ring_buffer.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. /*
  2. * Performance events ring-buffer code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/perf_event.h>
  12. #include <linux/vmalloc.h>
  13. #include <linux/slab.h>
  14. #include "internal.h"
  15. static bool perf_output_space(struct ring_buffer *rb, unsigned long tail,
  16. unsigned long offset, unsigned long head)
  17. {
  18. unsigned long mask;
  19. if (!rb->writable)
  20. return true;
  21. mask = perf_data_size(rb) - 1;
  22. offset = (offset - tail) & mask;
  23. head = (head - tail) & mask;
  24. if ((int)(head - offset) < 0)
  25. return false;
  26. return true;
  27. }
  28. static void perf_output_wakeup(struct perf_output_handle *handle)
  29. {
  30. atomic_set(&handle->rb->poll, POLL_IN);
  31. if (handle->nmi) {
  32. handle->event->pending_wakeup = 1;
  33. irq_work_queue(&handle->event->pending);
  34. } else
  35. perf_event_wakeup(handle->event);
  36. }
  37. /*
  38. * We need to ensure a later event_id doesn't publish a head when a former
  39. * event isn't done writing. However since we need to deal with NMIs we
  40. * cannot fully serialize things.
  41. *
  42. * We only publish the head (and generate a wakeup) when the outer-most
  43. * event completes.
  44. */
  45. static void perf_output_get_handle(struct perf_output_handle *handle)
  46. {
  47. struct ring_buffer *rb = handle->rb;
  48. preempt_disable();
  49. local_inc(&rb->nest);
  50. handle->wakeup = local_read(&rb->wakeup);
  51. }
  52. static void perf_output_put_handle(struct perf_output_handle *handle)
  53. {
  54. struct ring_buffer *rb = handle->rb;
  55. unsigned long head;
  56. again:
  57. head = local_read(&rb->head);
  58. /*
  59. * IRQ/NMI can happen here, which means we can miss a head update.
  60. */
  61. if (!local_dec_and_test(&rb->nest))
  62. goto out;
  63. /*
  64. * Publish the known good head. Rely on the full barrier implied
  65. * by atomic_dec_and_test() order the rb->head read and this
  66. * write.
  67. */
  68. rb->user_page->data_head = head;
  69. /*
  70. * Now check if we missed an update, rely on the (compiler)
  71. * barrier in atomic_dec_and_test() to re-read rb->head.
  72. */
  73. if (unlikely(head != local_read(&rb->head))) {
  74. local_inc(&rb->nest);
  75. goto again;
  76. }
  77. if (handle->wakeup != local_read(&rb->wakeup))
  78. perf_output_wakeup(handle);
  79. out:
  80. preempt_enable();
  81. }
  82. int perf_output_begin(struct perf_output_handle *handle,
  83. struct perf_event *event, unsigned int size,
  84. int nmi, int sample)
  85. {
  86. struct ring_buffer *rb;
  87. unsigned long tail, offset, head;
  88. int have_lost;
  89. struct perf_sample_data sample_data;
  90. struct {
  91. struct perf_event_header header;
  92. u64 id;
  93. u64 lost;
  94. } lost_event;
  95. rcu_read_lock();
  96. /*
  97. * For inherited events we send all the output towards the parent.
  98. */
  99. if (event->parent)
  100. event = event->parent;
  101. rb = rcu_dereference(event->rb);
  102. if (!rb)
  103. goto out;
  104. handle->rb = rb;
  105. handle->event = event;
  106. handle->nmi = nmi;
  107. handle->sample = sample;
  108. if (!rb->nr_pages)
  109. goto out;
  110. have_lost = local_read(&rb->lost);
  111. if (have_lost) {
  112. lost_event.header.size = sizeof(lost_event);
  113. perf_event_header__init_id(&lost_event.header, &sample_data,
  114. event);
  115. size += lost_event.header.size;
  116. }
  117. perf_output_get_handle(handle);
  118. do {
  119. /*
  120. * Userspace could choose to issue a mb() before updating the
  121. * tail pointer. So that all reads will be completed before the
  122. * write is issued.
  123. */
  124. tail = ACCESS_ONCE(rb->user_page->data_tail);
  125. smp_rmb();
  126. offset = head = local_read(&rb->head);
  127. head += size;
  128. if (unlikely(!perf_output_space(rb, tail, offset, head)))
  129. goto fail;
  130. } while (local_cmpxchg(&rb->head, offset, head) != offset);
  131. if (head - local_read(&rb->wakeup) > rb->watermark)
  132. local_add(rb->watermark, &rb->wakeup);
  133. handle->page = offset >> (PAGE_SHIFT + page_order(rb));
  134. handle->page &= rb->nr_pages - 1;
  135. handle->size = offset & ((PAGE_SIZE << page_order(rb)) - 1);
  136. handle->addr = rb->data_pages[handle->page];
  137. handle->addr += handle->size;
  138. handle->size = (PAGE_SIZE << page_order(rb)) - handle->size;
  139. if (have_lost) {
  140. lost_event.header.type = PERF_RECORD_LOST;
  141. lost_event.header.misc = 0;
  142. lost_event.id = event->id;
  143. lost_event.lost = local_xchg(&rb->lost, 0);
  144. perf_output_put(handle, lost_event);
  145. perf_event__output_id_sample(event, handle, &sample_data);
  146. }
  147. return 0;
  148. fail:
  149. local_inc(&rb->lost);
  150. perf_output_put_handle(handle);
  151. out:
  152. rcu_read_unlock();
  153. return -ENOSPC;
  154. }
  155. void perf_output_copy(struct perf_output_handle *handle,
  156. const void *buf, unsigned int len)
  157. {
  158. __output_copy(handle, buf, len);
  159. }
  160. void perf_output_end(struct perf_output_handle *handle)
  161. {
  162. struct perf_event *event = handle->event;
  163. struct ring_buffer *rb = handle->rb;
  164. if (handle->sample && !event->attr.watermark) {
  165. int wakeup_events = event->attr.wakeup_events;
  166. if (wakeup_events) {
  167. int events = local_inc_return(&rb->events);
  168. if (events >= wakeup_events) {
  169. local_sub(wakeup_events, &rb->events);
  170. local_inc(&rb->wakeup);
  171. }
  172. }
  173. }
  174. perf_output_put_handle(handle);
  175. rcu_read_unlock();
  176. }
  177. static void
  178. ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
  179. {
  180. long max_size = perf_data_size(rb);
  181. if (watermark)
  182. rb->watermark = min(max_size, watermark);
  183. if (!rb->watermark)
  184. rb->watermark = max_size / 2;
  185. if (flags & RING_BUFFER_WRITABLE)
  186. rb->writable = 1;
  187. atomic_set(&rb->refcount, 1);
  188. }
  189. #ifndef CONFIG_PERF_USE_VMALLOC
  190. /*
  191. * Back perf_mmap() with regular GFP_KERNEL-0 pages.
  192. */
  193. struct page *
  194. perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
  195. {
  196. if (pgoff > rb->nr_pages)
  197. return NULL;
  198. if (pgoff == 0)
  199. return virt_to_page(rb->user_page);
  200. return virt_to_page(rb->data_pages[pgoff - 1]);
  201. }
  202. static void *perf_mmap_alloc_page(int cpu)
  203. {
  204. struct page *page;
  205. int node;
  206. node = (cpu == -1) ? cpu : cpu_to_node(cpu);
  207. page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
  208. if (!page)
  209. return NULL;
  210. return page_address(page);
  211. }
  212. struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
  213. {
  214. struct ring_buffer *rb;
  215. unsigned long size;
  216. int i;
  217. size = sizeof(struct ring_buffer);
  218. size += nr_pages * sizeof(void *);
  219. rb = kzalloc(size, GFP_KERNEL);
  220. if (!rb)
  221. goto fail;
  222. rb->user_page = perf_mmap_alloc_page(cpu);
  223. if (!rb->user_page)
  224. goto fail_user_page;
  225. for (i = 0; i < nr_pages; i++) {
  226. rb->data_pages[i] = perf_mmap_alloc_page(cpu);
  227. if (!rb->data_pages[i])
  228. goto fail_data_pages;
  229. }
  230. rb->nr_pages = nr_pages;
  231. ring_buffer_init(rb, watermark, flags);
  232. return rb;
  233. fail_data_pages:
  234. for (i--; i >= 0; i--)
  235. free_page((unsigned long)rb->data_pages[i]);
  236. free_page((unsigned long)rb->user_page);
  237. fail_user_page:
  238. kfree(rb);
  239. fail:
  240. return NULL;
  241. }
  242. static void perf_mmap_free_page(unsigned long addr)
  243. {
  244. struct page *page = virt_to_page((void *)addr);
  245. page->mapping = NULL;
  246. __free_page(page);
  247. }
  248. void rb_free(struct ring_buffer *rb)
  249. {
  250. int i;
  251. perf_mmap_free_page((unsigned long)rb->user_page);
  252. for (i = 0; i < rb->nr_pages; i++)
  253. perf_mmap_free_page((unsigned long)rb->data_pages[i]);
  254. kfree(rb);
  255. }
  256. #else
  257. struct page *
  258. perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
  259. {
  260. if (pgoff > (1UL << page_order(rb)))
  261. return NULL;
  262. return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
  263. }
  264. static void perf_mmap_unmark_page(void *addr)
  265. {
  266. struct page *page = vmalloc_to_page(addr);
  267. page->mapping = NULL;
  268. }
  269. static void rb_free_work(struct work_struct *work)
  270. {
  271. struct ring_buffer *rb;
  272. void *base;
  273. int i, nr;
  274. rb = container_of(work, struct ring_buffer, work);
  275. nr = 1 << page_order(rb);
  276. base = rb->user_page;
  277. for (i = 0; i < nr + 1; i++)
  278. perf_mmap_unmark_page(base + (i * PAGE_SIZE));
  279. vfree(base);
  280. kfree(rb);
  281. }
  282. void rb_free(struct ring_buffer *rb)
  283. {
  284. schedule_work(&rb->work);
  285. }
  286. struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
  287. {
  288. struct ring_buffer *rb;
  289. unsigned long size;
  290. void *all_buf;
  291. size = sizeof(struct ring_buffer);
  292. size += sizeof(void *);
  293. rb = kzalloc(size, GFP_KERNEL);
  294. if (!rb)
  295. goto fail;
  296. INIT_WORK(&rb->work, rb_free_work);
  297. all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
  298. if (!all_buf)
  299. goto fail_all_buf;
  300. rb->user_page = all_buf;
  301. rb->data_pages[0] = all_buf + PAGE_SIZE;
  302. rb->page_order = ilog2(nr_pages);
  303. rb->nr_pages = 1;
  304. ring_buffer_init(rb, watermark, flags);
  305. return rb;
  306. fail_all_buf:
  307. kfree(rb);
  308. fail:
  309. return NULL;
  310. }
  311. #endif