ds.c 23 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153
  1. /* ds.c: Domain Services driver for Logical Domains
  2. *
  3. * Copyright (C) 2007 David S. Miller <davem@davemloft.net>
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/module.h>
  7. #include <linux/types.h>
  8. #include <linux/module.h>
  9. #include <linux/string.h>
  10. #include <linux/slab.h>
  11. #include <linux/sched.h>
  12. #include <linux/delay.h>
  13. #include <linux/mutex.h>
  14. #include <linux/workqueue.h>
  15. #include <linux/cpu.h>
  16. #include <asm/ldc.h>
  17. #include <asm/vio.h>
  18. #include <asm/power.h>
  19. #include <asm/mdesc.h>
  20. #include <asm/head.h>
  21. #include <asm/io.h>
  22. #include <asm/hvtramp.h>
  23. #define DRV_MODULE_NAME "ds"
  24. #define PFX DRV_MODULE_NAME ": "
  25. #define DRV_MODULE_VERSION "1.0"
  26. #define DRV_MODULE_RELDATE "Jul 11, 2007"
  27. static char version[] __devinitdata =
  28. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  29. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  30. MODULE_DESCRIPTION("Sun LDOM domain services driver");
  31. MODULE_LICENSE("GPL");
  32. MODULE_VERSION(DRV_MODULE_VERSION);
  33. struct ds_msg_tag {
  34. __u32 type;
  35. #define DS_INIT_REQ 0x00
  36. #define DS_INIT_ACK 0x01
  37. #define DS_INIT_NACK 0x02
  38. #define DS_REG_REQ 0x03
  39. #define DS_REG_ACK 0x04
  40. #define DS_REG_NACK 0x05
  41. #define DS_UNREG_REQ 0x06
  42. #define DS_UNREG_ACK 0x07
  43. #define DS_UNREG_NACK 0x08
  44. #define DS_DATA 0x09
  45. #define DS_NACK 0x0a
  46. __u32 len;
  47. };
  48. /* Result codes */
  49. #define DS_OK 0x00
  50. #define DS_REG_VER_NACK 0x01
  51. #define DS_REG_DUP 0x02
  52. #define DS_INV_HDL 0x03
  53. #define DS_TYPE_UNKNOWN 0x04
  54. struct ds_version {
  55. __u16 major;
  56. __u16 minor;
  57. };
  58. struct ds_ver_req {
  59. struct ds_msg_tag tag;
  60. struct ds_version ver;
  61. };
  62. struct ds_ver_ack {
  63. struct ds_msg_tag tag;
  64. __u16 minor;
  65. };
  66. struct ds_ver_nack {
  67. struct ds_msg_tag tag;
  68. __u16 major;
  69. };
  70. struct ds_reg_req {
  71. struct ds_msg_tag tag;
  72. __u64 handle;
  73. __u16 major;
  74. __u16 minor;
  75. char svc_id[0];
  76. };
  77. struct ds_reg_ack {
  78. struct ds_msg_tag tag;
  79. __u64 handle;
  80. __u16 minor;
  81. };
  82. struct ds_reg_nack {
  83. struct ds_msg_tag tag;
  84. __u64 handle;
  85. __u16 major;
  86. };
  87. struct ds_unreg_req {
  88. struct ds_msg_tag tag;
  89. __u64 handle;
  90. };
  91. struct ds_unreg_ack {
  92. struct ds_msg_tag tag;
  93. __u64 handle;
  94. };
  95. struct ds_unreg_nack {
  96. struct ds_msg_tag tag;
  97. __u64 handle;
  98. };
  99. struct ds_data {
  100. struct ds_msg_tag tag;
  101. __u64 handle;
  102. };
  103. struct ds_data_nack {
  104. struct ds_msg_tag tag;
  105. __u64 handle;
  106. __u64 result;
  107. };
  108. struct ds_cap_state {
  109. __u64 handle;
  110. void (*data)(struct ldc_channel *lp,
  111. struct ds_cap_state *cp,
  112. void *buf, int len);
  113. const char *service_id;
  114. u8 state;
  115. #define CAP_STATE_UNKNOWN 0x00
  116. #define CAP_STATE_REG_SENT 0x01
  117. #define CAP_STATE_REGISTERED 0x02
  118. };
  119. static void md_update_data(struct ldc_channel *lp, struct ds_cap_state *cp,
  120. void *buf, int len);
  121. static void domain_shutdown_data(struct ldc_channel *lp,
  122. struct ds_cap_state *cp,
  123. void *buf, int len);
  124. static void domain_panic_data(struct ldc_channel *lp,
  125. struct ds_cap_state *cp,
  126. void *buf, int len);
  127. static void dr_cpu_data(struct ldc_channel *lp,
  128. struct ds_cap_state *cp,
  129. void *buf, int len);
  130. static void ds_pri_data(struct ldc_channel *lp,
  131. struct ds_cap_state *cp,
  132. void *buf, int len);
  133. static void ds_var_data(struct ldc_channel *lp,
  134. struct ds_cap_state *cp,
  135. void *buf, int len);
  136. struct ds_cap_state ds_states[] = {
  137. {
  138. .service_id = "md-update",
  139. .data = md_update_data,
  140. },
  141. {
  142. .service_id = "domain-shutdown",
  143. .data = domain_shutdown_data,
  144. },
  145. {
  146. .service_id = "domain-panic",
  147. .data = domain_panic_data,
  148. },
  149. {
  150. .service_id = "dr-cpu",
  151. .data = dr_cpu_data,
  152. },
  153. {
  154. .service_id = "pri",
  155. .data = ds_pri_data,
  156. },
  157. {
  158. .service_id = "var-config",
  159. .data = ds_var_data,
  160. },
  161. {
  162. .service_id = "var-config-backup",
  163. .data = ds_var_data,
  164. },
  165. };
  166. static DEFINE_SPINLOCK(ds_lock);
  167. struct ds_info {
  168. struct ldc_channel *lp;
  169. u8 hs_state;
  170. #define DS_HS_START 0x01
  171. #define DS_HS_DONE 0x02
  172. void *rcv_buf;
  173. int rcv_buf_len;
  174. };
  175. static struct ds_info *ds_info;
  176. static struct ds_cap_state *find_cap(u64 handle)
  177. {
  178. unsigned int index = handle >> 32;
  179. if (index >= ARRAY_SIZE(ds_states))
  180. return NULL;
  181. return &ds_states[index];
  182. }
  183. static struct ds_cap_state *find_cap_by_string(const char *name)
  184. {
  185. int i;
  186. for (i = 0; i < ARRAY_SIZE(ds_states); i++) {
  187. if (strcmp(ds_states[i].service_id, name))
  188. continue;
  189. return &ds_states[i];
  190. }
  191. return NULL;
  192. }
  193. static int ds_send(struct ldc_channel *lp, void *data, int len)
  194. {
  195. int err, limit = 1000;
  196. err = -EINVAL;
  197. while (limit-- > 0) {
  198. err = ldc_write(lp, data, len);
  199. if (!err || (err != -EAGAIN))
  200. break;
  201. udelay(1);
  202. }
  203. return err;
  204. }
  205. struct ds_md_update_req {
  206. __u64 req_num;
  207. };
  208. struct ds_md_update_res {
  209. __u64 req_num;
  210. __u32 result;
  211. };
  212. static void md_update_data(struct ldc_channel *lp,
  213. struct ds_cap_state *dp,
  214. void *buf, int len)
  215. {
  216. struct ds_data *dpkt = buf;
  217. struct ds_md_update_req *rp;
  218. struct {
  219. struct ds_data data;
  220. struct ds_md_update_res res;
  221. } pkt;
  222. rp = (struct ds_md_update_req *) (dpkt + 1);
  223. printk(KERN_INFO PFX "Machine description update.\n");
  224. memset(&pkt, 0, sizeof(pkt));
  225. pkt.data.tag.type = DS_DATA;
  226. pkt.data.tag.len = sizeof(pkt) - sizeof(struct ds_msg_tag);
  227. pkt.data.handle = dp->handle;
  228. pkt.res.req_num = rp->req_num;
  229. pkt.res.result = DS_OK;
  230. ds_send(lp, &pkt, sizeof(pkt));
  231. mdesc_update();
  232. }
  233. struct ds_shutdown_req {
  234. __u64 req_num;
  235. __u32 ms_delay;
  236. };
  237. struct ds_shutdown_res {
  238. __u64 req_num;
  239. __u32 result;
  240. char reason[1];
  241. };
  242. static void domain_shutdown_data(struct ldc_channel *lp,
  243. struct ds_cap_state *dp,
  244. void *buf, int len)
  245. {
  246. struct ds_data *dpkt = buf;
  247. struct ds_shutdown_req *rp;
  248. struct {
  249. struct ds_data data;
  250. struct ds_shutdown_res res;
  251. } pkt;
  252. rp = (struct ds_shutdown_req *) (dpkt + 1);
  253. printk(KERN_ALERT PFX "Shutdown request from "
  254. "LDOM manager received.\n");
  255. memset(&pkt, 0, sizeof(pkt));
  256. pkt.data.tag.type = DS_DATA;
  257. pkt.data.tag.len = sizeof(pkt) - sizeof(struct ds_msg_tag);
  258. pkt.data.handle = dp->handle;
  259. pkt.res.req_num = rp->req_num;
  260. pkt.res.result = DS_OK;
  261. pkt.res.reason[0] = 0;
  262. ds_send(lp, &pkt, sizeof(pkt));
  263. wake_up_powerd();
  264. }
  265. struct ds_panic_req {
  266. __u64 req_num;
  267. };
  268. struct ds_panic_res {
  269. __u64 req_num;
  270. __u32 result;
  271. char reason[1];
  272. };
  273. static void domain_panic_data(struct ldc_channel *lp,
  274. struct ds_cap_state *dp,
  275. void *buf, int len)
  276. {
  277. struct ds_data *dpkt = buf;
  278. struct ds_panic_req *rp;
  279. struct {
  280. struct ds_data data;
  281. struct ds_panic_res res;
  282. } pkt;
  283. rp = (struct ds_panic_req *) (dpkt + 1);
  284. printk(KERN_ALERT PFX "Panic request from "
  285. "LDOM manager received.\n");
  286. memset(&pkt, 0, sizeof(pkt));
  287. pkt.data.tag.type = DS_DATA;
  288. pkt.data.tag.len = sizeof(pkt) - sizeof(struct ds_msg_tag);
  289. pkt.data.handle = dp->handle;
  290. pkt.res.req_num = rp->req_num;
  291. pkt.res.result = DS_OK;
  292. pkt.res.reason[0] = 0;
  293. ds_send(lp, &pkt, sizeof(pkt));
  294. panic("PANIC requested by LDOM manager.");
  295. }
  296. struct dr_cpu_tag {
  297. __u64 req_num;
  298. __u32 type;
  299. #define DR_CPU_CONFIGURE 0x43
  300. #define DR_CPU_UNCONFIGURE 0x55
  301. #define DR_CPU_FORCE_UNCONFIGURE 0x46
  302. #define DR_CPU_STATUS 0x53
  303. /* Responses */
  304. #define DR_CPU_OK 0x6f
  305. #define DR_CPU_ERROR 0x65
  306. __u32 num_records;
  307. };
  308. struct dr_cpu_resp_entry {
  309. __u32 cpu;
  310. __u32 result;
  311. #define DR_CPU_RES_OK 0x00
  312. #define DR_CPU_RES_FAILURE 0x01
  313. #define DR_CPU_RES_BLOCKED 0x02
  314. #define DR_CPU_RES_CPU_NOT_RESPONDING 0x03
  315. #define DR_CPU_RES_NOT_IN_MD 0x04
  316. __u32 stat;
  317. #define DR_CPU_STAT_NOT_PRESENT 0x00
  318. #define DR_CPU_STAT_UNCONFIGURED 0x01
  319. #define DR_CPU_STAT_CONFIGURED 0x02
  320. __u32 str_off;
  321. };
  322. /* XXX Put this in some common place. XXX */
  323. static unsigned long kimage_addr_to_ra(void *p)
  324. {
  325. unsigned long val = (unsigned long) p;
  326. return kern_base + (val - KERNBASE);
  327. }
  328. void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
  329. {
  330. extern unsigned long sparc64_ttable_tl0;
  331. extern unsigned long kern_locked_tte_data;
  332. extern int bigkernel;
  333. struct hvtramp_descr *hdesc;
  334. unsigned long trampoline_ra;
  335. struct trap_per_cpu *tb;
  336. u64 tte_vaddr, tte_data;
  337. unsigned long hv_err;
  338. hdesc = kzalloc(sizeof(*hdesc), GFP_KERNEL);
  339. if (!hdesc) {
  340. printk(KERN_ERR PFX "ldom_startcpu_cpuid: Cannot allocate "
  341. "hvtramp_descr.\n");
  342. return;
  343. }
  344. hdesc->cpu = cpu;
  345. hdesc->num_mappings = (bigkernel ? 2 : 1);
  346. tb = &trap_block[cpu];
  347. tb->hdesc = hdesc;
  348. hdesc->fault_info_va = (unsigned long) &tb->fault_info;
  349. hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
  350. hdesc->thread_reg = thread_reg;
  351. tte_vaddr = (unsigned long) KERNBASE;
  352. tte_data = kern_locked_tte_data;
  353. hdesc->maps[0].vaddr = tte_vaddr;
  354. hdesc->maps[0].tte = tte_data;
  355. if (bigkernel) {
  356. tte_vaddr += 0x400000;
  357. tte_data += 0x400000;
  358. hdesc->maps[1].vaddr = tte_vaddr;
  359. hdesc->maps[1].tte = tte_data;
  360. }
  361. trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
  362. hv_err = sun4v_cpu_start(cpu, trampoline_ra,
  363. kimage_addr_to_ra(&sparc64_ttable_tl0),
  364. __pa(hdesc));
  365. }
  366. /* DR cpu requests get queued onto the work list by the
  367. * dr_cpu_data() callback. The list is protected by
  368. * ds_lock, and processed by dr_cpu_process() in order.
  369. */
  370. static LIST_HEAD(dr_cpu_work_list);
  371. struct dr_cpu_queue_entry {
  372. struct list_head list;
  373. char req[0];
  374. };
  375. static void __dr_cpu_send_error(struct ds_cap_state *cp, struct ds_data *data)
  376. {
  377. struct dr_cpu_tag *tag = (struct dr_cpu_tag *) (data + 1);
  378. struct ds_info *dp = ds_info;
  379. struct {
  380. struct ds_data data;
  381. struct dr_cpu_tag tag;
  382. } pkt;
  383. int msg_len;
  384. memset(&pkt, 0, sizeof(pkt));
  385. pkt.data.tag.type = DS_DATA;
  386. pkt.data.handle = cp->handle;
  387. pkt.tag.req_num = tag->req_num;
  388. pkt.tag.type = DR_CPU_ERROR;
  389. pkt.tag.num_records = 0;
  390. msg_len = (sizeof(struct ds_data) +
  391. sizeof(struct dr_cpu_tag));
  392. pkt.data.tag.len = msg_len - sizeof(struct ds_msg_tag);
  393. ds_send(dp->lp, &pkt, msg_len);
  394. }
  395. static void dr_cpu_send_error(struct ds_cap_state *cp, struct ds_data *data)
  396. {
  397. unsigned long flags;
  398. spin_lock_irqsave(&ds_lock, flags);
  399. __dr_cpu_send_error(cp, data);
  400. spin_unlock_irqrestore(&ds_lock, flags);
  401. }
  402. #define CPU_SENTINEL 0xffffffff
  403. static void purge_dups(u32 *list, u32 num_ents)
  404. {
  405. unsigned int i;
  406. for (i = 0; i < num_ents; i++) {
  407. u32 cpu = list[i];
  408. unsigned int j;
  409. if (cpu == CPU_SENTINEL)
  410. continue;
  411. for (j = i + 1; j < num_ents; j++) {
  412. if (list[j] == cpu)
  413. list[j] = CPU_SENTINEL;
  414. }
  415. }
  416. }
  417. static int dr_cpu_size_response(int ncpus)
  418. {
  419. return (sizeof(struct ds_data) +
  420. sizeof(struct dr_cpu_tag) +
  421. (sizeof(struct dr_cpu_resp_entry) * ncpus));
  422. }
  423. static void dr_cpu_init_response(struct ds_data *resp, u64 req_num,
  424. u64 handle, int resp_len, int ncpus,
  425. cpumask_t *mask, u32 default_stat)
  426. {
  427. struct dr_cpu_resp_entry *ent;
  428. struct dr_cpu_tag *tag;
  429. int i, cpu;
  430. tag = (struct dr_cpu_tag *) (resp + 1);
  431. ent = (struct dr_cpu_resp_entry *) (tag + 1);
  432. resp->tag.type = DS_DATA;
  433. resp->tag.len = resp_len - sizeof(struct ds_msg_tag);
  434. resp->handle = handle;
  435. tag->req_num = req_num;
  436. tag->type = DR_CPU_OK;
  437. tag->num_records = ncpus;
  438. i = 0;
  439. for_each_cpu_mask(cpu, *mask) {
  440. ent[i].cpu = cpu;
  441. ent[i].result = DR_CPU_RES_OK;
  442. ent[i].stat = default_stat;
  443. i++;
  444. }
  445. BUG_ON(i != ncpus);
  446. }
  447. static void dr_cpu_mark(struct ds_data *resp, int cpu, int ncpus,
  448. u32 res, u32 stat)
  449. {
  450. struct dr_cpu_resp_entry *ent;
  451. struct dr_cpu_tag *tag;
  452. int i;
  453. tag = (struct dr_cpu_tag *) (resp + 1);
  454. ent = (struct dr_cpu_resp_entry *) (tag + 1);
  455. for (i = 0; i < ncpus; i++) {
  456. if (ent[i].cpu != cpu)
  457. continue;
  458. ent[i].result = res;
  459. ent[i].stat = stat;
  460. break;
  461. }
  462. }
  463. static int dr_cpu_configure(struct ds_cap_state *cp, u64 req_num,
  464. cpumask_t *mask)
  465. {
  466. struct ds_data *resp;
  467. int resp_len, ncpus, cpu;
  468. unsigned long flags;
  469. ncpus = cpus_weight(*mask);
  470. resp_len = dr_cpu_size_response(ncpus);
  471. resp = kzalloc(resp_len, GFP_KERNEL);
  472. if (!resp)
  473. return -ENOMEM;
  474. dr_cpu_init_response(resp, req_num, cp->handle,
  475. resp_len, ncpus, mask,
  476. DR_CPU_STAT_CONFIGURED);
  477. mdesc_fill_in_cpu_data(*mask);
  478. for_each_cpu_mask(cpu, *mask) {
  479. int err;
  480. printk(KERN_INFO PFX "Starting cpu %d...\n", cpu);
  481. err = cpu_up(cpu);
  482. if (err)
  483. dr_cpu_mark(resp, cpu, ncpus,
  484. DR_CPU_RES_FAILURE,
  485. DR_CPU_STAT_UNCONFIGURED);
  486. }
  487. spin_lock_irqsave(&ds_lock, flags);
  488. ds_send(ds_info->lp, resp, resp_len);
  489. spin_unlock_irqrestore(&ds_lock, flags);
  490. kfree(resp);
  491. return 0;
  492. }
  493. static int dr_cpu_unconfigure(struct ds_cap_state *cp, u64 req_num,
  494. cpumask_t *mask)
  495. {
  496. struct ds_data *resp;
  497. int resp_len, ncpus;
  498. ncpus = cpus_weight(*mask);
  499. resp_len = dr_cpu_size_response(ncpus);
  500. resp = kzalloc(resp_len, GFP_KERNEL);
  501. if (!resp)
  502. return -ENOMEM;
  503. dr_cpu_init_response(resp, req_num, cp->handle,
  504. resp_len, ncpus, mask,
  505. DR_CPU_STAT_UNCONFIGURED);
  506. kfree(resp);
  507. return -EOPNOTSUPP;
  508. }
  509. static void dr_cpu_process(struct work_struct *work)
  510. {
  511. struct dr_cpu_queue_entry *qp, *tmp;
  512. struct ds_cap_state *cp;
  513. unsigned long flags;
  514. LIST_HEAD(todo);
  515. cpumask_t mask;
  516. cp = find_cap_by_string("dr-cpu");
  517. spin_lock_irqsave(&ds_lock, flags);
  518. list_splice(&dr_cpu_work_list, &todo);
  519. spin_unlock_irqrestore(&ds_lock, flags);
  520. list_for_each_entry_safe(qp, tmp, &todo, list) {
  521. struct ds_data *data = (struct ds_data *) qp->req;
  522. struct dr_cpu_tag *tag = (struct dr_cpu_tag *) (data + 1);
  523. u32 *cpu_list = (u32 *) (tag + 1);
  524. u64 req_num = tag->req_num;
  525. unsigned int i;
  526. int err;
  527. switch (tag->type) {
  528. case DR_CPU_CONFIGURE:
  529. case DR_CPU_UNCONFIGURE:
  530. case DR_CPU_FORCE_UNCONFIGURE:
  531. break;
  532. default:
  533. dr_cpu_send_error(cp, data);
  534. goto next;
  535. }
  536. purge_dups(cpu_list, tag->num_records);
  537. cpus_clear(mask);
  538. for (i = 0; i < tag->num_records; i++) {
  539. if (cpu_list[i] == CPU_SENTINEL)
  540. continue;
  541. if (cpu_list[i] < NR_CPUS)
  542. cpu_set(cpu_list[i], mask);
  543. }
  544. if (tag->type == DR_CPU_CONFIGURE)
  545. err = dr_cpu_configure(cp, req_num, &mask);
  546. else
  547. err = dr_cpu_unconfigure(cp, req_num, &mask);
  548. if (err)
  549. dr_cpu_send_error(cp, data);
  550. next:
  551. list_del(&qp->list);
  552. kfree(qp);
  553. }
  554. }
  555. static DECLARE_WORK(dr_cpu_work, dr_cpu_process);
  556. static void dr_cpu_data(struct ldc_channel *lp,
  557. struct ds_cap_state *dp,
  558. void *buf, int len)
  559. {
  560. struct dr_cpu_queue_entry *qp;
  561. struct ds_data *dpkt = buf;
  562. struct dr_cpu_tag *rp;
  563. rp = (struct dr_cpu_tag *) (dpkt + 1);
  564. qp = kmalloc(sizeof(struct dr_cpu_queue_entry) + len, GFP_ATOMIC);
  565. if (!qp) {
  566. struct ds_cap_state *cp;
  567. cp = find_cap_by_string("dr-cpu");
  568. __dr_cpu_send_error(cp, dpkt);
  569. } else {
  570. memcpy(&qp->req, buf, len);
  571. list_add_tail(&qp->list, &dr_cpu_work_list);
  572. schedule_work(&dr_cpu_work);
  573. }
  574. }
  575. struct ds_pri_msg {
  576. __u64 req_num;
  577. __u64 type;
  578. #define DS_PRI_REQUEST 0x00
  579. #define DS_PRI_DATA 0x01
  580. #define DS_PRI_UPDATE 0x02
  581. };
  582. static void ds_pri_data(struct ldc_channel *lp,
  583. struct ds_cap_state *dp,
  584. void *buf, int len)
  585. {
  586. struct ds_data *dpkt = buf;
  587. struct ds_pri_msg *rp;
  588. rp = (struct ds_pri_msg *) (dpkt + 1);
  589. printk(KERN_INFO PFX "PRI REQ [%lx:%lx], len=%d\n",
  590. rp->req_num, rp->type, len);
  591. }
  592. struct ds_var_hdr {
  593. __u32 type;
  594. #define DS_VAR_SET_REQ 0x00
  595. #define DS_VAR_DELETE_REQ 0x01
  596. #define DS_VAR_SET_RESP 0x02
  597. #define DS_VAR_DELETE_RESP 0x03
  598. };
  599. struct ds_var_set_msg {
  600. struct ds_var_hdr hdr;
  601. char name_and_value[0];
  602. };
  603. struct ds_var_delete_msg {
  604. struct ds_var_hdr hdr;
  605. char name[0];
  606. };
  607. struct ds_var_resp {
  608. struct ds_var_hdr hdr;
  609. __u32 result;
  610. #define DS_VAR_SUCCESS 0x00
  611. #define DS_VAR_NO_SPACE 0x01
  612. #define DS_VAR_INVALID_VAR 0x02
  613. #define DS_VAR_INVALID_VAL 0x03
  614. #define DS_VAR_NOT_PRESENT 0x04
  615. };
  616. static DEFINE_MUTEX(ds_var_mutex);
  617. static int ds_var_doorbell;
  618. static int ds_var_response;
  619. static void ds_var_data(struct ldc_channel *lp,
  620. struct ds_cap_state *dp,
  621. void *buf, int len)
  622. {
  623. struct ds_data *dpkt = buf;
  624. struct ds_var_resp *rp;
  625. rp = (struct ds_var_resp *) (dpkt + 1);
  626. if (rp->hdr.type != DS_VAR_SET_RESP &&
  627. rp->hdr.type != DS_VAR_DELETE_RESP)
  628. return;
  629. ds_var_response = rp->result;
  630. wmb();
  631. ds_var_doorbell = 1;
  632. }
  633. void ldom_set_var(const char *var, const char *value)
  634. {
  635. struct ds_info *dp = ds_info;
  636. struct ds_cap_state *cp;
  637. cp = find_cap_by_string("var-config");
  638. if (cp->state != CAP_STATE_REGISTERED)
  639. cp = find_cap_by_string("var-config-backup");
  640. if (cp->state == CAP_STATE_REGISTERED) {
  641. union {
  642. struct {
  643. struct ds_data data;
  644. struct ds_var_set_msg msg;
  645. } header;
  646. char all[512];
  647. } pkt;
  648. unsigned long flags;
  649. char *base, *p;
  650. int msg_len, loops;
  651. memset(&pkt, 0, sizeof(pkt));
  652. pkt.header.data.tag.type = DS_DATA;
  653. pkt.header.data.handle = cp->handle;
  654. pkt.header.msg.hdr.type = DS_VAR_SET_REQ;
  655. base = p = &pkt.header.msg.name_and_value[0];
  656. strcpy(p, var);
  657. p += strlen(var) + 1;
  658. strcpy(p, value);
  659. p += strlen(value) + 1;
  660. msg_len = (sizeof(struct ds_data) +
  661. sizeof(struct ds_var_set_msg) +
  662. (p - base));
  663. msg_len = (msg_len + 3) & ~3;
  664. pkt.header.data.tag.len = msg_len - sizeof(struct ds_msg_tag);
  665. mutex_lock(&ds_var_mutex);
  666. spin_lock_irqsave(&ds_lock, flags);
  667. ds_var_doorbell = 0;
  668. ds_var_response = -1;
  669. ds_send(dp->lp, &pkt, msg_len);
  670. spin_unlock_irqrestore(&ds_lock, flags);
  671. loops = 1000;
  672. while (ds_var_doorbell == 0) {
  673. if (loops-- < 0)
  674. break;
  675. barrier();
  676. udelay(100);
  677. }
  678. mutex_unlock(&ds_var_mutex);
  679. if (ds_var_doorbell == 0 ||
  680. ds_var_response != DS_VAR_SUCCESS)
  681. printk(KERN_ERR PFX "var-config [%s:%s] "
  682. "failed, response(%d).\n",
  683. var, value,
  684. ds_var_response);
  685. } else {
  686. printk(KERN_ERR PFX "var-config not registered so "
  687. "could not set (%s) variable to (%s).\n",
  688. var, value);
  689. }
  690. }
  691. void ldom_reboot(const char *boot_command)
  692. {
  693. /* Don't bother with any of this if the boot_command
  694. * is empty.
  695. */
  696. if (boot_command && strlen(boot_command)) {
  697. char full_boot_str[256];
  698. strcpy(full_boot_str, "boot ");
  699. strcpy(full_boot_str + strlen("boot "), boot_command);
  700. ldom_set_var("reboot-command", full_boot_str);
  701. }
  702. sun4v_mach_sir();
  703. }
  704. void ldom_power_off(void)
  705. {
  706. sun4v_mach_exit(0);
  707. }
  708. static void ds_conn_reset(struct ds_info *dp)
  709. {
  710. printk(KERN_ERR PFX "ds_conn_reset() from %p\n",
  711. __builtin_return_address(0));
  712. }
  713. static int register_services(struct ds_info *dp)
  714. {
  715. struct ldc_channel *lp = dp->lp;
  716. int i;
  717. for (i = 0; i < ARRAY_SIZE(ds_states); i++) {
  718. struct {
  719. struct ds_reg_req req;
  720. u8 id_buf[256];
  721. } pbuf;
  722. struct ds_cap_state *cp = &ds_states[i];
  723. int err, msg_len;
  724. u64 new_count;
  725. if (cp->state == CAP_STATE_REGISTERED)
  726. continue;
  727. new_count = sched_clock() & 0xffffffff;
  728. cp->handle = ((u64) i << 32) | new_count;
  729. msg_len = (sizeof(struct ds_reg_req) +
  730. strlen(cp->service_id));
  731. memset(&pbuf, 0, sizeof(pbuf));
  732. pbuf.req.tag.type = DS_REG_REQ;
  733. pbuf.req.tag.len = (msg_len - sizeof(struct ds_msg_tag));
  734. pbuf.req.handle = cp->handle;
  735. pbuf.req.major = 1;
  736. pbuf.req.minor = 0;
  737. strcpy(pbuf.req.svc_id, cp->service_id);
  738. err = ds_send(lp, &pbuf, msg_len);
  739. if (err > 0)
  740. cp->state = CAP_STATE_REG_SENT;
  741. }
  742. return 0;
  743. }
  744. static int ds_handshake(struct ds_info *dp, struct ds_msg_tag *pkt)
  745. {
  746. if (dp->hs_state == DS_HS_START) {
  747. if (pkt->type != DS_INIT_ACK)
  748. goto conn_reset;
  749. dp->hs_state = DS_HS_DONE;
  750. return register_services(dp);
  751. }
  752. if (dp->hs_state != DS_HS_DONE)
  753. goto conn_reset;
  754. if (pkt->type == DS_REG_ACK) {
  755. struct ds_reg_ack *ap = (struct ds_reg_ack *) pkt;
  756. struct ds_cap_state *cp = find_cap(ap->handle);
  757. if (!cp) {
  758. printk(KERN_ERR PFX "REG ACK for unknown handle %lx\n",
  759. ap->handle);
  760. return 0;
  761. }
  762. printk(KERN_INFO PFX "Registered %s service.\n",
  763. cp->service_id);
  764. cp->state = CAP_STATE_REGISTERED;
  765. } else if (pkt->type == DS_REG_NACK) {
  766. struct ds_reg_nack *np = (struct ds_reg_nack *) pkt;
  767. struct ds_cap_state *cp = find_cap(np->handle);
  768. if (!cp) {
  769. printk(KERN_ERR PFX "REG NACK for "
  770. "unknown handle %lx\n",
  771. np->handle);
  772. return 0;
  773. }
  774. printk(KERN_INFO PFX "Could not register %s service\n",
  775. cp->service_id);
  776. cp->state = CAP_STATE_UNKNOWN;
  777. }
  778. return 0;
  779. conn_reset:
  780. ds_conn_reset(dp);
  781. return -ECONNRESET;
  782. }
  783. static int ds_data(struct ds_info *dp, struct ds_msg_tag *pkt, int len)
  784. {
  785. struct ds_data *dpkt = (struct ds_data *) pkt;
  786. struct ds_cap_state *cp = find_cap(dpkt->handle);
  787. if (!cp) {
  788. struct ds_data_nack nack = {
  789. .tag = {
  790. .type = DS_NACK,
  791. .len = (sizeof(struct ds_data_nack) -
  792. sizeof(struct ds_msg_tag)),
  793. },
  794. .handle = dpkt->handle,
  795. .result = DS_INV_HDL,
  796. };
  797. printk(KERN_ERR PFX "Data for unknown handle %lu\n",
  798. dpkt->handle);
  799. ds_send(dp->lp, &nack, sizeof(nack));
  800. } else {
  801. cp->data(dp->lp, cp, dpkt, len);
  802. }
  803. return 0;
  804. }
  805. static void ds_up(struct ds_info *dp)
  806. {
  807. struct ldc_channel *lp = dp->lp;
  808. struct ds_ver_req req;
  809. int err;
  810. req.tag.type = DS_INIT_REQ;
  811. req.tag.len = sizeof(req) - sizeof(struct ds_msg_tag);
  812. req.ver.major = 1;
  813. req.ver.minor = 0;
  814. err = ds_send(lp, &req, sizeof(req));
  815. if (err > 0)
  816. dp->hs_state = DS_HS_START;
  817. }
  818. static void ds_event(void *arg, int event)
  819. {
  820. struct ds_info *dp = arg;
  821. struct ldc_channel *lp = dp->lp;
  822. unsigned long flags;
  823. int err;
  824. spin_lock_irqsave(&ds_lock, flags);
  825. if (event == LDC_EVENT_UP) {
  826. ds_up(dp);
  827. spin_unlock_irqrestore(&ds_lock, flags);
  828. return;
  829. }
  830. if (event != LDC_EVENT_DATA_READY) {
  831. printk(KERN_WARNING PFX "Unexpected LDC event %d\n", event);
  832. spin_unlock_irqrestore(&ds_lock, flags);
  833. return;
  834. }
  835. err = 0;
  836. while (1) {
  837. struct ds_msg_tag *tag;
  838. err = ldc_read(lp, dp->rcv_buf, sizeof(*tag));
  839. if (unlikely(err < 0)) {
  840. if (err == -ECONNRESET)
  841. ds_conn_reset(dp);
  842. break;
  843. }
  844. if (err == 0)
  845. break;
  846. tag = dp->rcv_buf;
  847. err = ldc_read(lp, tag + 1, tag->len);
  848. if (unlikely(err < 0)) {
  849. if (err == -ECONNRESET)
  850. ds_conn_reset(dp);
  851. break;
  852. }
  853. if (err < tag->len)
  854. break;
  855. if (tag->type < DS_DATA)
  856. err = ds_handshake(dp, dp->rcv_buf);
  857. else
  858. err = ds_data(dp, dp->rcv_buf,
  859. sizeof(*tag) + err);
  860. if (err == -ECONNRESET)
  861. break;
  862. }
  863. spin_unlock_irqrestore(&ds_lock, flags);
  864. }
  865. static int __devinit ds_probe(struct vio_dev *vdev,
  866. const struct vio_device_id *id)
  867. {
  868. static int ds_version_printed;
  869. struct ldc_channel_config ds_cfg = {
  870. .event = ds_event,
  871. .mtu = 4096,
  872. .mode = LDC_MODE_STREAM,
  873. };
  874. struct ldc_channel *lp;
  875. struct ds_info *dp;
  876. int err;
  877. if (ds_version_printed++ == 0)
  878. printk(KERN_INFO "%s", version);
  879. dp = kzalloc(sizeof(*dp), GFP_KERNEL);
  880. err = -ENOMEM;
  881. if (!dp)
  882. goto out_err;
  883. dp->rcv_buf = kzalloc(4096, GFP_KERNEL);
  884. if (!dp->rcv_buf)
  885. goto out_free_dp;
  886. dp->rcv_buf_len = 4096;
  887. ds_cfg.tx_irq = vdev->tx_irq;
  888. ds_cfg.rx_irq = vdev->rx_irq;
  889. lp = ldc_alloc(vdev->channel_id, &ds_cfg, dp);
  890. if (IS_ERR(lp)) {
  891. err = PTR_ERR(lp);
  892. goto out_free_rcv_buf;
  893. }
  894. dp->lp = lp;
  895. err = ldc_bind(lp, "DS");
  896. if (err)
  897. goto out_free_ldc;
  898. ds_info = dp;
  899. start_powerd();
  900. return err;
  901. out_free_ldc:
  902. ldc_free(dp->lp);
  903. out_free_rcv_buf:
  904. kfree(dp->rcv_buf);
  905. out_free_dp:
  906. kfree(dp);
  907. out_err:
  908. return err;
  909. }
  910. static int ds_remove(struct vio_dev *vdev)
  911. {
  912. return 0;
  913. }
  914. static struct vio_device_id ds_match[] = {
  915. {
  916. .type = "domain-services-port",
  917. },
  918. {},
  919. };
  920. static struct vio_driver ds_driver = {
  921. .id_table = ds_match,
  922. .probe = ds_probe,
  923. .remove = ds_remove,
  924. .driver = {
  925. .name = "ds",
  926. .owner = THIS_MODULE,
  927. }
  928. };
  929. static int __init ds_init(void)
  930. {
  931. int i;
  932. for (i = 0; i < ARRAY_SIZE(ds_states); i++)
  933. ds_states[i].handle = ((u64)i << 32);
  934. return vio_register_driver(&ds_driver);
  935. }
  936. subsys_initcall(ds_init);