disk-io.c 96 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. static struct extent_io_ops btree_extent_io_ops;
  47. static void end_workqueue_fn(struct btrfs_work *work);
  48. static void free_fs_root(struct btrfs_root *root);
  49. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  50. int read_only);
  51. static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
  52. static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
  53. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  54. struct btrfs_root *root);
  55. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  56. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  57. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  58. struct extent_io_tree *dirty_pages,
  59. int mark);
  60. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  61. struct extent_io_tree *pinned_extents);
  62. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  63. /*
  64. * end_io_wq structs are used to do processing in task context when an IO is
  65. * complete. This is used during reads to verify checksums, and it is used
  66. * by writes to insert metadata for new file extents after IO is complete.
  67. */
  68. struct end_io_wq {
  69. struct bio *bio;
  70. bio_end_io_t *end_io;
  71. void *private;
  72. struct btrfs_fs_info *info;
  73. int error;
  74. int metadata;
  75. struct list_head list;
  76. struct btrfs_work work;
  77. };
  78. /*
  79. * async submit bios are used to offload expensive checksumming
  80. * onto the worker threads. They checksum file and metadata bios
  81. * just before they are sent down the IO stack.
  82. */
  83. struct async_submit_bio {
  84. struct inode *inode;
  85. struct bio *bio;
  86. struct list_head list;
  87. extent_submit_bio_hook_t *submit_bio_start;
  88. extent_submit_bio_hook_t *submit_bio_done;
  89. int rw;
  90. int mirror_num;
  91. unsigned long bio_flags;
  92. /*
  93. * bio_offset is optional, can be used if the pages in the bio
  94. * can't tell us where in the file the bio should go
  95. */
  96. u64 bio_offset;
  97. struct btrfs_work work;
  98. };
  99. /*
  100. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  101. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  102. * the level the eb occupies in the tree.
  103. *
  104. * Different roots are used for different purposes and may nest inside each
  105. * other and they require separate keysets. As lockdep keys should be
  106. * static, assign keysets according to the purpose of the root as indicated
  107. * by btrfs_root->objectid. This ensures that all special purpose roots
  108. * have separate keysets.
  109. *
  110. * Lock-nesting across peer nodes is always done with the immediate parent
  111. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  112. * subclass to avoid triggering lockdep warning in such cases.
  113. *
  114. * The key is set by the readpage_end_io_hook after the buffer has passed
  115. * csum validation but before the pages are unlocked. It is also set by
  116. * btrfs_init_new_buffer on freshly allocated blocks.
  117. *
  118. * We also add a check to make sure the highest level of the tree is the
  119. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  120. * needs update as well.
  121. */
  122. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  123. # if BTRFS_MAX_LEVEL != 8
  124. # error
  125. # endif
  126. static struct btrfs_lockdep_keyset {
  127. u64 id; /* root objectid */
  128. const char *name_stem; /* lock name stem */
  129. char names[BTRFS_MAX_LEVEL + 1][20];
  130. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  131. } btrfs_lockdep_keysets[] = {
  132. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  133. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  134. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  135. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  136. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  137. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  138. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  139. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  140. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  141. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  142. { .id = 0, .name_stem = "tree" },
  143. };
  144. void __init btrfs_init_lockdep(void)
  145. {
  146. int i, j;
  147. /* initialize lockdep class names */
  148. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  149. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  150. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  151. snprintf(ks->names[j], sizeof(ks->names[j]),
  152. "btrfs-%s-%02d", ks->name_stem, j);
  153. }
  154. }
  155. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  156. int level)
  157. {
  158. struct btrfs_lockdep_keyset *ks;
  159. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  160. /* find the matching keyset, id 0 is the default entry */
  161. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  162. if (ks->id == objectid)
  163. break;
  164. lockdep_set_class_and_name(&eb->lock,
  165. &ks->keys[level], ks->names[level]);
  166. }
  167. #endif
  168. /*
  169. * extents on the btree inode are pretty simple, there's one extent
  170. * that covers the entire device
  171. */
  172. static struct extent_map *btree_get_extent(struct inode *inode,
  173. struct page *page, size_t pg_offset, u64 start, u64 len,
  174. int create)
  175. {
  176. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  177. struct extent_map *em;
  178. int ret;
  179. read_lock(&em_tree->lock);
  180. em = lookup_extent_mapping(em_tree, start, len);
  181. if (em) {
  182. em->bdev =
  183. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  184. read_unlock(&em_tree->lock);
  185. goto out;
  186. }
  187. read_unlock(&em_tree->lock);
  188. em = alloc_extent_map();
  189. if (!em) {
  190. em = ERR_PTR(-ENOMEM);
  191. goto out;
  192. }
  193. em->start = 0;
  194. em->len = (u64)-1;
  195. em->block_len = (u64)-1;
  196. em->block_start = 0;
  197. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  198. write_lock(&em_tree->lock);
  199. ret = add_extent_mapping(em_tree, em);
  200. if (ret == -EEXIST) {
  201. u64 failed_start = em->start;
  202. u64 failed_len = em->len;
  203. free_extent_map(em);
  204. em = lookup_extent_mapping(em_tree, start, len);
  205. if (em) {
  206. ret = 0;
  207. } else {
  208. em = lookup_extent_mapping(em_tree, failed_start,
  209. failed_len);
  210. ret = -EIO;
  211. }
  212. } else if (ret) {
  213. free_extent_map(em);
  214. em = NULL;
  215. }
  216. write_unlock(&em_tree->lock);
  217. if (ret)
  218. em = ERR_PTR(ret);
  219. out:
  220. return em;
  221. }
  222. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  223. {
  224. return crc32c(seed, data, len);
  225. }
  226. void btrfs_csum_final(u32 crc, char *result)
  227. {
  228. put_unaligned_le32(~crc, result);
  229. }
  230. /*
  231. * compute the csum for a btree block, and either verify it or write it
  232. * into the csum field of the block.
  233. */
  234. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  235. int verify)
  236. {
  237. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  238. char *result = NULL;
  239. unsigned long len;
  240. unsigned long cur_len;
  241. unsigned long offset = BTRFS_CSUM_SIZE;
  242. char *kaddr;
  243. unsigned long map_start;
  244. unsigned long map_len;
  245. int err;
  246. u32 crc = ~(u32)0;
  247. unsigned long inline_result;
  248. len = buf->len - offset;
  249. while (len > 0) {
  250. err = map_private_extent_buffer(buf, offset, 32,
  251. &kaddr, &map_start, &map_len);
  252. if (err)
  253. return 1;
  254. cur_len = min(len, map_len - (offset - map_start));
  255. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  256. crc, cur_len);
  257. len -= cur_len;
  258. offset += cur_len;
  259. }
  260. if (csum_size > sizeof(inline_result)) {
  261. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  262. if (!result)
  263. return 1;
  264. } else {
  265. result = (char *)&inline_result;
  266. }
  267. btrfs_csum_final(crc, result);
  268. if (verify) {
  269. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  270. u32 val;
  271. u32 found = 0;
  272. memcpy(&found, result, csum_size);
  273. read_extent_buffer(buf, &val, 0, csum_size);
  274. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  275. "failed on %llu wanted %X found %X "
  276. "level %d\n",
  277. root->fs_info->sb->s_id,
  278. (unsigned long long)buf->start, val, found,
  279. btrfs_header_level(buf));
  280. if (result != (char *)&inline_result)
  281. kfree(result);
  282. return 1;
  283. }
  284. } else {
  285. write_extent_buffer(buf, result, 0, csum_size);
  286. }
  287. if (result != (char *)&inline_result)
  288. kfree(result);
  289. return 0;
  290. }
  291. /*
  292. * we can't consider a given block up to date unless the transid of the
  293. * block matches the transid in the parent node's pointer. This is how we
  294. * detect blocks that either didn't get written at all or got written
  295. * in the wrong place.
  296. */
  297. static int verify_parent_transid(struct extent_io_tree *io_tree,
  298. struct extent_buffer *eb, u64 parent_transid)
  299. {
  300. struct extent_state *cached_state = NULL;
  301. int ret;
  302. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  303. return 0;
  304. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  305. 0, &cached_state, GFP_NOFS);
  306. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  307. btrfs_header_generation(eb) == parent_transid) {
  308. ret = 0;
  309. goto out;
  310. }
  311. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  312. "found %llu\n",
  313. (unsigned long long)eb->start,
  314. (unsigned long long)parent_transid,
  315. (unsigned long long)btrfs_header_generation(eb));
  316. ret = 1;
  317. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  318. out:
  319. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  320. &cached_state, GFP_NOFS);
  321. return ret;
  322. }
  323. /*
  324. * helper to read a given tree block, doing retries as required when
  325. * the checksums don't match and we have alternate mirrors to try.
  326. */
  327. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  328. struct extent_buffer *eb,
  329. u64 start, u64 parent_transid)
  330. {
  331. struct extent_io_tree *io_tree;
  332. int ret;
  333. int num_copies = 0;
  334. int mirror_num = 0;
  335. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  336. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  337. while (1) {
  338. ret = read_extent_buffer_pages(io_tree, eb, start,
  339. WAIT_COMPLETE,
  340. btree_get_extent, mirror_num);
  341. if (!ret && !verify_parent_transid(io_tree, eb, parent_transid))
  342. return ret;
  343. /*
  344. * This buffer's crc is fine, but its contents are corrupted, so
  345. * there is no reason to read the other copies, they won't be
  346. * any less wrong.
  347. */
  348. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  349. return ret;
  350. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  351. eb->start, eb->len);
  352. if (num_copies == 1)
  353. return ret;
  354. mirror_num++;
  355. if (mirror_num > num_copies)
  356. return ret;
  357. }
  358. return -EIO;
  359. }
  360. /*
  361. * checksum a dirty tree block before IO. This has extra checks to make sure
  362. * we only fill in the checksum field in the first page of a multi-page block
  363. */
  364. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  365. {
  366. struct extent_io_tree *tree;
  367. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  368. u64 found_start;
  369. struct extent_buffer *eb;
  370. tree = &BTRFS_I(page->mapping->host)->io_tree;
  371. eb = (struct extent_buffer *)page->private;
  372. if (page != eb->pages[0])
  373. return 0;
  374. found_start = btrfs_header_bytenr(eb);
  375. if (found_start != start) {
  376. WARN_ON(1);
  377. return 0;
  378. }
  379. if (eb->pages[0] != page) {
  380. WARN_ON(1);
  381. return 0;
  382. }
  383. if (!PageUptodate(page)) {
  384. WARN_ON(1);
  385. return 0;
  386. }
  387. csum_tree_block(root, eb, 0);
  388. return 0;
  389. }
  390. static int check_tree_block_fsid(struct btrfs_root *root,
  391. struct extent_buffer *eb)
  392. {
  393. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  394. u8 fsid[BTRFS_UUID_SIZE];
  395. int ret = 1;
  396. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  397. BTRFS_FSID_SIZE);
  398. while (fs_devices) {
  399. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  400. ret = 0;
  401. break;
  402. }
  403. fs_devices = fs_devices->seed;
  404. }
  405. return ret;
  406. }
  407. #define CORRUPT(reason, eb, root, slot) \
  408. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  409. "root=%llu, slot=%d\n", reason, \
  410. (unsigned long long)btrfs_header_bytenr(eb), \
  411. (unsigned long long)root->objectid, slot)
  412. static noinline int check_leaf(struct btrfs_root *root,
  413. struct extent_buffer *leaf)
  414. {
  415. struct btrfs_key key;
  416. struct btrfs_key leaf_key;
  417. u32 nritems = btrfs_header_nritems(leaf);
  418. int slot;
  419. if (nritems == 0)
  420. return 0;
  421. /* Check the 0 item */
  422. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  423. BTRFS_LEAF_DATA_SIZE(root)) {
  424. CORRUPT("invalid item offset size pair", leaf, root, 0);
  425. return -EIO;
  426. }
  427. /*
  428. * Check to make sure each items keys are in the correct order and their
  429. * offsets make sense. We only have to loop through nritems-1 because
  430. * we check the current slot against the next slot, which verifies the
  431. * next slot's offset+size makes sense and that the current's slot
  432. * offset is correct.
  433. */
  434. for (slot = 0; slot < nritems - 1; slot++) {
  435. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  436. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  437. /* Make sure the keys are in the right order */
  438. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  439. CORRUPT("bad key order", leaf, root, slot);
  440. return -EIO;
  441. }
  442. /*
  443. * Make sure the offset and ends are right, remember that the
  444. * item data starts at the end of the leaf and grows towards the
  445. * front.
  446. */
  447. if (btrfs_item_offset_nr(leaf, slot) !=
  448. btrfs_item_end_nr(leaf, slot + 1)) {
  449. CORRUPT("slot offset bad", leaf, root, slot);
  450. return -EIO;
  451. }
  452. /*
  453. * Check to make sure that we don't point outside of the leaf,
  454. * just incase all the items are consistent to eachother, but
  455. * all point outside of the leaf.
  456. */
  457. if (btrfs_item_end_nr(leaf, slot) >
  458. BTRFS_LEAF_DATA_SIZE(root)) {
  459. CORRUPT("slot end outside of leaf", leaf, root, slot);
  460. return -EIO;
  461. }
  462. }
  463. return 0;
  464. }
  465. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  466. struct page *page, int max_walk)
  467. {
  468. struct extent_buffer *eb;
  469. u64 start = page_offset(page);
  470. u64 target = start;
  471. u64 min_start;
  472. if (start < max_walk)
  473. min_start = 0;
  474. else
  475. min_start = start - max_walk;
  476. while (start >= min_start) {
  477. eb = find_extent_buffer(tree, start, 0);
  478. if (eb) {
  479. /*
  480. * we found an extent buffer and it contains our page
  481. * horray!
  482. */
  483. if (eb->start <= target &&
  484. eb->start + eb->len > target)
  485. return eb;
  486. /* we found an extent buffer that wasn't for us */
  487. free_extent_buffer(eb);
  488. return NULL;
  489. }
  490. if (start == 0)
  491. break;
  492. start -= PAGE_CACHE_SIZE;
  493. }
  494. return NULL;
  495. }
  496. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  497. struct extent_state *state)
  498. {
  499. struct extent_io_tree *tree;
  500. u64 found_start;
  501. int found_level;
  502. struct extent_buffer *eb;
  503. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  504. int ret = 0;
  505. int reads_done;
  506. if (!page->private)
  507. goto out;
  508. tree = &BTRFS_I(page->mapping->host)->io_tree;
  509. eb = (struct extent_buffer *)page->private;
  510. reads_done = atomic_dec_and_test(&eb->pages_reading);
  511. if (!reads_done)
  512. goto err;
  513. found_start = btrfs_header_bytenr(eb);
  514. if (found_start != eb->start) {
  515. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  516. "%llu %llu\n",
  517. (unsigned long long)found_start,
  518. (unsigned long long)eb->start);
  519. ret = -EIO;
  520. goto err;
  521. }
  522. if (check_tree_block_fsid(root, eb)) {
  523. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  524. (unsigned long long)eb->start);
  525. ret = -EIO;
  526. goto err;
  527. }
  528. found_level = btrfs_header_level(eb);
  529. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  530. eb, found_level);
  531. ret = csum_tree_block(root, eb, 1);
  532. if (ret) {
  533. ret = -EIO;
  534. goto err;
  535. }
  536. /*
  537. * If this is a leaf block and it is corrupt, set the corrupt bit so
  538. * that we don't try and read the other copies of this block, just
  539. * return -EIO.
  540. */
  541. if (found_level == 0 && check_leaf(root, eb)) {
  542. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  543. ret = -EIO;
  544. }
  545. err:
  546. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  547. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  548. btree_readahead_hook(root, eb, eb->start, ret);
  549. }
  550. if (ret && eb)
  551. clear_extent_buffer_uptodate(tree, eb, NULL);
  552. out:
  553. return ret;
  554. }
  555. static int btree_io_failed_hook(struct bio *failed_bio,
  556. struct page *page, u64 start, u64 end,
  557. int mirror_num, struct extent_state *state)
  558. {
  559. struct extent_buffer *eb;
  560. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  561. eb = (struct extent_buffer *)page->private;
  562. if (page != eb->pages[0])
  563. return -EIO;
  564. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  565. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  566. btree_readahead_hook(root, eb, eb->start, -EIO);
  567. }
  568. return -EIO; /* we fixed nothing */
  569. }
  570. static void end_workqueue_bio(struct bio *bio, int err)
  571. {
  572. struct end_io_wq *end_io_wq = bio->bi_private;
  573. struct btrfs_fs_info *fs_info;
  574. fs_info = end_io_wq->info;
  575. end_io_wq->error = err;
  576. end_io_wq->work.func = end_workqueue_fn;
  577. end_io_wq->work.flags = 0;
  578. if (bio->bi_rw & REQ_WRITE) {
  579. if (end_io_wq->metadata == 1)
  580. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  581. &end_io_wq->work);
  582. else if (end_io_wq->metadata == 2)
  583. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  584. &end_io_wq->work);
  585. else
  586. btrfs_queue_worker(&fs_info->endio_write_workers,
  587. &end_io_wq->work);
  588. } else {
  589. if (end_io_wq->metadata)
  590. btrfs_queue_worker(&fs_info->endio_meta_workers,
  591. &end_io_wq->work);
  592. else
  593. btrfs_queue_worker(&fs_info->endio_workers,
  594. &end_io_wq->work);
  595. }
  596. }
  597. /*
  598. * For the metadata arg you want
  599. *
  600. * 0 - if data
  601. * 1 - if normal metadta
  602. * 2 - if writing to the free space cache area
  603. */
  604. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  605. int metadata)
  606. {
  607. struct end_io_wq *end_io_wq;
  608. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  609. if (!end_io_wq)
  610. return -ENOMEM;
  611. end_io_wq->private = bio->bi_private;
  612. end_io_wq->end_io = bio->bi_end_io;
  613. end_io_wq->info = info;
  614. end_io_wq->error = 0;
  615. end_io_wq->bio = bio;
  616. end_io_wq->metadata = metadata;
  617. bio->bi_private = end_io_wq;
  618. bio->bi_end_io = end_workqueue_bio;
  619. return 0;
  620. }
  621. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  622. {
  623. unsigned long limit = min_t(unsigned long,
  624. info->workers.max_workers,
  625. info->fs_devices->open_devices);
  626. return 256 * limit;
  627. }
  628. static void run_one_async_start(struct btrfs_work *work)
  629. {
  630. struct async_submit_bio *async;
  631. async = container_of(work, struct async_submit_bio, work);
  632. async->submit_bio_start(async->inode, async->rw, async->bio,
  633. async->mirror_num, async->bio_flags,
  634. async->bio_offset);
  635. }
  636. static void run_one_async_done(struct btrfs_work *work)
  637. {
  638. struct btrfs_fs_info *fs_info;
  639. struct async_submit_bio *async;
  640. int limit;
  641. async = container_of(work, struct async_submit_bio, work);
  642. fs_info = BTRFS_I(async->inode)->root->fs_info;
  643. limit = btrfs_async_submit_limit(fs_info);
  644. limit = limit * 2 / 3;
  645. atomic_dec(&fs_info->nr_async_submits);
  646. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  647. waitqueue_active(&fs_info->async_submit_wait))
  648. wake_up(&fs_info->async_submit_wait);
  649. async->submit_bio_done(async->inode, async->rw, async->bio,
  650. async->mirror_num, async->bio_flags,
  651. async->bio_offset);
  652. }
  653. static void run_one_async_free(struct btrfs_work *work)
  654. {
  655. struct async_submit_bio *async;
  656. async = container_of(work, struct async_submit_bio, work);
  657. kfree(async);
  658. }
  659. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  660. int rw, struct bio *bio, int mirror_num,
  661. unsigned long bio_flags,
  662. u64 bio_offset,
  663. extent_submit_bio_hook_t *submit_bio_start,
  664. extent_submit_bio_hook_t *submit_bio_done)
  665. {
  666. struct async_submit_bio *async;
  667. async = kmalloc(sizeof(*async), GFP_NOFS);
  668. if (!async)
  669. return -ENOMEM;
  670. async->inode = inode;
  671. async->rw = rw;
  672. async->bio = bio;
  673. async->mirror_num = mirror_num;
  674. async->submit_bio_start = submit_bio_start;
  675. async->submit_bio_done = submit_bio_done;
  676. async->work.func = run_one_async_start;
  677. async->work.ordered_func = run_one_async_done;
  678. async->work.ordered_free = run_one_async_free;
  679. async->work.flags = 0;
  680. async->bio_flags = bio_flags;
  681. async->bio_offset = bio_offset;
  682. atomic_inc(&fs_info->nr_async_submits);
  683. if (rw & REQ_SYNC)
  684. btrfs_set_work_high_prio(&async->work);
  685. btrfs_queue_worker(&fs_info->workers, &async->work);
  686. while (atomic_read(&fs_info->async_submit_draining) &&
  687. atomic_read(&fs_info->nr_async_submits)) {
  688. wait_event(fs_info->async_submit_wait,
  689. (atomic_read(&fs_info->nr_async_submits) == 0));
  690. }
  691. return 0;
  692. }
  693. static int btree_csum_one_bio(struct bio *bio)
  694. {
  695. struct bio_vec *bvec = bio->bi_io_vec;
  696. int bio_index = 0;
  697. struct btrfs_root *root;
  698. WARN_ON(bio->bi_vcnt <= 0);
  699. while (bio_index < bio->bi_vcnt) {
  700. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  701. csum_dirty_buffer(root, bvec->bv_page);
  702. bio_index++;
  703. bvec++;
  704. }
  705. return 0;
  706. }
  707. static int __btree_submit_bio_start(struct inode *inode, int rw,
  708. struct bio *bio, int mirror_num,
  709. unsigned long bio_flags,
  710. u64 bio_offset)
  711. {
  712. /*
  713. * when we're called for a write, we're already in the async
  714. * submission context. Just jump into btrfs_map_bio
  715. */
  716. btree_csum_one_bio(bio);
  717. return 0;
  718. }
  719. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  720. int mirror_num, unsigned long bio_flags,
  721. u64 bio_offset)
  722. {
  723. /*
  724. * when we're called for a write, we're already in the async
  725. * submission context. Just jump into btrfs_map_bio
  726. */
  727. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  728. }
  729. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  730. int mirror_num, unsigned long bio_flags,
  731. u64 bio_offset)
  732. {
  733. int ret;
  734. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  735. bio, 1);
  736. BUG_ON(ret);
  737. if (!(rw & REQ_WRITE)) {
  738. /*
  739. * called for a read, do the setup so that checksum validation
  740. * can happen in the async kernel threads
  741. */
  742. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  743. mirror_num, 0);
  744. }
  745. /*
  746. * kthread helpers are used to submit writes so that checksumming
  747. * can happen in parallel across all CPUs
  748. */
  749. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  750. inode, rw, bio, mirror_num, 0,
  751. bio_offset,
  752. __btree_submit_bio_start,
  753. __btree_submit_bio_done);
  754. }
  755. #ifdef CONFIG_MIGRATION
  756. static int btree_migratepage(struct address_space *mapping,
  757. struct page *newpage, struct page *page,
  758. enum migrate_mode mode)
  759. {
  760. /*
  761. * we can't safely write a btree page from here,
  762. * we haven't done the locking hook
  763. */
  764. if (PageDirty(page))
  765. return -EAGAIN;
  766. /*
  767. * Buffers may be managed in a filesystem specific way.
  768. * We must have no buffers or drop them.
  769. */
  770. if (page_has_private(page) &&
  771. !try_to_release_page(page, GFP_KERNEL))
  772. return -EAGAIN;
  773. return migrate_page(mapping, newpage, page, mode);
  774. }
  775. #endif
  776. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  777. {
  778. struct extent_io_tree *tree;
  779. tree = &BTRFS_I(page->mapping->host)->io_tree;
  780. if (!(current->flags & PF_MEMALLOC)) {
  781. return extent_write_full_page(tree, page,
  782. btree_get_extent, wbc);
  783. }
  784. redirty_page_for_writepage(wbc, page);
  785. unlock_page(page);
  786. return 0;
  787. }
  788. static int btree_writepages(struct address_space *mapping,
  789. struct writeback_control *wbc)
  790. {
  791. struct extent_io_tree *tree;
  792. tree = &BTRFS_I(mapping->host)->io_tree;
  793. if (wbc->sync_mode == WB_SYNC_NONE) {
  794. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  795. u64 num_dirty;
  796. unsigned long thresh = 32 * 1024 * 1024;
  797. if (wbc->for_kupdate)
  798. return 0;
  799. /* this is a bit racy, but that's ok */
  800. num_dirty = root->fs_info->dirty_metadata_bytes;
  801. if (num_dirty < thresh)
  802. return 0;
  803. }
  804. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  805. }
  806. static int btree_readpage(struct file *file, struct page *page)
  807. {
  808. struct extent_io_tree *tree;
  809. tree = &BTRFS_I(page->mapping->host)->io_tree;
  810. return extent_read_full_page(tree, page, btree_get_extent, 0);
  811. }
  812. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  813. {
  814. struct extent_map_tree *map;
  815. struct extent_io_tree *tree;
  816. int ret;
  817. if (PageWriteback(page) || PageDirty(page))
  818. return 0;
  819. tree = &BTRFS_I(page->mapping->host)->io_tree;
  820. map = &BTRFS_I(page->mapping->host)->extent_tree;
  821. /*
  822. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  823. * slab allocation from alloc_extent_state down the callchain where
  824. * it'd hit a BUG_ON as those flags are not allowed.
  825. */
  826. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  827. ret = try_release_extent_state(map, tree, page, gfp_flags);
  828. if (!ret)
  829. return 0;
  830. return try_release_extent_buffer(tree, page);
  831. }
  832. static void btree_invalidatepage(struct page *page, unsigned long offset)
  833. {
  834. struct extent_io_tree *tree;
  835. tree = &BTRFS_I(page->mapping->host)->io_tree;
  836. extent_invalidatepage(tree, page, offset);
  837. btree_releasepage(page, GFP_NOFS);
  838. if (PagePrivate(page)) {
  839. printk(KERN_WARNING "btrfs warning page private not zero "
  840. "on page %llu\n", (unsigned long long)page_offset(page));
  841. ClearPagePrivate(page);
  842. set_page_private(page, 0);
  843. page_cache_release(page);
  844. }
  845. }
  846. static const struct address_space_operations btree_aops = {
  847. .readpage = btree_readpage,
  848. .writepage = btree_writepage,
  849. .writepages = btree_writepages,
  850. .releasepage = btree_releasepage,
  851. .invalidatepage = btree_invalidatepage,
  852. #ifdef CONFIG_MIGRATION
  853. .migratepage = btree_migratepage,
  854. #endif
  855. };
  856. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  857. u64 parent_transid)
  858. {
  859. struct extent_buffer *buf = NULL;
  860. struct inode *btree_inode = root->fs_info->btree_inode;
  861. int ret = 0;
  862. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  863. if (!buf)
  864. return 0;
  865. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  866. buf, 0, WAIT_NONE, btree_get_extent, 0);
  867. free_extent_buffer(buf);
  868. return ret;
  869. }
  870. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  871. int mirror_num, struct extent_buffer **eb)
  872. {
  873. struct extent_buffer *buf = NULL;
  874. struct inode *btree_inode = root->fs_info->btree_inode;
  875. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  876. int ret;
  877. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  878. if (!buf)
  879. return 0;
  880. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  881. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  882. btree_get_extent, mirror_num);
  883. if (ret) {
  884. free_extent_buffer(buf);
  885. return ret;
  886. }
  887. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  888. free_extent_buffer(buf);
  889. return -EIO;
  890. } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
  891. *eb = buf;
  892. } else {
  893. free_extent_buffer(buf);
  894. }
  895. return 0;
  896. }
  897. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  898. u64 bytenr, u32 blocksize)
  899. {
  900. struct inode *btree_inode = root->fs_info->btree_inode;
  901. struct extent_buffer *eb;
  902. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  903. bytenr, blocksize);
  904. return eb;
  905. }
  906. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  907. u64 bytenr, u32 blocksize)
  908. {
  909. struct inode *btree_inode = root->fs_info->btree_inode;
  910. struct extent_buffer *eb;
  911. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  912. bytenr, blocksize);
  913. return eb;
  914. }
  915. int btrfs_write_tree_block(struct extent_buffer *buf)
  916. {
  917. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  918. buf->start + buf->len - 1);
  919. }
  920. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  921. {
  922. return filemap_fdatawait_range(buf->pages[0]->mapping,
  923. buf->start, buf->start + buf->len - 1);
  924. }
  925. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  926. u32 blocksize, u64 parent_transid)
  927. {
  928. struct extent_buffer *buf = NULL;
  929. int ret;
  930. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  931. if (!buf)
  932. return NULL;
  933. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  934. if (ret == 0)
  935. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  936. return buf;
  937. }
  938. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  939. struct extent_buffer *buf)
  940. {
  941. struct inode *btree_inode = root->fs_info->btree_inode;
  942. if (btrfs_header_generation(buf) ==
  943. root->fs_info->running_transaction->transid) {
  944. btrfs_assert_tree_locked(buf);
  945. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  946. spin_lock(&root->fs_info->delalloc_lock);
  947. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  948. root->fs_info->dirty_metadata_bytes -= buf->len;
  949. else
  950. WARN_ON(1);
  951. spin_unlock(&root->fs_info->delalloc_lock);
  952. }
  953. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  954. btrfs_set_lock_blocking(buf);
  955. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  956. buf);
  957. }
  958. return 0;
  959. }
  960. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  961. u32 stripesize, struct btrfs_root *root,
  962. struct btrfs_fs_info *fs_info,
  963. u64 objectid)
  964. {
  965. root->node = NULL;
  966. root->commit_root = NULL;
  967. root->sectorsize = sectorsize;
  968. root->nodesize = nodesize;
  969. root->leafsize = leafsize;
  970. root->stripesize = stripesize;
  971. root->ref_cows = 0;
  972. root->track_dirty = 0;
  973. root->in_radix = 0;
  974. root->orphan_item_inserted = 0;
  975. root->orphan_cleanup_state = 0;
  976. root->objectid = objectid;
  977. root->last_trans = 0;
  978. root->highest_objectid = 0;
  979. root->name = NULL;
  980. root->inode_tree = RB_ROOT;
  981. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  982. root->block_rsv = NULL;
  983. root->orphan_block_rsv = NULL;
  984. INIT_LIST_HEAD(&root->dirty_list);
  985. INIT_LIST_HEAD(&root->orphan_list);
  986. INIT_LIST_HEAD(&root->root_list);
  987. spin_lock_init(&root->orphan_lock);
  988. spin_lock_init(&root->inode_lock);
  989. spin_lock_init(&root->accounting_lock);
  990. mutex_init(&root->objectid_mutex);
  991. mutex_init(&root->log_mutex);
  992. init_waitqueue_head(&root->log_writer_wait);
  993. init_waitqueue_head(&root->log_commit_wait[0]);
  994. init_waitqueue_head(&root->log_commit_wait[1]);
  995. atomic_set(&root->log_commit[0], 0);
  996. atomic_set(&root->log_commit[1], 0);
  997. atomic_set(&root->log_writers, 0);
  998. root->log_batch = 0;
  999. root->log_transid = 0;
  1000. root->last_log_commit = 0;
  1001. extent_io_tree_init(&root->dirty_log_pages,
  1002. fs_info->btree_inode->i_mapping);
  1003. memset(&root->root_key, 0, sizeof(root->root_key));
  1004. memset(&root->root_item, 0, sizeof(root->root_item));
  1005. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1006. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1007. root->defrag_trans_start = fs_info->generation;
  1008. init_completion(&root->kobj_unregister);
  1009. root->defrag_running = 0;
  1010. root->root_key.objectid = objectid;
  1011. root->anon_dev = 0;
  1012. return 0;
  1013. }
  1014. static int find_and_setup_root(struct btrfs_root *tree_root,
  1015. struct btrfs_fs_info *fs_info,
  1016. u64 objectid,
  1017. struct btrfs_root *root)
  1018. {
  1019. int ret;
  1020. u32 blocksize;
  1021. u64 generation;
  1022. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1023. tree_root->sectorsize, tree_root->stripesize,
  1024. root, fs_info, objectid);
  1025. ret = btrfs_find_last_root(tree_root, objectid,
  1026. &root->root_item, &root->root_key);
  1027. if (ret > 0)
  1028. return -ENOENT;
  1029. BUG_ON(ret);
  1030. generation = btrfs_root_generation(&root->root_item);
  1031. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1032. root->commit_root = NULL;
  1033. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1034. blocksize, generation);
  1035. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  1036. free_extent_buffer(root->node);
  1037. root->node = NULL;
  1038. return -EIO;
  1039. }
  1040. root->commit_root = btrfs_root_node(root);
  1041. return 0;
  1042. }
  1043. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1044. {
  1045. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1046. if (root)
  1047. root->fs_info = fs_info;
  1048. return root;
  1049. }
  1050. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1051. struct btrfs_fs_info *fs_info)
  1052. {
  1053. struct btrfs_root *root;
  1054. struct btrfs_root *tree_root = fs_info->tree_root;
  1055. struct extent_buffer *leaf;
  1056. root = btrfs_alloc_root(fs_info);
  1057. if (!root)
  1058. return ERR_PTR(-ENOMEM);
  1059. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1060. tree_root->sectorsize, tree_root->stripesize,
  1061. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1062. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1063. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1064. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1065. /*
  1066. * log trees do not get reference counted because they go away
  1067. * before a real commit is actually done. They do store pointers
  1068. * to file data extents, and those reference counts still get
  1069. * updated (along with back refs to the log tree).
  1070. */
  1071. root->ref_cows = 0;
  1072. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1073. BTRFS_TREE_LOG_OBJECTID, NULL,
  1074. 0, 0, 0, 0);
  1075. if (IS_ERR(leaf)) {
  1076. kfree(root);
  1077. return ERR_CAST(leaf);
  1078. }
  1079. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1080. btrfs_set_header_bytenr(leaf, leaf->start);
  1081. btrfs_set_header_generation(leaf, trans->transid);
  1082. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1083. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1084. root->node = leaf;
  1085. write_extent_buffer(root->node, root->fs_info->fsid,
  1086. (unsigned long)btrfs_header_fsid(root->node),
  1087. BTRFS_FSID_SIZE);
  1088. btrfs_mark_buffer_dirty(root->node);
  1089. btrfs_tree_unlock(root->node);
  1090. return root;
  1091. }
  1092. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1093. struct btrfs_fs_info *fs_info)
  1094. {
  1095. struct btrfs_root *log_root;
  1096. log_root = alloc_log_tree(trans, fs_info);
  1097. if (IS_ERR(log_root))
  1098. return PTR_ERR(log_root);
  1099. WARN_ON(fs_info->log_root_tree);
  1100. fs_info->log_root_tree = log_root;
  1101. return 0;
  1102. }
  1103. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1104. struct btrfs_root *root)
  1105. {
  1106. struct btrfs_root *log_root;
  1107. struct btrfs_inode_item *inode_item;
  1108. log_root = alloc_log_tree(trans, root->fs_info);
  1109. if (IS_ERR(log_root))
  1110. return PTR_ERR(log_root);
  1111. log_root->last_trans = trans->transid;
  1112. log_root->root_key.offset = root->root_key.objectid;
  1113. inode_item = &log_root->root_item.inode;
  1114. inode_item->generation = cpu_to_le64(1);
  1115. inode_item->size = cpu_to_le64(3);
  1116. inode_item->nlink = cpu_to_le32(1);
  1117. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1118. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1119. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1120. WARN_ON(root->log_root);
  1121. root->log_root = log_root;
  1122. root->log_transid = 0;
  1123. root->last_log_commit = 0;
  1124. return 0;
  1125. }
  1126. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1127. struct btrfs_key *location)
  1128. {
  1129. struct btrfs_root *root;
  1130. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1131. struct btrfs_path *path;
  1132. struct extent_buffer *l;
  1133. u64 generation;
  1134. u32 blocksize;
  1135. int ret = 0;
  1136. root = btrfs_alloc_root(fs_info);
  1137. if (!root)
  1138. return ERR_PTR(-ENOMEM);
  1139. if (location->offset == (u64)-1) {
  1140. ret = find_and_setup_root(tree_root, fs_info,
  1141. location->objectid, root);
  1142. if (ret) {
  1143. kfree(root);
  1144. return ERR_PTR(ret);
  1145. }
  1146. goto out;
  1147. }
  1148. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1149. tree_root->sectorsize, tree_root->stripesize,
  1150. root, fs_info, location->objectid);
  1151. path = btrfs_alloc_path();
  1152. if (!path) {
  1153. kfree(root);
  1154. return ERR_PTR(-ENOMEM);
  1155. }
  1156. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1157. if (ret == 0) {
  1158. l = path->nodes[0];
  1159. read_extent_buffer(l, &root->root_item,
  1160. btrfs_item_ptr_offset(l, path->slots[0]),
  1161. sizeof(root->root_item));
  1162. memcpy(&root->root_key, location, sizeof(*location));
  1163. }
  1164. btrfs_free_path(path);
  1165. if (ret) {
  1166. kfree(root);
  1167. if (ret > 0)
  1168. ret = -ENOENT;
  1169. return ERR_PTR(ret);
  1170. }
  1171. generation = btrfs_root_generation(&root->root_item);
  1172. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1173. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1174. blocksize, generation);
  1175. root->commit_root = btrfs_root_node(root);
  1176. BUG_ON(!root->node);
  1177. out:
  1178. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1179. root->ref_cows = 1;
  1180. btrfs_check_and_init_root_item(&root->root_item);
  1181. }
  1182. return root;
  1183. }
  1184. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1185. struct btrfs_key *location)
  1186. {
  1187. struct btrfs_root *root;
  1188. int ret;
  1189. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1190. return fs_info->tree_root;
  1191. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1192. return fs_info->extent_root;
  1193. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1194. return fs_info->chunk_root;
  1195. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1196. return fs_info->dev_root;
  1197. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1198. return fs_info->csum_root;
  1199. again:
  1200. spin_lock(&fs_info->fs_roots_radix_lock);
  1201. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1202. (unsigned long)location->objectid);
  1203. spin_unlock(&fs_info->fs_roots_radix_lock);
  1204. if (root)
  1205. return root;
  1206. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1207. if (IS_ERR(root))
  1208. return root;
  1209. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1210. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1211. GFP_NOFS);
  1212. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1213. ret = -ENOMEM;
  1214. goto fail;
  1215. }
  1216. btrfs_init_free_ino_ctl(root);
  1217. mutex_init(&root->fs_commit_mutex);
  1218. spin_lock_init(&root->cache_lock);
  1219. init_waitqueue_head(&root->cache_wait);
  1220. ret = get_anon_bdev(&root->anon_dev);
  1221. if (ret)
  1222. goto fail;
  1223. if (btrfs_root_refs(&root->root_item) == 0) {
  1224. ret = -ENOENT;
  1225. goto fail;
  1226. }
  1227. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1228. if (ret < 0)
  1229. goto fail;
  1230. if (ret == 0)
  1231. root->orphan_item_inserted = 1;
  1232. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1233. if (ret)
  1234. goto fail;
  1235. spin_lock(&fs_info->fs_roots_radix_lock);
  1236. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1237. (unsigned long)root->root_key.objectid,
  1238. root);
  1239. if (ret == 0)
  1240. root->in_radix = 1;
  1241. spin_unlock(&fs_info->fs_roots_radix_lock);
  1242. radix_tree_preload_end();
  1243. if (ret) {
  1244. if (ret == -EEXIST) {
  1245. free_fs_root(root);
  1246. goto again;
  1247. }
  1248. goto fail;
  1249. }
  1250. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1251. root->root_key.objectid);
  1252. WARN_ON(ret);
  1253. return root;
  1254. fail:
  1255. free_fs_root(root);
  1256. return ERR_PTR(ret);
  1257. }
  1258. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1259. {
  1260. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1261. int ret = 0;
  1262. struct btrfs_device *device;
  1263. struct backing_dev_info *bdi;
  1264. rcu_read_lock();
  1265. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1266. if (!device->bdev)
  1267. continue;
  1268. bdi = blk_get_backing_dev_info(device->bdev);
  1269. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1270. ret = 1;
  1271. break;
  1272. }
  1273. }
  1274. rcu_read_unlock();
  1275. return ret;
  1276. }
  1277. /*
  1278. * If this fails, caller must call bdi_destroy() to get rid of the
  1279. * bdi again.
  1280. */
  1281. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1282. {
  1283. int err;
  1284. bdi->capabilities = BDI_CAP_MAP_COPY;
  1285. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1286. if (err)
  1287. return err;
  1288. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1289. bdi->congested_fn = btrfs_congested_fn;
  1290. bdi->congested_data = info;
  1291. return 0;
  1292. }
  1293. /*
  1294. * called by the kthread helper functions to finally call the bio end_io
  1295. * functions. This is where read checksum verification actually happens
  1296. */
  1297. static void end_workqueue_fn(struct btrfs_work *work)
  1298. {
  1299. struct bio *bio;
  1300. struct end_io_wq *end_io_wq;
  1301. struct btrfs_fs_info *fs_info;
  1302. int error;
  1303. end_io_wq = container_of(work, struct end_io_wq, work);
  1304. bio = end_io_wq->bio;
  1305. fs_info = end_io_wq->info;
  1306. error = end_io_wq->error;
  1307. bio->bi_private = end_io_wq->private;
  1308. bio->bi_end_io = end_io_wq->end_io;
  1309. kfree(end_io_wq);
  1310. bio_endio(bio, error);
  1311. }
  1312. static int cleaner_kthread(void *arg)
  1313. {
  1314. struct btrfs_root *root = arg;
  1315. do {
  1316. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1317. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1318. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1319. btrfs_run_delayed_iputs(root);
  1320. btrfs_clean_old_snapshots(root);
  1321. mutex_unlock(&root->fs_info->cleaner_mutex);
  1322. btrfs_run_defrag_inodes(root->fs_info);
  1323. }
  1324. if (!try_to_freeze()) {
  1325. set_current_state(TASK_INTERRUPTIBLE);
  1326. if (!kthread_should_stop())
  1327. schedule();
  1328. __set_current_state(TASK_RUNNING);
  1329. }
  1330. } while (!kthread_should_stop());
  1331. return 0;
  1332. }
  1333. static int transaction_kthread(void *arg)
  1334. {
  1335. struct btrfs_root *root = arg;
  1336. struct btrfs_trans_handle *trans;
  1337. struct btrfs_transaction *cur;
  1338. u64 transid;
  1339. unsigned long now;
  1340. unsigned long delay;
  1341. int ret;
  1342. do {
  1343. delay = HZ * 30;
  1344. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1345. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1346. spin_lock(&root->fs_info->trans_lock);
  1347. cur = root->fs_info->running_transaction;
  1348. if (!cur) {
  1349. spin_unlock(&root->fs_info->trans_lock);
  1350. goto sleep;
  1351. }
  1352. now = get_seconds();
  1353. if (!cur->blocked &&
  1354. (now < cur->start_time || now - cur->start_time < 30)) {
  1355. spin_unlock(&root->fs_info->trans_lock);
  1356. delay = HZ * 5;
  1357. goto sleep;
  1358. }
  1359. transid = cur->transid;
  1360. spin_unlock(&root->fs_info->trans_lock);
  1361. trans = btrfs_join_transaction(root);
  1362. BUG_ON(IS_ERR(trans));
  1363. if (transid == trans->transid) {
  1364. ret = btrfs_commit_transaction(trans, root);
  1365. BUG_ON(ret);
  1366. } else {
  1367. btrfs_end_transaction(trans, root);
  1368. }
  1369. sleep:
  1370. wake_up_process(root->fs_info->cleaner_kthread);
  1371. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1372. if (!try_to_freeze()) {
  1373. set_current_state(TASK_INTERRUPTIBLE);
  1374. if (!kthread_should_stop() &&
  1375. !btrfs_transaction_blocked(root->fs_info))
  1376. schedule_timeout(delay);
  1377. __set_current_state(TASK_RUNNING);
  1378. }
  1379. } while (!kthread_should_stop());
  1380. return 0;
  1381. }
  1382. /*
  1383. * this will find the highest generation in the array of
  1384. * root backups. The index of the highest array is returned,
  1385. * or -1 if we can't find anything.
  1386. *
  1387. * We check to make sure the array is valid by comparing the
  1388. * generation of the latest root in the array with the generation
  1389. * in the super block. If they don't match we pitch it.
  1390. */
  1391. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1392. {
  1393. u64 cur;
  1394. int newest_index = -1;
  1395. struct btrfs_root_backup *root_backup;
  1396. int i;
  1397. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1398. root_backup = info->super_copy->super_roots + i;
  1399. cur = btrfs_backup_tree_root_gen(root_backup);
  1400. if (cur == newest_gen)
  1401. newest_index = i;
  1402. }
  1403. /* check to see if we actually wrapped around */
  1404. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1405. root_backup = info->super_copy->super_roots;
  1406. cur = btrfs_backup_tree_root_gen(root_backup);
  1407. if (cur == newest_gen)
  1408. newest_index = 0;
  1409. }
  1410. return newest_index;
  1411. }
  1412. /*
  1413. * find the oldest backup so we know where to store new entries
  1414. * in the backup array. This will set the backup_root_index
  1415. * field in the fs_info struct
  1416. */
  1417. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1418. u64 newest_gen)
  1419. {
  1420. int newest_index = -1;
  1421. newest_index = find_newest_super_backup(info, newest_gen);
  1422. /* if there was garbage in there, just move along */
  1423. if (newest_index == -1) {
  1424. info->backup_root_index = 0;
  1425. } else {
  1426. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1427. }
  1428. }
  1429. /*
  1430. * copy all the root pointers into the super backup array.
  1431. * this will bump the backup pointer by one when it is
  1432. * done
  1433. */
  1434. static void backup_super_roots(struct btrfs_fs_info *info)
  1435. {
  1436. int next_backup;
  1437. struct btrfs_root_backup *root_backup;
  1438. int last_backup;
  1439. next_backup = info->backup_root_index;
  1440. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1441. BTRFS_NUM_BACKUP_ROOTS;
  1442. /*
  1443. * just overwrite the last backup if we're at the same generation
  1444. * this happens only at umount
  1445. */
  1446. root_backup = info->super_for_commit->super_roots + last_backup;
  1447. if (btrfs_backup_tree_root_gen(root_backup) ==
  1448. btrfs_header_generation(info->tree_root->node))
  1449. next_backup = last_backup;
  1450. root_backup = info->super_for_commit->super_roots + next_backup;
  1451. /*
  1452. * make sure all of our padding and empty slots get zero filled
  1453. * regardless of which ones we use today
  1454. */
  1455. memset(root_backup, 0, sizeof(*root_backup));
  1456. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1457. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1458. btrfs_set_backup_tree_root_gen(root_backup,
  1459. btrfs_header_generation(info->tree_root->node));
  1460. btrfs_set_backup_tree_root_level(root_backup,
  1461. btrfs_header_level(info->tree_root->node));
  1462. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1463. btrfs_set_backup_chunk_root_gen(root_backup,
  1464. btrfs_header_generation(info->chunk_root->node));
  1465. btrfs_set_backup_chunk_root_level(root_backup,
  1466. btrfs_header_level(info->chunk_root->node));
  1467. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1468. btrfs_set_backup_extent_root_gen(root_backup,
  1469. btrfs_header_generation(info->extent_root->node));
  1470. btrfs_set_backup_extent_root_level(root_backup,
  1471. btrfs_header_level(info->extent_root->node));
  1472. /*
  1473. * we might commit during log recovery, which happens before we set
  1474. * the fs_root. Make sure it is valid before we fill it in.
  1475. */
  1476. if (info->fs_root && info->fs_root->node) {
  1477. btrfs_set_backup_fs_root(root_backup,
  1478. info->fs_root->node->start);
  1479. btrfs_set_backup_fs_root_gen(root_backup,
  1480. btrfs_header_generation(info->fs_root->node));
  1481. btrfs_set_backup_fs_root_level(root_backup,
  1482. btrfs_header_level(info->fs_root->node));
  1483. }
  1484. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1485. btrfs_set_backup_dev_root_gen(root_backup,
  1486. btrfs_header_generation(info->dev_root->node));
  1487. btrfs_set_backup_dev_root_level(root_backup,
  1488. btrfs_header_level(info->dev_root->node));
  1489. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1490. btrfs_set_backup_csum_root_gen(root_backup,
  1491. btrfs_header_generation(info->csum_root->node));
  1492. btrfs_set_backup_csum_root_level(root_backup,
  1493. btrfs_header_level(info->csum_root->node));
  1494. btrfs_set_backup_total_bytes(root_backup,
  1495. btrfs_super_total_bytes(info->super_copy));
  1496. btrfs_set_backup_bytes_used(root_backup,
  1497. btrfs_super_bytes_used(info->super_copy));
  1498. btrfs_set_backup_num_devices(root_backup,
  1499. btrfs_super_num_devices(info->super_copy));
  1500. /*
  1501. * if we don't copy this out to the super_copy, it won't get remembered
  1502. * for the next commit
  1503. */
  1504. memcpy(&info->super_copy->super_roots,
  1505. &info->super_for_commit->super_roots,
  1506. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1507. }
  1508. /*
  1509. * this copies info out of the root backup array and back into
  1510. * the in-memory super block. It is meant to help iterate through
  1511. * the array, so you send it the number of backups you've already
  1512. * tried and the last backup index you used.
  1513. *
  1514. * this returns -1 when it has tried all the backups
  1515. */
  1516. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1517. struct btrfs_super_block *super,
  1518. int *num_backups_tried, int *backup_index)
  1519. {
  1520. struct btrfs_root_backup *root_backup;
  1521. int newest = *backup_index;
  1522. if (*num_backups_tried == 0) {
  1523. u64 gen = btrfs_super_generation(super);
  1524. newest = find_newest_super_backup(info, gen);
  1525. if (newest == -1)
  1526. return -1;
  1527. *backup_index = newest;
  1528. *num_backups_tried = 1;
  1529. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1530. /* we've tried all the backups, all done */
  1531. return -1;
  1532. } else {
  1533. /* jump to the next oldest backup */
  1534. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1535. BTRFS_NUM_BACKUP_ROOTS;
  1536. *backup_index = newest;
  1537. *num_backups_tried += 1;
  1538. }
  1539. root_backup = super->super_roots + newest;
  1540. btrfs_set_super_generation(super,
  1541. btrfs_backup_tree_root_gen(root_backup));
  1542. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1543. btrfs_set_super_root_level(super,
  1544. btrfs_backup_tree_root_level(root_backup));
  1545. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1546. /*
  1547. * fixme: the total bytes and num_devices need to match or we should
  1548. * need a fsck
  1549. */
  1550. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1551. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1552. return 0;
  1553. }
  1554. /* helper to cleanup tree roots */
  1555. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1556. {
  1557. free_extent_buffer(info->tree_root->node);
  1558. free_extent_buffer(info->tree_root->commit_root);
  1559. free_extent_buffer(info->dev_root->node);
  1560. free_extent_buffer(info->dev_root->commit_root);
  1561. free_extent_buffer(info->extent_root->node);
  1562. free_extent_buffer(info->extent_root->commit_root);
  1563. free_extent_buffer(info->csum_root->node);
  1564. free_extent_buffer(info->csum_root->commit_root);
  1565. info->tree_root->node = NULL;
  1566. info->tree_root->commit_root = NULL;
  1567. info->dev_root->node = NULL;
  1568. info->dev_root->commit_root = NULL;
  1569. info->extent_root->node = NULL;
  1570. info->extent_root->commit_root = NULL;
  1571. info->csum_root->node = NULL;
  1572. info->csum_root->commit_root = NULL;
  1573. if (chunk_root) {
  1574. free_extent_buffer(info->chunk_root->node);
  1575. free_extent_buffer(info->chunk_root->commit_root);
  1576. info->chunk_root->node = NULL;
  1577. info->chunk_root->commit_root = NULL;
  1578. }
  1579. }
  1580. int open_ctree(struct super_block *sb,
  1581. struct btrfs_fs_devices *fs_devices,
  1582. char *options)
  1583. {
  1584. u32 sectorsize;
  1585. u32 nodesize;
  1586. u32 leafsize;
  1587. u32 blocksize;
  1588. u32 stripesize;
  1589. u64 generation;
  1590. u64 features;
  1591. struct btrfs_key location;
  1592. struct buffer_head *bh;
  1593. struct btrfs_super_block *disk_super;
  1594. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1595. struct btrfs_root *tree_root;
  1596. struct btrfs_root *extent_root;
  1597. struct btrfs_root *csum_root;
  1598. struct btrfs_root *chunk_root;
  1599. struct btrfs_root *dev_root;
  1600. struct btrfs_root *log_tree_root;
  1601. int ret;
  1602. int err = -EINVAL;
  1603. int num_backups_tried = 0;
  1604. int backup_index = 0;
  1605. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1606. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1607. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1608. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1609. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1610. if (!tree_root || !extent_root || !csum_root ||
  1611. !chunk_root || !dev_root) {
  1612. err = -ENOMEM;
  1613. goto fail;
  1614. }
  1615. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1616. if (ret) {
  1617. err = ret;
  1618. goto fail;
  1619. }
  1620. ret = setup_bdi(fs_info, &fs_info->bdi);
  1621. if (ret) {
  1622. err = ret;
  1623. goto fail_srcu;
  1624. }
  1625. fs_info->btree_inode = new_inode(sb);
  1626. if (!fs_info->btree_inode) {
  1627. err = -ENOMEM;
  1628. goto fail_bdi;
  1629. }
  1630. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1631. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1632. INIT_LIST_HEAD(&fs_info->trans_list);
  1633. INIT_LIST_HEAD(&fs_info->dead_roots);
  1634. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1635. INIT_LIST_HEAD(&fs_info->hashers);
  1636. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1637. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1638. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1639. spin_lock_init(&fs_info->delalloc_lock);
  1640. spin_lock_init(&fs_info->trans_lock);
  1641. spin_lock_init(&fs_info->ref_cache_lock);
  1642. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1643. spin_lock_init(&fs_info->delayed_iput_lock);
  1644. spin_lock_init(&fs_info->defrag_inodes_lock);
  1645. spin_lock_init(&fs_info->free_chunk_lock);
  1646. mutex_init(&fs_info->reloc_mutex);
  1647. init_completion(&fs_info->kobj_unregister);
  1648. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1649. INIT_LIST_HEAD(&fs_info->space_info);
  1650. btrfs_mapping_init(&fs_info->mapping_tree);
  1651. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1652. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1653. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1654. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1655. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1656. btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
  1657. atomic_set(&fs_info->nr_async_submits, 0);
  1658. atomic_set(&fs_info->async_delalloc_pages, 0);
  1659. atomic_set(&fs_info->async_submit_draining, 0);
  1660. atomic_set(&fs_info->nr_async_bios, 0);
  1661. atomic_set(&fs_info->defrag_running, 0);
  1662. fs_info->sb = sb;
  1663. fs_info->max_inline = 8192 * 1024;
  1664. fs_info->metadata_ratio = 0;
  1665. fs_info->defrag_inodes = RB_ROOT;
  1666. fs_info->trans_no_join = 0;
  1667. fs_info->free_chunk_space = 0;
  1668. /* readahead state */
  1669. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1670. spin_lock_init(&fs_info->reada_lock);
  1671. fs_info->thread_pool_size = min_t(unsigned long,
  1672. num_online_cpus() + 2, 8);
  1673. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1674. spin_lock_init(&fs_info->ordered_extent_lock);
  1675. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1676. GFP_NOFS);
  1677. if (!fs_info->delayed_root) {
  1678. err = -ENOMEM;
  1679. goto fail_iput;
  1680. }
  1681. btrfs_init_delayed_root(fs_info->delayed_root);
  1682. mutex_init(&fs_info->scrub_lock);
  1683. atomic_set(&fs_info->scrubs_running, 0);
  1684. atomic_set(&fs_info->scrub_pause_req, 0);
  1685. atomic_set(&fs_info->scrubs_paused, 0);
  1686. atomic_set(&fs_info->scrub_cancel_req, 0);
  1687. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1688. init_rwsem(&fs_info->scrub_super_lock);
  1689. fs_info->scrub_workers_refcnt = 0;
  1690. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1691. fs_info->check_integrity_print_mask = 0;
  1692. #endif
  1693. spin_lock_init(&fs_info->balance_lock);
  1694. mutex_init(&fs_info->balance_mutex);
  1695. atomic_set(&fs_info->balance_running, 0);
  1696. atomic_set(&fs_info->balance_pause_req, 0);
  1697. atomic_set(&fs_info->balance_cancel_req, 0);
  1698. fs_info->balance_ctl = NULL;
  1699. init_waitqueue_head(&fs_info->balance_wait_q);
  1700. sb->s_blocksize = 4096;
  1701. sb->s_blocksize_bits = blksize_bits(4096);
  1702. sb->s_bdi = &fs_info->bdi;
  1703. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1704. set_nlink(fs_info->btree_inode, 1);
  1705. /*
  1706. * we set the i_size on the btree inode to the max possible int.
  1707. * the real end of the address space is determined by all of
  1708. * the devices in the system
  1709. */
  1710. fs_info->btree_inode->i_size = OFFSET_MAX;
  1711. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1712. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1713. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1714. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1715. fs_info->btree_inode->i_mapping);
  1716. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1717. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1718. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1719. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1720. sizeof(struct btrfs_key));
  1721. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1722. insert_inode_hash(fs_info->btree_inode);
  1723. spin_lock_init(&fs_info->block_group_cache_lock);
  1724. fs_info->block_group_cache_tree = RB_ROOT;
  1725. extent_io_tree_init(&fs_info->freed_extents[0],
  1726. fs_info->btree_inode->i_mapping);
  1727. extent_io_tree_init(&fs_info->freed_extents[1],
  1728. fs_info->btree_inode->i_mapping);
  1729. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1730. fs_info->do_barriers = 1;
  1731. mutex_init(&fs_info->ordered_operations_mutex);
  1732. mutex_init(&fs_info->tree_log_mutex);
  1733. mutex_init(&fs_info->chunk_mutex);
  1734. mutex_init(&fs_info->transaction_kthread_mutex);
  1735. mutex_init(&fs_info->cleaner_mutex);
  1736. mutex_init(&fs_info->volume_mutex);
  1737. init_rwsem(&fs_info->extent_commit_sem);
  1738. init_rwsem(&fs_info->cleanup_work_sem);
  1739. init_rwsem(&fs_info->subvol_sem);
  1740. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1741. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1742. init_waitqueue_head(&fs_info->transaction_throttle);
  1743. init_waitqueue_head(&fs_info->transaction_wait);
  1744. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1745. init_waitqueue_head(&fs_info->async_submit_wait);
  1746. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1747. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1748. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1749. if (!bh) {
  1750. err = -EINVAL;
  1751. goto fail_alloc;
  1752. }
  1753. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1754. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1755. sizeof(*fs_info->super_for_commit));
  1756. brelse(bh);
  1757. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1758. disk_super = fs_info->super_copy;
  1759. if (!btrfs_super_root(disk_super))
  1760. goto fail_alloc;
  1761. /* check FS state, whether FS is broken. */
  1762. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1763. btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1764. /*
  1765. * run through our array of backup supers and setup
  1766. * our ring pointer to the oldest one
  1767. */
  1768. generation = btrfs_super_generation(disk_super);
  1769. find_oldest_super_backup(fs_info, generation);
  1770. /*
  1771. * In the long term, we'll store the compression type in the super
  1772. * block, and it'll be used for per file compression control.
  1773. */
  1774. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1775. ret = btrfs_parse_options(tree_root, options);
  1776. if (ret) {
  1777. err = ret;
  1778. goto fail_alloc;
  1779. }
  1780. features = btrfs_super_incompat_flags(disk_super) &
  1781. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1782. if (features) {
  1783. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1784. "unsupported optional features (%Lx).\n",
  1785. (unsigned long long)features);
  1786. err = -EINVAL;
  1787. goto fail_alloc;
  1788. }
  1789. if (btrfs_super_leafsize(disk_super) !=
  1790. btrfs_super_nodesize(disk_super)) {
  1791. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1792. "blocksizes don't match. node %d leaf %d\n",
  1793. btrfs_super_nodesize(disk_super),
  1794. btrfs_super_leafsize(disk_super));
  1795. err = -EINVAL;
  1796. goto fail_alloc;
  1797. }
  1798. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  1799. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1800. "blocksize (%d) was too large\n",
  1801. btrfs_super_leafsize(disk_super));
  1802. err = -EINVAL;
  1803. goto fail_alloc;
  1804. }
  1805. features = btrfs_super_incompat_flags(disk_super);
  1806. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1807. if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
  1808. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1809. /*
  1810. * flag our filesystem as having big metadata blocks if
  1811. * they are bigger than the page size
  1812. */
  1813. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  1814. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  1815. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  1816. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  1817. }
  1818. btrfs_set_super_incompat_flags(disk_super, features);
  1819. features = btrfs_super_compat_ro_flags(disk_super) &
  1820. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1821. if (!(sb->s_flags & MS_RDONLY) && features) {
  1822. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1823. "unsupported option features (%Lx).\n",
  1824. (unsigned long long)features);
  1825. err = -EINVAL;
  1826. goto fail_alloc;
  1827. }
  1828. btrfs_init_workers(&fs_info->generic_worker,
  1829. "genwork", 1, NULL);
  1830. btrfs_init_workers(&fs_info->workers, "worker",
  1831. fs_info->thread_pool_size,
  1832. &fs_info->generic_worker);
  1833. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1834. fs_info->thread_pool_size,
  1835. &fs_info->generic_worker);
  1836. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1837. min_t(u64, fs_devices->num_devices,
  1838. fs_info->thread_pool_size),
  1839. &fs_info->generic_worker);
  1840. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1841. 2, &fs_info->generic_worker);
  1842. /* a higher idle thresh on the submit workers makes it much more
  1843. * likely that bios will be send down in a sane order to the
  1844. * devices
  1845. */
  1846. fs_info->submit_workers.idle_thresh = 64;
  1847. fs_info->workers.idle_thresh = 16;
  1848. fs_info->workers.ordered = 1;
  1849. fs_info->delalloc_workers.idle_thresh = 2;
  1850. fs_info->delalloc_workers.ordered = 1;
  1851. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1852. &fs_info->generic_worker);
  1853. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1854. fs_info->thread_pool_size,
  1855. &fs_info->generic_worker);
  1856. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1857. fs_info->thread_pool_size,
  1858. &fs_info->generic_worker);
  1859. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1860. "endio-meta-write", fs_info->thread_pool_size,
  1861. &fs_info->generic_worker);
  1862. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1863. fs_info->thread_pool_size,
  1864. &fs_info->generic_worker);
  1865. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1866. 1, &fs_info->generic_worker);
  1867. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  1868. fs_info->thread_pool_size,
  1869. &fs_info->generic_worker);
  1870. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  1871. fs_info->thread_pool_size,
  1872. &fs_info->generic_worker);
  1873. /*
  1874. * endios are largely parallel and should have a very
  1875. * low idle thresh
  1876. */
  1877. fs_info->endio_workers.idle_thresh = 4;
  1878. fs_info->endio_meta_workers.idle_thresh = 4;
  1879. fs_info->endio_write_workers.idle_thresh = 2;
  1880. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1881. fs_info->readahead_workers.idle_thresh = 2;
  1882. /*
  1883. * btrfs_start_workers can really only fail because of ENOMEM so just
  1884. * return -ENOMEM if any of these fail.
  1885. */
  1886. ret = btrfs_start_workers(&fs_info->workers);
  1887. ret |= btrfs_start_workers(&fs_info->generic_worker);
  1888. ret |= btrfs_start_workers(&fs_info->submit_workers);
  1889. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  1890. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  1891. ret |= btrfs_start_workers(&fs_info->endio_workers);
  1892. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  1893. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  1894. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  1895. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  1896. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  1897. ret |= btrfs_start_workers(&fs_info->caching_workers);
  1898. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  1899. if (ret) {
  1900. ret = -ENOMEM;
  1901. goto fail_sb_buffer;
  1902. }
  1903. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1904. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1905. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1906. nodesize = btrfs_super_nodesize(disk_super);
  1907. leafsize = btrfs_super_leafsize(disk_super);
  1908. sectorsize = btrfs_super_sectorsize(disk_super);
  1909. stripesize = btrfs_super_stripesize(disk_super);
  1910. tree_root->nodesize = nodesize;
  1911. tree_root->leafsize = leafsize;
  1912. tree_root->sectorsize = sectorsize;
  1913. tree_root->stripesize = stripesize;
  1914. sb->s_blocksize = sectorsize;
  1915. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1916. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1917. sizeof(disk_super->magic))) {
  1918. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1919. goto fail_sb_buffer;
  1920. }
  1921. if (sectorsize < PAGE_SIZE) {
  1922. printk(KERN_WARNING "btrfs: Incompatible sector size "
  1923. "found on %s\n", sb->s_id);
  1924. goto fail_sb_buffer;
  1925. }
  1926. mutex_lock(&fs_info->chunk_mutex);
  1927. ret = btrfs_read_sys_array(tree_root);
  1928. mutex_unlock(&fs_info->chunk_mutex);
  1929. if (ret) {
  1930. printk(KERN_WARNING "btrfs: failed to read the system "
  1931. "array on %s\n", sb->s_id);
  1932. goto fail_sb_buffer;
  1933. }
  1934. blocksize = btrfs_level_size(tree_root,
  1935. btrfs_super_chunk_root_level(disk_super));
  1936. generation = btrfs_super_chunk_root_generation(disk_super);
  1937. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1938. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1939. chunk_root->node = read_tree_block(chunk_root,
  1940. btrfs_super_chunk_root(disk_super),
  1941. blocksize, generation);
  1942. BUG_ON(!chunk_root->node);
  1943. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1944. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1945. sb->s_id);
  1946. goto fail_tree_roots;
  1947. }
  1948. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1949. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1950. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1951. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1952. BTRFS_UUID_SIZE);
  1953. ret = btrfs_read_chunk_tree(chunk_root);
  1954. if (ret) {
  1955. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1956. sb->s_id);
  1957. goto fail_tree_roots;
  1958. }
  1959. btrfs_close_extra_devices(fs_devices);
  1960. if (!fs_devices->latest_bdev) {
  1961. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  1962. sb->s_id);
  1963. goto fail_tree_roots;
  1964. }
  1965. retry_root_backup:
  1966. blocksize = btrfs_level_size(tree_root,
  1967. btrfs_super_root_level(disk_super));
  1968. generation = btrfs_super_generation(disk_super);
  1969. tree_root->node = read_tree_block(tree_root,
  1970. btrfs_super_root(disk_super),
  1971. blocksize, generation);
  1972. if (!tree_root->node ||
  1973. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1974. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1975. sb->s_id);
  1976. goto recovery_tree_root;
  1977. }
  1978. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1979. tree_root->commit_root = btrfs_root_node(tree_root);
  1980. ret = find_and_setup_root(tree_root, fs_info,
  1981. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1982. if (ret)
  1983. goto recovery_tree_root;
  1984. extent_root->track_dirty = 1;
  1985. ret = find_and_setup_root(tree_root, fs_info,
  1986. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1987. if (ret)
  1988. goto recovery_tree_root;
  1989. dev_root->track_dirty = 1;
  1990. ret = find_and_setup_root(tree_root, fs_info,
  1991. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1992. if (ret)
  1993. goto recovery_tree_root;
  1994. csum_root->track_dirty = 1;
  1995. fs_info->generation = generation;
  1996. fs_info->last_trans_committed = generation;
  1997. ret = btrfs_init_space_info(fs_info);
  1998. if (ret) {
  1999. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2000. goto fail_block_groups;
  2001. }
  2002. ret = btrfs_read_block_groups(extent_root);
  2003. if (ret) {
  2004. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2005. goto fail_block_groups;
  2006. }
  2007. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2008. "btrfs-cleaner");
  2009. if (IS_ERR(fs_info->cleaner_kthread))
  2010. goto fail_block_groups;
  2011. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2012. tree_root,
  2013. "btrfs-transaction");
  2014. if (IS_ERR(fs_info->transaction_kthread))
  2015. goto fail_cleaner;
  2016. if (!btrfs_test_opt(tree_root, SSD) &&
  2017. !btrfs_test_opt(tree_root, NOSSD) &&
  2018. !fs_info->fs_devices->rotating) {
  2019. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2020. "mode\n");
  2021. btrfs_set_opt(fs_info->mount_opt, SSD);
  2022. }
  2023. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2024. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2025. ret = btrfsic_mount(tree_root, fs_devices,
  2026. btrfs_test_opt(tree_root,
  2027. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2028. 1 : 0,
  2029. fs_info->check_integrity_print_mask);
  2030. if (ret)
  2031. printk(KERN_WARNING "btrfs: failed to initialize"
  2032. " integrity check module %s\n", sb->s_id);
  2033. }
  2034. #endif
  2035. /* do not make disk changes in broken FS */
  2036. if (btrfs_super_log_root(disk_super) != 0 &&
  2037. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  2038. u64 bytenr = btrfs_super_log_root(disk_super);
  2039. if (fs_devices->rw_devices == 0) {
  2040. printk(KERN_WARNING "Btrfs log replay required "
  2041. "on RO media\n");
  2042. err = -EIO;
  2043. goto fail_trans_kthread;
  2044. }
  2045. blocksize =
  2046. btrfs_level_size(tree_root,
  2047. btrfs_super_log_root_level(disk_super));
  2048. log_tree_root = btrfs_alloc_root(fs_info);
  2049. if (!log_tree_root) {
  2050. err = -ENOMEM;
  2051. goto fail_trans_kthread;
  2052. }
  2053. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2054. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2055. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2056. blocksize,
  2057. generation + 1);
  2058. ret = btrfs_recover_log_trees(log_tree_root);
  2059. BUG_ON(ret);
  2060. if (sb->s_flags & MS_RDONLY) {
  2061. ret = btrfs_commit_super(tree_root);
  2062. BUG_ON(ret);
  2063. }
  2064. }
  2065. ret = btrfs_find_orphan_roots(tree_root);
  2066. BUG_ON(ret);
  2067. if (!(sb->s_flags & MS_RDONLY)) {
  2068. ret = btrfs_cleanup_fs_roots(fs_info);
  2069. BUG_ON(ret);
  2070. ret = btrfs_recover_relocation(tree_root);
  2071. if (ret < 0) {
  2072. printk(KERN_WARNING
  2073. "btrfs: failed to recover relocation\n");
  2074. err = -EINVAL;
  2075. goto fail_trans_kthread;
  2076. }
  2077. }
  2078. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2079. location.type = BTRFS_ROOT_ITEM_KEY;
  2080. location.offset = (u64)-1;
  2081. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2082. if (!fs_info->fs_root)
  2083. goto fail_trans_kthread;
  2084. if (IS_ERR(fs_info->fs_root)) {
  2085. err = PTR_ERR(fs_info->fs_root);
  2086. goto fail_trans_kthread;
  2087. }
  2088. if (!(sb->s_flags & MS_RDONLY)) {
  2089. down_read(&fs_info->cleanup_work_sem);
  2090. err = btrfs_orphan_cleanup(fs_info->fs_root);
  2091. if (!err)
  2092. err = btrfs_orphan_cleanup(fs_info->tree_root);
  2093. up_read(&fs_info->cleanup_work_sem);
  2094. if (!err)
  2095. err = btrfs_recover_balance(fs_info->tree_root);
  2096. if (err) {
  2097. close_ctree(tree_root);
  2098. return err;
  2099. }
  2100. }
  2101. return 0;
  2102. fail_trans_kthread:
  2103. kthread_stop(fs_info->transaction_kthread);
  2104. fail_cleaner:
  2105. kthread_stop(fs_info->cleaner_kthread);
  2106. /*
  2107. * make sure we're done with the btree inode before we stop our
  2108. * kthreads
  2109. */
  2110. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2111. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2112. fail_block_groups:
  2113. btrfs_free_block_groups(fs_info);
  2114. fail_tree_roots:
  2115. free_root_pointers(fs_info, 1);
  2116. fail_sb_buffer:
  2117. btrfs_stop_workers(&fs_info->generic_worker);
  2118. btrfs_stop_workers(&fs_info->readahead_workers);
  2119. btrfs_stop_workers(&fs_info->fixup_workers);
  2120. btrfs_stop_workers(&fs_info->delalloc_workers);
  2121. btrfs_stop_workers(&fs_info->workers);
  2122. btrfs_stop_workers(&fs_info->endio_workers);
  2123. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2124. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2125. btrfs_stop_workers(&fs_info->endio_write_workers);
  2126. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2127. btrfs_stop_workers(&fs_info->submit_workers);
  2128. btrfs_stop_workers(&fs_info->delayed_workers);
  2129. btrfs_stop_workers(&fs_info->caching_workers);
  2130. fail_alloc:
  2131. fail_iput:
  2132. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2133. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2134. iput(fs_info->btree_inode);
  2135. fail_bdi:
  2136. bdi_destroy(&fs_info->bdi);
  2137. fail_srcu:
  2138. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2139. fail:
  2140. btrfs_close_devices(fs_info->fs_devices);
  2141. return err;
  2142. recovery_tree_root:
  2143. if (!btrfs_test_opt(tree_root, RECOVERY))
  2144. goto fail_tree_roots;
  2145. free_root_pointers(fs_info, 0);
  2146. /* don't use the log in recovery mode, it won't be valid */
  2147. btrfs_set_super_log_root(disk_super, 0);
  2148. /* we can't trust the free space cache either */
  2149. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2150. ret = next_root_backup(fs_info, fs_info->super_copy,
  2151. &num_backups_tried, &backup_index);
  2152. if (ret == -1)
  2153. goto fail_block_groups;
  2154. goto retry_root_backup;
  2155. }
  2156. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2157. {
  2158. char b[BDEVNAME_SIZE];
  2159. if (uptodate) {
  2160. set_buffer_uptodate(bh);
  2161. } else {
  2162. printk_ratelimited(KERN_WARNING "lost page write due to "
  2163. "I/O error on %s\n",
  2164. bdevname(bh->b_bdev, b));
  2165. /* note, we dont' set_buffer_write_io_error because we have
  2166. * our own ways of dealing with the IO errors
  2167. */
  2168. clear_buffer_uptodate(bh);
  2169. }
  2170. unlock_buffer(bh);
  2171. put_bh(bh);
  2172. }
  2173. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2174. {
  2175. struct buffer_head *bh;
  2176. struct buffer_head *latest = NULL;
  2177. struct btrfs_super_block *super;
  2178. int i;
  2179. u64 transid = 0;
  2180. u64 bytenr;
  2181. /* we would like to check all the supers, but that would make
  2182. * a btrfs mount succeed after a mkfs from a different FS.
  2183. * So, we need to add a special mount option to scan for
  2184. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2185. */
  2186. for (i = 0; i < 1; i++) {
  2187. bytenr = btrfs_sb_offset(i);
  2188. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2189. break;
  2190. bh = __bread(bdev, bytenr / 4096, 4096);
  2191. if (!bh)
  2192. continue;
  2193. super = (struct btrfs_super_block *)bh->b_data;
  2194. if (btrfs_super_bytenr(super) != bytenr ||
  2195. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2196. sizeof(super->magic))) {
  2197. brelse(bh);
  2198. continue;
  2199. }
  2200. if (!latest || btrfs_super_generation(super) > transid) {
  2201. brelse(latest);
  2202. latest = bh;
  2203. transid = btrfs_super_generation(super);
  2204. } else {
  2205. brelse(bh);
  2206. }
  2207. }
  2208. return latest;
  2209. }
  2210. /*
  2211. * this should be called twice, once with wait == 0 and
  2212. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2213. * we write are pinned.
  2214. *
  2215. * They are released when wait == 1 is done.
  2216. * max_mirrors must be the same for both runs, and it indicates how
  2217. * many supers on this one device should be written.
  2218. *
  2219. * max_mirrors == 0 means to write them all.
  2220. */
  2221. static int write_dev_supers(struct btrfs_device *device,
  2222. struct btrfs_super_block *sb,
  2223. int do_barriers, int wait, int max_mirrors)
  2224. {
  2225. struct buffer_head *bh;
  2226. int i;
  2227. int ret;
  2228. int errors = 0;
  2229. u32 crc;
  2230. u64 bytenr;
  2231. if (max_mirrors == 0)
  2232. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2233. for (i = 0; i < max_mirrors; i++) {
  2234. bytenr = btrfs_sb_offset(i);
  2235. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2236. break;
  2237. if (wait) {
  2238. bh = __find_get_block(device->bdev, bytenr / 4096,
  2239. BTRFS_SUPER_INFO_SIZE);
  2240. BUG_ON(!bh);
  2241. wait_on_buffer(bh);
  2242. if (!buffer_uptodate(bh))
  2243. errors++;
  2244. /* drop our reference */
  2245. brelse(bh);
  2246. /* drop the reference from the wait == 0 run */
  2247. brelse(bh);
  2248. continue;
  2249. } else {
  2250. btrfs_set_super_bytenr(sb, bytenr);
  2251. crc = ~(u32)0;
  2252. crc = btrfs_csum_data(NULL, (char *)sb +
  2253. BTRFS_CSUM_SIZE, crc,
  2254. BTRFS_SUPER_INFO_SIZE -
  2255. BTRFS_CSUM_SIZE);
  2256. btrfs_csum_final(crc, sb->csum);
  2257. /*
  2258. * one reference for us, and we leave it for the
  2259. * caller
  2260. */
  2261. bh = __getblk(device->bdev, bytenr / 4096,
  2262. BTRFS_SUPER_INFO_SIZE);
  2263. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2264. /* one reference for submit_bh */
  2265. get_bh(bh);
  2266. set_buffer_uptodate(bh);
  2267. lock_buffer(bh);
  2268. bh->b_end_io = btrfs_end_buffer_write_sync;
  2269. }
  2270. /*
  2271. * we fua the first super. The others we allow
  2272. * to go down lazy.
  2273. */
  2274. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2275. if (ret)
  2276. errors++;
  2277. }
  2278. return errors < i ? 0 : -1;
  2279. }
  2280. /*
  2281. * endio for the write_dev_flush, this will wake anyone waiting
  2282. * for the barrier when it is done
  2283. */
  2284. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2285. {
  2286. if (err) {
  2287. if (err == -EOPNOTSUPP)
  2288. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2289. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2290. }
  2291. if (bio->bi_private)
  2292. complete(bio->bi_private);
  2293. bio_put(bio);
  2294. }
  2295. /*
  2296. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2297. * sent down. With wait == 1, it waits for the previous flush.
  2298. *
  2299. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2300. * capable
  2301. */
  2302. static int write_dev_flush(struct btrfs_device *device, int wait)
  2303. {
  2304. struct bio *bio;
  2305. int ret = 0;
  2306. if (device->nobarriers)
  2307. return 0;
  2308. if (wait) {
  2309. bio = device->flush_bio;
  2310. if (!bio)
  2311. return 0;
  2312. wait_for_completion(&device->flush_wait);
  2313. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2314. printk("btrfs: disabling barriers on dev %s\n",
  2315. device->name);
  2316. device->nobarriers = 1;
  2317. }
  2318. if (!bio_flagged(bio, BIO_UPTODATE)) {
  2319. ret = -EIO;
  2320. }
  2321. /* drop the reference from the wait == 0 run */
  2322. bio_put(bio);
  2323. device->flush_bio = NULL;
  2324. return ret;
  2325. }
  2326. /*
  2327. * one reference for us, and we leave it for the
  2328. * caller
  2329. */
  2330. device->flush_bio = NULL;;
  2331. bio = bio_alloc(GFP_NOFS, 0);
  2332. if (!bio)
  2333. return -ENOMEM;
  2334. bio->bi_end_io = btrfs_end_empty_barrier;
  2335. bio->bi_bdev = device->bdev;
  2336. init_completion(&device->flush_wait);
  2337. bio->bi_private = &device->flush_wait;
  2338. device->flush_bio = bio;
  2339. bio_get(bio);
  2340. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2341. return 0;
  2342. }
  2343. /*
  2344. * send an empty flush down to each device in parallel,
  2345. * then wait for them
  2346. */
  2347. static int barrier_all_devices(struct btrfs_fs_info *info)
  2348. {
  2349. struct list_head *head;
  2350. struct btrfs_device *dev;
  2351. int errors = 0;
  2352. int ret;
  2353. /* send down all the barriers */
  2354. head = &info->fs_devices->devices;
  2355. list_for_each_entry_rcu(dev, head, dev_list) {
  2356. if (!dev->bdev) {
  2357. errors++;
  2358. continue;
  2359. }
  2360. if (!dev->in_fs_metadata || !dev->writeable)
  2361. continue;
  2362. ret = write_dev_flush(dev, 0);
  2363. if (ret)
  2364. errors++;
  2365. }
  2366. /* wait for all the barriers */
  2367. list_for_each_entry_rcu(dev, head, dev_list) {
  2368. if (!dev->bdev) {
  2369. errors++;
  2370. continue;
  2371. }
  2372. if (!dev->in_fs_metadata || !dev->writeable)
  2373. continue;
  2374. ret = write_dev_flush(dev, 1);
  2375. if (ret)
  2376. errors++;
  2377. }
  2378. if (errors)
  2379. return -EIO;
  2380. return 0;
  2381. }
  2382. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2383. {
  2384. struct list_head *head;
  2385. struct btrfs_device *dev;
  2386. struct btrfs_super_block *sb;
  2387. struct btrfs_dev_item *dev_item;
  2388. int ret;
  2389. int do_barriers;
  2390. int max_errors;
  2391. int total_errors = 0;
  2392. u64 flags;
  2393. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2394. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2395. backup_super_roots(root->fs_info);
  2396. sb = root->fs_info->super_for_commit;
  2397. dev_item = &sb->dev_item;
  2398. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2399. head = &root->fs_info->fs_devices->devices;
  2400. if (do_barriers)
  2401. barrier_all_devices(root->fs_info);
  2402. list_for_each_entry_rcu(dev, head, dev_list) {
  2403. if (!dev->bdev) {
  2404. total_errors++;
  2405. continue;
  2406. }
  2407. if (!dev->in_fs_metadata || !dev->writeable)
  2408. continue;
  2409. btrfs_set_stack_device_generation(dev_item, 0);
  2410. btrfs_set_stack_device_type(dev_item, dev->type);
  2411. btrfs_set_stack_device_id(dev_item, dev->devid);
  2412. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2413. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2414. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2415. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2416. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2417. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2418. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2419. flags = btrfs_super_flags(sb);
  2420. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2421. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2422. if (ret)
  2423. total_errors++;
  2424. }
  2425. if (total_errors > max_errors) {
  2426. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2427. total_errors);
  2428. BUG();
  2429. }
  2430. total_errors = 0;
  2431. list_for_each_entry_rcu(dev, head, dev_list) {
  2432. if (!dev->bdev)
  2433. continue;
  2434. if (!dev->in_fs_metadata || !dev->writeable)
  2435. continue;
  2436. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2437. if (ret)
  2438. total_errors++;
  2439. }
  2440. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2441. if (total_errors > max_errors) {
  2442. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2443. total_errors);
  2444. BUG();
  2445. }
  2446. return 0;
  2447. }
  2448. int write_ctree_super(struct btrfs_trans_handle *trans,
  2449. struct btrfs_root *root, int max_mirrors)
  2450. {
  2451. int ret;
  2452. ret = write_all_supers(root, max_mirrors);
  2453. return ret;
  2454. }
  2455. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2456. {
  2457. spin_lock(&fs_info->fs_roots_radix_lock);
  2458. radix_tree_delete(&fs_info->fs_roots_radix,
  2459. (unsigned long)root->root_key.objectid);
  2460. spin_unlock(&fs_info->fs_roots_radix_lock);
  2461. if (btrfs_root_refs(&root->root_item) == 0)
  2462. synchronize_srcu(&fs_info->subvol_srcu);
  2463. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2464. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2465. free_fs_root(root);
  2466. return 0;
  2467. }
  2468. static void free_fs_root(struct btrfs_root *root)
  2469. {
  2470. iput(root->cache_inode);
  2471. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2472. if (root->anon_dev)
  2473. free_anon_bdev(root->anon_dev);
  2474. free_extent_buffer(root->node);
  2475. free_extent_buffer(root->commit_root);
  2476. kfree(root->free_ino_ctl);
  2477. kfree(root->free_ino_pinned);
  2478. kfree(root->name);
  2479. kfree(root);
  2480. }
  2481. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2482. {
  2483. int ret;
  2484. struct btrfs_root *gang[8];
  2485. int i;
  2486. while (!list_empty(&fs_info->dead_roots)) {
  2487. gang[0] = list_entry(fs_info->dead_roots.next,
  2488. struct btrfs_root, root_list);
  2489. list_del(&gang[0]->root_list);
  2490. if (gang[0]->in_radix) {
  2491. btrfs_free_fs_root(fs_info, gang[0]);
  2492. } else {
  2493. free_extent_buffer(gang[0]->node);
  2494. free_extent_buffer(gang[0]->commit_root);
  2495. kfree(gang[0]);
  2496. }
  2497. }
  2498. while (1) {
  2499. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2500. (void **)gang, 0,
  2501. ARRAY_SIZE(gang));
  2502. if (!ret)
  2503. break;
  2504. for (i = 0; i < ret; i++)
  2505. btrfs_free_fs_root(fs_info, gang[i]);
  2506. }
  2507. return 0;
  2508. }
  2509. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2510. {
  2511. u64 root_objectid = 0;
  2512. struct btrfs_root *gang[8];
  2513. int i;
  2514. int ret;
  2515. while (1) {
  2516. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2517. (void **)gang, root_objectid,
  2518. ARRAY_SIZE(gang));
  2519. if (!ret)
  2520. break;
  2521. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2522. for (i = 0; i < ret; i++) {
  2523. int err;
  2524. root_objectid = gang[i]->root_key.objectid;
  2525. err = btrfs_orphan_cleanup(gang[i]);
  2526. if (err)
  2527. return err;
  2528. }
  2529. root_objectid++;
  2530. }
  2531. return 0;
  2532. }
  2533. int btrfs_commit_super(struct btrfs_root *root)
  2534. {
  2535. struct btrfs_trans_handle *trans;
  2536. int ret;
  2537. mutex_lock(&root->fs_info->cleaner_mutex);
  2538. btrfs_run_delayed_iputs(root);
  2539. btrfs_clean_old_snapshots(root);
  2540. mutex_unlock(&root->fs_info->cleaner_mutex);
  2541. /* wait until ongoing cleanup work done */
  2542. down_write(&root->fs_info->cleanup_work_sem);
  2543. up_write(&root->fs_info->cleanup_work_sem);
  2544. trans = btrfs_join_transaction(root);
  2545. if (IS_ERR(trans))
  2546. return PTR_ERR(trans);
  2547. ret = btrfs_commit_transaction(trans, root);
  2548. BUG_ON(ret);
  2549. /* run commit again to drop the original snapshot */
  2550. trans = btrfs_join_transaction(root);
  2551. if (IS_ERR(trans))
  2552. return PTR_ERR(trans);
  2553. btrfs_commit_transaction(trans, root);
  2554. ret = btrfs_write_and_wait_transaction(NULL, root);
  2555. BUG_ON(ret);
  2556. ret = write_ctree_super(NULL, root, 0);
  2557. return ret;
  2558. }
  2559. int close_ctree(struct btrfs_root *root)
  2560. {
  2561. struct btrfs_fs_info *fs_info = root->fs_info;
  2562. int ret;
  2563. fs_info->closing = 1;
  2564. smp_mb();
  2565. /* pause restriper - we want to resume on mount */
  2566. btrfs_pause_balance(root->fs_info);
  2567. btrfs_scrub_cancel(root);
  2568. /* wait for any defraggers to finish */
  2569. wait_event(fs_info->transaction_wait,
  2570. (atomic_read(&fs_info->defrag_running) == 0));
  2571. /* clear out the rbtree of defraggable inodes */
  2572. btrfs_run_defrag_inodes(fs_info);
  2573. /*
  2574. * Here come 2 situations when btrfs is broken to flip readonly:
  2575. *
  2576. * 1. when btrfs flips readonly somewhere else before
  2577. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2578. * and btrfs will skip to write sb directly to keep
  2579. * ERROR state on disk.
  2580. *
  2581. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2582. * and in such case, btrfs cannot write sb via btrfs_commit_super,
  2583. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2584. * btrfs will cleanup all FS resources first and write sb then.
  2585. */
  2586. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2587. ret = btrfs_commit_super(root);
  2588. if (ret)
  2589. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2590. }
  2591. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2592. ret = btrfs_error_commit_super(root);
  2593. if (ret)
  2594. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2595. }
  2596. btrfs_put_block_group_cache(fs_info);
  2597. kthread_stop(fs_info->transaction_kthread);
  2598. kthread_stop(fs_info->cleaner_kthread);
  2599. fs_info->closing = 2;
  2600. smp_mb();
  2601. if (fs_info->delalloc_bytes) {
  2602. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2603. (unsigned long long)fs_info->delalloc_bytes);
  2604. }
  2605. if (fs_info->total_ref_cache_size) {
  2606. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2607. (unsigned long long)fs_info->total_ref_cache_size);
  2608. }
  2609. free_extent_buffer(fs_info->extent_root->node);
  2610. free_extent_buffer(fs_info->extent_root->commit_root);
  2611. free_extent_buffer(fs_info->tree_root->node);
  2612. free_extent_buffer(fs_info->tree_root->commit_root);
  2613. free_extent_buffer(fs_info->chunk_root->node);
  2614. free_extent_buffer(fs_info->chunk_root->commit_root);
  2615. free_extent_buffer(fs_info->dev_root->node);
  2616. free_extent_buffer(fs_info->dev_root->commit_root);
  2617. free_extent_buffer(fs_info->csum_root->node);
  2618. free_extent_buffer(fs_info->csum_root->commit_root);
  2619. btrfs_free_block_groups(fs_info);
  2620. del_fs_roots(fs_info);
  2621. iput(fs_info->btree_inode);
  2622. btrfs_stop_workers(&fs_info->generic_worker);
  2623. btrfs_stop_workers(&fs_info->fixup_workers);
  2624. btrfs_stop_workers(&fs_info->delalloc_workers);
  2625. btrfs_stop_workers(&fs_info->workers);
  2626. btrfs_stop_workers(&fs_info->endio_workers);
  2627. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2628. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2629. btrfs_stop_workers(&fs_info->endio_write_workers);
  2630. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2631. btrfs_stop_workers(&fs_info->submit_workers);
  2632. btrfs_stop_workers(&fs_info->delayed_workers);
  2633. btrfs_stop_workers(&fs_info->caching_workers);
  2634. btrfs_stop_workers(&fs_info->readahead_workers);
  2635. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2636. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2637. btrfsic_unmount(root, fs_info->fs_devices);
  2638. #endif
  2639. btrfs_close_devices(fs_info->fs_devices);
  2640. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2641. bdi_destroy(&fs_info->bdi);
  2642. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2643. return 0;
  2644. }
  2645. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2646. {
  2647. int ret;
  2648. struct inode *btree_inode = buf->pages[0]->mapping->host;
  2649. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2650. NULL);
  2651. if (!ret)
  2652. return ret;
  2653. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2654. parent_transid);
  2655. return !ret;
  2656. }
  2657. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2658. {
  2659. struct inode *btree_inode = buf->pages[0]->mapping->host;
  2660. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2661. buf);
  2662. }
  2663. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2664. {
  2665. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2666. u64 transid = btrfs_header_generation(buf);
  2667. struct inode *btree_inode = root->fs_info->btree_inode;
  2668. int was_dirty;
  2669. btrfs_assert_tree_locked(buf);
  2670. if (transid != root->fs_info->generation) {
  2671. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2672. "found %llu running %llu\n",
  2673. (unsigned long long)buf->start,
  2674. (unsigned long long)transid,
  2675. (unsigned long long)root->fs_info->generation);
  2676. WARN_ON(1);
  2677. }
  2678. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2679. buf);
  2680. if (!was_dirty) {
  2681. spin_lock(&root->fs_info->delalloc_lock);
  2682. root->fs_info->dirty_metadata_bytes += buf->len;
  2683. spin_unlock(&root->fs_info->delalloc_lock);
  2684. }
  2685. }
  2686. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2687. {
  2688. /*
  2689. * looks as though older kernels can get into trouble with
  2690. * this code, they end up stuck in balance_dirty_pages forever
  2691. */
  2692. u64 num_dirty;
  2693. unsigned long thresh = 32 * 1024 * 1024;
  2694. if (current->flags & PF_MEMALLOC)
  2695. return;
  2696. btrfs_balance_delayed_items(root);
  2697. num_dirty = root->fs_info->dirty_metadata_bytes;
  2698. if (num_dirty > thresh) {
  2699. balance_dirty_pages_ratelimited_nr(
  2700. root->fs_info->btree_inode->i_mapping, 1);
  2701. }
  2702. return;
  2703. }
  2704. void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2705. {
  2706. /*
  2707. * looks as though older kernels can get into trouble with
  2708. * this code, they end up stuck in balance_dirty_pages forever
  2709. */
  2710. u64 num_dirty;
  2711. unsigned long thresh = 32 * 1024 * 1024;
  2712. if (current->flags & PF_MEMALLOC)
  2713. return;
  2714. num_dirty = root->fs_info->dirty_metadata_bytes;
  2715. if (num_dirty > thresh) {
  2716. balance_dirty_pages_ratelimited_nr(
  2717. root->fs_info->btree_inode->i_mapping, 1);
  2718. }
  2719. return;
  2720. }
  2721. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2722. {
  2723. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2724. int ret;
  2725. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2726. if (ret == 0)
  2727. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2728. return ret;
  2729. }
  2730. static int btree_lock_page_hook(struct page *page, void *data,
  2731. void (*flush_fn)(void *))
  2732. {
  2733. struct inode *inode = page->mapping->host;
  2734. struct btrfs_root *root = BTRFS_I(inode)->root;
  2735. struct extent_buffer *eb;
  2736. /*
  2737. * We culled this eb but the page is still hanging out on the mapping,
  2738. * carry on.
  2739. */
  2740. if (!PagePrivate(page))
  2741. goto out;
  2742. eb = (struct extent_buffer *)page->private;
  2743. if (!eb) {
  2744. WARN_ON(1);
  2745. goto out;
  2746. }
  2747. if (page != eb->pages[0])
  2748. goto out;
  2749. if (!btrfs_try_tree_write_lock(eb)) {
  2750. flush_fn(data);
  2751. btrfs_tree_lock(eb);
  2752. }
  2753. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2754. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2755. spin_lock(&root->fs_info->delalloc_lock);
  2756. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2757. root->fs_info->dirty_metadata_bytes -= eb->len;
  2758. else
  2759. WARN_ON(1);
  2760. spin_unlock(&root->fs_info->delalloc_lock);
  2761. }
  2762. btrfs_tree_unlock(eb);
  2763. out:
  2764. if (!trylock_page(page)) {
  2765. flush_fn(data);
  2766. lock_page(page);
  2767. }
  2768. return 0;
  2769. }
  2770. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2771. int read_only)
  2772. {
  2773. if (read_only)
  2774. return;
  2775. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2776. printk(KERN_WARNING "warning: mount fs with errors, "
  2777. "running btrfsck is recommended\n");
  2778. }
  2779. int btrfs_error_commit_super(struct btrfs_root *root)
  2780. {
  2781. int ret;
  2782. mutex_lock(&root->fs_info->cleaner_mutex);
  2783. btrfs_run_delayed_iputs(root);
  2784. mutex_unlock(&root->fs_info->cleaner_mutex);
  2785. down_write(&root->fs_info->cleanup_work_sem);
  2786. up_write(&root->fs_info->cleanup_work_sem);
  2787. /* cleanup FS via transaction */
  2788. btrfs_cleanup_transaction(root);
  2789. ret = write_ctree_super(NULL, root, 0);
  2790. return ret;
  2791. }
  2792. static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2793. {
  2794. struct btrfs_inode *btrfs_inode;
  2795. struct list_head splice;
  2796. INIT_LIST_HEAD(&splice);
  2797. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2798. spin_lock(&root->fs_info->ordered_extent_lock);
  2799. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2800. while (!list_empty(&splice)) {
  2801. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2802. ordered_operations);
  2803. list_del_init(&btrfs_inode->ordered_operations);
  2804. btrfs_invalidate_inodes(btrfs_inode->root);
  2805. }
  2806. spin_unlock(&root->fs_info->ordered_extent_lock);
  2807. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2808. return 0;
  2809. }
  2810. static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2811. {
  2812. struct list_head splice;
  2813. struct btrfs_ordered_extent *ordered;
  2814. struct inode *inode;
  2815. INIT_LIST_HEAD(&splice);
  2816. spin_lock(&root->fs_info->ordered_extent_lock);
  2817. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2818. while (!list_empty(&splice)) {
  2819. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2820. root_extent_list);
  2821. list_del_init(&ordered->root_extent_list);
  2822. atomic_inc(&ordered->refs);
  2823. /* the inode may be getting freed (in sys_unlink path). */
  2824. inode = igrab(ordered->inode);
  2825. spin_unlock(&root->fs_info->ordered_extent_lock);
  2826. if (inode)
  2827. iput(inode);
  2828. atomic_set(&ordered->refs, 1);
  2829. btrfs_put_ordered_extent(ordered);
  2830. spin_lock(&root->fs_info->ordered_extent_lock);
  2831. }
  2832. spin_unlock(&root->fs_info->ordered_extent_lock);
  2833. return 0;
  2834. }
  2835. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2836. struct btrfs_root *root)
  2837. {
  2838. struct rb_node *node;
  2839. struct btrfs_delayed_ref_root *delayed_refs;
  2840. struct btrfs_delayed_ref_node *ref;
  2841. int ret = 0;
  2842. delayed_refs = &trans->delayed_refs;
  2843. spin_lock(&delayed_refs->lock);
  2844. if (delayed_refs->num_entries == 0) {
  2845. spin_unlock(&delayed_refs->lock);
  2846. printk(KERN_INFO "delayed_refs has NO entry\n");
  2847. return ret;
  2848. }
  2849. node = rb_first(&delayed_refs->root);
  2850. while (node) {
  2851. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2852. node = rb_next(node);
  2853. ref->in_tree = 0;
  2854. rb_erase(&ref->rb_node, &delayed_refs->root);
  2855. delayed_refs->num_entries--;
  2856. atomic_set(&ref->refs, 1);
  2857. if (btrfs_delayed_ref_is_head(ref)) {
  2858. struct btrfs_delayed_ref_head *head;
  2859. head = btrfs_delayed_node_to_head(ref);
  2860. mutex_lock(&head->mutex);
  2861. kfree(head->extent_op);
  2862. delayed_refs->num_heads--;
  2863. if (list_empty(&head->cluster))
  2864. delayed_refs->num_heads_ready--;
  2865. list_del_init(&head->cluster);
  2866. mutex_unlock(&head->mutex);
  2867. }
  2868. spin_unlock(&delayed_refs->lock);
  2869. btrfs_put_delayed_ref(ref);
  2870. cond_resched();
  2871. spin_lock(&delayed_refs->lock);
  2872. }
  2873. spin_unlock(&delayed_refs->lock);
  2874. return ret;
  2875. }
  2876. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2877. {
  2878. struct btrfs_pending_snapshot *snapshot;
  2879. struct list_head splice;
  2880. INIT_LIST_HEAD(&splice);
  2881. list_splice_init(&t->pending_snapshots, &splice);
  2882. while (!list_empty(&splice)) {
  2883. snapshot = list_entry(splice.next,
  2884. struct btrfs_pending_snapshot,
  2885. list);
  2886. list_del_init(&snapshot->list);
  2887. kfree(snapshot);
  2888. }
  2889. return 0;
  2890. }
  2891. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  2892. {
  2893. struct btrfs_inode *btrfs_inode;
  2894. struct list_head splice;
  2895. INIT_LIST_HEAD(&splice);
  2896. spin_lock(&root->fs_info->delalloc_lock);
  2897. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  2898. while (!list_empty(&splice)) {
  2899. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2900. delalloc_inodes);
  2901. list_del_init(&btrfs_inode->delalloc_inodes);
  2902. btrfs_invalidate_inodes(btrfs_inode->root);
  2903. }
  2904. spin_unlock(&root->fs_info->delalloc_lock);
  2905. return 0;
  2906. }
  2907. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  2908. struct extent_io_tree *dirty_pages,
  2909. int mark)
  2910. {
  2911. int ret;
  2912. struct page *page;
  2913. struct inode *btree_inode = root->fs_info->btree_inode;
  2914. struct extent_buffer *eb;
  2915. u64 start = 0;
  2916. u64 end;
  2917. u64 offset;
  2918. unsigned long index;
  2919. while (1) {
  2920. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  2921. mark);
  2922. if (ret)
  2923. break;
  2924. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  2925. while (start <= end) {
  2926. index = start >> PAGE_CACHE_SHIFT;
  2927. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  2928. page = find_get_page(btree_inode->i_mapping, index);
  2929. if (!page)
  2930. continue;
  2931. offset = page_offset(page);
  2932. spin_lock(&dirty_pages->buffer_lock);
  2933. eb = radix_tree_lookup(
  2934. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  2935. offset >> PAGE_CACHE_SHIFT);
  2936. spin_unlock(&dirty_pages->buffer_lock);
  2937. if (eb) {
  2938. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  2939. &eb->bflags);
  2940. atomic_set(&eb->refs, 1);
  2941. }
  2942. if (PageWriteback(page))
  2943. end_page_writeback(page);
  2944. lock_page(page);
  2945. if (PageDirty(page)) {
  2946. clear_page_dirty_for_io(page);
  2947. spin_lock_irq(&page->mapping->tree_lock);
  2948. radix_tree_tag_clear(&page->mapping->page_tree,
  2949. page_index(page),
  2950. PAGECACHE_TAG_DIRTY);
  2951. spin_unlock_irq(&page->mapping->tree_lock);
  2952. }
  2953. page->mapping->a_ops->invalidatepage(page, 0);
  2954. unlock_page(page);
  2955. }
  2956. }
  2957. return ret;
  2958. }
  2959. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  2960. struct extent_io_tree *pinned_extents)
  2961. {
  2962. struct extent_io_tree *unpin;
  2963. u64 start;
  2964. u64 end;
  2965. int ret;
  2966. unpin = pinned_extents;
  2967. while (1) {
  2968. ret = find_first_extent_bit(unpin, 0, &start, &end,
  2969. EXTENT_DIRTY);
  2970. if (ret)
  2971. break;
  2972. /* opt_discard */
  2973. if (btrfs_test_opt(root, DISCARD))
  2974. ret = btrfs_error_discard_extent(root, start,
  2975. end + 1 - start,
  2976. NULL);
  2977. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  2978. btrfs_error_unpin_extent_range(root, start, end);
  2979. cond_resched();
  2980. }
  2981. return 0;
  2982. }
  2983. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  2984. {
  2985. struct btrfs_transaction *t;
  2986. LIST_HEAD(list);
  2987. WARN_ON(1);
  2988. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  2989. spin_lock(&root->fs_info->trans_lock);
  2990. list_splice_init(&root->fs_info->trans_list, &list);
  2991. root->fs_info->trans_no_join = 1;
  2992. spin_unlock(&root->fs_info->trans_lock);
  2993. while (!list_empty(&list)) {
  2994. t = list_entry(list.next, struct btrfs_transaction, list);
  2995. if (!t)
  2996. break;
  2997. btrfs_destroy_ordered_operations(root);
  2998. btrfs_destroy_ordered_extents(root);
  2999. btrfs_destroy_delayed_refs(t, root);
  3000. btrfs_block_rsv_release(root,
  3001. &root->fs_info->trans_block_rsv,
  3002. t->dirty_pages.dirty_bytes);
  3003. /* FIXME: cleanup wait for commit */
  3004. t->in_commit = 1;
  3005. t->blocked = 1;
  3006. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3007. wake_up(&root->fs_info->transaction_blocked_wait);
  3008. t->blocked = 0;
  3009. if (waitqueue_active(&root->fs_info->transaction_wait))
  3010. wake_up(&root->fs_info->transaction_wait);
  3011. t->commit_done = 1;
  3012. if (waitqueue_active(&t->commit_wait))
  3013. wake_up(&t->commit_wait);
  3014. btrfs_destroy_pending_snapshots(t);
  3015. btrfs_destroy_delalloc_inodes(root);
  3016. spin_lock(&root->fs_info->trans_lock);
  3017. root->fs_info->running_transaction = NULL;
  3018. spin_unlock(&root->fs_info->trans_lock);
  3019. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3020. EXTENT_DIRTY);
  3021. btrfs_destroy_pinned_extent(root,
  3022. root->fs_info->pinned_extents);
  3023. atomic_set(&t->use_count, 0);
  3024. list_del_init(&t->list);
  3025. memset(t, 0, sizeof(*t));
  3026. kmem_cache_free(btrfs_transaction_cachep, t);
  3027. }
  3028. spin_lock(&root->fs_info->trans_lock);
  3029. root->fs_info->trans_no_join = 0;
  3030. spin_unlock(&root->fs_info->trans_lock);
  3031. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3032. return 0;
  3033. }
  3034. static struct extent_io_ops btree_extent_io_ops = {
  3035. .write_cache_pages_lock_hook = btree_lock_page_hook,
  3036. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3037. .readpage_io_failed_hook = btree_io_failed_hook,
  3038. .submit_bio_hook = btree_submit_bio_hook,
  3039. /* note we're sharing with inode.c for the merge bio hook */
  3040. .merge_bio_hook = btrfs_merge_bio_hook,
  3041. };