splice.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712
  1. /*
  2. * "splice": joining two ropes together by interweaving their strands.
  3. *
  4. * This is the "extended pipe" functionality, where a pipe is used as
  5. * an arbitrary in-memory buffer. Think of a pipe as a small kernel
  6. * buffer that you can use to transfer data from one end to the other.
  7. *
  8. * The traditional unix read/write is extended with a "splice()" operation
  9. * that transfers data buffers to or from a pipe buffer.
  10. *
  11. * Named by Larry McVoy, original implementation from Linus, extended by
  12. * Jens to support splicing to files and fixing the initial implementation
  13. * bugs.
  14. *
  15. * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
  16. * Copyright (C) 2005 Linus Torvalds <torvalds@osdl.org>
  17. *
  18. */
  19. #include <linux/fs.h>
  20. #include <linux/file.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/pipe_fs_i.h>
  23. #include <linux/mm_inline.h>
  24. #include <linux/swap.h>
  25. #include <linux/writeback.h>
  26. #include <linux/buffer_head.h>
  27. #include <linux/module.h>
  28. #include <linux/syscalls.h>
  29. /*
  30. * Passed to the actors
  31. */
  32. struct splice_desc {
  33. unsigned int len, total_len; /* current and remaining length */
  34. unsigned int flags; /* splice flags */
  35. struct file *file; /* file to read/write */
  36. loff_t pos; /* file position */
  37. };
  38. static int page_cache_pipe_buf_steal(struct pipe_inode_info *info,
  39. struct pipe_buffer *buf)
  40. {
  41. struct page *page = buf->page;
  42. struct address_space *mapping = page_mapping(page);
  43. WARN_ON(!PageLocked(page));
  44. WARN_ON(!PageUptodate(page));
  45. if (PagePrivate(page))
  46. try_to_release_page(page, mapping_gfp_mask(mapping));
  47. if (!remove_mapping(mapping, page))
  48. return 1;
  49. if (PageLRU(page)) {
  50. struct zone *zone = page_zone(page);
  51. spin_lock_irq(&zone->lru_lock);
  52. BUG_ON(!PageLRU(page));
  53. __ClearPageLRU(page);
  54. del_page_from_lru(zone, page);
  55. spin_unlock_irq(&zone->lru_lock);
  56. }
  57. return 0;
  58. }
  59. static void page_cache_pipe_buf_release(struct pipe_inode_info *info,
  60. struct pipe_buffer *buf)
  61. {
  62. page_cache_release(buf->page);
  63. buf->page = NULL;
  64. }
  65. static void *page_cache_pipe_buf_map(struct file *file,
  66. struct pipe_inode_info *info,
  67. struct pipe_buffer *buf)
  68. {
  69. struct page *page = buf->page;
  70. lock_page(page);
  71. if (!PageUptodate(page)) {
  72. unlock_page(page);
  73. return ERR_PTR(-EIO);
  74. }
  75. if (!page->mapping) {
  76. unlock_page(page);
  77. return ERR_PTR(-ENODATA);
  78. }
  79. return kmap(buf->page);
  80. }
  81. static void page_cache_pipe_buf_unmap(struct pipe_inode_info *info,
  82. struct pipe_buffer *buf)
  83. {
  84. unlock_page(buf->page);
  85. kunmap(buf->page);
  86. }
  87. static struct pipe_buf_operations page_cache_pipe_buf_ops = {
  88. .can_merge = 0,
  89. .map = page_cache_pipe_buf_map,
  90. .unmap = page_cache_pipe_buf_unmap,
  91. .release = page_cache_pipe_buf_release,
  92. .steal = page_cache_pipe_buf_steal,
  93. };
  94. static ssize_t move_to_pipe(struct inode *inode, struct page **pages,
  95. int nr_pages, unsigned long offset,
  96. unsigned long len, unsigned int flags)
  97. {
  98. struct pipe_inode_info *info;
  99. int ret, do_wakeup, i;
  100. ret = 0;
  101. do_wakeup = 0;
  102. i = 0;
  103. mutex_lock(PIPE_MUTEX(*inode));
  104. info = inode->i_pipe;
  105. for (;;) {
  106. int bufs;
  107. if (!PIPE_READERS(*inode)) {
  108. send_sig(SIGPIPE, current, 0);
  109. if (!ret)
  110. ret = -EPIPE;
  111. break;
  112. }
  113. bufs = info->nrbufs;
  114. if (bufs < PIPE_BUFFERS) {
  115. int newbuf = (info->curbuf + bufs) & (PIPE_BUFFERS - 1);
  116. struct pipe_buffer *buf = info->bufs + newbuf;
  117. struct page *page = pages[i++];
  118. unsigned long this_len;
  119. this_len = PAGE_CACHE_SIZE - offset;
  120. if (this_len > len)
  121. this_len = len;
  122. buf->page = page;
  123. buf->offset = offset;
  124. buf->len = this_len;
  125. buf->ops = &page_cache_pipe_buf_ops;
  126. info->nrbufs = ++bufs;
  127. do_wakeup = 1;
  128. ret += this_len;
  129. len -= this_len;
  130. offset = 0;
  131. if (!--nr_pages)
  132. break;
  133. if (!len)
  134. break;
  135. if (bufs < PIPE_BUFFERS)
  136. continue;
  137. break;
  138. }
  139. if (flags & SPLICE_F_NONBLOCK) {
  140. if (!ret)
  141. ret = -EAGAIN;
  142. break;
  143. }
  144. if (signal_pending(current)) {
  145. if (!ret)
  146. ret = -ERESTARTSYS;
  147. break;
  148. }
  149. if (do_wakeup) {
  150. wake_up_interruptible_sync(PIPE_WAIT(*inode));
  151. kill_fasync(PIPE_FASYNC_READERS(*inode), SIGIO,
  152. POLL_IN);
  153. do_wakeup = 0;
  154. }
  155. PIPE_WAITING_WRITERS(*inode)++;
  156. pipe_wait(inode);
  157. PIPE_WAITING_WRITERS(*inode)--;
  158. }
  159. mutex_unlock(PIPE_MUTEX(*inode));
  160. if (do_wakeup) {
  161. wake_up_interruptible(PIPE_WAIT(*inode));
  162. kill_fasync(PIPE_FASYNC_READERS(*inode), SIGIO, POLL_IN);
  163. }
  164. while (i < nr_pages)
  165. page_cache_release(pages[i++]);
  166. return ret;
  167. }
  168. static int __generic_file_splice_read(struct file *in, struct inode *pipe,
  169. size_t len, unsigned int flags)
  170. {
  171. struct address_space *mapping = in->f_mapping;
  172. unsigned int offset, nr_pages;
  173. struct page *pages[PIPE_BUFFERS], *shadow[PIPE_BUFFERS];
  174. struct page *page;
  175. pgoff_t index, pidx;
  176. int i, j;
  177. index = in->f_pos >> PAGE_CACHE_SHIFT;
  178. offset = in->f_pos & ~PAGE_CACHE_MASK;
  179. nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  180. if (nr_pages > PIPE_BUFFERS)
  181. nr_pages = PIPE_BUFFERS;
  182. /*
  183. * initiate read-ahead on this page range
  184. */
  185. do_page_cache_readahead(mapping, in, index, nr_pages);
  186. /*
  187. * Get as many pages from the page cache as possible..
  188. * Start IO on the page cache entries we create (we
  189. * can assume that any pre-existing ones we find have
  190. * already had IO started on them).
  191. */
  192. i = find_get_pages(mapping, index, nr_pages, pages);
  193. /*
  194. * common case - we found all pages and they are contiguous,
  195. * kick them off
  196. */
  197. if (i && (pages[i - 1]->index == index + i - 1))
  198. goto splice_them;
  199. /*
  200. * fill shadow[] with pages at the right locations, so we only
  201. * have to fill holes
  202. */
  203. memset(shadow, 0, nr_pages * sizeof(struct page *));
  204. for (j = 0; j < i; j++)
  205. shadow[pages[j]->index - index] = pages[j];
  206. /*
  207. * now fill in the holes
  208. */
  209. for (i = 0, pidx = index; i < nr_pages; pidx++, i++) {
  210. int error;
  211. if (shadow[i])
  212. continue;
  213. /*
  214. * no page there, look one up / create it
  215. */
  216. page = find_or_create_page(mapping, pidx,
  217. mapping_gfp_mask(mapping));
  218. if (!page)
  219. break;
  220. if (PageUptodate(page))
  221. unlock_page(page);
  222. else {
  223. error = mapping->a_ops->readpage(in, page);
  224. if (unlikely(error)) {
  225. page_cache_release(page);
  226. break;
  227. }
  228. }
  229. shadow[i] = page;
  230. }
  231. if (!i) {
  232. for (i = 0; i < nr_pages; i++) {
  233. if (shadow[i])
  234. page_cache_release(shadow[i]);
  235. }
  236. return 0;
  237. }
  238. memcpy(pages, shadow, i * sizeof(struct page *));
  239. /*
  240. * Now we splice them into the pipe..
  241. */
  242. splice_them:
  243. return move_to_pipe(pipe, pages, i, offset, len, flags);
  244. }
  245. ssize_t generic_file_splice_read(struct file *in, struct inode *pipe,
  246. size_t len, unsigned int flags)
  247. {
  248. ssize_t spliced;
  249. int ret;
  250. ret = 0;
  251. spliced = 0;
  252. while (len) {
  253. ret = __generic_file_splice_read(in, pipe, len, flags);
  254. if (ret <= 0)
  255. break;
  256. in->f_pos += ret;
  257. len -= ret;
  258. spliced += ret;
  259. if (!(flags & SPLICE_F_NONBLOCK))
  260. continue;
  261. ret = -EAGAIN;
  262. break;
  263. }
  264. if (spliced)
  265. return spliced;
  266. return ret;
  267. }
  268. /*
  269. * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
  270. * using sendpage().
  271. */
  272. static int pipe_to_sendpage(struct pipe_inode_info *info,
  273. struct pipe_buffer *buf, struct splice_desc *sd)
  274. {
  275. struct file *file = sd->file;
  276. loff_t pos = sd->pos;
  277. unsigned int offset;
  278. ssize_t ret;
  279. void *ptr;
  280. /*
  281. * sub-optimal, but we are limited by the pipe ->map. we don't
  282. * need a kmap'ed buffer here, we just want to make sure we
  283. * have the page pinned if the pipe page originates from the
  284. * page cache
  285. */
  286. ptr = buf->ops->map(file, info, buf);
  287. if (IS_ERR(ptr))
  288. return PTR_ERR(ptr);
  289. offset = pos & ~PAGE_CACHE_MASK;
  290. ret = file->f_op->sendpage(file, buf->page, offset, sd->len, &pos,
  291. sd->len < sd->total_len);
  292. buf->ops->unmap(info, buf);
  293. if (ret == sd->len)
  294. return 0;
  295. return -EIO;
  296. }
  297. /*
  298. * This is a little more tricky than the file -> pipe splicing. There are
  299. * basically three cases:
  300. *
  301. * - Destination page already exists in the address space and there
  302. * are users of it. For that case we have no other option that
  303. * copying the data. Tough luck.
  304. * - Destination page already exists in the address space, but there
  305. * are no users of it. Make sure it's uptodate, then drop it. Fall
  306. * through to last case.
  307. * - Destination page does not exist, we can add the pipe page to
  308. * the page cache and avoid the copy.
  309. *
  310. * For now we just do the slower thing and always copy pages over, it's
  311. * easier than migrating pages from the pipe to the target file. For the
  312. * case of doing file | file splicing, the migrate approach had some LRU
  313. * nastiness...
  314. */
  315. static int pipe_to_file(struct pipe_inode_info *info, struct pipe_buffer *buf,
  316. struct splice_desc *sd)
  317. {
  318. struct file *file = sd->file;
  319. struct address_space *mapping = file->f_mapping;
  320. unsigned int offset;
  321. struct page *page;
  322. pgoff_t index;
  323. char *src;
  324. int ret, stolen;
  325. /*
  326. * after this, page will be locked and unmapped
  327. */
  328. src = buf->ops->map(file, info, buf);
  329. if (IS_ERR(src))
  330. return PTR_ERR(src);
  331. index = sd->pos >> PAGE_CACHE_SHIFT;
  332. offset = sd->pos & ~PAGE_CACHE_MASK;
  333. stolen = 0;
  334. /*
  335. * reuse buf page, if SPLICE_F_MOVE is set
  336. */
  337. if (sd->flags & SPLICE_F_MOVE) {
  338. if (buf->ops->steal(info, buf))
  339. goto find_page;
  340. page = buf->page;
  341. stolen = 1;
  342. if (add_to_page_cache_lru(page, mapping, index,
  343. mapping_gfp_mask(mapping)))
  344. goto find_page;
  345. } else {
  346. find_page:
  347. ret = -ENOMEM;
  348. page = find_or_create_page(mapping, index,
  349. mapping_gfp_mask(mapping));
  350. if (!page)
  351. goto out;
  352. /*
  353. * If the page is uptodate, it is also locked. If it isn't
  354. * uptodate, we can mark it uptodate if we are filling the
  355. * full page. Otherwise we need to read it in first...
  356. */
  357. if (!PageUptodate(page)) {
  358. if (sd->len < PAGE_CACHE_SIZE) {
  359. ret = mapping->a_ops->readpage(file, page);
  360. if (unlikely(ret))
  361. goto out;
  362. lock_page(page);
  363. if (!PageUptodate(page)) {
  364. /*
  365. * page got invalidated, repeat
  366. */
  367. if (!page->mapping) {
  368. unlock_page(page);
  369. page_cache_release(page);
  370. goto find_page;
  371. }
  372. ret = -EIO;
  373. goto out;
  374. }
  375. } else {
  376. WARN_ON(!PageLocked(page));
  377. SetPageUptodate(page);
  378. }
  379. }
  380. }
  381. ret = mapping->a_ops->prepare_write(file, page, 0, sd->len);
  382. if (ret == AOP_TRUNCATED_PAGE) {
  383. page_cache_release(page);
  384. goto find_page;
  385. } else if (ret)
  386. goto out;
  387. if (!stolen) {
  388. char *dst = kmap_atomic(page, KM_USER0);
  389. memcpy(dst + offset, src + buf->offset, sd->len);
  390. flush_dcache_page(page);
  391. kunmap_atomic(dst, KM_USER0);
  392. }
  393. ret = mapping->a_ops->commit_write(file, page, 0, sd->len);
  394. if (ret == AOP_TRUNCATED_PAGE) {
  395. page_cache_release(page);
  396. goto find_page;
  397. } else if (ret)
  398. goto out;
  399. balance_dirty_pages_ratelimited(mapping);
  400. out:
  401. if (!stolen) {
  402. page_cache_release(page);
  403. unlock_page(page);
  404. }
  405. buf->ops->unmap(info, buf);
  406. return ret;
  407. }
  408. typedef int (splice_actor)(struct pipe_inode_info *, struct pipe_buffer *,
  409. struct splice_desc *);
  410. static ssize_t move_from_pipe(struct inode *inode, struct file *out,
  411. size_t len, unsigned int flags,
  412. splice_actor *actor)
  413. {
  414. struct pipe_inode_info *info;
  415. int ret, do_wakeup, err;
  416. struct splice_desc sd;
  417. ret = 0;
  418. do_wakeup = 0;
  419. sd.total_len = len;
  420. sd.flags = flags;
  421. sd.file = out;
  422. sd.pos = out->f_pos;
  423. mutex_lock(PIPE_MUTEX(*inode));
  424. info = inode->i_pipe;
  425. for (;;) {
  426. int bufs = info->nrbufs;
  427. if (bufs) {
  428. int curbuf = info->curbuf;
  429. struct pipe_buffer *buf = info->bufs + curbuf;
  430. struct pipe_buf_operations *ops = buf->ops;
  431. sd.len = buf->len;
  432. if (sd.len > sd.total_len)
  433. sd.len = sd.total_len;
  434. err = actor(info, buf, &sd);
  435. if (err) {
  436. if (!ret && err != -ENODATA)
  437. ret = err;
  438. break;
  439. }
  440. ret += sd.len;
  441. buf->offset += sd.len;
  442. buf->len -= sd.len;
  443. if (!buf->len) {
  444. buf->ops = NULL;
  445. ops->release(info, buf);
  446. curbuf = (curbuf + 1) & (PIPE_BUFFERS - 1);
  447. info->curbuf = curbuf;
  448. info->nrbufs = --bufs;
  449. do_wakeup = 1;
  450. }
  451. sd.pos += sd.len;
  452. sd.total_len -= sd.len;
  453. if (!sd.total_len)
  454. break;
  455. }
  456. if (bufs)
  457. continue;
  458. if (!PIPE_WRITERS(*inode))
  459. break;
  460. if (!PIPE_WAITING_WRITERS(*inode)) {
  461. if (ret)
  462. break;
  463. }
  464. if (flags & SPLICE_F_NONBLOCK) {
  465. if (!ret)
  466. ret = -EAGAIN;
  467. break;
  468. }
  469. if (signal_pending(current)) {
  470. if (!ret)
  471. ret = -ERESTARTSYS;
  472. break;
  473. }
  474. if (do_wakeup) {
  475. wake_up_interruptible_sync(PIPE_WAIT(*inode));
  476. kill_fasync(PIPE_FASYNC_WRITERS(*inode),SIGIO,POLL_OUT);
  477. do_wakeup = 0;
  478. }
  479. pipe_wait(inode);
  480. }
  481. mutex_unlock(PIPE_MUTEX(*inode));
  482. if (do_wakeup) {
  483. wake_up_interruptible(PIPE_WAIT(*inode));
  484. kill_fasync(PIPE_FASYNC_WRITERS(*inode), SIGIO, POLL_OUT);
  485. }
  486. mutex_lock(&out->f_mapping->host->i_mutex);
  487. out->f_pos = sd.pos;
  488. mutex_unlock(&out->f_mapping->host->i_mutex);
  489. return ret;
  490. }
  491. ssize_t generic_file_splice_write(struct inode *inode, struct file *out,
  492. size_t len, unsigned int flags)
  493. {
  494. struct address_space *mapping = out->f_mapping;
  495. ssize_t ret = move_from_pipe(inode, out, len, flags, pipe_to_file);
  496. /*
  497. * if file or inode is SYNC and we actually wrote some data, sync it
  498. */
  499. if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(mapping->host))
  500. && ret > 0) {
  501. struct inode *inode = mapping->host;
  502. int err;
  503. mutex_lock(&inode->i_mutex);
  504. err = generic_osync_inode(mapping->host, mapping,
  505. OSYNC_METADATA|OSYNC_DATA);
  506. mutex_unlock(&inode->i_mutex);
  507. if (err)
  508. ret = err;
  509. }
  510. return ret;
  511. }
  512. ssize_t generic_splice_sendpage(struct inode *inode, struct file *out,
  513. size_t len, unsigned int flags)
  514. {
  515. return move_from_pipe(inode, out, len, flags, pipe_to_sendpage);
  516. }
  517. EXPORT_SYMBOL(generic_file_splice_write);
  518. EXPORT_SYMBOL(generic_file_splice_read);
  519. static long do_splice_from(struct inode *pipe, struct file *out, size_t len,
  520. unsigned int flags)
  521. {
  522. loff_t pos;
  523. int ret;
  524. if (!out->f_op || !out->f_op->splice_write)
  525. return -EINVAL;
  526. if (!(out->f_mode & FMODE_WRITE))
  527. return -EBADF;
  528. pos = out->f_pos;
  529. ret = rw_verify_area(WRITE, out, &pos, len);
  530. if (unlikely(ret < 0))
  531. return ret;
  532. return out->f_op->splice_write(pipe, out, len, flags);
  533. }
  534. static long do_splice_to(struct file *in, struct inode *pipe, size_t len,
  535. unsigned int flags)
  536. {
  537. loff_t pos, isize, left;
  538. int ret;
  539. if (!in->f_op || !in->f_op->splice_read)
  540. return -EINVAL;
  541. if (!(in->f_mode & FMODE_READ))
  542. return -EBADF;
  543. pos = in->f_pos;
  544. ret = rw_verify_area(READ, in, &pos, len);
  545. if (unlikely(ret < 0))
  546. return ret;
  547. isize = i_size_read(in->f_mapping->host);
  548. if (unlikely(in->f_pos >= isize))
  549. return 0;
  550. left = isize - in->f_pos;
  551. if (left < len)
  552. len = left;
  553. return in->f_op->splice_read(in, pipe, len, flags);
  554. }
  555. static long do_splice(struct file *in, struct file *out, size_t len,
  556. unsigned int flags)
  557. {
  558. struct inode *pipe;
  559. pipe = in->f_dentry->d_inode;
  560. if (pipe->i_pipe)
  561. return do_splice_from(pipe, out, len, flags);
  562. pipe = out->f_dentry->d_inode;
  563. if (pipe->i_pipe)
  564. return do_splice_to(in, pipe, len, flags);
  565. return -EINVAL;
  566. }
  567. asmlinkage long sys_splice(int fdin, int fdout, size_t len, unsigned int flags)
  568. {
  569. long error;
  570. struct file *in, *out;
  571. int fput_in, fput_out;
  572. if (unlikely(!len))
  573. return 0;
  574. error = -EBADF;
  575. in = fget_light(fdin, &fput_in);
  576. if (in) {
  577. if (in->f_mode & FMODE_READ) {
  578. out = fget_light(fdout, &fput_out);
  579. if (out) {
  580. if (out->f_mode & FMODE_WRITE)
  581. error = do_splice(in, out, len, flags);
  582. fput_light(out, fput_out);
  583. }
  584. }
  585. fput_light(in, fput_in);
  586. }
  587. return error;
  588. }