return -ENOMEM;
  2963. }
  2964. cfqd->root_group->weight = 2*BLKIO_WEIGHT_DEFAULT;
  2965. /*
  2966. * Not strictly needed (since RB_ROOT just clears the node and we
  2967. * zeroed cfqd on alloc), but better be safe in case someone decides
  2968. * to add magic to the rb code
  2969. */
  2970. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  2971. cfqd->prio_trees[i] = RB_ROOT;
  2972. /*
  2973. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  2974. * Grab a permanent reference to it, so that the normal code flow
  2975. * will not attempt to free it. oom_cfqq is linked to root_group
  2976. * but shouldn't hold a reference as it'll never be unlinked. Lose
  2977. * the reference from linking right away.
  2978. */
  2979. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  2980. cfqd->oom_cfqq.ref++;
  2981. spin_lock_irq(q->queue_lock);
  2982. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
  2983. blkg_put(cfqg_to_blkg(cfqd->root_group));
  2984. spin_unlock_irq(q->queue_lock);
  2985. init_timer(&cfqd->idle_slice_timer);
  2986. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  2987. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  2988. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  2989. cfqd->cfq_quantum = cfq_quantum;
  2990. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  2991. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  2992. cfqd->cfq_back_max = cfq_back_max;
  2993. cfqd->cfq_back_penalty = cfq_back_penalty;
  2994. cfqd->cfq_slice[0] = cfq_slice_async;
  2995. cfqd->cfq_slice[1] = cfq_slice_sync;
  2996. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  2997. cfqd->cfq_slice_idle = cfq_slice_idle;
  2998. cfqd->cfq_group_idle = cfq_group_idle;
  2999. cfqd->cfq_latency = 1;
  3000. cfqd->hw_tag = -1;
  3001. /*
  3002. * we optimistically start assuming sync ops weren't delayed in last
  3003. * second, in order to have larger depth for async operations.
  3004. */
  3005. cfqd->last_delayed_sync = jiffies - HZ;
  3006. return 0;
  3007. }
  3008. /*
  3009. * sysfs parts below -->
  3010. */
  3011. static ssize_t
  3012. cfq_var_show(unsigned int var, char *page)
  3013. {
  3014. return sprintf(page, "%d\n", var);
  3015. }
  3016. static ssize_t
  3017. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3018. {
  3019. char *p = (char *) page;
  3020. *var = simple_strtoul(p, &p, 10);
  3021. return count;
  3022. }
  3023. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3024. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3025. { \
  3026. struct cfq_data *cfqd = e->elevator_data; \
  3027. unsigned int __data = __VAR; \
  3028. if (__CONV) \
  3029. __data = jiffies_to_msecs(__data); \
  3030. return cfq_var_show(__data, (page)); \
  3031. }
  3032. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3033. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3034. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3035. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3036. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3037. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3038. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3039. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3040. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3041. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3042. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3043. #undef SHOW_FUNCTION
  3044. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3045. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3046. { \
  3047. struct cfq_data *cfqd = e->elevator_data; \
  3048. unsigned int __data; \
  3049. int ret = cfq_var_store(&__data, (page), count); \
  3050. if (__data < (MIN)) \
  3051. __data = (MIN); \
  3052. else if (__data > (MAX)) \
  3053. __data = (MAX); \
  3054. if (__CONV) \
  3055. *(__PTR) = msecs_to_jiffies(__data); \
  3056. else \
  3057. *(__PTR) = __data; \
  3058. return ret; \
  3059. }
  3060. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3061. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3062. UINT_MAX, 1);
  3063. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3064. UINT_MAX, 1);
  3065. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3066. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3067. UINT_MAX, 0);
  3068. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3069. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3070. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3071. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3072. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3073. UINT_MAX, 0);
  3074. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3075. #undef STORE_FUNCTION
  3076. #define CFQ_ATTR(name) \
  3077. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3078. static struct elv_fs_entry cfq_attrs[] = {
  3079. CFQ_ATTR(quantum),
  3080. CFQ_ATTR(fifo_expire_sync),
  3081. CFQ_ATTR(fifo_expire_async),
  3082. CFQ_ATTR(back_seek_max),
  3083. CFQ_ATTR(back_seek_penalty),
  3084. CFQ_ATTR(slice_sync),
  3085. CFQ_ATTR(slice_async),
  3086. CFQ_ATTR(slice_async_rq),
  3087. CFQ_ATTR(slice_idle),
  3088. CFQ_ATTR(group_idle),
  3089. CFQ_ATTR(low_latency),
  3090. __ATTR_NULL
  3091. };
  3092. static struct elevator_type iosched_cfq = {
  3093. .ops = {
  3094. .elevator_merge_fn = cfq_merge,
  3095. .elevator_merged_fn = cfq_merged_request,
  3096. .elevator_merge_req_fn = cfq_merged_requests,
  3097. .elevator_allow_merge_fn = cfq_allow_merge,
  3098. .elevator_bio_merged_fn = cfq_bio_merged,
  3099. .elevator_dispatch_fn = cfq_dispatch_requests,
  3100. .elevator_add_req_fn = cfq_insert_request,
  3101. .elevator_activate_req_fn = cfq_activate_request,
  3102. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3103. .elevator_completed_req_fn = cfq_completed_request,
  3104. .elevator_former_req_fn = elv_rb_former_request,
  3105. .elevator_latter_req_fn = elv_rb_latter_request,
  3106. .elevator_init_icq_fn = cfq_init_icq,
  3107. .elevator_exit_icq_fn = cfq_exit_icq,
  3108. .elevator_set_req_fn = cfq_set_request,
  3109. .elevator_put_req_fn = cfq_put_request,
  3110. .elevator_may_queue_fn = cfq_may_queue,
  3111. .elevator_init_fn = cfq_init_queue,
  3112. .elevator_exit_fn = cfq_exit_queue,
  3113. },
  3114. .icq_size = sizeof(struct cfq_io_cq),
  3115. .icq_align = __alignof__(struct cfq_io_cq),
  3116. .elevator_attrs = cfq_attrs,
  3117. .elevator_name = "cfq",
  3118. .elevator_owner = THIS_MODULE,
  3119. };
  3120. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3121. static struct blkio_policy_type blkio_policy_cfq = {
  3122. .ops = {
  3123. .blkio_init_group_fn = cfq_init_blkio_group,
  3124. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3125. },
  3126. .plid = BLKIO_POLICY_PROP,
  3127. .pdata_size = sizeof(struct cfq_group),
  3128. };
  3129. #endif
  3130. static int __init cfq_init(void)
  3131. {
  3132. int ret;
  3133. /*
  3134. * could be 0 on HZ < 1000 setups
  3135. */
  3136. if (!cfq_slice_async)
  3137. cfq_slice_async = 1;
  3138. if (!cfq_slice_idle)
  3139. cfq_slice_idle = 1;
  3140. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3141. if (!cfq_group_idle)
  3142. cfq_group_idle = 1;
  3143. #else
  3144. cfq_group_idle = 0;
  3145. #endif
  3146. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3147. if (!cfq_pool)
  3148. return -ENOMEM;
  3149. ret = elv_register(&iosched_cfq);
  3150. if (ret) {
  3151. kmem_cache_destroy(cfq_pool);
  3152. return ret;
  3153. }
  3154. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3155. blkio_policy_register(&blkio_policy_cfq);
  3156. #endif
  3157. return 0;
  3158. }
  3159. static void __exit cfq_exit(void)
  3160. {
  3161. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3162. blkio_policy_unregister(&blkio_policy_cfq);
  3163. #endif
  3164. elv_unregister(&iosched_cfq);
  3165. kmem_cache_destroy(cfq_pool);
  3166. }
  3167. module_init(cfq_init);
  3168. module_exit(cfq_exit);
  3169. MODULE_AUTHOR("Jens Axboe");
  3170. MODULE_LICENSE("GPL");
  3171. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");