main.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503
  1. /*
  2. * Sonics Silicon Backplane
  3. * Subsystem core
  4. *
  5. * Copyright 2005, Broadcom Corporation
  6. * Copyright 2006, 2007, Michael Buesch <m@bues.ch>
  7. *
  8. * Licensed under the GNU/GPL. See COPYING for details.
  9. */
  10. #include "ssb_private.h"
  11. #include <linux/delay.h>
  12. #include <linux/io.h>
  13. #include <linux/module.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/ssb/ssb.h>
  16. #include <linux/ssb/ssb_regs.h>
  17. #include <linux/ssb/ssb_driver_gige.h>
  18. #include <linux/dma-mapping.h>
  19. #include <linux/pci.h>
  20. #include <linux/mmc/sdio_func.h>
  21. #include <linux/slab.h>
  22. #include <pcmcia/cistpl.h>
  23. #include <pcmcia/ds.h>
  24. MODULE_DESCRIPTION("Sonics Silicon Backplane driver");
  25. MODULE_LICENSE("GPL");
  26. /* Temporary list of yet-to-be-attached buses */
  27. static LIST_HEAD(attach_queue);
  28. /* List if running buses */
  29. static LIST_HEAD(buses);
  30. /* Software ID counter */
  31. static unsigned int next_busnumber;
  32. /* buses_mutes locks the two buslists and the next_busnumber.
  33. * Don't lock this directly, but use ssb_buses_[un]lock() below. */
  34. static DEFINE_MUTEX(buses_mutex);
  35. /* There are differences in the codeflow, if the bus is
  36. * initialized from early boot, as various needed services
  37. * are not available early. This is a mechanism to delay
  38. * these initializations to after early boot has finished.
  39. * It's also used to avoid mutex locking, as that's not
  40. * available and needed early. */
  41. static bool ssb_is_early_boot = 1;
  42. static void ssb_buses_lock(void);
  43. static void ssb_buses_unlock(void);
  44. #ifdef CONFIG_SSB_PCIHOST
  45. struct ssb_bus *ssb_pci_dev_to_bus(struct pci_dev *pdev)
  46. {
  47. struct ssb_bus *bus;
  48. ssb_buses_lock();
  49. list_for_each_entry(bus, &buses, list) {
  50. if (bus->bustype == SSB_BUSTYPE_PCI &&
  51. bus->host_pci == pdev)
  52. goto found;
  53. }
  54. bus = NULL;
  55. found:
  56. ssb_buses_unlock();
  57. return bus;
  58. }
  59. #endif /* CONFIG_SSB_PCIHOST */
  60. #ifdef CONFIG_SSB_PCMCIAHOST
  61. struct ssb_bus *ssb_pcmcia_dev_to_bus(struct pcmcia_device *pdev)
  62. {
  63. struct ssb_bus *bus;
  64. ssb_buses_lock();
  65. list_for_each_entry(bus, &buses, list) {
  66. if (bus->bustype == SSB_BUSTYPE_PCMCIA &&
  67. bus->host_pcmcia == pdev)
  68. goto found;
  69. }
  70. bus = NULL;
  71. found:
  72. ssb_buses_unlock();
  73. return bus;
  74. }
  75. #endif /* CONFIG_SSB_PCMCIAHOST */
  76. #ifdef CONFIG_SSB_SDIOHOST
  77. struct ssb_bus *ssb_sdio_func_to_bus(struct sdio_func *func)
  78. {
  79. struct ssb_bus *bus;
  80. ssb_buses_lock();
  81. list_for_each_entry(bus, &buses, list) {
  82. if (bus->bustype == SSB_BUSTYPE_SDIO &&
  83. bus->host_sdio == func)
  84. goto found;
  85. }
  86. bus = NULL;
  87. found:
  88. ssb_buses_unlock();
  89. return bus;
  90. }
  91. #endif /* CONFIG_SSB_SDIOHOST */
  92. int ssb_for_each_bus_call(unsigned long data,
  93. int (*func)(struct ssb_bus *bus, unsigned long data))
  94. {
  95. struct ssb_bus *bus;
  96. int res;
  97. ssb_buses_lock();
  98. list_for_each_entry(bus, &buses, list) {
  99. res = func(bus, data);
  100. if (res >= 0) {
  101. ssb_buses_unlock();
  102. return res;
  103. }
  104. }
  105. ssb_buses_unlock();
  106. return -ENODEV;
  107. }
  108. static struct ssb_device *ssb_device_get(struct ssb_device *dev)
  109. {
  110. if (dev)
  111. get_device(dev->dev);
  112. return dev;
  113. }
  114. static void ssb_device_put(struct ssb_device *dev)
  115. {
  116. if (dev)
  117. put_device(dev->dev);
  118. }
  119. static int ssb_device_resume(struct device *dev)
  120. {
  121. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  122. struct ssb_driver *ssb_drv;
  123. int err = 0;
  124. if (dev->driver) {
  125. ssb_drv = drv_to_ssb_drv(dev->driver);
  126. if (ssb_drv && ssb_drv->resume)
  127. err = ssb_drv->resume(ssb_dev);
  128. if (err)
  129. goto out;
  130. }
  131. out:
  132. return err;
  133. }
  134. static int ssb_device_suspend(struct device *dev, pm_message_t state)
  135. {
  136. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  137. struct ssb_driver *ssb_drv;
  138. int err = 0;
  139. if (dev->driver) {
  140. ssb_drv = drv_to_ssb_drv(dev->driver);
  141. if (ssb_drv && ssb_drv->suspend)
  142. err = ssb_drv->suspend(ssb_dev, state);
  143. if (err)
  144. goto out;
  145. }
  146. out:
  147. return err;
  148. }
  149. int ssb_bus_resume(struct ssb_bus *bus)
  150. {
  151. int err;
  152. /* Reset HW state information in memory, so that HW is
  153. * completely reinitialized. */
  154. bus->mapped_device = NULL;
  155. #ifdef CONFIG_SSB_DRIVER_PCICORE
  156. bus->pcicore.setup_done = 0;
  157. #endif
  158. err = ssb_bus_powerup(bus, 0);
  159. if (err)
  160. return err;
  161. err = ssb_pcmcia_hardware_setup(bus);
  162. if (err) {
  163. ssb_bus_may_powerdown(bus);
  164. return err;
  165. }
  166. ssb_chipco_resume(&bus->chipco);
  167. ssb_bus_may_powerdown(bus);
  168. return 0;
  169. }
  170. EXPORT_SYMBOL(ssb_bus_resume);
  171. int ssb_bus_suspend(struct ssb_bus *bus)
  172. {
  173. ssb_chipco_suspend(&bus->chipco);
  174. ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  175. return 0;
  176. }
  177. EXPORT_SYMBOL(ssb_bus_suspend);
  178. #ifdef CONFIG_SSB_SPROM
  179. /** ssb_devices_freeze - Freeze all devices on the bus.
  180. *
  181. * After freezing no device driver will be handling a device
  182. * on this bus anymore. ssb_devices_thaw() must be called after
  183. * a successful freeze to reactivate the devices.
  184. *
  185. * @bus: The bus.
  186. * @ctx: Context structure. Pass this to ssb_devices_thaw().
  187. */
  188. int ssb_devices_freeze(struct ssb_bus *bus, struct ssb_freeze_context *ctx)
  189. {
  190. struct ssb_device *sdev;
  191. struct ssb_driver *sdrv;
  192. unsigned int i;
  193. memset(ctx, 0, sizeof(*ctx));
  194. ctx->bus = bus;
  195. SSB_WARN_ON(bus->nr_devices > ARRAY_SIZE(ctx->device_frozen));
  196. for (i = 0; i < bus->nr_devices; i++) {
  197. sdev = ssb_device_get(&bus->devices[i]);
  198. if (!sdev->dev || !sdev->dev->driver ||
  199. !device_is_registered(sdev->dev)) {
  200. ssb_device_put(sdev);
  201. continue;
  202. }
  203. sdrv = drv_to_ssb_drv(sdev->dev->driver);
  204. if (SSB_WARN_ON(!sdrv->remove))
  205. continue;
  206. sdrv->remove(sdev);
  207. ctx->device_frozen[i] = 1;
  208. }
  209. return 0;
  210. }
  211. /** ssb_devices_thaw - Unfreeze all devices on the bus.
  212. *
  213. * This will re-attach the device drivers and re-init the devices.
  214. *
  215. * @ctx: The context structure from ssb_devices_freeze()
  216. */
  217. int ssb_devices_thaw(struct ssb_freeze_context *ctx)
  218. {
  219. struct ssb_bus *bus = ctx->bus;
  220. struct ssb_device *sdev;
  221. struct ssb_driver *sdrv;
  222. unsigned int i;
  223. int err, result = 0;
  224. for (i = 0; i < bus->nr_devices; i++) {
  225. if (!ctx->device_frozen[i])
  226. continue;
  227. sdev = &bus->devices[i];
  228. if (SSB_WARN_ON(!sdev->dev || !sdev->dev->driver))
  229. continue;
  230. sdrv = drv_to_ssb_drv(sdev->dev->driver);
  231. if (SSB_WARN_ON(!sdrv || !sdrv->probe))
  232. continue;
  233. err = sdrv->probe(sdev, &sdev->id);
  234. if (err) {
  235. ssb_err("Failed to thaw device %s\n",
  236. dev_name(sdev->dev));
  237. result = err;
  238. }
  239. ssb_device_put(sdev);
  240. }
  241. return result;
  242. }
  243. #endif /* CONFIG_SSB_SPROM */
  244. static void ssb_device_shutdown(struct device *dev)
  245. {
  246. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  247. struct ssb_driver *ssb_drv;
  248. if (!dev->driver)
  249. return;
  250. ssb_drv = drv_to_ssb_drv(dev->driver);
  251. if (ssb_drv && ssb_drv->shutdown)
  252. ssb_drv->shutdown(ssb_dev);
  253. }
  254. static int ssb_device_remove(struct device *dev)
  255. {
  256. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  257. struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
  258. if (ssb_drv && ssb_drv->remove)
  259. ssb_drv->remove(ssb_dev);
  260. ssb_device_put(ssb_dev);
  261. return 0;
  262. }
  263. static int ssb_device_probe(struct device *dev)
  264. {
  265. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  266. struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
  267. int err = 0;
  268. ssb_device_get(ssb_dev);
  269. if (ssb_drv && ssb_drv->probe)
  270. err = ssb_drv->probe(ssb_dev, &ssb_dev->id);
  271. if (err)
  272. ssb_device_put(ssb_dev);
  273. return err;
  274. }
  275. static int ssb_match_devid(const struct ssb_device_id *tabid,
  276. const struct ssb_device_id *devid)
  277. {
  278. if ((tabid->vendor != devid->vendor) &&
  279. tabid->vendor != SSB_ANY_VENDOR)
  280. return 0;
  281. if ((tabid->coreid != devid->coreid) &&
  282. tabid->coreid != SSB_ANY_ID)
  283. return 0;
  284. if ((tabid->revision != devid->revision) &&
  285. tabid->revision != SSB_ANY_REV)
  286. return 0;
  287. return 1;
  288. }
  289. static int ssb_bus_match(struct device *dev, struct device_driver *drv)
  290. {
  291. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  292. struct ssb_driver *ssb_drv = drv_to_ssb_drv(drv);
  293. const struct ssb_device_id *id;
  294. for (id = ssb_drv->id_table;
  295. id->vendor || id->coreid || id->revision;
  296. id++) {
  297. if (ssb_match_devid(id, &ssb_dev->id))
  298. return 1; /* found */
  299. }
  300. return 0;
  301. }
  302. static int ssb_device_uevent(struct device *dev, struct kobj_uevent_env *env)
  303. {
  304. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  305. if (!dev)
  306. return -ENODEV;
  307. return add_uevent_var(env,
  308. "MODALIAS=ssb:v%04Xid%04Xrev%02X",
  309. ssb_dev->id.vendor, ssb_dev->id.coreid,
  310. ssb_dev->id.revision);
  311. }
  312. #define ssb_config_attr(attrib, field, format_string) \
  313. static ssize_t \
  314. attrib##_show(struct device *dev, struct device_attribute *attr, char *buf) \
  315. { \
  316. return sprintf(buf, format_string, dev_to_ssb_dev(dev)->field); \
  317. } \
  318. static DEVICE_ATTR_RO(attrib);
  319. ssb_config_attr(core_num, core_index, "%u\n")
  320. ssb_config_attr(coreid, id.coreid, "0x%04x\n")
  321. ssb_config_attr(vendor, id.vendor, "0x%04x\n")
  322. ssb_config_attr(revision, id.revision, "%u\n")
  323. ssb_config_attr(irq, irq, "%u\n")
  324. static ssize_t
  325. name_show(struct device *dev, struct device_attribute *attr, char *buf)
  326. {
  327. return sprintf(buf, "%s\n",
  328. ssb_core_name(dev_to_ssb_dev(dev)->id.coreid));
  329. }
  330. static DEVICE_ATTR_RO(name);
  331. static struct attribute *ssb_device_attrs[] = {
  332. &dev_attr_name.attr,
  333. &dev_attr_core_num.attr,
  334. &dev_attr_coreid.attr,
  335. &dev_attr_vendor.attr,
  336. &dev_attr_revision.attr,
  337. &dev_attr_irq.attr,
  338. NULL,
  339. };
  340. ATTRIBUTE_GROUPS(ssb_device);
  341. static struct bus_type ssb_bustype = {
  342. .name = "ssb",
  343. .match = ssb_bus_match,
  344. .probe = ssb_device_probe,
  345. .remove = ssb_device_remove,
  346. .shutdown = ssb_device_shutdown,
  347. .suspend = ssb_device_suspend,
  348. .resume = ssb_device_resume,
  349. .uevent = ssb_device_uevent,
  350. .dev_groups = ssb_device_groups,
  351. };
  352. static void ssb_buses_lock(void)
  353. {
  354. /* See the comment at the ssb_is_early_boot definition */
  355. if (!ssb_is_early_boot)
  356. mutex_lock(&buses_mutex);
  357. }
  358. static void ssb_buses_unlock(void)
  359. {
  360. /* See the comment at the ssb_is_early_boot definition */
  361. if (!ssb_is_early_boot)
  362. mutex_unlock(&buses_mutex);
  363. }
  364. static void ssb_devices_unregister(struct ssb_bus *bus)
  365. {
  366. struct ssb_device *sdev;
  367. int i;
  368. for (i = bus->nr_devices - 1; i >= 0; i--) {
  369. sdev = &(bus->devices[i]);
  370. if (sdev->dev)
  371. device_unregister(sdev->dev);
  372. }
  373. #ifdef CONFIG_SSB_EMBEDDED
  374. if (bus->bustype == SSB_BUSTYPE_SSB)
  375. platform_device_unregister(bus->watchdog);
  376. #endif
  377. }
  378. void ssb_bus_unregister(struct ssb_bus *bus)
  379. {
  380. int err;
  381. err = ssb_gpio_unregister(bus);
  382. if (err == -EBUSY)
  383. ssb_dbg("Some GPIOs are still in use\n");
  384. else if (err)
  385. ssb_dbg("Can not unregister GPIO driver: %i\n", err);
  386. ssb_buses_lock();
  387. ssb_devices_unregister(bus);
  388. list_del(&bus->list);
  389. ssb_buses_unlock();
  390. ssb_pcmcia_exit(bus);
  391. ssb_pci_exit(bus);
  392. ssb_iounmap(bus);
  393. }
  394. EXPORT_SYMBOL(ssb_bus_unregister);
  395. static void ssb_release_dev(struct device *dev)
  396. {
  397. struct __ssb_dev_wrapper *devwrap;
  398. devwrap = container_of(dev, struct __ssb_dev_wrapper, dev);
  399. kfree(devwrap);
  400. }
  401. static int ssb_devices_register(struct ssb_bus *bus)
  402. {
  403. struct ssb_device *sdev;
  404. struct device *dev;
  405. struct __ssb_dev_wrapper *devwrap;
  406. int i, err = 0;
  407. int dev_idx = 0;
  408. for (i = 0; i < bus->nr_devices; i++) {
  409. sdev = &(bus->devices[i]);
  410. /* We don't register SSB-system devices to the kernel,
  411. * as the drivers for them are built into SSB. */
  412. switch (sdev->id.coreid) {
  413. case SSB_DEV_CHIPCOMMON:
  414. case SSB_DEV_PCI:
  415. case SSB_DEV_PCIE:
  416. case SSB_DEV_PCMCIA:
  417. case SSB_DEV_MIPS:
  418. case SSB_DEV_MIPS_3302:
  419. case SSB_DEV_EXTIF:
  420. continue;
  421. }
  422. devwrap = kzalloc(sizeof(*devwrap), GFP_KERNEL);
  423. if (!devwrap) {
  424. ssb_err("Could not allocate device\n");
  425. err = -ENOMEM;
  426. goto error;
  427. }
  428. dev = &devwrap->dev;
  429. devwrap->sdev = sdev;
  430. dev->release = ssb_release_dev;
  431. dev->bus = &ssb_bustype;
  432. dev_set_name(dev, "ssb%u:%d", bus->busnumber, dev_idx);
  433. switch (bus->bustype) {
  434. case SSB_BUSTYPE_PCI:
  435. #ifdef CONFIG_SSB_PCIHOST
  436. sdev->irq = bus->host_pci->irq;
  437. dev->parent = &bus->host_pci->dev;
  438. sdev->dma_dev = dev->parent;
  439. #endif
  440. break;
  441. case SSB_BUSTYPE_PCMCIA:
  442. #ifdef CONFIG_SSB_PCMCIAHOST
  443. sdev->irq = bus->host_pcmcia->irq;
  444. dev->parent = &bus->host_pcmcia->dev;
  445. #endif
  446. break;
  447. case SSB_BUSTYPE_SDIO:
  448. #ifdef CONFIG_SSB_SDIOHOST
  449. dev->parent = &bus->host_sdio->dev;
  450. #endif
  451. break;
  452. case SSB_BUSTYPE_SSB:
  453. dev->dma_mask = &dev->coherent_dma_mask;
  454. sdev->dma_dev = dev;
  455. break;
  456. }
  457. sdev->dev = dev;
  458. err = device_register(dev);
  459. if (err) {
  460. ssb_err("Could not register %s\n", dev_name(dev));
  461. /* Set dev to NULL to not unregister
  462. * dev on error unwinding. */
  463. sdev->dev = NULL;
  464. kfree(devwrap);
  465. goto error;
  466. }
  467. dev_idx++;
  468. }
  469. #ifdef CONFIG_SSB_DRIVER_MIPS
  470. if (bus->mipscore.pflash.present) {
  471. err = platform_device_register(&ssb_pflash_dev);
  472. if (err)
  473. pr_err("Error registering parallel flash\n");
  474. }
  475. #endif
  476. #ifdef CONFIG_SSB_SFLASH
  477. if (bus->mipscore.sflash.present) {
  478. err = platform_device_register(&ssb_sflash_dev);
  479. if (err)
  480. pr_err("Error registering serial flash\n");
  481. }
  482. #endif
  483. return 0;
  484. error:
  485. /* Unwind the already registered devices. */
  486. ssb_devices_unregister(bus);
  487. return err;
  488. }
  489. /* Needs ssb_buses_lock() */
  490. static int ssb_attach_queued_buses(void)
  491. {
  492. struct ssb_bus *bus, *n;
  493. int err = 0;
  494. int drop_them_all = 0;
  495. list_for_each_entry_safe(bus, n, &attach_queue, list) {
  496. if (drop_them_all) {
  497. list_del(&bus->list);
  498. continue;
  499. }
  500. /* Can't init the PCIcore in ssb_bus_register(), as that
  501. * is too early in boot for embedded systems
  502. * (no udelay() available). So do it here in attach stage.
  503. */
  504. err = ssb_bus_powerup(bus, 0);
  505. if (err)
  506. goto error;
  507. ssb_pcicore_init(&bus->pcicore);
  508. if (bus->bustype == SSB_BUSTYPE_SSB)
  509. ssb_watchdog_register(bus);
  510. ssb_bus_may_powerdown(bus);
  511. err = ssb_devices_register(bus);
  512. error:
  513. if (err) {
  514. drop_them_all = 1;
  515. list_del(&bus->list);
  516. continue;
  517. }
  518. list_move_tail(&bus->list, &buses);
  519. }
  520. return err;
  521. }
  522. static u8 ssb_ssb_read8(struct ssb_device *dev, u16 offset)
  523. {
  524. struct ssb_bus *bus = dev->bus;
  525. offset += dev->core_index * SSB_CORE_SIZE;
  526. return readb(bus->mmio + offset);
  527. }
  528. static u16 ssb_ssb_read16(struct ssb_device *dev, u16 offset)
  529. {
  530. struct ssb_bus *bus = dev->bus;
  531. offset += dev->core_index * SSB_CORE_SIZE;
  532. return readw(bus->mmio + offset);
  533. }
  534. static u32 ssb_ssb_read32(struct ssb_device *dev, u16 offset)
  535. {
  536. struct ssb_bus *bus = dev->bus;
  537. offset += dev->core_index * SSB_CORE_SIZE;
  538. return readl(bus->mmio + offset);
  539. }
  540. #ifdef CONFIG_SSB_BLOCKIO
  541. static void ssb_ssb_block_read(struct ssb_device *dev, void *buffer,
  542. size_t count, u16 offset, u8 reg_width)
  543. {
  544. struct ssb_bus *bus = dev->bus;
  545. void __iomem *addr;
  546. offset += dev->core_index * SSB_CORE_SIZE;
  547. addr = bus->mmio + offset;
  548. switch (reg_width) {
  549. case sizeof(u8): {
  550. u8 *buf = buffer;
  551. while (count) {
  552. *buf = __raw_readb(addr);
  553. buf++;
  554. count--;
  555. }
  556. break;
  557. }
  558. case sizeof(u16): {
  559. __le16 *buf = buffer;
  560. SSB_WARN_ON(count & 1);
  561. while (count) {
  562. *buf = (__force __le16)__raw_readw(addr);
  563. buf++;
  564. count -= 2;
  565. }
  566. break;
  567. }
  568. case sizeof(u32): {
  569. __le32 *buf = buffer;
  570. SSB_WARN_ON(count & 3);
  571. while (count) {
  572. *buf = (__force __le32)__raw_readl(addr);
  573. buf++;
  574. count -= 4;
  575. }
  576. break;
  577. }
  578. default:
  579. SSB_WARN_ON(1);
  580. }
  581. }
  582. #endif /* CONFIG_SSB_BLOCKIO */
  583. static void ssb_ssb_write8(struct ssb_device *dev, u16 offset, u8 value)
  584. {
  585. struct ssb_bus *bus = dev->bus;
  586. offset += dev->core_index * SSB_CORE_SIZE;
  587. writeb(value, bus->mmio + offset);
  588. }
  589. static void ssb_ssb_write16(struct ssb_device *dev, u16 offset, u16 value)
  590. {
  591. struct ssb_bus *bus = dev->bus;
  592. offset += dev->core_index * SSB_CORE_SIZE;
  593. writew(value, bus->mmio + offset);
  594. }
  595. static void ssb_ssb_write32(struct ssb_device *dev, u16 offset, u32 value)
  596. {
  597. struct ssb_bus *bus = dev->bus;
  598. offset += dev->core_index * SSB_CORE_SIZE;
  599. writel(value, bus->mmio + offset);
  600. }
  601. #ifdef CONFIG_SSB_BLOCKIO
  602. static void ssb_ssb_block_write(struct ssb_device *dev, const void *buffer,
  603. size_t count, u16 offset, u8 reg_width)
  604. {
  605. struct ssb_bus *bus = dev->bus;
  606. void __iomem *addr;
  607. offset += dev->core_index * SSB_CORE_SIZE;
  608. addr = bus->mmio + offset;
  609. switch (reg_width) {
  610. case sizeof(u8): {
  611. const u8 *buf = buffer;
  612. while (count) {
  613. __raw_writeb(*buf, addr);
  614. buf++;
  615. count--;
  616. }
  617. break;
  618. }
  619. case sizeof(u16): {
  620. const __le16 *buf = buffer;
  621. SSB_WARN_ON(count & 1);
  622. while (count) {
  623. __raw_writew((__force u16)(*buf), addr);
  624. buf++;
  625. count -= 2;
  626. }
  627. break;
  628. }
  629. case sizeof(u32): {
  630. const __le32 *buf = buffer;
  631. SSB_WARN_ON(count & 3);
  632. while (count) {
  633. __raw_writel((__force u32)(*buf), addr);
  634. buf++;
  635. count -= 4;
  636. }
  637. break;
  638. }
  639. default:
  640. SSB_WARN_ON(1);
  641. }
  642. }
  643. #endif /* CONFIG_SSB_BLOCKIO */
  644. /* Ops for the plain SSB bus without a host-device (no PCI or PCMCIA). */
  645. static const struct ssb_bus_ops ssb_ssb_ops = {
  646. .read8 = ssb_ssb_read8,
  647. .read16 = ssb_ssb_read16,
  648. .read32 = ssb_ssb_read32,
  649. .write8 = ssb_ssb_write8,
  650. .write16 = ssb_ssb_write16,
  651. .write32 = ssb_ssb_write32,
  652. #ifdef CONFIG_SSB_BLOCKIO
  653. .block_read = ssb_ssb_block_read,
  654. .block_write = ssb_ssb_block_write,
  655. #endif
  656. };
  657. static int ssb_fetch_invariants(struct ssb_bus *bus,
  658. ssb_invariants_func_t get_invariants)
  659. {
  660. struct ssb_init_invariants iv;
  661. int err;
  662. memset(&iv, 0, sizeof(iv));
  663. err = get_invariants(bus, &iv);
  664. if (err)
  665. goto out;
  666. memcpy(&bus->boardinfo, &iv.boardinfo, sizeof(iv.boardinfo));
  667. memcpy(&bus->sprom, &iv.sprom, sizeof(iv.sprom));
  668. bus->has_cardbus_slot = iv.has_cardbus_slot;
  669. out:
  670. return err;
  671. }
  672. static int ssb_bus_register(struct ssb_bus *bus,
  673. ssb_invariants_func_t get_invariants,
  674. unsigned long baseaddr)
  675. {
  676. int err;
  677. spin_lock_init(&bus->bar_lock);
  678. INIT_LIST_HEAD(&bus->list);
  679. #ifdef CONFIG_SSB_EMBEDDED
  680. spin_lock_init(&bus->gpio_lock);
  681. #endif
  682. /* Powerup the bus */
  683. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
  684. if (err)
  685. goto out;
  686. /* Init SDIO-host device (if any), before the scan */
  687. err = ssb_sdio_init(bus);
  688. if (err)
  689. goto err_disable_xtal;
  690. ssb_buses_lock();
  691. bus->busnumber = next_busnumber;
  692. /* Scan for devices (cores) */
  693. err = ssb_bus_scan(bus, baseaddr);
  694. if (err)
  695. goto err_sdio_exit;
  696. /* Init PCI-host device (if any) */
  697. err = ssb_pci_init(bus);
  698. if (err)
  699. goto err_unmap;
  700. /* Init PCMCIA-host device (if any) */
  701. err = ssb_pcmcia_init(bus);
  702. if (err)
  703. goto err_pci_exit;
  704. /* Initialize basic system devices (if available) */
  705. err = ssb_bus_powerup(bus, 0);
  706. if (err)
  707. goto err_pcmcia_exit;
  708. ssb_chipcommon_init(&bus->chipco);
  709. ssb_extif_init(&bus->extif);
  710. ssb_mipscore_init(&bus->mipscore);
  711. err = ssb_gpio_init(bus);
  712. if (err == -ENOTSUPP)
  713. ssb_dbg("GPIO driver not activated\n");
  714. else if (err)
  715. ssb_dbg("Error registering GPIO driver: %i\n", err);
  716. err = ssb_fetch_invariants(bus, get_invariants);
  717. if (err) {
  718. ssb_bus_may_powerdown(bus);
  719. goto err_pcmcia_exit;
  720. }
  721. ssb_bus_may_powerdown(bus);
  722. /* Queue it for attach.
  723. * See the comment at the ssb_is_early_boot definition. */
  724. list_add_tail(&bus->list, &attach_queue);
  725. if (!ssb_is_early_boot) {
  726. /* This is not early boot, so we must attach the bus now */
  727. err = ssb_attach_queued_buses();
  728. if (err)
  729. goto err_dequeue;
  730. }
  731. next_busnumber++;
  732. ssb_buses_unlock();
  733. out:
  734. return err;
  735. err_dequeue:
  736. list_del(&bus->list);
  737. err_pcmcia_exit:
  738. ssb_pcmcia_exit(bus);
  739. err_pci_exit:
  740. ssb_pci_exit(bus);
  741. err_unmap:
  742. ssb_iounmap(bus);
  743. err_sdio_exit:
  744. ssb_sdio_exit(bus);
  745. err_disable_xtal:
  746. ssb_buses_unlock();
  747. ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  748. return err;
  749. }
  750. #ifdef CONFIG_SSB_PCIHOST
  751. int ssb_bus_pcibus_register(struct ssb_bus *bus, struct pci_dev *host_pci)
  752. {
  753. int err;
  754. bus->bustype = SSB_BUSTYPE_PCI;
  755. bus->host_pci = host_pci;
  756. bus->ops = &ssb_pci_ops;
  757. err = ssb_bus_register(bus, ssb_pci_get_invariants, 0);
  758. if (!err) {
  759. ssb_info("Sonics Silicon Backplane found on PCI device %s\n",
  760. dev_name(&host_pci->dev));
  761. } else {
  762. ssb_err("Failed to register PCI version of SSB with error %d\n",
  763. err);
  764. }
  765. return err;
  766. }
  767. EXPORT_SYMBOL(ssb_bus_pcibus_register);
  768. #endif /* CONFIG_SSB_PCIHOST */
  769. #ifdef CONFIG_SSB_PCMCIAHOST
  770. int ssb_bus_pcmciabus_register(struct ssb_bus *bus,
  771. struct pcmcia_device *pcmcia_dev,
  772. unsigned long baseaddr)
  773. {
  774. int err;
  775. bus->bustype = SSB_BUSTYPE_PCMCIA;
  776. bus->host_pcmcia = pcmcia_dev;
  777. bus->ops = &ssb_pcmcia_ops;
  778. err = ssb_bus_register(bus, ssb_pcmcia_get_invariants, baseaddr);
  779. if (!err) {
  780. ssb_info("Sonics Silicon Backplane found on PCMCIA device %s\n",
  781. pcmcia_dev->devname);
  782. }
  783. return err;
  784. }
  785. EXPORT_SYMBOL(ssb_bus_pcmciabus_register);
  786. #endif /* CONFIG_SSB_PCMCIAHOST */
  787. #ifdef CONFIG_SSB_SDIOHOST
  788. int ssb_bus_sdiobus_register(struct ssb_bus *bus, struct sdio_func *func,
  789. unsigned int quirks)
  790. {
  791. int err;
  792. bus->bustype = SSB_BUSTYPE_SDIO;
  793. bus->host_sdio = func;
  794. bus->ops = &ssb_sdio_ops;
  795. bus->quirks = quirks;
  796. err = ssb_bus_register(bus, ssb_sdio_get_invariants, ~0);
  797. if (!err) {
  798. ssb_info("Sonics Silicon Backplane found on SDIO device %s\n",
  799. sdio_func_id(func));
  800. }
  801. return err;
  802. }
  803. EXPORT_SYMBOL(ssb_bus_sdiobus_register);
  804. #endif /* CONFIG_SSB_PCMCIAHOST */
  805. int ssb_bus_ssbbus_register(struct ssb_bus *bus, unsigned long baseaddr,
  806. ssb_invariants_func_t get_invariants)
  807. {
  808. int err;
  809. bus->bustype = SSB_BUSTYPE_SSB;
  810. bus->ops = &ssb_ssb_ops;
  811. err = ssb_bus_register(bus, get_invariants, baseaddr);
  812. if (!err) {
  813. ssb_info("Sonics Silicon Backplane found at address 0x%08lX\n",
  814. baseaddr);
  815. }
  816. return err;
  817. }
  818. int __ssb_driver_register(struct ssb_driver *drv, struct module *owner)
  819. {
  820. drv->drv.name = drv->name;
  821. drv->drv.bus = &ssb_bustype;
  822. drv->drv.owner = owner;
  823. return driver_register(&drv->drv);
  824. }
  825. EXPORT_SYMBOL(__ssb_driver_register);
  826. void ssb_driver_unregister(struct ssb_driver *drv)
  827. {
  828. driver_unregister(&drv->drv);
  829. }
  830. EXPORT_SYMBOL(ssb_driver_unregister);
  831. void ssb_set_devtypedata(struct ssb_device *dev, void *data)
  832. {
  833. struct ssb_bus *bus = dev->bus;
  834. struct ssb_device *ent;
  835. int i;
  836. for (i = 0; i < bus->nr_devices; i++) {
  837. ent = &(bus->devices[i]);
  838. if (ent->id.vendor != dev->id.vendor)
  839. continue;
  840. if (ent->id.coreid != dev->id.coreid)
  841. continue;
  842. ent->devtypedata = data;
  843. }
  844. }
  845. EXPORT_SYMBOL(ssb_set_devtypedata);
  846. static u32 clkfactor_f6_resolve(u32 v)
  847. {
  848. /* map the magic values */
  849. switch (v) {
  850. case SSB_CHIPCO_CLK_F6_2:
  851. return 2;
  852. case SSB_CHIPCO_CLK_F6_3:
  853. return 3;
  854. case SSB_CHIPCO_CLK_F6_4:
  855. return 4;
  856. case SSB_CHIPCO_CLK_F6_5:
  857. return 5;
  858. case SSB_CHIPCO_CLK_F6_6:
  859. return 6;
  860. case SSB_CHIPCO_CLK_F6_7:
  861. return 7;
  862. }
  863. return 0;
  864. }
  865. /* Calculate the speed the backplane would run at a given set of clockcontrol values */
  866. u32 ssb_calc_clock_rate(u32 plltype, u32 n, u32 m)
  867. {
  868. u32 n1, n2, clock, m1, m2, m3, mc;
  869. n1 = (n & SSB_CHIPCO_CLK_N1);
  870. n2 = ((n & SSB_CHIPCO_CLK_N2) >> SSB_CHIPCO_CLK_N2_SHIFT);
  871. switch (plltype) {
  872. case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
  873. if (m & SSB_CHIPCO_CLK_T6_MMASK)
  874. return SSB_CHIPCO_CLK_T6_M1;
  875. return SSB_CHIPCO_CLK_T6_M0;
  876. case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
  877. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  878. case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
  879. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  880. n1 = clkfactor_f6_resolve(n1);
  881. n2 += SSB_CHIPCO_CLK_F5_BIAS;
  882. break;
  883. case SSB_PLLTYPE_2: /* 48Mhz, 4 dividers */
  884. n1 += SSB_CHIPCO_CLK_T2_BIAS;
  885. n2 += SSB_CHIPCO_CLK_T2_BIAS;
  886. SSB_WARN_ON(!((n1 >= 2) && (n1 <= 7)));
  887. SSB_WARN_ON(!((n2 >= 5) && (n2 <= 23)));
  888. break;
  889. case SSB_PLLTYPE_5: /* 25Mhz, 4 dividers */
  890. return 100000000;
  891. default:
  892. SSB_WARN_ON(1);
  893. }
  894. switch (plltype) {
  895. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  896. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  897. clock = SSB_CHIPCO_CLK_BASE2 * n1 * n2;
  898. break;
  899. default:
  900. clock = SSB_CHIPCO_CLK_BASE1 * n1 * n2;
  901. }
  902. if (!clock)
  903. return 0;
  904. m1 = (m & SSB_CHIPCO_CLK_M1);
  905. m2 = ((m & SSB_CHIPCO_CLK_M2) >> SSB_CHIPCO_CLK_M2_SHIFT);
  906. m3 = ((m & SSB_CHIPCO_CLK_M3) >> SSB_CHIPCO_CLK_M3_SHIFT);
  907. mc = ((m & SSB_CHIPCO_CLK_MC) >> SSB_CHIPCO_CLK_MC_SHIFT);
  908. switch (plltype) {
  909. case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
  910. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  911. case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
  912. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  913. m1 = clkfactor_f6_resolve(m1);
  914. if ((plltype == SSB_PLLTYPE_1) ||
  915. (plltype == SSB_PLLTYPE_3))
  916. m2 += SSB_CHIPCO_CLK_F5_BIAS;
  917. else
  918. m2 = clkfactor_f6_resolve(m2);
  919. m3 = clkfactor_f6_resolve(m3);
  920. switch (mc) {
  921. case SSB_CHIPCO_CLK_MC_BYPASS:
  922. return clock;
  923. case SSB_CHIPCO_CLK_MC_M1:
  924. return (clock / m1);
  925. case SSB_CHIPCO_CLK_MC_M1M2:
  926. return (clock / (m1 * m2));
  927. case SSB_CHIPCO_CLK_MC_M1M2M3:
  928. return (clock / (m1 * m2 * m3));
  929. case SSB_CHIPCO_CLK_MC_M1M3:
  930. return (clock / (m1 * m3));
  931. }
  932. return 0;
  933. case SSB_PLLTYPE_2:
  934. m1 += SSB_CHIPCO_CLK_T2_BIAS;
  935. m2 += SSB_CHIPCO_CLK_T2M2_BIAS;
  936. m3 += SSB_CHIPCO_CLK_T2_BIAS;
  937. SSB_WARN_ON(!((m1 >= 2) && (m1 <= 7)));
  938. SSB_WARN_ON(!((m2 >= 3) && (m2 <= 10)));
  939. SSB_WARN_ON(!((m3 >= 2) && (m3 <= 7)));
  940. if (!(mc & SSB_CHIPCO_CLK_T2MC_M1BYP))
  941. clock /= m1;
  942. if (!(mc & SSB_CHIPCO_CLK_T2MC_M2BYP))
  943. clock /= m2;
  944. if (!(mc & SSB_CHIPCO_CLK_T2MC_M3BYP))
  945. clock /= m3;
  946. return clock;
  947. default:
  948. SSB_WARN_ON(1);
  949. }
  950. return 0;
  951. }
  952. /* Get the current speed the backplane is running at */
  953. u32 ssb_clockspeed(struct ssb_bus *bus)
  954. {
  955. u32 rate;
  956. u32 plltype;
  957. u32 clkctl_n, clkctl_m;
  958. if (bus->chipco.capabilities & SSB_CHIPCO_CAP_PMU)
  959. return ssb_pmu_get_controlclock(&bus->chipco);
  960. if (ssb_extif_available(&bus->extif))
  961. ssb_extif_get_clockcontrol(&bus->extif, &plltype,
  962. &clkctl_n, &clkctl_m);
  963. else if (bus->chipco.dev)
  964. ssb_chipco_get_clockcontrol(&bus->chipco, &plltype,
  965. &clkctl_n, &clkctl_m);
  966. else
  967. return 0;
  968. if (bus->chip_id == 0x5365) {
  969. rate = 100000000;
  970. } else {
  971. rate = ssb_calc_clock_rate(plltype, clkctl_n, clkctl_m);
  972. if (plltype == SSB_PLLTYPE_3) /* 25Mhz, 2 dividers */
  973. rate /= 2;
  974. }
  975. return rate;
  976. }
  977. EXPORT_SYMBOL(ssb_clockspeed);
  978. static u32 ssb_tmslow_reject_bitmask(struct ssb_device *dev)
  979. {
  980. u32 rev = ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_SSBREV;
  981. /* The REJECT bit seems to be different for Backplane rev 2.3 */
  982. switch (rev) {
  983. case SSB_IDLOW_SSBREV_22:
  984. case SSB_IDLOW_SSBREV_24:
  985. case SSB_IDLOW_SSBREV_26:
  986. return SSB_TMSLOW_REJECT;
  987. case SSB_IDLOW_SSBREV_23:
  988. return SSB_TMSLOW_REJECT_23;
  989. case SSB_IDLOW_SSBREV_25: /* TODO - find the proper REJECT bit */
  990. case SSB_IDLOW_SSBREV_27: /* same here */
  991. return SSB_TMSLOW_REJECT; /* this is a guess */
  992. default:
  993. WARN(1, KERN_INFO "ssb: Backplane Revision 0x%.8X\n", rev);
  994. }
  995. return (SSB_TMSLOW_REJECT | SSB_TMSLOW_REJECT_23);
  996. }
  997. int ssb_device_is_enabled(struct ssb_device *dev)
  998. {
  999. u32 val;
  1000. u32 reject;
  1001. reject = ssb_tmslow_reject_bitmask(dev);
  1002. val = ssb_read32(dev, SSB_TMSLOW);
  1003. val &= SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET | reject;
  1004. return (val == SSB_TMSLOW_CLOCK);
  1005. }
  1006. EXPORT_SYMBOL(ssb_device_is_enabled);
  1007. static void ssb_flush_tmslow(struct ssb_device *dev)
  1008. {
  1009. /* Make _really_ sure the device has finished the TMSLOW
  1010. * register write transaction, as we risk running into
  1011. * a machine check exception otherwise.
  1012. * Do this by reading the register back to commit the
  1013. * PCI write and delay an additional usec for the device
  1014. * to react to the change. */
  1015. ssb_read32(dev, SSB_TMSLOW);
  1016. udelay(1);
  1017. }
  1018. void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags)
  1019. {
  1020. u32 val;
  1021. ssb_device_disable(dev, core_specific_flags);
  1022. ssb_write32(dev, SSB_TMSLOW,
  1023. SSB_TMSLOW_RESET | SSB_TMSLOW_CLOCK |
  1024. SSB_TMSLOW_FGC | core_specific_flags);
  1025. ssb_flush_tmslow(dev);
  1026. /* Clear SERR if set. This is a hw bug workaround. */
  1027. if (ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_SERR)
  1028. ssb_write32(dev, SSB_TMSHIGH, 0);
  1029. val = ssb_read32(dev, SSB_IMSTATE);
  1030. if (val & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
  1031. val &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
  1032. ssb_write32(dev, SSB_IMSTATE, val);
  1033. }
  1034. ssb_write32(dev, SSB_TMSLOW,
  1035. SSB_TMSLOW_CLOCK | SSB_TMSLOW_FGC |
  1036. core_specific_flags);
  1037. ssb_flush_tmslow(dev);
  1038. ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_CLOCK |
  1039. core_specific_flags);
  1040. ssb_flush_tmslow(dev);
  1041. }
  1042. EXPORT_SYMBOL(ssb_device_enable);
  1043. /* Wait for bitmask in a register to get set or cleared.
  1044. * timeout is in units of ten-microseconds */
  1045. static int ssb_wait_bits(struct ssb_device *dev, u16 reg, u32 bitmask,
  1046. int timeout, int set)
  1047. {
  1048. int i;
  1049. u32 val;
  1050. for (i = 0; i < timeout; i++) {
  1051. val = ssb_read32(dev, reg);
  1052. if (set) {
  1053. if ((val & bitmask) == bitmask)
  1054. return 0;
  1055. } else {
  1056. if (!(val & bitmask))
  1057. return 0;
  1058. }
  1059. udelay(10);
  1060. }
  1061. printk(KERN_ERR PFX "Timeout waiting for bitmask %08X on "
  1062. "register %04X to %s.\n",
  1063. bitmask, reg, (set ? "set" : "clear"));
  1064. return -ETIMEDOUT;
  1065. }
  1066. void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags)
  1067. {
  1068. u32 reject, val;
  1069. if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_RESET)
  1070. return;
  1071. reject = ssb_tmslow_reject_bitmask(dev);
  1072. if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_CLOCK) {
  1073. ssb_write32(dev, SSB_TMSLOW, reject | SSB_TMSLOW_CLOCK);
  1074. ssb_wait_bits(dev, SSB_TMSLOW, reject, 1000, 1);
  1075. ssb_wait_bits(dev, SSB_TMSHIGH, SSB_TMSHIGH_BUSY, 1000, 0);
  1076. if (ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_INITIATOR) {
  1077. val = ssb_read32(dev, SSB_IMSTATE);
  1078. val |= SSB_IMSTATE_REJECT;
  1079. ssb_write32(dev, SSB_IMSTATE, val);
  1080. ssb_wait_bits(dev, SSB_IMSTATE, SSB_IMSTATE_BUSY, 1000,
  1081. 0);
  1082. }
  1083. ssb_write32(dev, SSB_TMSLOW,
  1084. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  1085. reject | SSB_TMSLOW_RESET |
  1086. core_specific_flags);
  1087. ssb_flush_tmslow(dev);
  1088. if (ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_INITIATOR) {
  1089. val = ssb_read32(dev, SSB_IMSTATE);
  1090. val &= ~SSB_IMSTATE_REJECT;
  1091. ssb_write32(dev, SSB_IMSTATE, val);
  1092. }
  1093. }
  1094. ssb_write32(dev, SSB_TMSLOW,
  1095. reject | SSB_TMSLOW_RESET |
  1096. core_specific_flags);
  1097. ssb_flush_tmslow(dev);
  1098. }
  1099. EXPORT_SYMBOL(ssb_device_disable);
  1100. /* Some chipsets need routing known for PCIe and 64-bit DMA */
  1101. static bool ssb_dma_translation_special_bit(struct ssb_device *dev)
  1102. {
  1103. u16 chip_id = dev->bus->chip_id;
  1104. if (dev->id.coreid == SSB_DEV_80211) {
  1105. return (chip_id == 0x4322 || chip_id == 43221 ||
  1106. chip_id == 43231 || chip_id == 43222);
  1107. }
  1108. return 0;
  1109. }
  1110. u32 ssb_dma_translation(struct ssb_device *dev)
  1111. {
  1112. switch (dev->bus->bustype) {
  1113. case SSB_BUSTYPE_SSB:
  1114. return 0;
  1115. case SSB_BUSTYPE_PCI:
  1116. if (pci_is_pcie(dev->bus->host_pci) &&
  1117. ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_DMA64) {
  1118. return SSB_PCIE_DMA_H32;
  1119. } else {
  1120. if (ssb_dma_translation_special_bit(dev))
  1121. return SSB_PCIE_DMA_H32;
  1122. else
  1123. return SSB_PCI_DMA;
  1124. }
  1125. default:
  1126. __ssb_dma_not_implemented(dev);
  1127. }
  1128. return 0;
  1129. }
  1130. EXPORT_SYMBOL(ssb_dma_translation);
  1131. int ssb_bus_may_powerdown(struct ssb_bus *bus)
  1132. {
  1133. struct ssb_chipcommon *cc;
  1134. int err = 0;
  1135. /* On buses where more than one core may be working
  1136. * at a time, we must not powerdown stuff if there are
  1137. * still cores that may want to run. */
  1138. if (bus->bustype == SSB_BUSTYPE_SSB)
  1139. goto out;
  1140. cc = &bus->chipco;
  1141. if (!cc->dev)
  1142. goto out;
  1143. if (cc->dev->id.revision < 5)
  1144. goto out;
  1145. ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW);
  1146. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  1147. if (err)
  1148. goto error;
  1149. out:
  1150. #ifdef CONFIG_SSB_DEBUG
  1151. bus->powered_up = 0;
  1152. #endif
  1153. return err;
  1154. error:
  1155. ssb_err("Bus powerdown failed\n");
  1156. goto out;
  1157. }
  1158. EXPORT_SYMBOL(ssb_bus_may_powerdown);
  1159. int ssb_bus_powerup(struct ssb_bus *bus, bool dynamic_pctl)
  1160. {
  1161. int err;
  1162. enum ssb_clkmode mode;
  1163. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
  1164. if (err)
  1165. goto error;
  1166. #ifdef CONFIG_SSB_DEBUG
  1167. bus->powered_up = 1;
  1168. #endif
  1169. mode = dynamic_pctl ? SSB_CLKMODE_DYNAMIC : SSB_CLKMODE_FAST;
  1170. ssb_chipco_set_clockmode(&bus->chipco, mode);
  1171. return 0;
  1172. error:
  1173. ssb_err("Bus powerup failed\n");
  1174. return err;
  1175. }
  1176. EXPORT_SYMBOL(ssb_bus_powerup);
  1177. static void ssb_broadcast_value(struct ssb_device *dev,
  1178. u32 address, u32 data)
  1179. {
  1180. #ifdef CONFIG_SSB_DRIVER_PCICORE
  1181. /* This is used for both, PCI and ChipCommon core, so be careful. */
  1182. BUILD_BUG_ON(SSB_PCICORE_BCAST_ADDR != SSB_CHIPCO_BCAST_ADDR);
  1183. BUILD_BUG_ON(SSB_PCICORE_BCAST_DATA != SSB_CHIPCO_BCAST_DATA);
  1184. #endif
  1185. ssb_write32(dev, SSB_CHIPCO_BCAST_ADDR, address);
  1186. ssb_read32(dev, SSB_CHIPCO_BCAST_ADDR); /* flush */
  1187. ssb_write32(dev, SSB_CHIPCO_BCAST_DATA, data);
  1188. ssb_read32(dev, SSB_CHIPCO_BCAST_DATA); /* flush */
  1189. }
  1190. void ssb_commit_settings(struct ssb_bus *bus)
  1191. {
  1192. struct ssb_device *dev;
  1193. #ifdef CONFIG_SSB_DRIVER_PCICORE
  1194. dev = bus->chipco.dev ? bus->chipco.dev : bus->pcicore.dev;
  1195. #else
  1196. dev = bus->chipco.dev;
  1197. #endif
  1198. if (WARN_ON(!dev))
  1199. return;
  1200. /* This forces an update of the cached registers. */
  1201. ssb_broadcast_value(dev, 0xFD8, 0);
  1202. }
  1203. EXPORT_SYMBOL(ssb_commit_settings);
  1204. u32 ssb_admatch_base(u32 adm)
  1205. {
  1206. u32 base = 0;
  1207. switch (adm & SSB_ADM_TYPE) {
  1208. case SSB_ADM_TYPE0:
  1209. base = (adm & SSB_ADM_BASE0);
  1210. break;
  1211. case SSB_ADM_TYPE1:
  1212. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1213. base = (adm & SSB_ADM_BASE1);
  1214. break;
  1215. case SSB_ADM_TYPE2:
  1216. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1217. base = (adm & SSB_ADM_BASE2);
  1218. break;
  1219. default:
  1220. SSB_WARN_ON(1);
  1221. }
  1222. return base;
  1223. }
  1224. EXPORT_SYMBOL(ssb_admatch_base);
  1225. u32 ssb_admatch_size(u32 adm)
  1226. {
  1227. u32 size = 0;
  1228. switch (adm & SSB_ADM_TYPE) {
  1229. case SSB_ADM_TYPE0:
  1230. size = ((adm & SSB_ADM_SZ0) >> SSB_ADM_SZ0_SHIFT);
  1231. break;
  1232. case SSB_ADM_TYPE1:
  1233. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1234. size = ((adm & SSB_ADM_SZ1) >> SSB_ADM_SZ1_SHIFT);
  1235. break;
  1236. case SSB_ADM_TYPE2:
  1237. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1238. size = ((adm & SSB_ADM_SZ2) >> SSB_ADM_SZ2_SHIFT);
  1239. break;
  1240. default:
  1241. SSB_WARN_ON(1);
  1242. }
  1243. size = (1 << (size + 1));
  1244. return size;
  1245. }
  1246. EXPORT_SYMBOL(ssb_admatch_size);
  1247. static int __init ssb_modinit(void)
  1248. {
  1249. int err;
  1250. /* See the comment at the ssb_is_early_boot definition */
  1251. ssb_is_early_boot = 0;
  1252. err = bus_register(&ssb_bustype);
  1253. if (err)
  1254. return err;
  1255. /* Maybe we already registered some buses at early boot.
  1256. * Check for this and attach them
  1257. */
  1258. ssb_buses_lock();
  1259. err = ssb_attach_queued_buses();
  1260. ssb_buses_unlock();
  1261. if (err) {
  1262. bus_unregister(&ssb_bustype);
  1263. goto out;
  1264. }
  1265. err = b43_pci_ssb_bridge_init();
  1266. if (err) {
  1267. ssb_err("Broadcom 43xx PCI-SSB-bridge initialization failed\n");
  1268. /* don't fail SSB init because of this */
  1269. err = 0;
  1270. }
  1271. err = ssb_gige_init();
  1272. if (err) {
  1273. ssb_err("SSB Broadcom Gigabit Ethernet driver initialization failed\n");
  1274. /* don't fail SSB init because of this */
  1275. err = 0;
  1276. }
  1277. out:
  1278. return err;
  1279. }
  1280. /* ssb must be initialized after PCI but before the ssb drivers.
  1281. * That means we must use some initcall between subsys_initcall
  1282. * and device_initcall. */
  1283. fs_initcall(ssb_modinit);
  1284. static void __exit ssb_modexit(void)
  1285. {
  1286. ssb_gige_exit();
  1287. b43_pci_ssb_bridge_exit();
  1288. bus_unregister(&ssb_bustype);
  1289. }
  1290. module_exit(ssb_modexit)