cpufreq_ondemand.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529
  1. /*
  2. * drivers/cpufreq/cpufreq_ondemand.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/smp.h>
  15. #include <linux/init.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/ctype.h>
  18. #include <linux/cpufreq.h>
  19. #include <linux/sysctl.h>
  20. #include <linux/types.h>
  21. #include <linux/fs.h>
  22. #include <linux/sysfs.h>
  23. #include <linux/sched.h>
  24. #include <linux/kmod.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/kernel_stat.h>
  28. #include <linux/percpu.h>
  29. #include <linux/mutex.h>
  30. /*
  31. * dbs is used in this file as a shortform for demandbased switching
  32. * It helps to keep variable names smaller, simpler
  33. */
  34. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  35. #define MIN_FREQUENCY_UP_THRESHOLD (11)
  36. #define MAX_FREQUENCY_UP_THRESHOLD (100)
  37. /*
  38. * The polling frequency of this governor depends on the capability of
  39. * the processor. Default polling frequency is 1000 times the transition
  40. * latency of the processor. The governor will work on any processor with
  41. * transition latency <= 10mS, using appropriate sampling
  42. * rate.
  43. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  44. * this governor will not work.
  45. * All times here are in uS.
  46. */
  47. static unsigned int def_sampling_rate;
  48. #define MIN_SAMPLING_RATE_RATIO (2)
  49. /* for correct statistics, we need at least 10 ticks between each measure */
  50. #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
  51. #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
  52. #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
  53. #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
  54. #define DEF_SAMPLING_DOWN_FACTOR (1)
  55. #define MAX_SAMPLING_DOWN_FACTOR (10)
  56. #define TRANSITION_LATENCY_LIMIT (10 * 1000)
  57. static void do_dbs_timer(void *data);
  58. struct cpu_dbs_info_s {
  59. struct cpufreq_policy *cur_policy;
  60. unsigned int prev_cpu_idle_up;
  61. unsigned int prev_cpu_idle_down;
  62. unsigned int enable;
  63. };
  64. static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
  65. static unsigned int dbs_enable; /* number of CPUs using this policy */
  66. /*
  67. * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
  68. * lock and dbs_mutex. cpu_hotplug lock should always be held before
  69. * dbs_mutex. If any function that can potentially take cpu_hotplug lock
  70. * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
  71. * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
  72. * is recursive for the same process. -Venki
  73. */
  74. static DEFINE_MUTEX (dbs_mutex);
  75. static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
  76. static struct workqueue_struct *dbs_workq;
  77. struct dbs_tuners {
  78. unsigned int sampling_rate;
  79. unsigned int sampling_down_factor;
  80. unsigned int up_threshold;
  81. unsigned int ignore_nice;
  82. };
  83. static struct dbs_tuners dbs_tuners_ins = {
  84. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  85. .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
  86. .ignore_nice = 0,
  87. };
  88. static inline unsigned int get_cpu_idle_time(unsigned int cpu)
  89. {
  90. return kstat_cpu(cpu).cpustat.idle +
  91. kstat_cpu(cpu).cpustat.iowait +
  92. ( dbs_tuners_ins.ignore_nice ?
  93. kstat_cpu(cpu).cpustat.nice :
  94. 0);
  95. }
  96. /************************** sysfs interface ************************/
  97. static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
  98. {
  99. return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
  100. }
  101. static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
  102. {
  103. return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
  104. }
  105. #define define_one_ro(_name) \
  106. static struct freq_attr _name = \
  107. __ATTR(_name, 0444, show_##_name, NULL)
  108. define_one_ro(sampling_rate_max);
  109. define_one_ro(sampling_rate_min);
  110. /* cpufreq_ondemand Governor Tunables */
  111. #define show_one(file_name, object) \
  112. static ssize_t show_##file_name \
  113. (struct cpufreq_policy *unused, char *buf) \
  114. { \
  115. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  116. }
  117. show_one(sampling_rate, sampling_rate);
  118. show_one(sampling_down_factor, sampling_down_factor);
  119. show_one(up_threshold, up_threshold);
  120. show_one(ignore_nice_load, ignore_nice);
  121. static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
  122. const char *buf, size_t count)
  123. {
  124. unsigned int input;
  125. int ret;
  126. ret = sscanf (buf, "%u", &input);
  127. if (ret != 1 )
  128. return -EINVAL;
  129. if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
  130. return -EINVAL;
  131. mutex_lock(&dbs_mutex);
  132. dbs_tuners_ins.sampling_down_factor = input;
  133. mutex_unlock(&dbs_mutex);
  134. return count;
  135. }
  136. static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
  137. const char *buf, size_t count)
  138. {
  139. unsigned int input;
  140. int ret;
  141. ret = sscanf (buf, "%u", &input);
  142. mutex_lock(&dbs_mutex);
  143. if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
  144. mutex_unlock(&dbs_mutex);
  145. return -EINVAL;
  146. }
  147. dbs_tuners_ins.sampling_rate = input;
  148. mutex_unlock(&dbs_mutex);
  149. return count;
  150. }
  151. static ssize_t store_up_threshold(struct cpufreq_policy *unused,
  152. const char *buf, size_t count)
  153. {
  154. unsigned int input;
  155. int ret;
  156. ret = sscanf (buf, "%u", &input);
  157. mutex_lock(&dbs_mutex);
  158. if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
  159. input < MIN_FREQUENCY_UP_THRESHOLD) {
  160. mutex_unlock(&dbs_mutex);
  161. return -EINVAL;
  162. }
  163. dbs_tuners_ins.up_threshold = input;
  164. mutex_unlock(&dbs_mutex);
  165. return count;
  166. }
  167. static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
  168. const char *buf, size_t count)
  169. {
  170. unsigned int input;
  171. int ret;
  172. unsigned int j;
  173. ret = sscanf (buf, "%u", &input);
  174. if ( ret != 1 )
  175. return -EINVAL;
  176. if ( input > 1 )
  177. input = 1;
  178. mutex_lock(&dbs_mutex);
  179. if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
  180. mutex_unlock(&dbs_mutex);
  181. return count;
  182. }
  183. dbs_tuners_ins.ignore_nice = input;
  184. /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
  185. for_each_online_cpu(j) {
  186. struct cpu_dbs_info_s *j_dbs_info;
  187. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  188. j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
  189. j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
  190. }
  191. mutex_unlock(&dbs_mutex);
  192. return count;
  193. }
  194. #define define_one_rw(_name) \
  195. static struct freq_attr _name = \
  196. __ATTR(_name, 0644, show_##_name, store_##_name)
  197. define_one_rw(sampling_rate);
  198. define_one_rw(sampling_down_factor);
  199. define_one_rw(up_threshold);
  200. define_one_rw(ignore_nice_load);
  201. static struct attribute * dbs_attributes[] = {
  202. &sampling_rate_max.attr,
  203. &sampling_rate_min.attr,
  204. &sampling_rate.attr,
  205. &sampling_down_factor.attr,
  206. &up_threshold.attr,
  207. &ignore_nice_load.attr,
  208. NULL
  209. };
  210. static struct attribute_group dbs_attr_group = {
  211. .attrs = dbs_attributes,
  212. .name = "ondemand",
  213. };
  214. /************************** sysfs end ************************/
  215. static void dbs_check_cpu(int cpu)
  216. {
  217. unsigned int idle_ticks, up_idle_ticks, total_ticks;
  218. unsigned int freq_next;
  219. unsigned int freq_down_sampling_rate;
  220. static int down_skip[NR_CPUS];
  221. struct cpu_dbs_info_s *this_dbs_info;
  222. struct cpufreq_policy *policy;
  223. unsigned int j;
  224. this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
  225. if (!this_dbs_info->enable)
  226. return;
  227. policy = this_dbs_info->cur_policy;
  228. /*
  229. * Every sampling_rate, we check, if current idle time is less
  230. * than 20% (default), then we try to increase frequency
  231. * Every sampling_rate*sampling_down_factor, we look for a the lowest
  232. * frequency which can sustain the load while keeping idle time over
  233. * 30%. If such a frequency exist, we try to decrease to this frequency.
  234. *
  235. * Any frequency increase takes it to the maximum frequency.
  236. * Frequency reduction happens at minimum steps of
  237. * 5% (default) of current frequency
  238. */
  239. /* Check for frequency increase */
  240. idle_ticks = UINT_MAX;
  241. for_each_cpu_mask(j, policy->cpus) {
  242. unsigned int tmp_idle_ticks, total_idle_ticks;
  243. struct cpu_dbs_info_s *j_dbs_info;
  244. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  245. total_idle_ticks = get_cpu_idle_time(j);
  246. tmp_idle_ticks = total_idle_ticks -
  247. j_dbs_info->prev_cpu_idle_up;
  248. j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
  249. if (tmp_idle_ticks < idle_ticks)
  250. idle_ticks = tmp_idle_ticks;
  251. }
  252. /* Scale idle ticks by 100 and compare with up and down ticks */
  253. idle_ticks *= 100;
  254. up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
  255. usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  256. if (idle_ticks < up_idle_ticks) {
  257. down_skip[cpu] = 0;
  258. for_each_cpu_mask(j, policy->cpus) {
  259. struct cpu_dbs_info_s *j_dbs_info;
  260. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  261. j_dbs_info->prev_cpu_idle_down =
  262. j_dbs_info->prev_cpu_idle_up;
  263. }
  264. /* if we are already at full speed then break out early */
  265. if (policy->cur == policy->max)
  266. return;
  267. __cpufreq_driver_target(policy, policy->max,
  268. CPUFREQ_RELATION_H);
  269. return;
  270. }
  271. /* Check for frequency decrease */
  272. down_skip[cpu]++;
  273. if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
  274. return;
  275. idle_ticks = UINT_MAX;
  276. for_each_cpu_mask(j, policy->cpus) {
  277. unsigned int tmp_idle_ticks, total_idle_ticks;
  278. struct cpu_dbs_info_s *j_dbs_info;
  279. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  280. /* Check for frequency decrease */
  281. total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
  282. tmp_idle_ticks = total_idle_ticks -
  283. j_dbs_info->prev_cpu_idle_down;
  284. j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
  285. if (tmp_idle_ticks < idle_ticks)
  286. idle_ticks = tmp_idle_ticks;
  287. }
  288. down_skip[cpu] = 0;
  289. /* if we cannot reduce the frequency anymore, break out early */
  290. if (policy->cur == policy->min)
  291. return;
  292. /* Compute how many ticks there are between two measurements */
  293. freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
  294. dbs_tuners_ins.sampling_down_factor;
  295. total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
  296. /*
  297. * The optimal frequency is the frequency that is the lowest that
  298. * can support the current CPU usage without triggering the up
  299. * policy. To be safe, we focus 10 points under the threshold.
  300. */
  301. freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
  302. freq_next = (freq_next * policy->cur) /
  303. (dbs_tuners_ins.up_threshold - 10);
  304. if (freq_next < policy->min)
  305. freq_next = policy->min;
  306. if (freq_next <= ((policy->cur * 95) / 100))
  307. __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
  308. }
  309. static void do_dbs_timer(void *data)
  310. {
  311. int i;
  312. lock_cpu_hotplug();
  313. mutex_lock(&dbs_mutex);
  314. for_each_online_cpu(i)
  315. dbs_check_cpu(i);
  316. queue_delayed_work(dbs_workq, &dbs_work,
  317. usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
  318. mutex_unlock(&dbs_mutex);
  319. unlock_cpu_hotplug();
  320. }
  321. static inline void dbs_timer_init(void)
  322. {
  323. INIT_WORK(&dbs_work, do_dbs_timer, NULL);
  324. if (!dbs_workq)
  325. dbs_workq = create_singlethread_workqueue("ondemand");
  326. if (!dbs_workq) {
  327. printk(KERN_ERR "ondemand: Cannot initialize kernel thread\n");
  328. return;
  329. }
  330. queue_delayed_work(dbs_workq, &dbs_work,
  331. usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
  332. return;
  333. }
  334. static inline void dbs_timer_exit(void)
  335. {
  336. if (dbs_workq)
  337. cancel_rearming_delayed_workqueue(dbs_workq, &dbs_work);
  338. }
  339. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  340. unsigned int event)
  341. {
  342. unsigned int cpu = policy->cpu;
  343. struct cpu_dbs_info_s *this_dbs_info;
  344. unsigned int j;
  345. this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
  346. switch (event) {
  347. case CPUFREQ_GOV_START:
  348. if ((!cpu_online(cpu)) ||
  349. (!policy->cur))
  350. return -EINVAL;
  351. if (policy->cpuinfo.transition_latency >
  352. (TRANSITION_LATENCY_LIMIT * 1000)) {
  353. printk(KERN_WARNING "ondemand governor failed to load "
  354. "due to too long transition latency\n");
  355. return -EINVAL;
  356. }
  357. if (this_dbs_info->enable) /* Already enabled */
  358. break;
  359. mutex_lock(&dbs_mutex);
  360. for_each_cpu_mask(j, policy->cpus) {
  361. struct cpu_dbs_info_s *j_dbs_info;
  362. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  363. j_dbs_info->cur_policy = policy;
  364. j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
  365. j_dbs_info->prev_cpu_idle_down
  366. = j_dbs_info->prev_cpu_idle_up;
  367. }
  368. this_dbs_info->enable = 1;
  369. sysfs_create_group(&policy->kobj, &dbs_attr_group);
  370. dbs_enable++;
  371. /*
  372. * Start the timerschedule work, when this governor
  373. * is used for first time
  374. */
  375. if (dbs_enable == 1) {
  376. unsigned int latency;
  377. /* policy latency is in nS. Convert it to uS first */
  378. latency = policy->cpuinfo.transition_latency / 1000;
  379. if (latency == 0)
  380. latency = 1;
  381. def_sampling_rate = latency *
  382. DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
  383. if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
  384. def_sampling_rate = MIN_STAT_SAMPLING_RATE;
  385. dbs_tuners_ins.sampling_rate = def_sampling_rate;
  386. dbs_timer_init();
  387. }
  388. mutex_unlock(&dbs_mutex);
  389. break;
  390. case CPUFREQ_GOV_STOP:
  391. mutex_lock(&dbs_mutex);
  392. this_dbs_info->enable = 0;
  393. sysfs_remove_group(&policy->kobj, &dbs_attr_group);
  394. dbs_enable--;
  395. /*
  396. * Stop the timerschedule work, when this governor
  397. * is used for first time
  398. */
  399. if (dbs_enable == 0)
  400. dbs_timer_exit();
  401. mutex_unlock(&dbs_mutex);
  402. break;
  403. case CPUFREQ_GOV_LIMITS:
  404. lock_cpu_hotplug();
  405. mutex_lock(&dbs_mutex);
  406. if (policy->max < this_dbs_info->cur_policy->cur)
  407. __cpufreq_driver_target(
  408. this_dbs_info->cur_policy,
  409. policy->max, CPUFREQ_RELATION_H);
  410. else if (policy->min > this_dbs_info->cur_policy->cur)
  411. __cpufreq_driver_target(
  412. this_dbs_info->cur_policy,
  413. policy->min, CPUFREQ_RELATION_L);
  414. mutex_unlock(&dbs_mutex);
  415. unlock_cpu_hotplug();
  416. break;
  417. }
  418. return 0;
  419. }
  420. static struct cpufreq_governor cpufreq_gov_dbs = {
  421. .name = "ondemand",
  422. .governor = cpufreq_governor_dbs,
  423. .owner = THIS_MODULE,
  424. };
  425. static int __init cpufreq_gov_dbs_init(void)
  426. {
  427. return cpufreq_register_governor(&cpufreq_gov_dbs);
  428. }
  429. static void __exit cpufreq_gov_dbs_exit(void)
  430. {
  431. /* Make sure that the scheduled work is indeed not running.
  432. Assumes the timer has been cancelled first. */
  433. if (dbs_workq) {
  434. flush_workqueue(dbs_workq);
  435. destroy_workqueue(dbs_workq);
  436. }
  437. cpufreq_unregister_governor(&cpufreq_gov_dbs);
  438. }
  439. MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
  440. MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
  441. "Low Latency Frequency Transition capable processors");
  442. MODULE_LICENSE ("GPL");
  443. module_init(cpufreq_gov_dbs_init);
  444. module_exit(cpufreq_gov_dbs_exit);