intel_dp.c 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include <drm/drmP.h>
  31. #include <drm/drm_crtc.h>
  32. #include <drm/drm_crtc_helper.h>
  33. #include <drm/drm_edid.h>
  34. #include "intel_drv.h"
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. /**
  39. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  40. * @intel_dp: DP struct
  41. *
  42. * If a CPU or PCH DP output is attached to an eDP panel, this function
  43. * will return true, and false otherwise.
  44. */
  45. static bool is_edp(struct intel_dp *intel_dp)
  46. {
  47. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  48. return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
  49. }
  50. /**
  51. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  52. * @intel_dp: DP struct
  53. *
  54. * Returns true if the given DP struct corresponds to a PCH DP port attached
  55. * to an eDP panel, false otherwise. Helpful for determining whether we
  56. * may need FDI resources for a given DP output or not.
  57. */
  58. static bool is_pch_edp(struct intel_dp *intel_dp)
  59. {
  60. return intel_dp->is_pch_edp;
  61. }
  62. /**
  63. * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
  64. * @intel_dp: DP struct
  65. *
  66. * Returns true if the given DP struct corresponds to a CPU eDP port.
  67. */
  68. static bool is_cpu_edp(struct intel_dp *intel_dp)
  69. {
  70. return is_edp(intel_dp) && !is_pch_edp(intel_dp);
  71. }
  72. static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
  73. {
  74. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  75. return intel_dig_port->base.base.dev;
  76. }
  77. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  78. {
  79. return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  80. }
  81. /**
  82. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  83. * @encoder: DRM encoder
  84. *
  85. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  86. * by intel_display.c.
  87. */
  88. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  89. {
  90. struct intel_dp *intel_dp;
  91. if (!encoder)
  92. return false;
  93. intel_dp = enc_to_intel_dp(encoder);
  94. return is_pch_edp(intel_dp);
  95. }
  96. static void intel_dp_link_down(struct intel_dp *intel_dp);
  97. void
  98. intel_edp_link_config(struct intel_encoder *intel_encoder,
  99. int *lane_num, int *link_bw)
  100. {
  101. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  102. *lane_num = intel_dp->lane_count;
  103. *link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
  104. }
  105. int
  106. intel_edp_target_clock(struct intel_encoder *intel_encoder,
  107. struct drm_display_mode *mode)
  108. {
  109. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  110. struct intel_connector *intel_connector = intel_dp->attached_connector;
  111. if (intel_connector->panel.fixed_mode)
  112. return intel_connector->panel.fixed_mode->clock;
  113. else
  114. return mode->clock;
  115. }
  116. static int
  117. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  118. {
  119. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  120. switch (max_link_bw) {
  121. case DP_LINK_BW_1_62:
  122. case DP_LINK_BW_2_7:
  123. break;
  124. default:
  125. max_link_bw = DP_LINK_BW_1_62;
  126. break;
  127. }
  128. return max_link_bw;
  129. }
  130. /*
  131. * The units on the numbers in the next two are... bizarre. Examples will
  132. * make it clearer; this one parallels an example in the eDP spec.
  133. *
  134. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  135. *
  136. * 270000 * 1 * 8 / 10 == 216000
  137. *
  138. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  139. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  140. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  141. * 119000. At 18bpp that's 2142000 kilobits per second.
  142. *
  143. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  144. * get the result in decakilobits instead of kilobits.
  145. */
  146. static int
  147. intel_dp_link_required(int pixel_clock, int bpp)
  148. {
  149. return (pixel_clock * bpp + 9) / 10;
  150. }
  151. static int
  152. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  153. {
  154. return (max_link_clock * max_lanes * 8) / 10;
  155. }
  156. static bool
  157. intel_dp_adjust_dithering(struct intel_dp *intel_dp,
  158. struct drm_display_mode *mode,
  159. bool adjust_mode)
  160. {
  161. int max_link_clock =
  162. drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
  163. int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
  164. int max_rate, mode_rate;
  165. mode_rate = intel_dp_link_required(mode->clock, 24);
  166. max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
  167. if (mode_rate > max_rate) {
  168. mode_rate = intel_dp_link_required(mode->clock, 18);
  169. if (mode_rate > max_rate)
  170. return false;
  171. if (adjust_mode)
  172. mode->private_flags
  173. |= INTEL_MODE_DP_FORCE_6BPC;
  174. return true;
  175. }
  176. return true;
  177. }
  178. static int
  179. intel_dp_mode_valid(struct drm_connector *connector,
  180. struct drm_display_mode *mode)
  181. {
  182. struct intel_dp *intel_dp = intel_attached_dp(connector);
  183. struct intel_connector *intel_connector = to_intel_connector(connector);
  184. struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
  185. if (is_edp(intel_dp) && fixed_mode) {
  186. if (mode->hdisplay > fixed_mode->hdisplay)
  187. return MODE_PANEL;
  188. if (mode->vdisplay > fixed_mode->vdisplay)
  189. return MODE_PANEL;
  190. }
  191. if (!intel_dp_adjust_dithering(intel_dp, mode, false))
  192. return MODE_CLOCK_HIGH;
  193. if (mode->clock < 10000)
  194. return MODE_CLOCK_LOW;
  195. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  196. return MODE_H_ILLEGAL;
  197. return MODE_OK;
  198. }
  199. static uint32_t
  200. pack_aux(uint8_t *src, int src_bytes)
  201. {
  202. int i;
  203. uint32_t v = 0;
  204. if (src_bytes > 4)
  205. src_bytes = 4;
  206. for (i = 0; i < src_bytes; i++)
  207. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  208. return v;
  209. }
  210. static void
  211. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  212. {
  213. int i;
  214. if (dst_bytes > 4)
  215. dst_bytes = 4;
  216. for (i = 0; i < dst_bytes; i++)
  217. dst[i] = src >> ((3-i) * 8);
  218. }
  219. /* hrawclock is 1/4 the FSB frequency */
  220. static int
  221. intel_hrawclk(struct drm_device *dev)
  222. {
  223. struct drm_i915_private *dev_priv = dev->dev_private;
  224. uint32_t clkcfg;
  225. /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  226. if (IS_VALLEYVIEW(dev))
  227. return 200;
  228. clkcfg = I915_READ(CLKCFG);
  229. switch (clkcfg & CLKCFG_FSB_MASK) {
  230. case CLKCFG_FSB_400:
  231. return 100;
  232. case CLKCFG_FSB_533:
  233. return 133;
  234. case CLKCFG_FSB_667:
  235. return 166;
  236. case CLKCFG_FSB_800:
  237. return 200;
  238. case CLKCFG_FSB_1067:
  239. return 266;
  240. case CLKCFG_FSB_1333:
  241. return 333;
  242. /* these two are just a guess; one of them might be right */
  243. case CLKCFG_FSB_1600:
  244. case CLKCFG_FSB_1600_ALT:
  245. return 400;
  246. default:
  247. return 133;
  248. }
  249. }
  250. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  251. {
  252. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  253. struct drm_i915_private *dev_priv = dev->dev_private;
  254. return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
  255. }
  256. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  257. {
  258. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  259. struct drm_i915_private *dev_priv = dev->dev_private;
  260. return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
  261. }
  262. static void
  263. intel_dp_check_edp(struct intel_dp *intel_dp)
  264. {
  265. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  266. struct drm_i915_private *dev_priv = dev->dev_private;
  267. if (!is_edp(intel_dp))
  268. return;
  269. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  270. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  271. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  272. I915_READ(PCH_PP_STATUS),
  273. I915_READ(PCH_PP_CONTROL));
  274. }
  275. }
  276. static uint32_t
  277. intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
  278. {
  279. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  280. struct drm_device *dev = intel_dig_port->base.base.dev;
  281. struct drm_i915_private *dev_priv = dev->dev_private;
  282. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  283. uint32_t status;
  284. bool done;
  285. #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  286. if (has_aux_irq)
  287. done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
  288. msecs_to_jiffies(10));
  289. else
  290. done = wait_for_atomic(C, 10) == 0;
  291. if (!done)
  292. DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
  293. has_aux_irq);
  294. #undef C
  295. return status;
  296. }
  297. static int
  298. intel_dp_aux_ch(struct intel_dp *intel_dp,
  299. uint8_t *send, int send_bytes,
  300. uint8_t *recv, int recv_size)
  301. {
  302. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  303. struct drm_device *dev = intel_dig_port->base.base.dev;
  304. struct drm_i915_private *dev_priv = dev->dev_private;
  305. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  306. uint32_t ch_data = ch_ctl + 4;
  307. int i, ret, recv_bytes;
  308. uint32_t status;
  309. uint32_t aux_clock_divider;
  310. int try, precharge;
  311. bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
  312. /* dp aux is extremely sensitive to irq latency, hence request the
  313. * lowest possible wakeup latency and so prevent the cpu from going into
  314. * deep sleep states.
  315. */
  316. pm_qos_update_request(&dev_priv->pm_qos, 0);
  317. intel_dp_check_edp(intel_dp);
  318. /* The clock divider is based off the hrawclk,
  319. * and would like to run at 2MHz. So, take the
  320. * hrawclk value and divide by 2 and use that
  321. *
  322. * Note that PCH attached eDP panels should use a 125MHz input
  323. * clock divider.
  324. */
  325. if (is_cpu_edp(intel_dp)) {
  326. if (HAS_DDI(dev))
  327. aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
  328. else if (IS_VALLEYVIEW(dev))
  329. aux_clock_divider = 100;
  330. else if (IS_GEN6(dev) || IS_GEN7(dev))
  331. aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
  332. else
  333. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  334. } else if (HAS_PCH_SPLIT(dev))
  335. aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  336. else
  337. aux_clock_divider = intel_hrawclk(dev) / 2;
  338. if (IS_GEN6(dev))
  339. precharge = 3;
  340. else
  341. precharge = 5;
  342. /* Try to wait for any previous AUX channel activity */
  343. for (try = 0; try < 3; try++) {
  344. status = I915_READ_NOTRACE(ch_ctl);
  345. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  346. break;
  347. msleep(1);
  348. }
  349. if (try == 3) {
  350. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  351. I915_READ(ch_ctl));
  352. ret = -EBUSY;
  353. goto out;
  354. }
  355. /* Must try at least 3 times according to DP spec */
  356. for (try = 0; try < 5; try++) {
  357. /* Load the send data into the aux channel data registers */
  358. for (i = 0; i < send_bytes; i += 4)
  359. I915_WRITE(ch_data + i,
  360. pack_aux(send + i, send_bytes - i));
  361. /* Send the command and wait for it to complete */
  362. I915_WRITE(ch_ctl,
  363. DP_AUX_CH_CTL_SEND_BUSY |
  364. (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
  365. DP_AUX_CH_CTL_TIME_OUT_400us |
  366. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  367. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  368. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  369. DP_AUX_CH_CTL_DONE |
  370. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  371. DP_AUX_CH_CTL_RECEIVE_ERROR);
  372. status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
  373. /* Clear done status and any errors */
  374. I915_WRITE(ch_ctl,
  375. status |
  376. DP_AUX_CH_CTL_DONE |
  377. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  378. DP_AUX_CH_CTL_RECEIVE_ERROR);
  379. if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
  380. DP_AUX_CH_CTL_RECEIVE_ERROR))
  381. continue;
  382. if (status & DP_AUX_CH_CTL_DONE)
  383. break;
  384. }
  385. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  386. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  387. ret = -EBUSY;
  388. goto out;
  389. }
  390. /* Check for timeout or receive error.
  391. * Timeouts occur when the sink is not connected
  392. */
  393. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  394. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  395. ret = -EIO;
  396. goto out;
  397. }
  398. /* Timeouts occur when the device isn't connected, so they're
  399. * "normal" -- don't fill the kernel log with these */
  400. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  401. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  402. ret = -ETIMEDOUT;
  403. goto out;
  404. }
  405. /* Unload any bytes sent back from the other side */
  406. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  407. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  408. if (recv_bytes > recv_size)
  409. recv_bytes = recv_size;
  410. for (i = 0; i < recv_bytes; i += 4)
  411. unpack_aux(I915_READ(ch_data + i),
  412. recv + i, recv_bytes - i);
  413. ret = recv_bytes;
  414. out:
  415. pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
  416. return ret;
  417. }
  418. /* Write data to the aux channel in native mode */
  419. static int
  420. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  421. uint16_t address, uint8_t *send, int send_bytes)
  422. {
  423. int ret;
  424. uint8_t msg[20];
  425. int msg_bytes;
  426. uint8_t ack;
  427. intel_dp_check_edp(intel_dp);
  428. if (send_bytes > 16)
  429. return -1;
  430. msg[0] = AUX_NATIVE_WRITE << 4;
  431. msg[1] = address >> 8;
  432. msg[2] = address & 0xff;
  433. msg[3] = send_bytes - 1;
  434. memcpy(&msg[4], send, send_bytes);
  435. msg_bytes = send_bytes + 4;
  436. for (;;) {
  437. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  438. if (ret < 0)
  439. return ret;
  440. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  441. break;
  442. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  443. udelay(100);
  444. else
  445. return -EIO;
  446. }
  447. return send_bytes;
  448. }
  449. /* Write a single byte to the aux channel in native mode */
  450. static int
  451. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  452. uint16_t address, uint8_t byte)
  453. {
  454. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  455. }
  456. /* read bytes from a native aux channel */
  457. static int
  458. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  459. uint16_t address, uint8_t *recv, int recv_bytes)
  460. {
  461. uint8_t msg[4];
  462. int msg_bytes;
  463. uint8_t reply[20];
  464. int reply_bytes;
  465. uint8_t ack;
  466. int ret;
  467. intel_dp_check_edp(intel_dp);
  468. msg[0] = AUX_NATIVE_READ << 4;
  469. msg[1] = address >> 8;
  470. msg[2] = address & 0xff;
  471. msg[3] = recv_bytes - 1;
  472. msg_bytes = 4;
  473. reply_bytes = recv_bytes + 1;
  474. for (;;) {
  475. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  476. reply, reply_bytes);
  477. if (ret == 0)
  478. return -EPROTO;
  479. if (ret < 0)
  480. return ret;
  481. ack = reply[0];
  482. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  483. memcpy(recv, reply + 1, ret - 1);
  484. return ret - 1;
  485. }
  486. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  487. udelay(100);
  488. else
  489. return -EIO;
  490. }
  491. }
  492. static int
  493. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  494. uint8_t write_byte, uint8_t *read_byte)
  495. {
  496. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  497. struct intel_dp *intel_dp = container_of(adapter,
  498. struct intel_dp,
  499. adapter);
  500. uint16_t address = algo_data->address;
  501. uint8_t msg[5];
  502. uint8_t reply[2];
  503. unsigned retry;
  504. int msg_bytes;
  505. int reply_bytes;
  506. int ret;
  507. intel_dp_check_edp(intel_dp);
  508. /* Set up the command byte */
  509. if (mode & MODE_I2C_READ)
  510. msg[0] = AUX_I2C_READ << 4;
  511. else
  512. msg[0] = AUX_I2C_WRITE << 4;
  513. if (!(mode & MODE_I2C_STOP))
  514. msg[0] |= AUX_I2C_MOT << 4;
  515. msg[1] = address >> 8;
  516. msg[2] = address;
  517. switch (mode) {
  518. case MODE_I2C_WRITE:
  519. msg[3] = 0;
  520. msg[4] = write_byte;
  521. msg_bytes = 5;
  522. reply_bytes = 1;
  523. break;
  524. case MODE_I2C_READ:
  525. msg[3] = 0;
  526. msg_bytes = 4;
  527. reply_bytes = 2;
  528. break;
  529. default:
  530. msg_bytes = 3;
  531. reply_bytes = 1;
  532. break;
  533. }
  534. for (retry = 0; retry < 5; retry++) {
  535. ret = intel_dp_aux_ch(intel_dp,
  536. msg, msg_bytes,
  537. reply, reply_bytes);
  538. if (ret < 0) {
  539. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  540. return ret;
  541. }
  542. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  543. case AUX_NATIVE_REPLY_ACK:
  544. /* I2C-over-AUX Reply field is only valid
  545. * when paired with AUX ACK.
  546. */
  547. break;
  548. case AUX_NATIVE_REPLY_NACK:
  549. DRM_DEBUG_KMS("aux_ch native nack\n");
  550. return -EREMOTEIO;
  551. case AUX_NATIVE_REPLY_DEFER:
  552. udelay(100);
  553. continue;
  554. default:
  555. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  556. reply[0]);
  557. return -EREMOTEIO;
  558. }
  559. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  560. case AUX_I2C_REPLY_ACK:
  561. if (mode == MODE_I2C_READ) {
  562. *read_byte = reply[1];
  563. }
  564. return reply_bytes - 1;
  565. case AUX_I2C_REPLY_NACK:
  566. DRM_DEBUG_KMS("aux_i2c nack\n");
  567. return -EREMOTEIO;
  568. case AUX_I2C_REPLY_DEFER:
  569. DRM_DEBUG_KMS("aux_i2c defer\n");
  570. udelay(100);
  571. break;
  572. default:
  573. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  574. return -EREMOTEIO;
  575. }
  576. }
  577. DRM_ERROR("too many retries, giving up\n");
  578. return -EREMOTEIO;
  579. }
  580. static int
  581. intel_dp_i2c_init(struct intel_dp *intel_dp,
  582. struct intel_connector *intel_connector, const char *name)
  583. {
  584. int ret;
  585. DRM_DEBUG_KMS("i2c_init %s\n", name);
  586. intel_dp->algo.running = false;
  587. intel_dp->algo.address = 0;
  588. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  589. memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
  590. intel_dp->adapter.owner = THIS_MODULE;
  591. intel_dp->adapter.class = I2C_CLASS_DDC;
  592. strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  593. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  594. intel_dp->adapter.algo_data = &intel_dp->algo;
  595. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  596. ironlake_edp_panel_vdd_on(intel_dp);
  597. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  598. ironlake_edp_panel_vdd_off(intel_dp, false);
  599. return ret;
  600. }
  601. bool
  602. intel_dp_mode_fixup(struct drm_encoder *encoder,
  603. const struct drm_display_mode *mode,
  604. struct drm_display_mode *adjusted_mode)
  605. {
  606. struct drm_device *dev = encoder->dev;
  607. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  608. struct intel_connector *intel_connector = intel_dp->attached_connector;
  609. int lane_count, clock;
  610. int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
  611. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  612. int bpp, mode_rate;
  613. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  614. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  615. intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
  616. adjusted_mode);
  617. intel_pch_panel_fitting(dev,
  618. intel_connector->panel.fitting_mode,
  619. mode, adjusted_mode);
  620. }
  621. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
  622. return false;
  623. DRM_DEBUG_KMS("DP link computation with max lane count %i "
  624. "max bw %02x pixel clock %iKHz\n",
  625. max_lane_count, bws[max_clock], adjusted_mode->clock);
  626. if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
  627. return false;
  628. bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
  629. if (intel_dp->color_range_auto) {
  630. /*
  631. * See:
  632. * CEA-861-E - 5.1 Default Encoding Parameters
  633. * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
  634. */
  635. if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
  636. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  637. else
  638. intel_dp->color_range = 0;
  639. }
  640. if (intel_dp->color_range)
  641. adjusted_mode->private_flags |= INTEL_MODE_LIMITED_COLOR_RANGE;
  642. mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
  643. for (clock = 0; clock <= max_clock; clock++) {
  644. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  645. int link_bw_clock =
  646. drm_dp_bw_code_to_link_rate(bws[clock]);
  647. int link_avail = intel_dp_max_data_rate(link_bw_clock,
  648. lane_count);
  649. if (mode_rate <= link_avail) {
  650. intel_dp->link_bw = bws[clock];
  651. intel_dp->lane_count = lane_count;
  652. adjusted_mode->clock = link_bw_clock;
  653. DRM_DEBUG_KMS("DP link bw %02x lane "
  654. "count %d clock %d bpp %d\n",
  655. intel_dp->link_bw, intel_dp->lane_count,
  656. adjusted_mode->clock, bpp);
  657. DRM_DEBUG_KMS("DP link bw required %i available %i\n",
  658. mode_rate, link_avail);
  659. return true;
  660. }
  661. }
  662. }
  663. return false;
  664. }
  665. void
  666. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  667. struct drm_display_mode *adjusted_mode)
  668. {
  669. struct drm_device *dev = crtc->dev;
  670. struct intel_encoder *intel_encoder;
  671. struct intel_dp *intel_dp;
  672. struct drm_i915_private *dev_priv = dev->dev_private;
  673. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  674. int lane_count = 4;
  675. struct intel_link_m_n m_n;
  676. int pipe = intel_crtc->pipe;
  677. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  678. /*
  679. * Find the lane count in the intel_encoder private
  680. */
  681. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  682. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  683. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  684. intel_encoder->type == INTEL_OUTPUT_EDP)
  685. {
  686. lane_count = intel_dp->lane_count;
  687. break;
  688. }
  689. }
  690. /*
  691. * Compute the GMCH and Link ratios. The '3' here is
  692. * the number of bytes_per_pixel post-LUT, which we always
  693. * set up for 8-bits of R/G/B, or 3 bytes total.
  694. */
  695. intel_link_compute_m_n(intel_crtc->bpp, lane_count,
  696. mode->clock, adjusted_mode->clock, &m_n);
  697. if (HAS_DDI(dev)) {
  698. I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
  699. TU_SIZE(m_n.tu) | m_n.gmch_m);
  700. I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
  701. I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
  702. I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
  703. } else if (HAS_PCH_SPLIT(dev)) {
  704. I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  705. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  706. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  707. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  708. } else if (IS_VALLEYVIEW(dev)) {
  709. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  710. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  711. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  712. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  713. } else {
  714. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  715. TU_SIZE(m_n.tu) | m_n.gmch_m);
  716. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  717. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  718. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  719. }
  720. }
  721. void intel_dp_init_link_config(struct intel_dp *intel_dp)
  722. {
  723. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  724. intel_dp->link_configuration[0] = intel_dp->link_bw;
  725. intel_dp->link_configuration[1] = intel_dp->lane_count;
  726. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  727. /*
  728. * Check for DPCD version > 1.1 and enhanced framing support
  729. */
  730. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  731. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  732. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  733. }
  734. }
  735. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  736. {
  737. struct drm_device *dev = crtc->dev;
  738. struct drm_i915_private *dev_priv = dev->dev_private;
  739. u32 dpa_ctl;
  740. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  741. dpa_ctl = I915_READ(DP_A);
  742. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  743. if (clock < 200000) {
  744. /* For a long time we've carried around a ILK-DevA w/a for the
  745. * 160MHz clock. If we're really unlucky, it's still required.
  746. */
  747. DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
  748. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  749. } else {
  750. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  751. }
  752. I915_WRITE(DP_A, dpa_ctl);
  753. POSTING_READ(DP_A);
  754. udelay(500);
  755. }
  756. static void
  757. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  758. struct drm_display_mode *adjusted_mode)
  759. {
  760. struct drm_device *dev = encoder->dev;
  761. struct drm_i915_private *dev_priv = dev->dev_private;
  762. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  763. struct drm_crtc *crtc = encoder->crtc;
  764. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  765. /*
  766. * There are four kinds of DP registers:
  767. *
  768. * IBX PCH
  769. * SNB CPU
  770. * IVB CPU
  771. * CPT PCH
  772. *
  773. * IBX PCH and CPU are the same for almost everything,
  774. * except that the CPU DP PLL is configured in this
  775. * register
  776. *
  777. * CPT PCH is quite different, having many bits moved
  778. * to the TRANS_DP_CTL register instead. That
  779. * configuration happens (oddly) in ironlake_pch_enable
  780. */
  781. /* Preserve the BIOS-computed detected bit. This is
  782. * supposed to be read-only.
  783. */
  784. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  785. /* Handle DP bits in common between all three register formats */
  786. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  787. switch (intel_dp->lane_count) {
  788. case 1:
  789. intel_dp->DP |= DP_PORT_WIDTH_1;
  790. break;
  791. case 2:
  792. intel_dp->DP |= DP_PORT_WIDTH_2;
  793. break;
  794. case 4:
  795. intel_dp->DP |= DP_PORT_WIDTH_4;
  796. break;
  797. }
  798. if (intel_dp->has_audio) {
  799. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  800. pipe_name(intel_crtc->pipe));
  801. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  802. intel_write_eld(encoder, adjusted_mode);
  803. }
  804. intel_dp_init_link_config(intel_dp);
  805. /* Split out the IBX/CPU vs CPT settings */
  806. if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  807. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  808. intel_dp->DP |= DP_SYNC_HS_HIGH;
  809. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  810. intel_dp->DP |= DP_SYNC_VS_HIGH;
  811. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  812. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  813. intel_dp->DP |= DP_ENHANCED_FRAMING;
  814. intel_dp->DP |= intel_crtc->pipe << 29;
  815. /* don't miss out required setting for eDP */
  816. if (adjusted_mode->clock < 200000)
  817. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  818. else
  819. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  820. } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
  821. if (!HAS_PCH_SPLIT(dev))
  822. intel_dp->DP |= intel_dp->color_range;
  823. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  824. intel_dp->DP |= DP_SYNC_HS_HIGH;
  825. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  826. intel_dp->DP |= DP_SYNC_VS_HIGH;
  827. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  828. if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
  829. intel_dp->DP |= DP_ENHANCED_FRAMING;
  830. if (intel_crtc->pipe == 1)
  831. intel_dp->DP |= DP_PIPEB_SELECT;
  832. if (is_cpu_edp(intel_dp)) {
  833. /* don't miss out required setting for eDP */
  834. if (adjusted_mode->clock < 200000)
  835. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  836. else
  837. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  838. }
  839. } else {
  840. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  841. }
  842. if (is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev))
  843. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  844. }
  845. #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  846. #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  847. #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  848. #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  849. #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  850. #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  851. static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
  852. u32 mask,
  853. u32 value)
  854. {
  855. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  856. struct drm_i915_private *dev_priv = dev->dev_private;
  857. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  858. mask, value,
  859. I915_READ(PCH_PP_STATUS),
  860. I915_READ(PCH_PP_CONTROL));
  861. if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
  862. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  863. I915_READ(PCH_PP_STATUS),
  864. I915_READ(PCH_PP_CONTROL));
  865. }
  866. }
  867. static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
  868. {
  869. DRM_DEBUG_KMS("Wait for panel power on\n");
  870. ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  871. }
  872. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  873. {
  874. DRM_DEBUG_KMS("Wait for panel power off time\n");
  875. ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  876. }
  877. static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
  878. {
  879. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  880. ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  881. }
  882. /* Read the current pp_control value, unlocking the register if it
  883. * is locked
  884. */
  885. static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
  886. {
  887. u32 control = I915_READ(PCH_PP_CONTROL);
  888. control &= ~PANEL_UNLOCK_MASK;
  889. control |= PANEL_UNLOCK_REGS;
  890. return control;
  891. }
  892. void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  893. {
  894. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  895. struct drm_i915_private *dev_priv = dev->dev_private;
  896. u32 pp;
  897. if (!is_edp(intel_dp))
  898. return;
  899. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  900. WARN(intel_dp->want_panel_vdd,
  901. "eDP VDD already requested on\n");
  902. intel_dp->want_panel_vdd = true;
  903. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  904. DRM_DEBUG_KMS("eDP VDD already on\n");
  905. return;
  906. }
  907. if (!ironlake_edp_have_panel_power(intel_dp))
  908. ironlake_wait_panel_power_cycle(intel_dp);
  909. pp = ironlake_get_pp_control(dev_priv);
  910. pp |= EDP_FORCE_VDD;
  911. I915_WRITE(PCH_PP_CONTROL, pp);
  912. POSTING_READ(PCH_PP_CONTROL);
  913. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  914. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  915. /*
  916. * If the panel wasn't on, delay before accessing aux channel
  917. */
  918. if (!ironlake_edp_have_panel_power(intel_dp)) {
  919. DRM_DEBUG_KMS("eDP was not running\n");
  920. msleep(intel_dp->panel_power_up_delay);
  921. }
  922. }
  923. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  924. {
  925. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  926. struct drm_i915_private *dev_priv = dev->dev_private;
  927. u32 pp;
  928. WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
  929. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  930. pp = ironlake_get_pp_control(dev_priv);
  931. pp &= ~EDP_FORCE_VDD;
  932. I915_WRITE(PCH_PP_CONTROL, pp);
  933. POSTING_READ(PCH_PP_CONTROL);
  934. /* Make sure sequencer is idle before allowing subsequent activity */
  935. DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
  936. I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
  937. msleep(intel_dp->panel_power_down_delay);
  938. }
  939. }
  940. static void ironlake_panel_vdd_work(struct work_struct *__work)
  941. {
  942. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  943. struct intel_dp, panel_vdd_work);
  944. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  945. mutex_lock(&dev->mode_config.mutex);
  946. ironlake_panel_vdd_off_sync(intel_dp);
  947. mutex_unlock(&dev->mode_config.mutex);
  948. }
  949. void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  950. {
  951. if (!is_edp(intel_dp))
  952. return;
  953. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  954. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  955. intel_dp->want_panel_vdd = false;
  956. if (sync) {
  957. ironlake_panel_vdd_off_sync(intel_dp);
  958. } else {
  959. /*
  960. * Queue the timer to fire a long
  961. * time from now (relative to the power down delay)
  962. * to keep the panel power up across a sequence of operations
  963. */
  964. schedule_delayed_work(&intel_dp->panel_vdd_work,
  965. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  966. }
  967. }
  968. void ironlake_edp_panel_on(struct intel_dp *intel_dp)
  969. {
  970. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  971. struct drm_i915_private *dev_priv = dev->dev_private;
  972. u32 pp;
  973. if (!is_edp(intel_dp))
  974. return;
  975. DRM_DEBUG_KMS("Turn eDP power on\n");
  976. if (ironlake_edp_have_panel_power(intel_dp)) {
  977. DRM_DEBUG_KMS("eDP power already on\n");
  978. return;
  979. }
  980. ironlake_wait_panel_power_cycle(intel_dp);
  981. pp = ironlake_get_pp_control(dev_priv);
  982. if (IS_GEN5(dev)) {
  983. /* ILK workaround: disable reset around power sequence */
  984. pp &= ~PANEL_POWER_RESET;
  985. I915_WRITE(PCH_PP_CONTROL, pp);
  986. POSTING_READ(PCH_PP_CONTROL);
  987. }
  988. pp |= POWER_TARGET_ON;
  989. if (!IS_GEN5(dev))
  990. pp |= PANEL_POWER_RESET;
  991. I915_WRITE(PCH_PP_CONTROL, pp);
  992. POSTING_READ(PCH_PP_CONTROL);
  993. ironlake_wait_panel_on(intel_dp);
  994. if (IS_GEN5(dev)) {
  995. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  996. I915_WRITE(PCH_PP_CONTROL, pp);
  997. POSTING_READ(PCH_PP_CONTROL);
  998. }
  999. }
  1000. void ironlake_edp_panel_off(struct intel_dp *intel_dp)
  1001. {
  1002. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1003. struct drm_i915_private *dev_priv = dev->dev_private;
  1004. u32 pp;
  1005. if (!is_edp(intel_dp))
  1006. return;
  1007. DRM_DEBUG_KMS("Turn eDP power off\n");
  1008. WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
  1009. pp = ironlake_get_pp_control(dev_priv);
  1010. /* We need to switch off panel power _and_ force vdd, for otherwise some
  1011. * panels get very unhappy and cease to work. */
  1012. pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
  1013. I915_WRITE(PCH_PP_CONTROL, pp);
  1014. POSTING_READ(PCH_PP_CONTROL);
  1015. intel_dp->want_panel_vdd = false;
  1016. ironlake_wait_panel_off(intel_dp);
  1017. }
  1018. void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
  1019. {
  1020. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1021. struct drm_device *dev = intel_dig_port->base.base.dev;
  1022. struct drm_i915_private *dev_priv = dev->dev_private;
  1023. int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
  1024. u32 pp;
  1025. if (!is_edp(intel_dp))
  1026. return;
  1027. DRM_DEBUG_KMS("\n");
  1028. /*
  1029. * If we enable the backlight right away following a panel power
  1030. * on, we may see slight flicker as the panel syncs with the eDP
  1031. * link. So delay a bit to make sure the image is solid before
  1032. * allowing it to appear.
  1033. */
  1034. msleep(intel_dp->backlight_on_delay);
  1035. pp = ironlake_get_pp_control(dev_priv);
  1036. pp |= EDP_BLC_ENABLE;
  1037. I915_WRITE(PCH_PP_CONTROL, pp);
  1038. POSTING_READ(PCH_PP_CONTROL);
  1039. intel_panel_enable_backlight(dev, pipe);
  1040. }
  1041. void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
  1042. {
  1043. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1044. struct drm_i915_private *dev_priv = dev->dev_private;
  1045. u32 pp;
  1046. if (!is_edp(intel_dp))
  1047. return;
  1048. intel_panel_disable_backlight(dev);
  1049. DRM_DEBUG_KMS("\n");
  1050. pp = ironlake_get_pp_control(dev_priv);
  1051. pp &= ~EDP_BLC_ENABLE;
  1052. I915_WRITE(PCH_PP_CONTROL, pp);
  1053. POSTING_READ(PCH_PP_CONTROL);
  1054. msleep(intel_dp->backlight_off_delay);
  1055. }
  1056. static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
  1057. {
  1058. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1059. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1060. struct drm_device *dev = crtc->dev;
  1061. struct drm_i915_private *dev_priv = dev->dev_private;
  1062. u32 dpa_ctl;
  1063. assert_pipe_disabled(dev_priv,
  1064. to_intel_crtc(crtc)->pipe);
  1065. DRM_DEBUG_KMS("\n");
  1066. dpa_ctl = I915_READ(DP_A);
  1067. WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
  1068. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1069. /* We don't adjust intel_dp->DP while tearing down the link, to
  1070. * facilitate link retraining (e.g. after hotplug). Hence clear all
  1071. * enable bits here to ensure that we don't enable too much. */
  1072. intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
  1073. intel_dp->DP |= DP_PLL_ENABLE;
  1074. I915_WRITE(DP_A, intel_dp->DP);
  1075. POSTING_READ(DP_A);
  1076. udelay(200);
  1077. }
  1078. static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
  1079. {
  1080. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1081. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1082. struct drm_device *dev = crtc->dev;
  1083. struct drm_i915_private *dev_priv = dev->dev_private;
  1084. u32 dpa_ctl;
  1085. assert_pipe_disabled(dev_priv,
  1086. to_intel_crtc(crtc)->pipe);
  1087. dpa_ctl = I915_READ(DP_A);
  1088. WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
  1089. "dp pll off, should be on\n");
  1090. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1091. /* We can't rely on the value tracked for the DP register in
  1092. * intel_dp->DP because link_down must not change that (otherwise link
  1093. * re-training will fail. */
  1094. dpa_ctl &= ~DP_PLL_ENABLE;
  1095. I915_WRITE(DP_A, dpa_ctl);
  1096. POSTING_READ(DP_A);
  1097. udelay(200);
  1098. }
  1099. /* If the sink supports it, try to set the power state appropriately */
  1100. void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1101. {
  1102. int ret, i;
  1103. /* Should have a valid DPCD by this point */
  1104. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1105. return;
  1106. if (mode != DRM_MODE_DPMS_ON) {
  1107. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  1108. DP_SET_POWER_D3);
  1109. if (ret != 1)
  1110. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1111. } else {
  1112. /*
  1113. * When turning on, we need to retry for 1ms to give the sink
  1114. * time to wake up.
  1115. */
  1116. for (i = 0; i < 3; i++) {
  1117. ret = intel_dp_aux_native_write_1(intel_dp,
  1118. DP_SET_POWER,
  1119. DP_SET_POWER_D0);
  1120. if (ret == 1)
  1121. break;
  1122. msleep(1);
  1123. }
  1124. }
  1125. }
  1126. static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
  1127. enum pipe *pipe)
  1128. {
  1129. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1130. struct drm_device *dev = encoder->base.dev;
  1131. struct drm_i915_private *dev_priv = dev->dev_private;
  1132. u32 tmp = I915_READ(intel_dp->output_reg);
  1133. if (!(tmp & DP_PORT_EN))
  1134. return false;
  1135. if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  1136. *pipe = PORT_TO_PIPE_CPT(tmp);
  1137. } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
  1138. *pipe = PORT_TO_PIPE(tmp);
  1139. } else {
  1140. u32 trans_sel;
  1141. u32 trans_dp;
  1142. int i;
  1143. switch (intel_dp->output_reg) {
  1144. case PCH_DP_B:
  1145. trans_sel = TRANS_DP_PORT_SEL_B;
  1146. break;
  1147. case PCH_DP_C:
  1148. trans_sel = TRANS_DP_PORT_SEL_C;
  1149. break;
  1150. case PCH_DP_D:
  1151. trans_sel = TRANS_DP_PORT_SEL_D;
  1152. break;
  1153. default:
  1154. return true;
  1155. }
  1156. for_each_pipe(i) {
  1157. trans_dp = I915_READ(TRANS_DP_CTL(i));
  1158. if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
  1159. *pipe = i;
  1160. return true;
  1161. }
  1162. }
  1163. DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
  1164. intel_dp->output_reg);
  1165. }
  1166. return true;
  1167. }
  1168. static void intel_disable_dp(struct intel_encoder *encoder)
  1169. {
  1170. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1171. /* Make sure the panel is off before trying to change the mode. But also
  1172. * ensure that we have vdd while we switch off the panel. */
  1173. ironlake_edp_panel_vdd_on(intel_dp);
  1174. ironlake_edp_backlight_off(intel_dp);
  1175. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1176. ironlake_edp_panel_off(intel_dp);
  1177. /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
  1178. if (!is_cpu_edp(intel_dp))
  1179. intel_dp_link_down(intel_dp);
  1180. }
  1181. static void intel_post_disable_dp(struct intel_encoder *encoder)
  1182. {
  1183. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1184. if (is_cpu_edp(intel_dp)) {
  1185. intel_dp_link_down(intel_dp);
  1186. ironlake_edp_pll_off(intel_dp);
  1187. }
  1188. }
  1189. static void intel_enable_dp(struct intel_encoder *encoder)
  1190. {
  1191. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1192. struct drm_device *dev = encoder->base.dev;
  1193. struct drm_i915_private *dev_priv = dev->dev_private;
  1194. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1195. if (WARN_ON(dp_reg & DP_PORT_EN))
  1196. return;
  1197. ironlake_edp_panel_vdd_on(intel_dp);
  1198. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1199. intel_dp_start_link_train(intel_dp);
  1200. ironlake_edp_panel_on(intel_dp);
  1201. ironlake_edp_panel_vdd_off(intel_dp, true);
  1202. intel_dp_complete_link_train(intel_dp);
  1203. ironlake_edp_backlight_on(intel_dp);
  1204. }
  1205. static void intel_pre_enable_dp(struct intel_encoder *encoder)
  1206. {
  1207. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1208. if (is_cpu_edp(intel_dp))
  1209. ironlake_edp_pll_on(intel_dp);
  1210. }
  1211. /*
  1212. * Native read with retry for link status and receiver capability reads for
  1213. * cases where the sink may still be asleep.
  1214. */
  1215. static bool
  1216. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1217. uint8_t *recv, int recv_bytes)
  1218. {
  1219. int ret, i;
  1220. /*
  1221. * Sinks are *supposed* to come up within 1ms from an off state,
  1222. * but we're also supposed to retry 3 times per the spec.
  1223. */
  1224. for (i = 0; i < 3; i++) {
  1225. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1226. recv_bytes);
  1227. if (ret == recv_bytes)
  1228. return true;
  1229. msleep(1);
  1230. }
  1231. return false;
  1232. }
  1233. /*
  1234. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1235. * link status information
  1236. */
  1237. static bool
  1238. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1239. {
  1240. return intel_dp_aux_native_read_retry(intel_dp,
  1241. DP_LANE0_1_STATUS,
  1242. link_status,
  1243. DP_LINK_STATUS_SIZE);
  1244. }
  1245. #if 0
  1246. static char *voltage_names[] = {
  1247. "0.4V", "0.6V", "0.8V", "1.2V"
  1248. };
  1249. static char *pre_emph_names[] = {
  1250. "0dB", "3.5dB", "6dB", "9.5dB"
  1251. };
  1252. static char *link_train_names[] = {
  1253. "pattern 1", "pattern 2", "idle", "off"
  1254. };
  1255. #endif
  1256. /*
  1257. * These are source-specific values; current Intel hardware supports
  1258. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1259. */
  1260. static uint8_t
  1261. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1262. {
  1263. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1264. if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
  1265. return DP_TRAIN_VOLTAGE_SWING_800;
  1266. else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
  1267. return DP_TRAIN_VOLTAGE_SWING_1200;
  1268. else
  1269. return DP_TRAIN_VOLTAGE_SWING_800;
  1270. }
  1271. static uint8_t
  1272. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1273. {
  1274. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1275. if (HAS_DDI(dev)) {
  1276. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1277. case DP_TRAIN_VOLTAGE_SWING_400:
  1278. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1279. case DP_TRAIN_VOLTAGE_SWING_600:
  1280. return DP_TRAIN_PRE_EMPHASIS_6;
  1281. case DP_TRAIN_VOLTAGE_SWING_800:
  1282. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1283. case DP_TRAIN_VOLTAGE_SWING_1200:
  1284. default:
  1285. return DP_TRAIN_PRE_EMPHASIS_0;
  1286. }
  1287. } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
  1288. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1289. case DP_TRAIN_VOLTAGE_SWING_400:
  1290. return DP_TRAIN_PRE_EMPHASIS_6;
  1291. case DP_TRAIN_VOLTAGE_SWING_600:
  1292. case DP_TRAIN_VOLTAGE_SWING_800:
  1293. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1294. default:
  1295. return DP_TRAIN_PRE_EMPHASIS_0;
  1296. }
  1297. } else {
  1298. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1299. case DP_TRAIN_VOLTAGE_SWING_400:
  1300. return DP_TRAIN_PRE_EMPHASIS_6;
  1301. case DP_TRAIN_VOLTAGE_SWING_600:
  1302. return DP_TRAIN_PRE_EMPHASIS_6;
  1303. case DP_TRAIN_VOLTAGE_SWING_800:
  1304. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1305. case DP_TRAIN_VOLTAGE_SWING_1200:
  1306. default:
  1307. return DP_TRAIN_PRE_EMPHASIS_0;
  1308. }
  1309. }
  1310. }
  1311. static void
  1312. intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1313. {
  1314. uint8_t v = 0;
  1315. uint8_t p = 0;
  1316. int lane;
  1317. uint8_t voltage_max;
  1318. uint8_t preemph_max;
  1319. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1320. uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
  1321. uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
  1322. if (this_v > v)
  1323. v = this_v;
  1324. if (this_p > p)
  1325. p = this_p;
  1326. }
  1327. voltage_max = intel_dp_voltage_max(intel_dp);
  1328. if (v >= voltage_max)
  1329. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  1330. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  1331. if (p >= preemph_max)
  1332. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1333. for (lane = 0; lane < 4; lane++)
  1334. intel_dp->train_set[lane] = v | p;
  1335. }
  1336. static uint32_t
  1337. intel_gen4_signal_levels(uint8_t train_set)
  1338. {
  1339. uint32_t signal_levels = 0;
  1340. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1341. case DP_TRAIN_VOLTAGE_SWING_400:
  1342. default:
  1343. signal_levels |= DP_VOLTAGE_0_4;
  1344. break;
  1345. case DP_TRAIN_VOLTAGE_SWING_600:
  1346. signal_levels |= DP_VOLTAGE_0_6;
  1347. break;
  1348. case DP_TRAIN_VOLTAGE_SWING_800:
  1349. signal_levels |= DP_VOLTAGE_0_8;
  1350. break;
  1351. case DP_TRAIN_VOLTAGE_SWING_1200:
  1352. signal_levels |= DP_VOLTAGE_1_2;
  1353. break;
  1354. }
  1355. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1356. case DP_TRAIN_PRE_EMPHASIS_0:
  1357. default:
  1358. signal_levels |= DP_PRE_EMPHASIS_0;
  1359. break;
  1360. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1361. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1362. break;
  1363. case DP_TRAIN_PRE_EMPHASIS_6:
  1364. signal_levels |= DP_PRE_EMPHASIS_6;
  1365. break;
  1366. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1367. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1368. break;
  1369. }
  1370. return signal_levels;
  1371. }
  1372. /* Gen6's DP voltage swing and pre-emphasis control */
  1373. static uint32_t
  1374. intel_gen6_edp_signal_levels(uint8_t train_set)
  1375. {
  1376. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1377. DP_TRAIN_PRE_EMPHASIS_MASK);
  1378. switch (signal_levels) {
  1379. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1380. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1381. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1382. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1383. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1384. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1385. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1386. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1387. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1388. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1389. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1390. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1391. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1392. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1393. default:
  1394. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1395. "0x%x\n", signal_levels);
  1396. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1397. }
  1398. }
  1399. /* Gen7's DP voltage swing and pre-emphasis control */
  1400. static uint32_t
  1401. intel_gen7_edp_signal_levels(uint8_t train_set)
  1402. {
  1403. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1404. DP_TRAIN_PRE_EMPHASIS_MASK);
  1405. switch (signal_levels) {
  1406. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1407. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  1408. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1409. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  1410. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1411. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  1412. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1413. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  1414. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1415. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  1416. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1417. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  1418. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1419. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  1420. default:
  1421. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1422. "0x%x\n", signal_levels);
  1423. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  1424. }
  1425. }
  1426. /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
  1427. static uint32_t
  1428. intel_hsw_signal_levels(uint8_t train_set)
  1429. {
  1430. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1431. DP_TRAIN_PRE_EMPHASIS_MASK);
  1432. switch (signal_levels) {
  1433. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1434. return DDI_BUF_EMP_400MV_0DB_HSW;
  1435. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1436. return DDI_BUF_EMP_400MV_3_5DB_HSW;
  1437. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1438. return DDI_BUF_EMP_400MV_6DB_HSW;
  1439. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
  1440. return DDI_BUF_EMP_400MV_9_5DB_HSW;
  1441. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1442. return DDI_BUF_EMP_600MV_0DB_HSW;
  1443. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1444. return DDI_BUF_EMP_600MV_3_5DB_HSW;
  1445. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1446. return DDI_BUF_EMP_600MV_6DB_HSW;
  1447. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1448. return DDI_BUF_EMP_800MV_0DB_HSW;
  1449. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1450. return DDI_BUF_EMP_800MV_3_5DB_HSW;
  1451. default:
  1452. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1453. "0x%x\n", signal_levels);
  1454. return DDI_BUF_EMP_400MV_0DB_HSW;
  1455. }
  1456. }
  1457. /* Properly updates "DP" with the correct signal levels. */
  1458. static void
  1459. intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
  1460. {
  1461. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1462. struct drm_device *dev = intel_dig_port->base.base.dev;
  1463. uint32_t signal_levels, mask;
  1464. uint8_t train_set = intel_dp->train_set[0];
  1465. if (HAS_DDI(dev)) {
  1466. signal_levels = intel_hsw_signal_levels(train_set);
  1467. mask = DDI_BUF_EMP_MASK;
  1468. } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
  1469. signal_levels = intel_gen7_edp_signal_levels(train_set);
  1470. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
  1471. } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
  1472. signal_levels = intel_gen6_edp_signal_levels(train_set);
  1473. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
  1474. } else {
  1475. signal_levels = intel_gen4_signal_levels(train_set);
  1476. mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
  1477. }
  1478. DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
  1479. *DP = (*DP & ~mask) | signal_levels;
  1480. }
  1481. static bool
  1482. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1483. uint32_t dp_reg_value,
  1484. uint8_t dp_train_pat)
  1485. {
  1486. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1487. struct drm_device *dev = intel_dig_port->base.base.dev;
  1488. struct drm_i915_private *dev_priv = dev->dev_private;
  1489. enum port port = intel_dig_port->port;
  1490. int ret;
  1491. uint32_t temp;
  1492. if (HAS_DDI(dev)) {
  1493. temp = I915_READ(DP_TP_CTL(port));
  1494. if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
  1495. temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
  1496. else
  1497. temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
  1498. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1499. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1500. case DP_TRAINING_PATTERN_DISABLE:
  1501. if (port != PORT_A) {
  1502. temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
  1503. I915_WRITE(DP_TP_CTL(port), temp);
  1504. if (wait_for((I915_READ(DP_TP_STATUS(port)) &
  1505. DP_TP_STATUS_IDLE_DONE), 1))
  1506. DRM_ERROR("Timed out waiting for DP idle patterns\n");
  1507. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1508. }
  1509. temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
  1510. break;
  1511. case DP_TRAINING_PATTERN_1:
  1512. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1513. break;
  1514. case DP_TRAINING_PATTERN_2:
  1515. temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
  1516. break;
  1517. case DP_TRAINING_PATTERN_3:
  1518. temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
  1519. break;
  1520. }
  1521. I915_WRITE(DP_TP_CTL(port), temp);
  1522. } else if (HAS_PCH_CPT(dev) &&
  1523. (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
  1524. dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
  1525. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1526. case DP_TRAINING_PATTERN_DISABLE:
  1527. dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
  1528. break;
  1529. case DP_TRAINING_PATTERN_1:
  1530. dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
  1531. break;
  1532. case DP_TRAINING_PATTERN_2:
  1533. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1534. break;
  1535. case DP_TRAINING_PATTERN_3:
  1536. DRM_ERROR("DP training pattern 3 not supported\n");
  1537. dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
  1538. break;
  1539. }
  1540. } else {
  1541. dp_reg_value &= ~DP_LINK_TRAIN_MASK;
  1542. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1543. case DP_TRAINING_PATTERN_DISABLE:
  1544. dp_reg_value |= DP_LINK_TRAIN_OFF;
  1545. break;
  1546. case DP_TRAINING_PATTERN_1:
  1547. dp_reg_value |= DP_LINK_TRAIN_PAT_1;
  1548. break;
  1549. case DP_TRAINING_PATTERN_2:
  1550. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1551. break;
  1552. case DP_TRAINING_PATTERN_3:
  1553. DRM_ERROR("DP training pattern 3 not supported\n");
  1554. dp_reg_value |= DP_LINK_TRAIN_PAT_2;
  1555. break;
  1556. }
  1557. }
  1558. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1559. POSTING_READ(intel_dp->output_reg);
  1560. intel_dp_aux_native_write_1(intel_dp,
  1561. DP_TRAINING_PATTERN_SET,
  1562. dp_train_pat);
  1563. if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
  1564. DP_TRAINING_PATTERN_DISABLE) {
  1565. ret = intel_dp_aux_native_write(intel_dp,
  1566. DP_TRAINING_LANE0_SET,
  1567. intel_dp->train_set,
  1568. intel_dp->lane_count);
  1569. if (ret != intel_dp->lane_count)
  1570. return false;
  1571. }
  1572. return true;
  1573. }
  1574. /* Enable corresponding port and start training pattern 1 */
  1575. void
  1576. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1577. {
  1578. struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
  1579. struct drm_device *dev = encoder->dev;
  1580. int i;
  1581. uint8_t voltage;
  1582. bool clock_recovery = false;
  1583. int voltage_tries, loop_tries;
  1584. uint32_t DP = intel_dp->DP;
  1585. if (HAS_DDI(dev))
  1586. intel_ddi_prepare_link_retrain(encoder);
  1587. /* Write the link configuration data */
  1588. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1589. intel_dp->link_configuration,
  1590. DP_LINK_CONFIGURATION_SIZE);
  1591. DP |= DP_PORT_EN;
  1592. memset(intel_dp->train_set, 0, 4);
  1593. voltage = 0xff;
  1594. voltage_tries = 0;
  1595. loop_tries = 0;
  1596. clock_recovery = false;
  1597. for (;;) {
  1598. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1599. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1600. intel_dp_set_signal_levels(intel_dp, &DP);
  1601. /* Set training pattern 1 */
  1602. if (!intel_dp_set_link_train(intel_dp, DP,
  1603. DP_TRAINING_PATTERN_1 |
  1604. DP_LINK_SCRAMBLING_DISABLE))
  1605. break;
  1606. drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
  1607. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1608. DRM_ERROR("failed to get link status\n");
  1609. break;
  1610. }
  1611. if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1612. DRM_DEBUG_KMS("clock recovery OK\n");
  1613. clock_recovery = true;
  1614. break;
  1615. }
  1616. /* Check to see if we've tried the max voltage */
  1617. for (i = 0; i < intel_dp->lane_count; i++)
  1618. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1619. break;
  1620. if (i == intel_dp->lane_count && voltage_tries == 5) {
  1621. ++loop_tries;
  1622. if (loop_tries == 5) {
  1623. DRM_DEBUG_KMS("too many full retries, give up\n");
  1624. break;
  1625. }
  1626. memset(intel_dp->train_set, 0, 4);
  1627. voltage_tries = 0;
  1628. continue;
  1629. }
  1630. /* Check to see if we've tried the same voltage 5 times */
  1631. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1632. ++voltage_tries;
  1633. if (voltage_tries == 5) {
  1634. DRM_DEBUG_KMS("too many voltage retries, give up\n");
  1635. break;
  1636. }
  1637. } else
  1638. voltage_tries = 0;
  1639. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1640. /* Compute new intel_dp->train_set as requested by target */
  1641. intel_get_adjust_train(intel_dp, link_status);
  1642. }
  1643. intel_dp->DP = DP;
  1644. }
  1645. void
  1646. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1647. {
  1648. bool channel_eq = false;
  1649. int tries, cr_tries;
  1650. uint32_t DP = intel_dp->DP;
  1651. /* channel equalization */
  1652. tries = 0;
  1653. cr_tries = 0;
  1654. channel_eq = false;
  1655. for (;;) {
  1656. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1657. if (cr_tries > 5) {
  1658. DRM_ERROR("failed to train DP, aborting\n");
  1659. intel_dp_link_down(intel_dp);
  1660. break;
  1661. }
  1662. intel_dp_set_signal_levels(intel_dp, &DP);
  1663. /* channel eq pattern */
  1664. if (!intel_dp_set_link_train(intel_dp, DP,
  1665. DP_TRAINING_PATTERN_2 |
  1666. DP_LINK_SCRAMBLING_DISABLE))
  1667. break;
  1668. drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
  1669. if (!intel_dp_get_link_status(intel_dp, link_status))
  1670. break;
  1671. /* Make sure clock is still ok */
  1672. if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  1673. intel_dp_start_link_train(intel_dp);
  1674. cr_tries++;
  1675. continue;
  1676. }
  1677. if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  1678. channel_eq = true;
  1679. break;
  1680. }
  1681. /* Try 5 times, then try clock recovery if that fails */
  1682. if (tries > 5) {
  1683. intel_dp_link_down(intel_dp);
  1684. intel_dp_start_link_train(intel_dp);
  1685. tries = 0;
  1686. cr_tries++;
  1687. continue;
  1688. }
  1689. /* Compute new intel_dp->train_set as requested by target */
  1690. intel_get_adjust_train(intel_dp, link_status);
  1691. ++tries;
  1692. }
  1693. if (channel_eq)
  1694. DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
  1695. intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
  1696. }
  1697. static void
  1698. intel_dp_link_down(struct intel_dp *intel_dp)
  1699. {
  1700. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1701. struct drm_device *dev = intel_dig_port->base.base.dev;
  1702. struct drm_i915_private *dev_priv = dev->dev_private;
  1703. struct intel_crtc *intel_crtc =
  1704. to_intel_crtc(intel_dig_port->base.base.crtc);
  1705. uint32_t DP = intel_dp->DP;
  1706. /*
  1707. * DDI code has a strict mode set sequence and we should try to respect
  1708. * it, otherwise we might hang the machine in many different ways. So we
  1709. * really should be disabling the port only on a complete crtc_disable
  1710. * sequence. This function is just called under two conditions on DDI
  1711. * code:
  1712. * - Link train failed while doing crtc_enable, and on this case we
  1713. * really should respect the mode set sequence and wait for a
  1714. * crtc_disable.
  1715. * - Someone turned the monitor off and intel_dp_check_link_status
  1716. * called us. We don't need to disable the whole port on this case, so
  1717. * when someone turns the monitor on again,
  1718. * intel_ddi_prepare_link_retrain will take care of redoing the link
  1719. * train.
  1720. */
  1721. if (HAS_DDI(dev))
  1722. return;
  1723. if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
  1724. return;
  1725. DRM_DEBUG_KMS("\n");
  1726. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
  1727. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1728. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1729. } else {
  1730. DP &= ~DP_LINK_TRAIN_MASK;
  1731. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1732. }
  1733. POSTING_READ(intel_dp->output_reg);
  1734. /* We don't really know why we're doing this */
  1735. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1736. if (HAS_PCH_IBX(dev) &&
  1737. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1738. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1739. /* Hardware workaround: leaving our transcoder select
  1740. * set to transcoder B while it's off will prevent the
  1741. * corresponding HDMI output on transcoder A.
  1742. *
  1743. * Combine this with another hardware workaround:
  1744. * transcoder select bit can only be cleared while the
  1745. * port is enabled.
  1746. */
  1747. DP &= ~DP_PIPEB_SELECT;
  1748. I915_WRITE(intel_dp->output_reg, DP);
  1749. /* Changes to enable or select take place the vblank
  1750. * after being written.
  1751. */
  1752. if (WARN_ON(crtc == NULL)) {
  1753. /* We should never try to disable a port without a crtc
  1754. * attached. For paranoia keep the code around for a
  1755. * bit. */
  1756. POSTING_READ(intel_dp->output_reg);
  1757. msleep(50);
  1758. } else
  1759. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1760. }
  1761. DP &= ~DP_AUDIO_OUTPUT_ENABLE;
  1762. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1763. POSTING_READ(intel_dp->output_reg);
  1764. msleep(intel_dp->panel_power_down_delay);
  1765. }
  1766. static bool
  1767. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  1768. {
  1769. char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
  1770. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  1771. sizeof(intel_dp->dpcd)) == 0)
  1772. return false; /* aux transfer failed */
  1773. hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
  1774. 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
  1775. DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
  1776. if (intel_dp->dpcd[DP_DPCD_REV] == 0)
  1777. return false; /* DPCD not present */
  1778. if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  1779. DP_DWN_STRM_PORT_PRESENT))
  1780. return true; /* native DP sink */
  1781. if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
  1782. return true; /* no per-port downstream info */
  1783. if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
  1784. intel_dp->downstream_ports,
  1785. DP_MAX_DOWNSTREAM_PORTS) == 0)
  1786. return false; /* downstream port status fetch failed */
  1787. return true;
  1788. }
  1789. static void
  1790. intel_dp_probe_oui(struct intel_dp *intel_dp)
  1791. {
  1792. u8 buf[3];
  1793. if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
  1794. return;
  1795. ironlake_edp_panel_vdd_on(intel_dp);
  1796. if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
  1797. DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
  1798. buf[0], buf[1], buf[2]);
  1799. if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
  1800. DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
  1801. buf[0], buf[1], buf[2]);
  1802. ironlake_edp_panel_vdd_off(intel_dp, false);
  1803. }
  1804. static bool
  1805. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  1806. {
  1807. int ret;
  1808. ret = intel_dp_aux_native_read_retry(intel_dp,
  1809. DP_DEVICE_SERVICE_IRQ_VECTOR,
  1810. sink_irq_vector, 1);
  1811. if (!ret)
  1812. return false;
  1813. return true;
  1814. }
  1815. static void
  1816. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  1817. {
  1818. /* NAK by default */
  1819. intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
  1820. }
  1821. /*
  1822. * According to DP spec
  1823. * 5.1.2:
  1824. * 1. Read DPCD
  1825. * 2. Configure link according to Receiver Capabilities
  1826. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1827. * 4. Check link status on receipt of hot-plug interrupt
  1828. */
  1829. void
  1830. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1831. {
  1832. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  1833. u8 sink_irq_vector;
  1834. u8 link_status[DP_LINK_STATUS_SIZE];
  1835. if (!intel_encoder->connectors_active)
  1836. return;
  1837. if (WARN_ON(!intel_encoder->base.crtc))
  1838. return;
  1839. /* Try to read receiver status if the link appears to be up */
  1840. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  1841. intel_dp_link_down(intel_dp);
  1842. return;
  1843. }
  1844. /* Now read the DPCD to see if it's actually running */
  1845. if (!intel_dp_get_dpcd(intel_dp)) {
  1846. intel_dp_link_down(intel_dp);
  1847. return;
  1848. }
  1849. /* Try to read the source of the interrupt */
  1850. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  1851. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  1852. /* Clear interrupt source */
  1853. intel_dp_aux_native_write_1(intel_dp,
  1854. DP_DEVICE_SERVICE_IRQ_VECTOR,
  1855. sink_irq_vector);
  1856. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  1857. intel_dp_handle_test_request(intel_dp);
  1858. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  1859. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  1860. }
  1861. if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  1862. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  1863. drm_get_encoder_name(&intel_encoder->base));
  1864. intel_dp_start_link_train(intel_dp);
  1865. intel_dp_complete_link_train(intel_dp);
  1866. }
  1867. }
  1868. /* XXX this is probably wrong for multiple downstream ports */
  1869. static enum drm_connector_status
  1870. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  1871. {
  1872. uint8_t *dpcd = intel_dp->dpcd;
  1873. bool hpd;
  1874. uint8_t type;
  1875. if (!intel_dp_get_dpcd(intel_dp))
  1876. return connector_status_disconnected;
  1877. /* if there's no downstream port, we're done */
  1878. if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
  1879. return connector_status_connected;
  1880. /* If we're HPD-aware, SINK_COUNT changes dynamically */
  1881. hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
  1882. if (hpd) {
  1883. uint8_t reg;
  1884. if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
  1885. &reg, 1))
  1886. return connector_status_unknown;
  1887. return DP_GET_SINK_COUNT(reg) ? connector_status_connected
  1888. : connector_status_disconnected;
  1889. }
  1890. /* If no HPD, poke DDC gently */
  1891. if (drm_probe_ddc(&intel_dp->adapter))
  1892. return connector_status_connected;
  1893. /* Well we tried, say unknown for unreliable port types */
  1894. type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
  1895. if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
  1896. return connector_status_unknown;
  1897. /* Anything else is out of spec, warn and ignore */
  1898. DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
  1899. return connector_status_disconnected;
  1900. }
  1901. static enum drm_connector_status
  1902. ironlake_dp_detect(struct intel_dp *intel_dp)
  1903. {
  1904. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1905. struct drm_i915_private *dev_priv = dev->dev_private;
  1906. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1907. enum drm_connector_status status;
  1908. /* Can't disconnect eDP, but you can close the lid... */
  1909. if (is_edp(intel_dp)) {
  1910. status = intel_panel_detect(dev);
  1911. if (status == connector_status_unknown)
  1912. status = connector_status_connected;
  1913. return status;
  1914. }
  1915. if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
  1916. return connector_status_disconnected;
  1917. return intel_dp_detect_dpcd(intel_dp);
  1918. }
  1919. static enum drm_connector_status
  1920. g4x_dp_detect(struct intel_dp *intel_dp)
  1921. {
  1922. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1923. struct drm_i915_private *dev_priv = dev->dev_private;
  1924. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1925. uint32_t bit;
  1926. /* Can't disconnect eDP, but you can close the lid... */
  1927. if (is_edp(intel_dp)) {
  1928. enum drm_connector_status status;
  1929. status = intel_panel_detect(dev);
  1930. if (status == connector_status_unknown)
  1931. status = connector_status_connected;
  1932. return status;
  1933. }
  1934. switch (intel_dig_port->port) {
  1935. case PORT_B:
  1936. bit = PORTB_HOTPLUG_LIVE_STATUS;
  1937. break;
  1938. case PORT_C:
  1939. bit = PORTC_HOTPLUG_LIVE_STATUS;
  1940. break;
  1941. case PORT_D:
  1942. bit = PORTD_HOTPLUG_LIVE_STATUS;
  1943. break;
  1944. default:
  1945. return connector_status_unknown;
  1946. }
  1947. if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
  1948. return connector_status_disconnected;
  1949. return intel_dp_detect_dpcd(intel_dp);
  1950. }
  1951. static struct edid *
  1952. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  1953. {
  1954. struct intel_connector *intel_connector = to_intel_connector(connector);
  1955. /* use cached edid if we have one */
  1956. if (intel_connector->edid) {
  1957. struct edid *edid;
  1958. int size;
  1959. /* invalid edid */
  1960. if (IS_ERR(intel_connector->edid))
  1961. return NULL;
  1962. size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
  1963. edid = kmalloc(size, GFP_KERNEL);
  1964. if (!edid)
  1965. return NULL;
  1966. memcpy(edid, intel_connector->edid, size);
  1967. return edid;
  1968. }
  1969. return drm_get_edid(connector, adapter);
  1970. }
  1971. static int
  1972. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  1973. {
  1974. struct intel_connector *intel_connector = to_intel_connector(connector);
  1975. /* use cached edid if we have one */
  1976. if (intel_connector->edid) {
  1977. /* invalid edid */
  1978. if (IS_ERR(intel_connector->edid))
  1979. return 0;
  1980. return intel_connector_update_modes(connector,
  1981. intel_connector->edid);
  1982. }
  1983. return intel_ddc_get_modes(connector, adapter);
  1984. }
  1985. static enum drm_connector_status
  1986. intel_dp_detect(struct drm_connector *connector, bool force)
  1987. {
  1988. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1989. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1990. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  1991. struct drm_device *dev = connector->dev;
  1992. enum drm_connector_status status;
  1993. struct edid *edid = NULL;
  1994. intel_dp->has_audio = false;
  1995. if (HAS_PCH_SPLIT(dev))
  1996. status = ironlake_dp_detect(intel_dp);
  1997. else
  1998. status = g4x_dp_detect(intel_dp);
  1999. if (status != connector_status_connected)
  2000. return status;
  2001. intel_dp_probe_oui(intel_dp);
  2002. if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
  2003. intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
  2004. } else {
  2005. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2006. if (edid) {
  2007. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  2008. kfree(edid);
  2009. }
  2010. }
  2011. if (intel_encoder->type != INTEL_OUTPUT_EDP)
  2012. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2013. return connector_status_connected;
  2014. }
  2015. static int intel_dp_get_modes(struct drm_connector *connector)
  2016. {
  2017. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2018. struct intel_connector *intel_connector = to_intel_connector(connector);
  2019. struct drm_device *dev = connector->dev;
  2020. int ret;
  2021. /* We should parse the EDID data and find out if it has an audio sink
  2022. */
  2023. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  2024. if (ret)
  2025. return ret;
  2026. /* if eDP has no EDID, fall back to fixed mode */
  2027. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  2028. struct drm_display_mode *mode;
  2029. mode = drm_mode_duplicate(dev,
  2030. intel_connector->panel.fixed_mode);
  2031. if (mode) {
  2032. drm_mode_probed_add(connector, mode);
  2033. return 1;
  2034. }
  2035. }
  2036. return 0;
  2037. }
  2038. static bool
  2039. intel_dp_detect_audio(struct drm_connector *connector)
  2040. {
  2041. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2042. struct edid *edid;
  2043. bool has_audio = false;
  2044. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2045. if (edid) {
  2046. has_audio = drm_detect_monitor_audio(edid);
  2047. kfree(edid);
  2048. }
  2049. return has_audio;
  2050. }
  2051. static int
  2052. intel_dp_set_property(struct drm_connector *connector,
  2053. struct drm_property *property,
  2054. uint64_t val)
  2055. {
  2056. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  2057. struct intel_connector *intel_connector = to_intel_connector(connector);
  2058. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  2059. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2060. int ret;
  2061. ret = drm_object_property_set_value(&connector->base, property, val);
  2062. if (ret)
  2063. return ret;
  2064. if (property == dev_priv->force_audio_property) {
  2065. int i = val;
  2066. bool has_audio;
  2067. if (i == intel_dp->force_audio)
  2068. return 0;
  2069. intel_dp->force_audio = i;
  2070. if (i == HDMI_AUDIO_AUTO)
  2071. has_audio = intel_dp_detect_audio(connector);
  2072. else
  2073. has_audio = (i == HDMI_AUDIO_ON);
  2074. if (has_audio == intel_dp->has_audio)
  2075. return 0;
  2076. intel_dp->has_audio = has_audio;
  2077. goto done;
  2078. }
  2079. if (property == dev_priv->broadcast_rgb_property) {
  2080. switch (val) {
  2081. case INTEL_BROADCAST_RGB_AUTO:
  2082. intel_dp->color_range_auto = true;
  2083. break;
  2084. case INTEL_BROADCAST_RGB_FULL:
  2085. intel_dp->color_range_auto = false;
  2086. intel_dp->color_range = 0;
  2087. break;
  2088. case INTEL_BROADCAST_RGB_LIMITED:
  2089. intel_dp->color_range_auto = false;
  2090. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  2091. break;
  2092. default:
  2093. return -EINVAL;
  2094. }
  2095. goto done;
  2096. }
  2097. if (is_edp(intel_dp) &&
  2098. property == connector->dev->mode_config.scaling_mode_property) {
  2099. if (val == DRM_MODE_SCALE_NONE) {
  2100. DRM_DEBUG_KMS("no scaling not supported\n");
  2101. return -EINVAL;
  2102. }
  2103. if (intel_connector->panel.fitting_mode == val) {
  2104. /* the eDP scaling property is not changed */
  2105. return 0;
  2106. }
  2107. intel_connector->panel.fitting_mode = val;
  2108. goto done;
  2109. }
  2110. return -EINVAL;
  2111. done:
  2112. if (intel_encoder->base.crtc)
  2113. intel_crtc_restore_mode(intel_encoder->base.crtc);
  2114. return 0;
  2115. }
  2116. static void
  2117. intel_dp_destroy(struct drm_connector *connector)
  2118. {
  2119. struct drm_device *dev = connector->dev;
  2120. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2121. struct intel_connector *intel_connector = to_intel_connector(connector);
  2122. if (!IS_ERR_OR_NULL(intel_connector->edid))
  2123. kfree(intel_connector->edid);
  2124. if (is_edp(intel_dp)) {
  2125. intel_panel_destroy_backlight(dev);
  2126. intel_panel_fini(&intel_connector->panel);
  2127. }
  2128. drm_sysfs_connector_remove(connector);
  2129. drm_connector_cleanup(connector);
  2130. kfree(connector);
  2131. }
  2132. void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  2133. {
  2134. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  2135. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2136. i2c_del_adapter(&intel_dp->adapter);
  2137. drm_encoder_cleanup(encoder);
  2138. if (is_edp(intel_dp)) {
  2139. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2140. ironlake_panel_vdd_off_sync(intel_dp);
  2141. }
  2142. kfree(intel_dig_port);
  2143. }
  2144. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  2145. .mode_fixup = intel_dp_mode_fixup,
  2146. .mode_set = intel_dp_mode_set,
  2147. };
  2148. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  2149. .dpms = intel_connector_dpms,
  2150. .detect = intel_dp_detect,
  2151. .fill_modes = drm_helper_probe_single_connector_modes,
  2152. .set_property = intel_dp_set_property,
  2153. .destroy = intel_dp_destroy,
  2154. };
  2155. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  2156. .get_modes = intel_dp_get_modes,
  2157. .mode_valid = intel_dp_mode_valid,
  2158. .best_encoder = intel_best_encoder,
  2159. };
  2160. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  2161. .destroy = intel_dp_encoder_destroy,
  2162. };
  2163. static void
  2164. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  2165. {
  2166. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2167. intel_dp_check_link_status(intel_dp);
  2168. }
  2169. /* Return which DP Port should be selected for Transcoder DP control */
  2170. int
  2171. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  2172. {
  2173. struct drm_device *dev = crtc->dev;
  2174. struct intel_encoder *intel_encoder;
  2175. struct intel_dp *intel_dp;
  2176. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2177. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2178. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2179. intel_encoder->type == INTEL_OUTPUT_EDP)
  2180. return intel_dp->output_reg;
  2181. }
  2182. return -1;
  2183. }
  2184. /* check the VBT to see whether the eDP is on DP-D port */
  2185. bool intel_dpd_is_edp(struct drm_device *dev)
  2186. {
  2187. struct drm_i915_private *dev_priv = dev->dev_private;
  2188. struct child_device_config *p_child;
  2189. int i;
  2190. if (!dev_priv->child_dev_num)
  2191. return false;
  2192. for (i = 0; i < dev_priv->child_dev_num; i++) {
  2193. p_child = dev_priv->child_dev + i;
  2194. if (p_child->dvo_port == PORT_IDPD &&
  2195. p_child->device_type == DEVICE_TYPE_eDP)
  2196. return true;
  2197. }
  2198. return false;
  2199. }
  2200. static void
  2201. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  2202. {
  2203. struct intel_connector *intel_connector = to_intel_connector(connector);
  2204. intel_attach_force_audio_property(connector);
  2205. intel_attach_broadcast_rgb_property(connector);
  2206. intel_dp->color_range_auto = true;
  2207. if (is_edp(intel_dp)) {
  2208. drm_mode_create_scaling_mode_property(connector->dev);
  2209. drm_object_attach_property(
  2210. &connector->base,
  2211. connector->dev->mode_config.scaling_mode_property,
  2212. DRM_MODE_SCALE_ASPECT);
  2213. intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
  2214. }
  2215. }
  2216. static void
  2217. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  2218. struct intel_dp *intel_dp,
  2219. struct edp_power_seq *out)
  2220. {
  2221. struct drm_i915_private *dev_priv = dev->dev_private;
  2222. struct edp_power_seq cur, vbt, spec, final;
  2223. u32 pp_on, pp_off, pp_div, pp;
  2224. /* Workaround: Need to write PP_CONTROL with the unlock key as
  2225. * the very first thing. */
  2226. pp = ironlake_get_pp_control(dev_priv);
  2227. I915_WRITE(PCH_PP_CONTROL, pp);
  2228. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  2229. pp_off = I915_READ(PCH_PP_OFF_DELAYS);
  2230. pp_div = I915_READ(PCH_PP_DIVISOR);
  2231. /* Pull timing values out of registers */
  2232. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  2233. PANEL_POWER_UP_DELAY_SHIFT;
  2234. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  2235. PANEL_LIGHT_ON_DELAY_SHIFT;
  2236. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  2237. PANEL_LIGHT_OFF_DELAY_SHIFT;
  2238. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  2239. PANEL_POWER_DOWN_DELAY_SHIFT;
  2240. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  2241. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  2242. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2243. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  2244. vbt = dev_priv->edp.pps;
  2245. /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
  2246. * our hw here, which are all in 100usec. */
  2247. spec.t1_t3 = 210 * 10;
  2248. spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
  2249. spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
  2250. spec.t10 = 500 * 10;
  2251. /* This one is special and actually in units of 100ms, but zero
  2252. * based in the hw (so we need to add 100 ms). But the sw vbt
  2253. * table multiplies it with 1000 to make it in units of 100usec,
  2254. * too. */
  2255. spec.t11_t12 = (510 + 100) * 10;
  2256. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2257. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  2258. /* Use the max of the register settings and vbt. If both are
  2259. * unset, fall back to the spec limits. */
  2260. #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
  2261. spec.field : \
  2262. max(cur.field, vbt.field))
  2263. assign_final(t1_t3);
  2264. assign_final(t8);
  2265. assign_final(t9);
  2266. assign_final(t10);
  2267. assign_final(t11_t12);
  2268. #undef assign_final
  2269. #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
  2270. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  2271. intel_dp->backlight_on_delay = get_delay(t8);
  2272. intel_dp->backlight_off_delay = get_delay(t9);
  2273. intel_dp->panel_power_down_delay = get_delay(t10);
  2274. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  2275. #undef get_delay
  2276. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  2277. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  2278. intel_dp->panel_power_cycle_delay);
  2279. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  2280. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  2281. if (out)
  2282. *out = final;
  2283. }
  2284. static void
  2285. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  2286. struct intel_dp *intel_dp,
  2287. struct edp_power_seq *seq)
  2288. {
  2289. struct drm_i915_private *dev_priv = dev->dev_private;
  2290. u32 pp_on, pp_off, pp_div;
  2291. /* And finally store the new values in the power sequencer. */
  2292. pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
  2293. (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
  2294. pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
  2295. (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
  2296. /* Compute the divisor for the pp clock, simply match the Bspec
  2297. * formula. */
  2298. pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
  2299. << PP_REFERENCE_DIVIDER_SHIFT;
  2300. pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
  2301. << PANEL_POWER_CYCLE_DELAY_SHIFT);
  2302. /* Haswell doesn't have any port selection bits for the panel
  2303. * power sequencer any more. */
  2304. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  2305. if (is_cpu_edp(intel_dp))
  2306. pp_on |= PANEL_POWER_PORT_DP_A;
  2307. else
  2308. pp_on |= PANEL_POWER_PORT_DP_D;
  2309. }
  2310. I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
  2311. I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
  2312. I915_WRITE(PCH_PP_DIVISOR, pp_div);
  2313. DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
  2314. I915_READ(PCH_PP_ON_DELAYS),
  2315. I915_READ(PCH_PP_OFF_DELAYS),
  2316. I915_READ(PCH_PP_DIVISOR));
  2317. }
  2318. void
  2319. intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
  2320. struct intel_connector *intel_connector)
  2321. {
  2322. struct drm_connector *connector = &intel_connector->base;
  2323. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2324. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2325. struct drm_device *dev = intel_encoder->base.dev;
  2326. struct drm_i915_private *dev_priv = dev->dev_private;
  2327. struct drm_display_mode *fixed_mode = NULL;
  2328. struct edp_power_seq power_seq = { 0 };
  2329. enum port port = intel_dig_port->port;
  2330. const char *name = NULL;
  2331. int type;
  2332. /* Preserve the current hw state. */
  2333. intel_dp->DP = I915_READ(intel_dp->output_reg);
  2334. intel_dp->attached_connector = intel_connector;
  2335. if (HAS_PCH_SPLIT(dev) && port == PORT_D)
  2336. if (intel_dpd_is_edp(dev))
  2337. intel_dp->is_pch_edp = true;
  2338. /*
  2339. * FIXME : We need to initialize built-in panels before external panels.
  2340. * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
  2341. */
  2342. if (IS_VALLEYVIEW(dev) && port == PORT_C) {
  2343. type = DRM_MODE_CONNECTOR_eDP;
  2344. intel_encoder->type = INTEL_OUTPUT_EDP;
  2345. } else if (port == PORT_A || is_pch_edp(intel_dp)) {
  2346. type = DRM_MODE_CONNECTOR_eDP;
  2347. intel_encoder->type = INTEL_OUTPUT_EDP;
  2348. } else {
  2349. /* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
  2350. * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
  2351. * rewrite it.
  2352. */
  2353. type = DRM_MODE_CONNECTOR_DisplayPort;
  2354. }
  2355. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  2356. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  2357. connector->polled = DRM_CONNECTOR_POLL_HPD;
  2358. connector->interlace_allowed = true;
  2359. connector->doublescan_allowed = 0;
  2360. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  2361. ironlake_panel_vdd_work);
  2362. intel_connector_attach_encoder(intel_connector, intel_encoder);
  2363. drm_sysfs_connector_add(connector);
  2364. if (HAS_DDI(dev))
  2365. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  2366. else
  2367. intel_connector->get_hw_state = intel_connector_get_hw_state;
  2368. intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
  2369. if (HAS_DDI(dev)) {
  2370. switch (intel_dig_port->port) {
  2371. case PORT_A:
  2372. intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
  2373. break;
  2374. case PORT_B:
  2375. intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
  2376. break;
  2377. case PORT_C:
  2378. intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
  2379. break;
  2380. case PORT_D:
  2381. intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
  2382. break;
  2383. default:
  2384. BUG();
  2385. }
  2386. }
  2387. /* Set up the DDC bus. */
  2388. switch (port) {
  2389. case PORT_A:
  2390. intel_encoder->hpd_pin = HPD_PORT_A;
  2391. name = "DPDDC-A";
  2392. break;
  2393. case PORT_B:
  2394. intel_encoder->hpd_pin = HPD_PORT_B;
  2395. name = "DPDDC-B";
  2396. break;
  2397. case PORT_C:
  2398. intel_encoder->hpd_pin = HPD_PORT_C;
  2399. name = "DPDDC-C";
  2400. break;
  2401. case PORT_D:
  2402. intel_encoder->hpd_pin = HPD_PORT_D;
  2403. name = "DPDDC-D";
  2404. break;
  2405. default:
  2406. BUG();
  2407. }
  2408. if (is_edp(intel_dp))
  2409. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  2410. intel_dp_i2c_init(intel_dp, intel_connector, name);
  2411. /* Cache DPCD and EDID for edp. */
  2412. if (is_edp(intel_dp)) {
  2413. bool ret;
  2414. struct drm_display_mode *scan;
  2415. struct edid *edid;
  2416. ironlake_edp_panel_vdd_on(intel_dp);
  2417. ret = intel_dp_get_dpcd(intel_dp);
  2418. ironlake_edp_panel_vdd_off(intel_dp, false);
  2419. if (ret) {
  2420. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  2421. dev_priv->no_aux_handshake =
  2422. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  2423. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  2424. } else {
  2425. /* if this fails, presume the device is a ghost */
  2426. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  2427. intel_dp_encoder_destroy(&intel_encoder->base);
  2428. intel_dp_destroy(connector);
  2429. return;
  2430. }
  2431. /* We now know it's not a ghost, init power sequence regs. */
  2432. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  2433. &power_seq);
  2434. ironlake_edp_panel_vdd_on(intel_dp);
  2435. edid = drm_get_edid(connector, &intel_dp->adapter);
  2436. if (edid) {
  2437. if (drm_add_edid_modes(connector, edid)) {
  2438. drm_mode_connector_update_edid_property(connector, edid);
  2439. drm_edid_to_eld(connector, edid);
  2440. } else {
  2441. kfree(edid);
  2442. edid = ERR_PTR(-EINVAL);
  2443. }
  2444. } else {
  2445. edid = ERR_PTR(-ENOENT);
  2446. }
  2447. intel_connector->edid = edid;
  2448. /* prefer fixed mode from EDID if available */
  2449. list_for_each_entry(scan, &connector->probed_modes, head) {
  2450. if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
  2451. fixed_mode = drm_mode_duplicate(dev, scan);
  2452. break;
  2453. }
  2454. }
  2455. /* fallback to VBT if available for eDP */
  2456. if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
  2457. fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  2458. if (fixed_mode)
  2459. fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
  2460. }
  2461. ironlake_edp_panel_vdd_off(intel_dp, false);
  2462. }
  2463. if (is_edp(intel_dp)) {
  2464. intel_panel_init(&intel_connector->panel, fixed_mode);
  2465. intel_panel_setup_backlight(connector);
  2466. }
  2467. intel_dp_add_properties(intel_dp, connector);
  2468. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  2469. * 0xd. Failure to do so will result in spurious interrupts being
  2470. * generated on the port when a cable is not attached.
  2471. */
  2472. if (IS_G4X(dev) && !IS_GM45(dev)) {
  2473. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  2474. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  2475. }
  2476. }
  2477. void
  2478. intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
  2479. {
  2480. struct intel_digital_port *intel_dig_port;
  2481. struct intel_encoder *intel_encoder;
  2482. struct drm_encoder *encoder;
  2483. struct intel_connector *intel_connector;
  2484. intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
  2485. if (!intel_dig_port)
  2486. return;
  2487. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  2488. if (!intel_connector) {
  2489. kfree(intel_dig_port);
  2490. return;
  2491. }
  2492. intel_encoder = &intel_dig_port->base;
  2493. encoder = &intel_encoder->base;
  2494. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  2495. DRM_MODE_ENCODER_TMDS);
  2496. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  2497. intel_encoder->enable = intel_enable_dp;
  2498. intel_encoder->pre_enable = intel_pre_enable_dp;
  2499. intel_encoder->disable = intel_disable_dp;
  2500. intel_encoder->post_disable = intel_post_disable_dp;
  2501. intel_encoder->get_hw_state = intel_dp_get_hw_state;
  2502. intel_dig_port->port = port;
  2503. intel_dig_port->dp.output_reg = output_reg;
  2504. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2505. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2506. intel_encoder->cloneable = false;
  2507. intel_encoder->hot_plug = intel_dp_hot_plug;
  2508. intel_dp_init_connector(intel_dig_port, intel_connector);
  2509. }