rx.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617
  1. /*
  2. * Copyright 2002-2005, Instant802 Networks, Inc.
  3. * Copyright 2005-2006, Devicescape Software, Inc.
  4. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  5. * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/skbuff.h>
  13. #include <linux/netdevice.h>
  14. #include <linux/etherdevice.h>
  15. #include <linux/rcupdate.h>
  16. #include <net/mac80211.h>
  17. #include <net/ieee80211_radiotap.h>
  18. #include "ieee80211_i.h"
  19. #include "ieee80211_led.h"
  20. #include "ieee80211_common.h"
  21. #include "wep.h"
  22. #include "wpa.h"
  23. #include "tkip.h"
  24. #include "wme.h"
  25. /*
  26. * monitor mode reception
  27. *
  28. * This function cleans up the SKB, i.e. it removes all the stuff
  29. * only useful for monitoring.
  30. */
  31. static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
  32. struct sk_buff *skb,
  33. int rtap_len)
  34. {
  35. skb_pull(skb, rtap_len);
  36. if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
  37. if (likely(skb->len > FCS_LEN))
  38. skb_trim(skb, skb->len - FCS_LEN);
  39. else {
  40. /* driver bug */
  41. WARN_ON(1);
  42. dev_kfree_skb(skb);
  43. skb = NULL;
  44. }
  45. }
  46. return skb;
  47. }
  48. static inline int should_drop_frame(struct ieee80211_rx_status *status,
  49. struct sk_buff *skb,
  50. int present_fcs_len,
  51. int radiotap_len)
  52. {
  53. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  54. if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
  55. return 1;
  56. if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len))
  57. return 1;
  58. if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
  59. cpu_to_le16(IEEE80211_FTYPE_CTL))
  60. return 1;
  61. return 0;
  62. }
  63. /*
  64. * This function copies a received frame to all monitor interfaces and
  65. * returns a cleaned-up SKB that no longer includes the FCS nor the
  66. * radiotap header the driver might have added.
  67. */
  68. static struct sk_buff *
  69. ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
  70. struct ieee80211_rx_status *status)
  71. {
  72. struct ieee80211_sub_if_data *sdata;
  73. struct ieee80211_rate *rate;
  74. int needed_headroom = 0;
  75. struct ieee80211_rtap_hdr {
  76. struct ieee80211_radiotap_header hdr;
  77. u8 flags;
  78. u8 rate;
  79. __le16 chan_freq;
  80. __le16 chan_flags;
  81. u8 antsignal;
  82. u8 padding_for_rxflags;
  83. __le16 rx_flags;
  84. } __attribute__ ((packed)) *rthdr;
  85. struct sk_buff *skb, *skb2;
  86. struct net_device *prev_dev = NULL;
  87. int present_fcs_len = 0;
  88. int rtap_len = 0;
  89. /*
  90. * First, we may need to make a copy of the skb because
  91. * (1) we need to modify it for radiotap (if not present), and
  92. * (2) the other RX handlers will modify the skb we got.
  93. *
  94. * We don't need to, of course, if we aren't going to return
  95. * the SKB because it has a bad FCS/PLCP checksum.
  96. */
  97. if (status->flag & RX_FLAG_RADIOTAP)
  98. rtap_len = ieee80211_get_radiotap_len(origskb->data);
  99. else
  100. needed_headroom = sizeof(*rthdr);
  101. if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
  102. present_fcs_len = FCS_LEN;
  103. if (!local->monitors) {
  104. if (should_drop_frame(status, origskb, present_fcs_len,
  105. rtap_len)) {
  106. dev_kfree_skb(origskb);
  107. return NULL;
  108. }
  109. return remove_monitor_info(local, origskb, rtap_len);
  110. }
  111. if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) {
  112. /* only need to expand headroom if necessary */
  113. skb = origskb;
  114. origskb = NULL;
  115. /*
  116. * This shouldn't trigger often because most devices have an
  117. * RX header they pull before we get here, and that should
  118. * be big enough for our radiotap information. We should
  119. * probably export the length to drivers so that we can have
  120. * them allocate enough headroom to start with.
  121. */
  122. if (skb_headroom(skb) < needed_headroom &&
  123. pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) {
  124. dev_kfree_skb(skb);
  125. return NULL;
  126. }
  127. } else {
  128. /*
  129. * Need to make a copy and possibly remove radiotap header
  130. * and FCS from the original.
  131. */
  132. skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
  133. origskb = remove_monitor_info(local, origskb, rtap_len);
  134. if (!skb)
  135. return origskb;
  136. }
  137. /* if necessary, prepend radiotap information */
  138. if (!(status->flag & RX_FLAG_RADIOTAP)) {
  139. rthdr = (void *) skb_push(skb, sizeof(*rthdr));
  140. memset(rthdr, 0, sizeof(*rthdr));
  141. rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
  142. rthdr->hdr.it_present =
  143. cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
  144. (1 << IEEE80211_RADIOTAP_RATE) |
  145. (1 << IEEE80211_RADIOTAP_CHANNEL) |
  146. (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL) |
  147. (1 << IEEE80211_RADIOTAP_RX_FLAGS));
  148. rthdr->flags = local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS ?
  149. IEEE80211_RADIOTAP_F_FCS : 0;
  150. /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
  151. rthdr->rx_flags = 0;
  152. if (status->flag &
  153. (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
  154. rthdr->rx_flags |=
  155. cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS);
  156. rate = ieee80211_get_rate(local, status->phymode,
  157. status->rate);
  158. if (rate)
  159. rthdr->rate = rate->rate / 5;
  160. rthdr->chan_freq = cpu_to_le16(status->freq);
  161. if (status->phymode == MODE_IEEE80211A)
  162. rthdr->chan_flags =
  163. cpu_to_le16(IEEE80211_CHAN_OFDM |
  164. IEEE80211_CHAN_5GHZ);
  165. else
  166. rthdr->chan_flags =
  167. cpu_to_le16(IEEE80211_CHAN_DYN |
  168. IEEE80211_CHAN_2GHZ);
  169. rthdr->antsignal = status->ssi;
  170. }
  171. skb_set_mac_header(skb, 0);
  172. skb->ip_summed = CHECKSUM_UNNECESSARY;
  173. skb->pkt_type = PACKET_OTHERHOST;
  174. skb->protocol = htons(ETH_P_802_2);
  175. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  176. if (!netif_running(sdata->dev))
  177. continue;
  178. if (sdata->type != IEEE80211_IF_TYPE_MNTR)
  179. continue;
  180. if (prev_dev) {
  181. skb2 = skb_clone(skb, GFP_ATOMIC);
  182. if (skb2) {
  183. skb2->dev = prev_dev;
  184. netif_rx(skb2);
  185. }
  186. }
  187. prev_dev = sdata->dev;
  188. sdata->dev->stats.rx_packets++;
  189. sdata->dev->stats.rx_bytes += skb->len;
  190. }
  191. if (prev_dev) {
  192. skb->dev = prev_dev;
  193. netif_rx(skb);
  194. } else
  195. dev_kfree_skb(skb);
  196. return origskb;
  197. }
  198. /* pre-rx handlers
  199. *
  200. * these don't have dev/sdata fields in the rx data
  201. * The sta value should also not be used because it may
  202. * be NULL even though a STA (in IBSS mode) will be added.
  203. */
  204. static ieee80211_txrx_result
  205. ieee80211_rx_h_parse_qos(struct ieee80211_txrx_data *rx)
  206. {
  207. u8 *data = rx->skb->data;
  208. int tid;
  209. /* does the frame have a qos control field? */
  210. if (WLAN_FC_IS_QOS_DATA(rx->fc)) {
  211. u8 *qc = data + ieee80211_get_hdrlen(rx->fc) - QOS_CONTROL_LEN;
  212. /* frame has qos control */
  213. tid = qc[0] & QOS_CONTROL_TID_MASK;
  214. } else {
  215. if (unlikely((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)) {
  216. /* Separate TID for management frames */
  217. tid = NUM_RX_DATA_QUEUES - 1;
  218. } else {
  219. /* no qos control present */
  220. tid = 0; /* 802.1d - Best Effort */
  221. }
  222. }
  223. I802_DEBUG_INC(rx->local->wme_rx_queue[tid]);
  224. /* only a debug counter, sta might not be assigned properly yet */
  225. if (rx->sta)
  226. I802_DEBUG_INC(rx->sta->wme_rx_queue[tid]);
  227. rx->u.rx.queue = tid;
  228. /* Set skb->priority to 1d tag if highest order bit of TID is not set.
  229. * For now, set skb->priority to 0 for other cases. */
  230. rx->skb->priority = (tid > 7) ? 0 : tid;
  231. return TXRX_CONTINUE;
  232. }
  233. static ieee80211_txrx_result
  234. ieee80211_rx_h_load_stats(struct ieee80211_txrx_data *rx)
  235. {
  236. struct ieee80211_local *local = rx->local;
  237. struct sk_buff *skb = rx->skb;
  238. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  239. u32 load = 0, hdrtime;
  240. struct ieee80211_rate *rate;
  241. struct ieee80211_hw_mode *mode = local->hw.conf.mode;
  242. int i;
  243. /* Estimate total channel use caused by this frame */
  244. if (unlikely(mode->num_rates < 0))
  245. return TXRX_CONTINUE;
  246. rate = &mode->rates[0];
  247. for (i = 0; i < mode->num_rates; i++) {
  248. if (mode->rates[i].val == rx->u.rx.status->rate) {
  249. rate = &mode->rates[i];
  250. break;
  251. }
  252. }
  253. /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
  254. * 1 usec = 1/8 * (1080 / 10) = 13.5 */
  255. if (mode->mode == MODE_IEEE80211A ||
  256. (mode->mode == MODE_IEEE80211G &&
  257. rate->flags & IEEE80211_RATE_ERP))
  258. hdrtime = CHAN_UTIL_HDR_SHORT;
  259. else
  260. hdrtime = CHAN_UTIL_HDR_LONG;
  261. load = hdrtime;
  262. if (!is_multicast_ether_addr(hdr->addr1))
  263. load += hdrtime;
  264. load += skb->len * rate->rate_inv;
  265. /* Divide channel_use by 8 to avoid wrapping around the counter */
  266. load >>= CHAN_UTIL_SHIFT;
  267. local->channel_use_raw += load;
  268. rx->u.rx.load = load;
  269. return TXRX_CONTINUE;
  270. }
  271. ieee80211_rx_handler ieee80211_rx_pre_handlers[] =
  272. {
  273. ieee80211_rx_h_parse_qos,
  274. ieee80211_rx_h_load_stats,
  275. NULL
  276. };
  277. /* rx handlers */
  278. static ieee80211_txrx_result
  279. ieee80211_rx_h_if_stats(struct ieee80211_txrx_data *rx)
  280. {
  281. if (rx->sta)
  282. rx->sta->channel_use_raw += rx->u.rx.load;
  283. rx->sdata->channel_use_raw += rx->u.rx.load;
  284. return TXRX_CONTINUE;
  285. }
  286. static ieee80211_txrx_result
  287. ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx)
  288. {
  289. struct ieee80211_local *local = rx->local;
  290. struct sk_buff *skb = rx->skb;
  291. if (unlikely(local->sta_scanning != 0)) {
  292. ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status);
  293. return TXRX_QUEUED;
  294. }
  295. if (unlikely(rx->flags & IEEE80211_TXRXD_RXIN_SCAN)) {
  296. /* scanning finished during invoking of handlers */
  297. I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
  298. return TXRX_DROP;
  299. }
  300. return TXRX_CONTINUE;
  301. }
  302. static ieee80211_txrx_result
  303. ieee80211_rx_h_check(struct ieee80211_txrx_data *rx)
  304. {
  305. struct ieee80211_hdr *hdr;
  306. hdr = (struct ieee80211_hdr *) rx->skb->data;
  307. /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
  308. if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
  309. if (unlikely(rx->fc & IEEE80211_FCTL_RETRY &&
  310. rx->sta->last_seq_ctrl[rx->u.rx.queue] ==
  311. hdr->seq_ctrl)) {
  312. if (rx->flags & IEEE80211_TXRXD_RXRA_MATCH) {
  313. rx->local->dot11FrameDuplicateCount++;
  314. rx->sta->num_duplicates++;
  315. }
  316. return TXRX_DROP;
  317. } else
  318. rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl;
  319. }
  320. if (unlikely(rx->skb->len < 16)) {
  321. I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
  322. return TXRX_DROP;
  323. }
  324. if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  325. rx->skb->pkt_type = PACKET_OTHERHOST;
  326. else if (compare_ether_addr(rx->dev->dev_addr, hdr->addr1) == 0)
  327. rx->skb->pkt_type = PACKET_HOST;
  328. else if (is_multicast_ether_addr(hdr->addr1)) {
  329. if (is_broadcast_ether_addr(hdr->addr1))
  330. rx->skb->pkt_type = PACKET_BROADCAST;
  331. else
  332. rx->skb->pkt_type = PACKET_MULTICAST;
  333. } else
  334. rx->skb->pkt_type = PACKET_OTHERHOST;
  335. /* Drop disallowed frame classes based on STA auth/assoc state;
  336. * IEEE 802.11, Chap 5.5.
  337. *
  338. * 80211.o does filtering only based on association state, i.e., it
  339. * drops Class 3 frames from not associated stations. hostapd sends
  340. * deauth/disassoc frames when needed. In addition, hostapd is
  341. * responsible for filtering on both auth and assoc states.
  342. */
  343. if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA ||
  344. ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL &&
  345. (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) &&
  346. rx->sdata->type != IEEE80211_IF_TYPE_IBSS &&
  347. (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) {
  348. if ((!(rx->fc & IEEE80211_FCTL_FROMDS) &&
  349. !(rx->fc & IEEE80211_FCTL_TODS) &&
  350. (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
  351. || !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
  352. /* Drop IBSS frames and frames for other hosts
  353. * silently. */
  354. return TXRX_DROP;
  355. }
  356. if (!rx->local->apdev)
  357. return TXRX_DROP;
  358. ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
  359. ieee80211_msg_sta_not_assoc);
  360. return TXRX_QUEUED;
  361. }
  362. return TXRX_CONTINUE;
  363. }
  364. static ieee80211_txrx_result
  365. ieee80211_rx_h_load_key(struct ieee80211_txrx_data *rx)
  366. {
  367. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  368. int keyidx;
  369. int hdrlen;
  370. struct ieee80211_key *stakey = NULL;
  371. /*
  372. * Key selection 101
  373. *
  374. * There are three types of keys:
  375. * - GTK (group keys)
  376. * - PTK (pairwise keys)
  377. * - STK (station-to-station pairwise keys)
  378. *
  379. * When selecting a key, we have to distinguish between multicast
  380. * (including broadcast) and unicast frames, the latter can only
  381. * use PTKs and STKs while the former always use GTKs. Unless, of
  382. * course, actual WEP keys ("pre-RSNA") are used, then unicast
  383. * frames can also use key indizes like GTKs. Hence, if we don't
  384. * have a PTK/STK we check the key index for a WEP key.
  385. *
  386. * Note that in a regular BSS, multicast frames are sent by the
  387. * AP only, associated stations unicast the frame to the AP first
  388. * which then multicasts it on their behalf.
  389. *
  390. * There is also a slight problem in IBSS mode: GTKs are negotiated
  391. * with each station, that is something we don't currently handle.
  392. * The spec seems to expect that one negotiates the same key with
  393. * every station but there's no such requirement; VLANs could be
  394. * possible.
  395. */
  396. if (!(rx->fc & IEEE80211_FCTL_PROTECTED))
  397. return TXRX_CONTINUE;
  398. /*
  399. * No point in finding a key if the frame is neither
  400. * addressed to us nor a multicast frame.
  401. */
  402. if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  403. return TXRX_CONTINUE;
  404. if (rx->sta)
  405. stakey = rcu_dereference(rx->sta->key);
  406. if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
  407. rx->key = stakey;
  408. } else {
  409. /*
  410. * The device doesn't give us the IV so we won't be
  411. * able to look up the key. That's ok though, we
  412. * don't need to decrypt the frame, we just won't
  413. * be able to keep statistics accurate.
  414. * Except for key threshold notifications, should
  415. * we somehow allow the driver to tell us which key
  416. * the hardware used if this flag is set?
  417. */
  418. if ((rx->u.rx.status->flag & RX_FLAG_DECRYPTED) &&
  419. (rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED))
  420. return TXRX_CONTINUE;
  421. hdrlen = ieee80211_get_hdrlen(rx->fc);
  422. if (rx->skb->len < 8 + hdrlen)
  423. return TXRX_DROP; /* TODO: count this? */
  424. /*
  425. * no need to call ieee80211_wep_get_keyidx,
  426. * it verifies a bunch of things we've done already
  427. */
  428. keyidx = rx->skb->data[hdrlen + 3] >> 6;
  429. rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
  430. /*
  431. * RSNA-protected unicast frames should always be sent with
  432. * pairwise or station-to-station keys, but for WEP we allow
  433. * using a key index as well.
  434. */
  435. if (rx->key && rx->key->conf.alg != ALG_WEP &&
  436. !is_multicast_ether_addr(hdr->addr1))
  437. rx->key = NULL;
  438. }
  439. if (rx->key) {
  440. rx->key->tx_rx_count++;
  441. /* TODO: add threshold stuff again */
  442. }
  443. return TXRX_CONTINUE;
  444. }
  445. static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
  446. {
  447. struct ieee80211_sub_if_data *sdata;
  448. DECLARE_MAC_BUF(mac);
  449. sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
  450. if (sdata->bss)
  451. atomic_inc(&sdata->bss->num_sta_ps);
  452. sta->flags |= WLAN_STA_PS;
  453. sta->pspoll = 0;
  454. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  455. printk(KERN_DEBUG "%s: STA %s aid %d enters power save mode\n",
  456. dev->name, print_mac(mac, sta->addr), sta->aid);
  457. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  458. }
  459. static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
  460. {
  461. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  462. struct sk_buff *skb;
  463. int sent = 0;
  464. struct ieee80211_sub_if_data *sdata;
  465. struct ieee80211_tx_packet_data *pkt_data;
  466. DECLARE_MAC_BUF(mac);
  467. sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
  468. if (sdata->bss)
  469. atomic_dec(&sdata->bss->num_sta_ps);
  470. sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM);
  471. sta->pspoll = 0;
  472. if (!skb_queue_empty(&sta->ps_tx_buf)) {
  473. if (local->ops->set_tim)
  474. local->ops->set_tim(local_to_hw(local), sta->aid, 0);
  475. if (sdata->bss)
  476. bss_tim_clear(local, sdata->bss, sta->aid);
  477. }
  478. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  479. printk(KERN_DEBUG "%s: STA %s aid %d exits power save mode\n",
  480. dev->name, print_mac(mac, sta->addr), sta->aid);
  481. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  482. /* Send all buffered frames to the station */
  483. while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
  484. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  485. sent++;
  486. pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
  487. dev_queue_xmit(skb);
  488. }
  489. while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
  490. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  491. local->total_ps_buffered--;
  492. sent++;
  493. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  494. printk(KERN_DEBUG "%s: STA %s aid %d send PS frame "
  495. "since STA not sleeping anymore\n", dev->name,
  496. print_mac(mac, sta->addr), sta->aid);
  497. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  498. pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
  499. dev_queue_xmit(skb);
  500. }
  501. return sent;
  502. }
  503. static ieee80211_txrx_result
  504. ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx)
  505. {
  506. struct sta_info *sta = rx->sta;
  507. struct net_device *dev = rx->dev;
  508. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  509. if (!sta)
  510. return TXRX_CONTINUE;
  511. /* Update last_rx only for IBSS packets which are for the current
  512. * BSSID to avoid keeping the current IBSS network alive in cases where
  513. * other STAs are using different BSSID. */
  514. if (rx->sdata->type == IEEE80211_IF_TYPE_IBSS) {
  515. u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len);
  516. if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
  517. sta->last_rx = jiffies;
  518. } else
  519. if (!is_multicast_ether_addr(hdr->addr1) ||
  520. rx->sdata->type == IEEE80211_IF_TYPE_STA) {
  521. /* Update last_rx only for unicast frames in order to prevent
  522. * the Probe Request frames (the only broadcast frames from a
  523. * STA in infrastructure mode) from keeping a connection alive.
  524. */
  525. sta->last_rx = jiffies;
  526. }
  527. if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  528. return TXRX_CONTINUE;
  529. sta->rx_fragments++;
  530. sta->rx_bytes += rx->skb->len;
  531. sta->last_rssi = rx->u.rx.status->ssi;
  532. sta->last_signal = rx->u.rx.status->signal;
  533. sta->last_noise = rx->u.rx.status->noise;
  534. if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) {
  535. /* Change STA power saving mode only in the end of a frame
  536. * exchange sequence */
  537. if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM))
  538. rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta);
  539. else if (!(sta->flags & WLAN_STA_PS) &&
  540. (rx->fc & IEEE80211_FCTL_PM))
  541. ap_sta_ps_start(dev, sta);
  542. }
  543. /* Drop data::nullfunc frames silently, since they are used only to
  544. * control station power saving mode. */
  545. if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
  546. (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) {
  547. I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
  548. /* Update counter and free packet here to avoid counting this
  549. * as a dropped packed. */
  550. sta->rx_packets++;
  551. dev_kfree_skb(rx->skb);
  552. return TXRX_QUEUED;
  553. }
  554. return TXRX_CONTINUE;
  555. } /* ieee80211_rx_h_sta_process */
  556. static ieee80211_txrx_result
  557. ieee80211_rx_h_wep_weak_iv_detection(struct ieee80211_txrx_data *rx)
  558. {
  559. if (!rx->sta || !(rx->fc & IEEE80211_FCTL_PROTECTED) ||
  560. (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA ||
  561. !rx->key || rx->key->conf.alg != ALG_WEP ||
  562. !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  563. return TXRX_CONTINUE;
  564. /* Check for weak IVs, if hwaccel did not remove IV from the frame */
  565. if (!(rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED) ||
  566. !(rx->u.rx.status->flag & RX_FLAG_DECRYPTED))
  567. if (ieee80211_wep_is_weak_iv(rx->skb, rx->key))
  568. rx->sta->wep_weak_iv_count++;
  569. return TXRX_CONTINUE;
  570. }
  571. static ieee80211_txrx_result
  572. ieee80211_rx_h_decrypt(struct ieee80211_txrx_data *rx)
  573. {
  574. if (!(rx->fc & IEEE80211_FCTL_PROTECTED))
  575. return TXRX_CONTINUE;
  576. if (!rx->key) {
  577. if (net_ratelimit())
  578. printk(KERN_DEBUG "%s: RX protected frame,"
  579. " but have no key\n", rx->dev->name);
  580. return TXRX_DROP;
  581. }
  582. switch (rx->key->conf.alg) {
  583. case ALG_WEP:
  584. return ieee80211_crypto_wep_decrypt(rx);
  585. case ALG_TKIP:
  586. return ieee80211_crypto_tkip_decrypt(rx);
  587. case ALG_CCMP:
  588. return ieee80211_crypto_ccmp_decrypt(rx);
  589. case ALG_NONE:
  590. return TXRX_CONTINUE;
  591. }
  592. /* not reached */
  593. WARN_ON(1);
  594. return TXRX_DROP;
  595. }
  596. static inline struct ieee80211_fragment_entry *
  597. ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
  598. unsigned int frag, unsigned int seq, int rx_queue,
  599. struct sk_buff **skb)
  600. {
  601. struct ieee80211_fragment_entry *entry;
  602. int idx;
  603. idx = sdata->fragment_next;
  604. entry = &sdata->fragments[sdata->fragment_next++];
  605. if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
  606. sdata->fragment_next = 0;
  607. if (!skb_queue_empty(&entry->skb_list)) {
  608. #ifdef CONFIG_MAC80211_DEBUG
  609. struct ieee80211_hdr *hdr =
  610. (struct ieee80211_hdr *) entry->skb_list.next->data;
  611. DECLARE_MAC_BUF(mac);
  612. DECLARE_MAC_BUF(mac2);
  613. printk(KERN_DEBUG "%s: RX reassembly removed oldest "
  614. "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
  615. "addr1=%s addr2=%s\n",
  616. sdata->dev->name, idx,
  617. jiffies - entry->first_frag_time, entry->seq,
  618. entry->last_frag, print_mac(mac, hdr->addr1),
  619. print_mac(mac2, hdr->addr2));
  620. #endif /* CONFIG_MAC80211_DEBUG */
  621. __skb_queue_purge(&entry->skb_list);
  622. }
  623. __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
  624. *skb = NULL;
  625. entry->first_frag_time = jiffies;
  626. entry->seq = seq;
  627. entry->rx_queue = rx_queue;
  628. entry->last_frag = frag;
  629. entry->ccmp = 0;
  630. entry->extra_len = 0;
  631. return entry;
  632. }
  633. static inline struct ieee80211_fragment_entry *
  634. ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
  635. u16 fc, unsigned int frag, unsigned int seq,
  636. int rx_queue, struct ieee80211_hdr *hdr)
  637. {
  638. struct ieee80211_fragment_entry *entry;
  639. int i, idx;
  640. idx = sdata->fragment_next;
  641. for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
  642. struct ieee80211_hdr *f_hdr;
  643. u16 f_fc;
  644. idx--;
  645. if (idx < 0)
  646. idx = IEEE80211_FRAGMENT_MAX - 1;
  647. entry = &sdata->fragments[idx];
  648. if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
  649. entry->rx_queue != rx_queue ||
  650. entry->last_frag + 1 != frag)
  651. continue;
  652. f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
  653. f_fc = le16_to_cpu(f_hdr->frame_control);
  654. if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
  655. compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
  656. compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
  657. continue;
  658. if (entry->first_frag_time + 2 * HZ < jiffies) {
  659. __skb_queue_purge(&entry->skb_list);
  660. continue;
  661. }
  662. return entry;
  663. }
  664. return NULL;
  665. }
  666. static ieee80211_txrx_result
  667. ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx)
  668. {
  669. struct ieee80211_hdr *hdr;
  670. u16 sc;
  671. unsigned int frag, seq;
  672. struct ieee80211_fragment_entry *entry;
  673. struct sk_buff *skb;
  674. DECLARE_MAC_BUF(mac);
  675. hdr = (struct ieee80211_hdr *) rx->skb->data;
  676. sc = le16_to_cpu(hdr->seq_ctrl);
  677. frag = sc & IEEE80211_SCTL_FRAG;
  678. if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
  679. (rx->skb)->len < 24 ||
  680. is_multicast_ether_addr(hdr->addr1))) {
  681. /* not fragmented */
  682. goto out;
  683. }
  684. I802_DEBUG_INC(rx->local->rx_handlers_fragments);
  685. seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
  686. if (frag == 0) {
  687. /* This is the first fragment of a new frame. */
  688. entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
  689. rx->u.rx.queue, &(rx->skb));
  690. if (rx->key && rx->key->conf.alg == ALG_CCMP &&
  691. (rx->fc & IEEE80211_FCTL_PROTECTED)) {
  692. /* Store CCMP PN so that we can verify that the next
  693. * fragment has a sequential PN value. */
  694. entry->ccmp = 1;
  695. memcpy(entry->last_pn,
  696. rx->key->u.ccmp.rx_pn[rx->u.rx.queue],
  697. CCMP_PN_LEN);
  698. }
  699. return TXRX_QUEUED;
  700. }
  701. /* This is a fragment for a frame that should already be pending in
  702. * fragment cache. Add this fragment to the end of the pending entry.
  703. */
  704. entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
  705. rx->u.rx.queue, hdr);
  706. if (!entry) {
  707. I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
  708. return TXRX_DROP;
  709. }
  710. /* Verify that MPDUs within one MSDU have sequential PN values.
  711. * (IEEE 802.11i, 8.3.3.4.5) */
  712. if (entry->ccmp) {
  713. int i;
  714. u8 pn[CCMP_PN_LEN], *rpn;
  715. if (!rx->key || rx->key->conf.alg != ALG_CCMP)
  716. return TXRX_DROP;
  717. memcpy(pn, entry->last_pn, CCMP_PN_LEN);
  718. for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
  719. pn[i]++;
  720. if (pn[i])
  721. break;
  722. }
  723. rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue];
  724. if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
  725. if (net_ratelimit())
  726. printk(KERN_DEBUG "%s: defrag: CCMP PN not "
  727. "sequential A2=%s"
  728. " PN=%02x%02x%02x%02x%02x%02x "
  729. "(expected %02x%02x%02x%02x%02x%02x)\n",
  730. rx->dev->name, print_mac(mac, hdr->addr2),
  731. rpn[0], rpn[1], rpn[2], rpn[3], rpn[4],
  732. rpn[5], pn[0], pn[1], pn[2], pn[3],
  733. pn[4], pn[5]);
  734. return TXRX_DROP;
  735. }
  736. memcpy(entry->last_pn, pn, CCMP_PN_LEN);
  737. }
  738. skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
  739. __skb_queue_tail(&entry->skb_list, rx->skb);
  740. entry->last_frag = frag;
  741. entry->extra_len += rx->skb->len;
  742. if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
  743. rx->skb = NULL;
  744. return TXRX_QUEUED;
  745. }
  746. rx->skb = __skb_dequeue(&entry->skb_list);
  747. if (skb_tailroom(rx->skb) < entry->extra_len) {
  748. I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
  749. if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
  750. GFP_ATOMIC))) {
  751. I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
  752. __skb_queue_purge(&entry->skb_list);
  753. return TXRX_DROP;
  754. }
  755. }
  756. while ((skb = __skb_dequeue(&entry->skb_list))) {
  757. memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
  758. dev_kfree_skb(skb);
  759. }
  760. /* Complete frame has been reassembled - process it now */
  761. rx->flags |= IEEE80211_TXRXD_FRAGMENTED;
  762. out:
  763. if (rx->sta)
  764. rx->sta->rx_packets++;
  765. if (is_multicast_ether_addr(hdr->addr1))
  766. rx->local->dot11MulticastReceivedFrameCount++;
  767. else
  768. ieee80211_led_rx(rx->local);
  769. return TXRX_CONTINUE;
  770. }
  771. static ieee80211_txrx_result
  772. ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx)
  773. {
  774. struct sk_buff *skb;
  775. int no_pending_pkts;
  776. DECLARE_MAC_BUF(mac);
  777. if (likely(!rx->sta ||
  778. (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
  779. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
  780. !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)))
  781. return TXRX_CONTINUE;
  782. skb = skb_dequeue(&rx->sta->tx_filtered);
  783. if (!skb) {
  784. skb = skb_dequeue(&rx->sta->ps_tx_buf);
  785. if (skb)
  786. rx->local->total_ps_buffered--;
  787. }
  788. no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
  789. skb_queue_empty(&rx->sta->ps_tx_buf);
  790. if (skb) {
  791. struct ieee80211_hdr *hdr =
  792. (struct ieee80211_hdr *) skb->data;
  793. /* tell TX path to send one frame even though the STA may
  794. * still remain is PS mode after this frame exchange */
  795. rx->sta->pspoll = 1;
  796. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  797. printk(KERN_DEBUG "STA %s aid %d: PS Poll (entries after %d)\n",
  798. print_mac(mac, rx->sta->addr), rx->sta->aid,
  799. skb_queue_len(&rx->sta->ps_tx_buf));
  800. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  801. /* Use MoreData flag to indicate whether there are more
  802. * buffered frames for this STA */
  803. if (no_pending_pkts) {
  804. hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
  805. rx->sta->flags &= ~WLAN_STA_TIM;
  806. } else
  807. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
  808. dev_queue_xmit(skb);
  809. if (no_pending_pkts) {
  810. if (rx->local->ops->set_tim)
  811. rx->local->ops->set_tim(local_to_hw(rx->local),
  812. rx->sta->aid, 0);
  813. if (rx->sdata->bss)
  814. bss_tim_clear(rx->local, rx->sdata->bss, rx->sta->aid);
  815. }
  816. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  817. } else if (!rx->u.rx.sent_ps_buffered) {
  818. printk(KERN_DEBUG "%s: STA %s sent PS Poll even "
  819. "though there is no buffered frames for it\n",
  820. rx->dev->name, print_mac(mac, rx->sta->addr));
  821. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  822. }
  823. /* Free PS Poll skb here instead of returning TXRX_DROP that would
  824. * count as an dropped frame. */
  825. dev_kfree_skb(rx->skb);
  826. return TXRX_QUEUED;
  827. }
  828. static ieee80211_txrx_result
  829. ieee80211_rx_h_remove_qos_control(struct ieee80211_txrx_data *rx)
  830. {
  831. u16 fc = rx->fc;
  832. u8 *data = rx->skb->data;
  833. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) data;
  834. if (!WLAN_FC_IS_QOS_DATA(fc))
  835. return TXRX_CONTINUE;
  836. /* remove the qos control field, update frame type and meta-data */
  837. memmove(data + 2, data, ieee80211_get_hdrlen(fc) - 2);
  838. hdr = (struct ieee80211_hdr *) skb_pull(rx->skb, 2);
  839. /* change frame type to non QOS */
  840. rx->fc = fc &= ~IEEE80211_STYPE_QOS_DATA;
  841. hdr->frame_control = cpu_to_le16(fc);
  842. return TXRX_CONTINUE;
  843. }
  844. static ieee80211_txrx_result
  845. ieee80211_rx_h_802_1x_pae(struct ieee80211_txrx_data *rx)
  846. {
  847. if (rx->sdata->eapol && ieee80211_is_eapol(rx->skb) &&
  848. rx->sdata->type != IEEE80211_IF_TYPE_STA &&
  849. (rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
  850. /* Pass both encrypted and unencrypted EAPOL frames to user
  851. * space for processing. */
  852. if (!rx->local->apdev)
  853. return TXRX_DROP;
  854. ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
  855. ieee80211_msg_normal);
  856. return TXRX_QUEUED;
  857. }
  858. if (unlikely(rx->sdata->ieee802_1x &&
  859. (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
  860. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
  861. (!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED)) &&
  862. !ieee80211_is_eapol(rx->skb))) {
  863. #ifdef CONFIG_MAC80211_DEBUG
  864. struct ieee80211_hdr *hdr =
  865. (struct ieee80211_hdr *) rx->skb->data;
  866. DECLARE_MAC_BUF(mac);
  867. printk(KERN_DEBUG "%s: dropped frame from %s"
  868. " (unauthorized port)\n", rx->dev->name,
  869. print_mac(mac, hdr->addr2));
  870. #endif /* CONFIG_MAC80211_DEBUG */
  871. return TXRX_DROP;
  872. }
  873. return TXRX_CONTINUE;
  874. }
  875. static ieee80211_txrx_result
  876. ieee80211_rx_h_drop_unencrypted(struct ieee80211_txrx_data *rx)
  877. {
  878. /*
  879. * Pass through unencrypted frames if the hardware has
  880. * decrypted them already.
  881. */
  882. if (rx->u.rx.status->flag & RX_FLAG_DECRYPTED)
  883. return TXRX_CONTINUE;
  884. /* Drop unencrypted frames if key is set. */
  885. if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
  886. (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
  887. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
  888. (rx->key || rx->sdata->drop_unencrypted) &&
  889. (rx->sdata->eapol == 0 ||
  890. !ieee80211_is_eapol(rx->skb)))) {
  891. if (net_ratelimit())
  892. printk(KERN_DEBUG "%s: RX non-WEP frame, but expected "
  893. "encryption\n", rx->dev->name);
  894. return TXRX_DROP;
  895. }
  896. return TXRX_CONTINUE;
  897. }
  898. static ieee80211_txrx_result
  899. ieee80211_rx_h_data(struct ieee80211_txrx_data *rx)
  900. {
  901. struct net_device *dev = rx->dev;
  902. struct ieee80211_local *local = rx->local;
  903. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  904. u16 fc, hdrlen, ethertype;
  905. u8 *payload;
  906. u8 dst[ETH_ALEN];
  907. u8 src[ETH_ALEN];
  908. struct sk_buff *skb = rx->skb, *skb2;
  909. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  910. DECLARE_MAC_BUF(mac);
  911. DECLARE_MAC_BUF(mac2);
  912. DECLARE_MAC_BUF(mac3);
  913. DECLARE_MAC_BUF(mac4);
  914. fc = rx->fc;
  915. if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
  916. return TXRX_CONTINUE;
  917. if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
  918. return TXRX_DROP;
  919. hdrlen = ieee80211_get_hdrlen(fc);
  920. /* convert IEEE 802.11 header + possible LLC headers into Ethernet
  921. * header
  922. * IEEE 802.11 address fields:
  923. * ToDS FromDS Addr1 Addr2 Addr3 Addr4
  924. * 0 0 DA SA BSSID n/a
  925. * 0 1 DA BSSID SA n/a
  926. * 1 0 BSSID SA DA n/a
  927. * 1 1 RA TA DA SA
  928. */
  929. switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
  930. case IEEE80211_FCTL_TODS:
  931. /* BSSID SA DA */
  932. memcpy(dst, hdr->addr3, ETH_ALEN);
  933. memcpy(src, hdr->addr2, ETH_ALEN);
  934. if (unlikely(sdata->type != IEEE80211_IF_TYPE_AP &&
  935. sdata->type != IEEE80211_IF_TYPE_VLAN)) {
  936. if (net_ratelimit())
  937. printk(KERN_DEBUG "%s: dropped ToDS frame "
  938. "(BSSID=%s SA=%s DA=%s)\n",
  939. dev->name,
  940. print_mac(mac, hdr->addr1),
  941. print_mac(mac2, hdr->addr2),
  942. print_mac(mac3, hdr->addr3));
  943. return TXRX_DROP;
  944. }
  945. break;
  946. case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
  947. /* RA TA DA SA */
  948. memcpy(dst, hdr->addr3, ETH_ALEN);
  949. memcpy(src, hdr->addr4, ETH_ALEN);
  950. if (unlikely(sdata->type != IEEE80211_IF_TYPE_WDS)) {
  951. if (net_ratelimit())
  952. printk(KERN_DEBUG "%s: dropped FromDS&ToDS "
  953. "frame (RA=%s TA=%s DA=%s SA=%s)\n",
  954. rx->dev->name,
  955. print_mac(mac, hdr->addr1),
  956. print_mac(mac2, hdr->addr2),
  957. print_mac(mac3, hdr->addr3),
  958. print_mac(mac4, hdr->addr4));
  959. return TXRX_DROP;
  960. }
  961. break;
  962. case IEEE80211_FCTL_FROMDS:
  963. /* DA BSSID SA */
  964. memcpy(dst, hdr->addr1, ETH_ALEN);
  965. memcpy(src, hdr->addr3, ETH_ALEN);
  966. if (sdata->type != IEEE80211_IF_TYPE_STA ||
  967. (is_multicast_ether_addr(dst) &&
  968. !compare_ether_addr(src, dev->dev_addr)))
  969. return TXRX_DROP;
  970. break;
  971. case 0:
  972. /* DA SA BSSID */
  973. memcpy(dst, hdr->addr1, ETH_ALEN);
  974. memcpy(src, hdr->addr2, ETH_ALEN);
  975. if (sdata->type != IEEE80211_IF_TYPE_IBSS) {
  976. if (net_ratelimit()) {
  977. printk(KERN_DEBUG "%s: dropped IBSS frame "
  978. "(DA=%s SA=%s BSSID=%s)\n",
  979. dev->name,
  980. print_mac(mac, hdr->addr1),
  981. print_mac(mac2, hdr->addr2),
  982. print_mac(mac3, hdr->addr3));
  983. }
  984. return TXRX_DROP;
  985. }
  986. break;
  987. }
  988. payload = skb->data + hdrlen;
  989. if (unlikely(skb->len - hdrlen < 8)) {
  990. if (net_ratelimit()) {
  991. printk(KERN_DEBUG "%s: RX too short data frame "
  992. "payload\n", dev->name);
  993. }
  994. return TXRX_DROP;
  995. }
  996. ethertype = (payload[6] << 8) | payload[7];
  997. if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
  998. ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
  999. compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
  1000. /* remove RFC1042 or Bridge-Tunnel encapsulation and
  1001. * replace EtherType */
  1002. skb_pull(skb, hdrlen + 6);
  1003. memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
  1004. memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
  1005. } else {
  1006. struct ethhdr *ehdr;
  1007. __be16 len;
  1008. skb_pull(skb, hdrlen);
  1009. len = htons(skb->len);
  1010. ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
  1011. memcpy(ehdr->h_dest, dst, ETH_ALEN);
  1012. memcpy(ehdr->h_source, src, ETH_ALEN);
  1013. ehdr->h_proto = len;
  1014. }
  1015. skb->dev = dev;
  1016. skb2 = NULL;
  1017. dev->stats.rx_packets++;
  1018. dev->stats.rx_bytes += skb->len;
  1019. if (local->bridge_packets && (sdata->type == IEEE80211_IF_TYPE_AP
  1020. || sdata->type == IEEE80211_IF_TYPE_VLAN) &&
  1021. (rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
  1022. if (is_multicast_ether_addr(skb->data)) {
  1023. /* send multicast frames both to higher layers in
  1024. * local net stack and back to the wireless media */
  1025. skb2 = skb_copy(skb, GFP_ATOMIC);
  1026. if (!skb2 && net_ratelimit())
  1027. printk(KERN_DEBUG "%s: failed to clone "
  1028. "multicast frame\n", dev->name);
  1029. } else {
  1030. struct sta_info *dsta;
  1031. dsta = sta_info_get(local, skb->data);
  1032. if (dsta && !dsta->dev) {
  1033. if (net_ratelimit())
  1034. printk(KERN_DEBUG "Station with null "
  1035. "dev structure!\n");
  1036. } else if (dsta && dsta->dev == dev) {
  1037. /* Destination station is associated to this
  1038. * AP, so send the frame directly to it and
  1039. * do not pass the frame to local net stack.
  1040. */
  1041. skb2 = skb;
  1042. skb = NULL;
  1043. }
  1044. if (dsta)
  1045. sta_info_put(dsta);
  1046. }
  1047. }
  1048. if (skb) {
  1049. /* deliver to local stack */
  1050. skb->protocol = eth_type_trans(skb, dev);
  1051. memset(skb->cb, 0, sizeof(skb->cb));
  1052. netif_rx(skb);
  1053. }
  1054. if (skb2) {
  1055. /* send to wireless media */
  1056. skb2->protocol = __constant_htons(ETH_P_802_3);
  1057. skb_set_network_header(skb2, 0);
  1058. skb_set_mac_header(skb2, 0);
  1059. dev_queue_xmit(skb2);
  1060. }
  1061. return TXRX_QUEUED;
  1062. }
  1063. static ieee80211_txrx_result
  1064. ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx)
  1065. {
  1066. struct ieee80211_sub_if_data *sdata;
  1067. if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  1068. return TXRX_DROP;
  1069. sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
  1070. if ((sdata->type == IEEE80211_IF_TYPE_STA ||
  1071. sdata->type == IEEE80211_IF_TYPE_IBSS) &&
  1072. !rx->local->user_space_mlme) {
  1073. ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status);
  1074. } else {
  1075. /* Management frames are sent to hostapd for processing */
  1076. if (!rx->local->apdev)
  1077. return TXRX_DROP;
  1078. ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
  1079. ieee80211_msg_normal);
  1080. }
  1081. return TXRX_QUEUED;
  1082. }
  1083. static inline ieee80211_txrx_result __ieee80211_invoke_rx_handlers(
  1084. struct ieee80211_local *local,
  1085. ieee80211_rx_handler *handlers,
  1086. struct ieee80211_txrx_data *rx,
  1087. struct sta_info *sta)
  1088. {
  1089. ieee80211_rx_handler *handler;
  1090. ieee80211_txrx_result res = TXRX_DROP;
  1091. for (handler = handlers; *handler != NULL; handler++) {
  1092. res = (*handler)(rx);
  1093. switch (res) {
  1094. case TXRX_CONTINUE:
  1095. continue;
  1096. case TXRX_DROP:
  1097. I802_DEBUG_INC(local->rx_handlers_drop);
  1098. if (sta)
  1099. sta->rx_dropped++;
  1100. break;
  1101. case TXRX_QUEUED:
  1102. I802_DEBUG_INC(local->rx_handlers_queued);
  1103. break;
  1104. }
  1105. break;
  1106. }
  1107. if (res == TXRX_DROP)
  1108. dev_kfree_skb(rx->skb);
  1109. return res;
  1110. }
  1111. static inline void ieee80211_invoke_rx_handlers(struct ieee80211_local *local,
  1112. ieee80211_rx_handler *handlers,
  1113. struct ieee80211_txrx_data *rx,
  1114. struct sta_info *sta)
  1115. {
  1116. if (__ieee80211_invoke_rx_handlers(local, handlers, rx, sta) ==
  1117. TXRX_CONTINUE)
  1118. dev_kfree_skb(rx->skb);
  1119. }
  1120. static void ieee80211_rx_michael_mic_report(struct net_device *dev,
  1121. struct ieee80211_hdr *hdr,
  1122. struct sta_info *sta,
  1123. struct ieee80211_txrx_data *rx)
  1124. {
  1125. int keyidx, hdrlen;
  1126. DECLARE_MAC_BUF(mac);
  1127. DECLARE_MAC_BUF(mac2);
  1128. hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
  1129. if (rx->skb->len >= hdrlen + 4)
  1130. keyidx = rx->skb->data[hdrlen + 3] >> 6;
  1131. else
  1132. keyidx = -1;
  1133. if (net_ratelimit())
  1134. printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
  1135. "failure from %s to %s keyidx=%d\n",
  1136. dev->name, print_mac(mac, hdr->addr2),
  1137. print_mac(mac2, hdr->addr1), keyidx);
  1138. if (!sta) {
  1139. /*
  1140. * Some hardware seem to generate incorrect Michael MIC
  1141. * reports; ignore them to avoid triggering countermeasures.
  1142. */
  1143. if (net_ratelimit())
  1144. printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
  1145. "error for unknown address %s\n",
  1146. dev->name, print_mac(mac, hdr->addr2));
  1147. goto ignore;
  1148. }
  1149. if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) {
  1150. if (net_ratelimit())
  1151. printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
  1152. "error for a frame with no PROTECTED flag (src "
  1153. "%s)\n", dev->name, print_mac(mac, hdr->addr2));
  1154. goto ignore;
  1155. }
  1156. if (rx->sdata->type == IEEE80211_IF_TYPE_AP && keyidx) {
  1157. /*
  1158. * APs with pairwise keys should never receive Michael MIC
  1159. * errors for non-zero keyidx because these are reserved for
  1160. * group keys and only the AP is sending real multicast
  1161. * frames in the BSS.
  1162. */
  1163. if (net_ratelimit())
  1164. printk(KERN_DEBUG "%s: ignored Michael MIC error for "
  1165. "a frame with non-zero keyidx (%d)"
  1166. " (src %s)\n", dev->name, keyidx,
  1167. print_mac(mac, hdr->addr2));
  1168. goto ignore;
  1169. }
  1170. if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
  1171. ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
  1172. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) {
  1173. if (net_ratelimit())
  1174. printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
  1175. "error for a frame that cannot be encrypted "
  1176. "(fc=0x%04x) (src %s)\n",
  1177. dev->name, rx->fc, print_mac(mac, hdr->addr2));
  1178. goto ignore;
  1179. }
  1180. mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr);
  1181. ignore:
  1182. dev_kfree_skb(rx->skb);
  1183. rx->skb = NULL;
  1184. }
  1185. ieee80211_rx_handler ieee80211_rx_handlers[] =
  1186. {
  1187. ieee80211_rx_h_if_stats,
  1188. ieee80211_rx_h_passive_scan,
  1189. ieee80211_rx_h_check,
  1190. ieee80211_rx_h_load_key,
  1191. ieee80211_rx_h_sta_process,
  1192. ieee80211_rx_h_wep_weak_iv_detection,
  1193. ieee80211_rx_h_decrypt,
  1194. ieee80211_rx_h_defragment,
  1195. ieee80211_rx_h_ps_poll,
  1196. ieee80211_rx_h_michael_mic_verify,
  1197. /* this must be after decryption - so header is counted in MPDU mic
  1198. * must be before pae and data, so QOS_DATA format frames
  1199. * are not passed to user space by these functions
  1200. */
  1201. ieee80211_rx_h_remove_qos_control,
  1202. ieee80211_rx_h_802_1x_pae,
  1203. ieee80211_rx_h_drop_unencrypted,
  1204. ieee80211_rx_h_data,
  1205. ieee80211_rx_h_mgmt,
  1206. NULL
  1207. };
  1208. /* main receive path */
  1209. static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
  1210. u8 *bssid, struct ieee80211_txrx_data *rx,
  1211. struct ieee80211_hdr *hdr)
  1212. {
  1213. int multicast = is_multicast_ether_addr(hdr->addr1);
  1214. switch (sdata->type) {
  1215. case IEEE80211_IF_TYPE_STA:
  1216. if (!bssid)
  1217. return 0;
  1218. if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
  1219. if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
  1220. return 0;
  1221. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1222. } else if (!multicast &&
  1223. compare_ether_addr(sdata->dev->dev_addr,
  1224. hdr->addr1) != 0) {
  1225. if (!(sdata->dev->flags & IFF_PROMISC))
  1226. return 0;
  1227. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1228. }
  1229. break;
  1230. case IEEE80211_IF_TYPE_IBSS:
  1231. if (!bssid)
  1232. return 0;
  1233. if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
  1234. if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
  1235. return 0;
  1236. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1237. } else if (!multicast &&
  1238. compare_ether_addr(sdata->dev->dev_addr,
  1239. hdr->addr1) != 0) {
  1240. if (!(sdata->dev->flags & IFF_PROMISC))
  1241. return 0;
  1242. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1243. } else if (!rx->sta)
  1244. rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb,
  1245. bssid, hdr->addr2);
  1246. break;
  1247. case IEEE80211_IF_TYPE_AP:
  1248. if (!bssid) {
  1249. if (compare_ether_addr(sdata->dev->dev_addr,
  1250. hdr->addr1))
  1251. return 0;
  1252. } else if (!ieee80211_bssid_match(bssid,
  1253. sdata->dev->dev_addr)) {
  1254. if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
  1255. return 0;
  1256. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1257. }
  1258. if (sdata->dev == sdata->local->mdev &&
  1259. !(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
  1260. /* do not receive anything via
  1261. * master device when not scanning */
  1262. return 0;
  1263. break;
  1264. case IEEE80211_IF_TYPE_WDS:
  1265. if (bssid ||
  1266. (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)
  1267. return 0;
  1268. if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
  1269. return 0;
  1270. break;
  1271. }
  1272. return 1;
  1273. }
  1274. /*
  1275. * This is the receive path handler. It is called by a low level driver when an
  1276. * 802.11 MPDU is received from the hardware.
  1277. */
  1278. void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
  1279. struct ieee80211_rx_status *status)
  1280. {
  1281. struct ieee80211_local *local = hw_to_local(hw);
  1282. struct ieee80211_sub_if_data *sdata;
  1283. struct sta_info *sta;
  1284. struct ieee80211_hdr *hdr;
  1285. struct ieee80211_txrx_data rx;
  1286. u16 type;
  1287. int prepres;
  1288. struct ieee80211_sub_if_data *prev = NULL;
  1289. struct sk_buff *skb_new;
  1290. u8 *bssid;
  1291. /*
  1292. * key references and virtual interfaces are protected using RCU
  1293. * and this requires that we are in a read-side RCU section during
  1294. * receive processing
  1295. */
  1296. rcu_read_lock();
  1297. /*
  1298. * Frames with failed FCS/PLCP checksum are not returned,
  1299. * all other frames are returned without radiotap header
  1300. * if it was previously present.
  1301. * Also, frames with less than 16 bytes are dropped.
  1302. */
  1303. skb = ieee80211_rx_monitor(local, skb, status);
  1304. if (!skb) {
  1305. rcu_read_unlock();
  1306. return;
  1307. }
  1308. hdr = (struct ieee80211_hdr *) skb->data;
  1309. memset(&rx, 0, sizeof(rx));
  1310. rx.skb = skb;
  1311. rx.local = local;
  1312. rx.u.rx.status = status;
  1313. rx.fc = le16_to_cpu(hdr->frame_control);
  1314. type = rx.fc & IEEE80211_FCTL_FTYPE;
  1315. if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
  1316. local->dot11ReceivedFragmentCount++;
  1317. sta = rx.sta = sta_info_get(local, hdr->addr2);
  1318. if (sta) {
  1319. rx.dev = rx.sta->dev;
  1320. rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev);
  1321. }
  1322. if ((status->flag & RX_FLAG_MMIC_ERROR)) {
  1323. ieee80211_rx_michael_mic_report(local->mdev, hdr, sta, &rx);
  1324. goto end;
  1325. }
  1326. if (unlikely(local->sta_scanning))
  1327. rx.flags |= IEEE80211_TXRXD_RXIN_SCAN;
  1328. if (__ieee80211_invoke_rx_handlers(local, local->rx_pre_handlers, &rx,
  1329. sta) != TXRX_CONTINUE)
  1330. goto end;
  1331. skb = rx.skb;
  1332. if (sta && !(sta->flags & (WLAN_STA_WDS | WLAN_STA_ASSOC_AP)) &&
  1333. !local->iff_promiscs && !is_multicast_ether_addr(hdr->addr1)) {
  1334. rx.flags |= IEEE80211_TXRXD_RXRA_MATCH;
  1335. ieee80211_invoke_rx_handlers(local, local->rx_handlers, &rx,
  1336. rx.sta);
  1337. sta_info_put(sta);
  1338. rcu_read_unlock();
  1339. return;
  1340. }
  1341. bssid = ieee80211_get_bssid(hdr, skb->len);
  1342. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  1343. if (!netif_running(sdata->dev))
  1344. continue;
  1345. if (sdata->type == IEEE80211_IF_TYPE_MNTR)
  1346. continue;
  1347. rx.flags |= IEEE80211_TXRXD_RXRA_MATCH;
  1348. prepres = prepare_for_handlers(sdata, bssid, &rx, hdr);
  1349. /* prepare_for_handlers can change sta */
  1350. sta = rx.sta;
  1351. if (!prepres)
  1352. continue;
  1353. /*
  1354. * frame is destined for this interface, but if it's not
  1355. * also for the previous one we handle that after the
  1356. * loop to avoid copying the SKB once too much
  1357. */
  1358. if (!prev) {
  1359. prev = sdata;
  1360. continue;
  1361. }
  1362. /*
  1363. * frame was destined for the previous interface
  1364. * so invoke RX handlers for it
  1365. */
  1366. skb_new = skb_copy(skb, GFP_ATOMIC);
  1367. if (!skb_new) {
  1368. if (net_ratelimit())
  1369. printk(KERN_DEBUG "%s: failed to copy "
  1370. "multicast frame for %s",
  1371. wiphy_name(local->hw.wiphy),
  1372. prev->dev->name);
  1373. continue;
  1374. }
  1375. rx.skb = skb_new;
  1376. rx.dev = prev->dev;
  1377. rx.sdata = prev;
  1378. ieee80211_invoke_rx_handlers(local, local->rx_handlers,
  1379. &rx, sta);
  1380. prev = sdata;
  1381. }
  1382. if (prev) {
  1383. rx.skb = skb;
  1384. rx.dev = prev->dev;
  1385. rx.sdata = prev;
  1386. ieee80211_invoke_rx_handlers(local, local->rx_handlers,
  1387. &rx, sta);
  1388. } else
  1389. dev_kfree_skb(skb);
  1390. end:
  1391. rcu_read_unlock();
  1392. if (sta)
  1393. sta_info_put(sta);
  1394. }
  1395. EXPORT_SYMBOL(__ieee80211_rx);
  1396. /* This is a version of the rx handler that can be called from hard irq
  1397. * context. Post the skb on the queue and schedule the tasklet */
  1398. void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
  1399. struct ieee80211_rx_status *status)
  1400. {
  1401. struct ieee80211_local *local = hw_to_local(hw);
  1402. BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
  1403. skb->dev = local->mdev;
  1404. /* copy status into skb->cb for use by tasklet */
  1405. memcpy(skb->cb, status, sizeof(*status));
  1406. skb->pkt_type = IEEE80211_RX_MSG;
  1407. skb_queue_tail(&local->skb_queue, skb);
  1408. tasklet_schedule(&local->tasklet);
  1409. }
  1410. EXPORT_SYMBOL(ieee80211_rx_irqsafe);