workqueue.c 141 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105
  1. /*
  2. * kernel/workqueue.c - generic async execution with shared worker pool
  3. *
  4. * Copyright (C) 2002 Ingo Molnar
  5. *
  6. * Derived from the taskqueue/keventd code by:
  7. * David Woodhouse <dwmw2@infradead.org>
  8. * Andrew Morton
  9. * Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10. * Theodore Ts'o <tytso@mit.edu>
  11. *
  12. * Made to use alloc_percpu by Christoph Lameter.
  13. *
  14. * Copyright (C) 2010 SUSE Linux Products GmbH
  15. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  16. *
  17. * This is the generic async execution mechanism. Work items as are
  18. * executed in process context. The worker pool is shared and
  19. * automatically managed. There are two worker pools for each CPU (one for
  20. * normal work items and the other for high priority ones) and some extra
  21. * pools for workqueues which are not bound to any specific CPU - the
  22. * number of these backing pools is dynamic.
  23. *
  24. * Please read Documentation/workqueue.txt for details.
  25. */
  26. #include <linux/export.h>
  27. #include <linux/kernel.h>
  28. #include <linux/sched.h>
  29. #include <linux/init.h>
  30. #include <linux/signal.h>
  31. #include <linux/completion.h>
  32. #include <linux/workqueue.h>
  33. #include <linux/slab.h>
  34. #include <linux/cpu.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kthread.h>
  37. #include <linux/hardirq.h>
  38. #include <linux/mempolicy.h>
  39. #include <linux/freezer.h>
  40. #include <linux/kallsyms.h>
  41. #include <linux/debug_locks.h>
  42. #include <linux/lockdep.h>
  43. #include <linux/idr.h>
  44. #include <linux/jhash.h>
  45. #include <linux/hashtable.h>
  46. #include <linux/rculist.h>
  47. #include <linux/nodemask.h>
  48. #include <linux/moduleparam.h>
  49. #include <linux/uaccess.h>
  50. #include "workqueue_internal.h"
  51. enum {
  52. /*
  53. * worker_pool flags
  54. *
  55. * A bound pool is either associated or disassociated with its CPU.
  56. * While associated (!DISASSOCIATED), all workers are bound to the
  57. * CPU and none has %WORKER_UNBOUND set and concurrency management
  58. * is in effect.
  59. *
  60. * While DISASSOCIATED, the cpu may be offline and all workers have
  61. * %WORKER_UNBOUND set and concurrency management disabled, and may
  62. * be executing on any CPU. The pool behaves as an unbound one.
  63. *
  64. * Note that DISASSOCIATED should be flipped only while holding
  65. * manager_mutex to avoid changing binding state while
  66. * create_worker() is in progress.
  67. */
  68. POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
  69. POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
  70. POOL_FREEZING = 1 << 3, /* freeze in progress */
  71. /* worker flags */
  72. WORKER_STARTED = 1 << 0, /* started */
  73. WORKER_DIE = 1 << 1, /* die die die */
  74. WORKER_IDLE = 1 << 2, /* is idle */
  75. WORKER_PREP = 1 << 3, /* preparing to run works */
  76. WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
  77. WORKER_UNBOUND = 1 << 7, /* worker is unbound */
  78. WORKER_REBOUND = 1 << 8, /* worker was rebound */
  79. WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
  80. WORKER_UNBOUND | WORKER_REBOUND,
  81. NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
  82. UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
  83. BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
  84. MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
  85. IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
  86. MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
  87. /* call for help after 10ms
  88. (min two ticks) */
  89. MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
  90. CREATE_COOLDOWN = HZ, /* time to breath after fail */
  91. /*
  92. * Rescue workers are used only on emergencies and shared by
  93. * all cpus. Give -20.
  94. */
  95. RESCUER_NICE_LEVEL = -20,
  96. HIGHPRI_NICE_LEVEL = -20,
  97. WQ_NAME_LEN = 24,
  98. };
  99. /*
  100. * Structure fields follow one of the following exclusion rules.
  101. *
  102. * I: Modifiable by initialization/destruction paths and read-only for
  103. * everyone else.
  104. *
  105. * P: Preemption protected. Disabling preemption is enough and should
  106. * only be modified and accessed from the local cpu.
  107. *
  108. * L: pool->lock protected. Access with pool->lock held.
  109. *
  110. * X: During normal operation, modification requires pool->lock and should
  111. * be done only from local cpu. Either disabling preemption on local
  112. * cpu or grabbing pool->lock is enough for read access. If
  113. * POOL_DISASSOCIATED is set, it's identical to L.
  114. *
  115. * MG: pool->manager_mutex and pool->lock protected. Writes require both
  116. * locks. Reads can happen under either lock.
  117. *
  118. * PL: wq_pool_mutex protected.
  119. *
  120. * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
  121. *
  122. * WQ: wq->mutex protected.
  123. *
  124. * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
  125. *
  126. * MD: wq_mayday_lock protected.
  127. */
  128. /* struct worker is defined in workqueue_internal.h */
  129. struct worker_pool {
  130. spinlock_t lock; /* the pool lock */
  131. int cpu; /* I: the associated cpu */
  132. int node; /* I: the associated node ID */
  133. int id; /* I: pool ID */
  134. unsigned int flags; /* X: flags */
  135. struct list_head worklist; /* L: list of pending works */
  136. int nr_workers; /* L: total number of workers */
  137. /* nr_idle includes the ones off idle_list for rebinding */
  138. int nr_idle; /* L: currently idle ones */
  139. struct list_head idle_list; /* X: list of idle workers */
  140. struct timer_list idle_timer; /* L: worker idle timeout */
  141. struct timer_list mayday_timer; /* L: SOS timer for workers */
  142. /* a workers is either on busy_hash or idle_list, or the manager */
  143. DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
  144. /* L: hash of busy workers */
  145. /* see manage_workers() for details on the two manager mutexes */
  146. struct mutex manager_arb; /* manager arbitration */
  147. struct mutex manager_mutex; /* manager exclusion */
  148. struct idr worker_idr; /* MG: worker IDs and iteration */
  149. struct workqueue_attrs *attrs; /* I: worker attributes */
  150. struct hlist_node hash_node; /* PL: unbound_pool_hash node */
  151. int refcnt; /* PL: refcnt for unbound pools */
  152. /*
  153. * The current concurrency level. As it's likely to be accessed
  154. * from other CPUs during try_to_wake_up(), put it in a separate
  155. * cacheline.
  156. */
  157. atomic_t nr_running ____cacheline_aligned_in_smp;
  158. /*
  159. * Destruction of pool is sched-RCU protected to allow dereferences
  160. * from get_work_pool().
  161. */
  162. struct rcu_head rcu;
  163. } ____cacheline_aligned_in_smp;
  164. /*
  165. * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
  166. * of work_struct->data are used for flags and the remaining high bits
  167. * point to the pwq; thus, pwqs need to be aligned at two's power of the
  168. * number of flag bits.
  169. */
  170. struct pool_workqueue {
  171. struct worker_pool *pool; /* I: the associated pool */
  172. struct workqueue_struct *wq; /* I: the owning workqueue */
  173. int work_color; /* L: current color */
  174. int flush_color; /* L: flushing color */
  175. int refcnt; /* L: reference count */
  176. int nr_in_flight[WORK_NR_COLORS];
  177. /* L: nr of in_flight works */
  178. int nr_active; /* L: nr of active works */
  179. int max_active; /* L: max active works */
  180. struct list_head delayed_works; /* L: delayed works */
  181. struct list_head pwqs_node; /* WR: node on wq->pwqs */
  182. struct list_head mayday_node; /* MD: node on wq->maydays */
  183. /*
  184. * Release of unbound pwq is punted to system_wq. See put_pwq()
  185. * and pwq_unbound_release_workfn() for details. pool_workqueue
  186. * itself is also sched-RCU protected so that the first pwq can be
  187. * determined without grabbing wq->mutex.
  188. */
  189. struct work_struct unbound_release_work;
  190. struct rcu_head rcu;
  191. } __aligned(1 << WORK_STRUCT_FLAG_BITS);
  192. /*
  193. * Structure used to wait for workqueue flush.
  194. */
  195. struct wq_flusher {
  196. struct list_head list; /* WQ: list of flushers */
  197. int flush_color; /* WQ: flush color waiting for */
  198. struct completion done; /* flush completion */
  199. };
  200. struct wq_device;
  201. /*
  202. * The externally visible workqueue. It relays the issued work items to
  203. * the appropriate worker_pool through its pool_workqueues.
  204. */
  205. struct workqueue_struct {
  206. struct list_head pwqs; /* WR: all pwqs of this wq */
  207. struct list_head list; /* PL: list of all workqueues */
  208. struct mutex mutex; /* protects this wq */
  209. int work_color; /* WQ: current work color */
  210. int flush_color; /* WQ: current flush color */
  211. atomic_t nr_pwqs_to_flush; /* flush in progress */
  212. struct wq_flusher *first_flusher; /* WQ: first flusher */
  213. struct list_head flusher_queue; /* WQ: flush waiters */
  214. struct list_head flusher_overflow; /* WQ: flush overflow list */
  215. struct list_head maydays; /* MD: pwqs requesting rescue */
  216. struct worker *rescuer; /* I: rescue worker */
  217. int nr_drainers; /* WQ: drain in progress */
  218. int saved_max_active; /* WQ: saved pwq max_active */
  219. struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
  220. struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
  221. #ifdef CONFIG_SYSFS
  222. struct wq_device *wq_dev; /* I: for sysfs interface */
  223. #endif
  224. #ifdef CONFIG_LOCKDEP
  225. struct lockdep_map lockdep_map;
  226. #endif
  227. char name[WQ_NAME_LEN]; /* I: workqueue name */
  228. /* hot fields used during command issue, aligned to cacheline */
  229. unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
  230. struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
  231. struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
  232. };
  233. static struct kmem_cache *pwq_cache;
  234. static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
  235. static cpumask_var_t *wq_numa_possible_cpumask;
  236. /* possible CPUs of each node */
  237. static bool wq_disable_numa;
  238. module_param_named(disable_numa, wq_disable_numa, bool, 0444);
  239. /* see the comment above the definition of WQ_POWER_EFFICIENT */
  240. #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
  241. static bool wq_power_efficient = true;
  242. #else
  243. static bool wq_power_efficient;
  244. #endif
  245. module_param_named(power_efficient, wq_power_efficient, bool, 0444);
  246. static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
  247. /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
  248. static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
  249. static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
  250. static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
  251. static LIST_HEAD(workqueues); /* PL: list of all workqueues */
  252. static bool workqueue_freezing; /* PL: have wqs started freezing? */
  253. /* the per-cpu worker pools */
  254. static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
  255. cpu_worker_pools);
  256. static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
  257. /* PL: hash of all unbound pools keyed by pool->attrs */
  258. static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
  259. /* I: attributes used when instantiating standard unbound pools on demand */
  260. static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
  261. /* I: attributes used when instantiating ordered pools on demand */
  262. static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
  263. struct workqueue_struct *system_wq __read_mostly;
  264. EXPORT_SYMBOL(system_wq);
  265. struct workqueue_struct *system_highpri_wq __read_mostly;
  266. EXPORT_SYMBOL_GPL(system_highpri_wq);
  267. struct workqueue_struct *system_long_wq __read_mostly;
  268. EXPORT_SYMBOL_GPL(system_long_wq);
  269. struct workqueue_struct *system_unbound_wq __read_mostly;
  270. EXPORT_SYMBOL_GPL(system_unbound_wq);
  271. struct workqueue_struct *system_freezable_wq __read_mostly;
  272. EXPORT_SYMBOL_GPL(system_freezable_wq);
  273. struct workqueue_struct *system_power_efficient_wq __read_mostly;
  274. EXPORT_SYMBOL_GPL(system_power_efficient_wq);
  275. struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
  276. EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
  277. static int worker_thread(void *__worker);
  278. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  279. const struct workqueue_attrs *from);
  280. #define CREATE_TRACE_POINTS
  281. #include <trace/events/workqueue.h>
  282. #define assert_rcu_or_pool_mutex() \
  283. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  284. lockdep_is_held(&wq_pool_mutex), \
  285. "sched RCU or wq_pool_mutex should be held")
  286. #define assert_rcu_or_wq_mutex(wq) \
  287. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  288. lockdep_is_held(&wq->mutex), \
  289. "sched RCU or wq->mutex should be held")
  290. #ifdef CONFIG_LOCKDEP
  291. #define assert_manager_or_pool_lock(pool) \
  292. WARN_ONCE(debug_locks && \
  293. !lockdep_is_held(&(pool)->manager_mutex) && \
  294. !lockdep_is_held(&(pool)->lock), \
  295. "pool->manager_mutex or ->lock should be held")
  296. #else
  297. #define assert_manager_or_pool_lock(pool) do { } while (0)
  298. #endif
  299. #define for_each_cpu_worker_pool(pool, cpu) \
  300. for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
  301. (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
  302. (pool)++)
  303. /**
  304. * for_each_pool - iterate through all worker_pools in the system
  305. * @pool: iteration cursor
  306. * @pi: integer used for iteration
  307. *
  308. * This must be called either with wq_pool_mutex held or sched RCU read
  309. * locked. If the pool needs to be used beyond the locking in effect, the
  310. * caller is responsible for guaranteeing that the pool stays online.
  311. *
  312. * The if/else clause exists only for the lockdep assertion and can be
  313. * ignored.
  314. */
  315. #define for_each_pool(pool, pi) \
  316. idr_for_each_entry(&worker_pool_idr, pool, pi) \
  317. if (({ assert_rcu_or_pool_mutex(); false; })) { } \
  318. else
  319. /**
  320. * for_each_pool_worker - iterate through all workers of a worker_pool
  321. * @worker: iteration cursor
  322. * @wi: integer used for iteration
  323. * @pool: worker_pool to iterate workers of
  324. *
  325. * This must be called with either @pool->manager_mutex or ->lock held.
  326. *
  327. * The if/else clause exists only for the lockdep assertion and can be
  328. * ignored.
  329. */
  330. #define for_each_pool_worker(worker, wi, pool) \
  331. idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
  332. if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
  333. else
  334. /**
  335. * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
  336. * @pwq: iteration cursor
  337. * @wq: the target workqueue
  338. *
  339. * This must be called either with wq->mutex held or sched RCU read locked.
  340. * If the pwq needs to be used beyond the locking in effect, the caller is
  341. * responsible for guaranteeing that the pwq stays online.
  342. *
  343. * The if/else clause exists only for the lockdep assertion and can be
  344. * ignored.
  345. */
  346. #define for_each_pwq(pwq, wq) \
  347. list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
  348. if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
  349. else
  350. #ifdef CONFIG_DEBUG_OBJECTS_WORK
  351. static struct debug_obj_descr work_debug_descr;
  352. static void *work_debug_hint(void *addr)
  353. {
  354. return ((struct work_struct *) addr)->func;
  355. }
  356. /*
  357. * fixup_init is called when:
  358. * - an active object is initialized
  359. */
  360. static int work_fixup_init(void *addr, enum debug_obj_state state)
  361. {
  362. struct work_struct *work = addr;
  363. switch (state) {
  364. case ODEBUG_STATE_ACTIVE:
  365. cancel_work_sync(work);
  366. debug_object_init(work, &work_debug_descr);
  367. return 1;
  368. default:
  369. return 0;
  370. }
  371. }
  372. /*
  373. * fixup_activate is called when:
  374. * - an active object is activated
  375. * - an unknown object is activated (might be a statically initialized object)
  376. */
  377. static int work_fixup_activate(void *addr, enum debug_obj_state state)
  378. {
  379. struct work_struct *work = addr;
  380. switch (state) {
  381. case ODEBUG_STATE_NOTAVAILABLE:
  382. /*
  383. * This is not really a fixup. The work struct was
  384. * statically initialized. We just make sure that it
  385. * is tracked in the object tracker.
  386. */
  387. if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
  388. debug_object_init(work, &work_debug_descr);
  389. debug_object_activate(work, &work_debug_descr);
  390. return 0;
  391. }
  392. WARN_ON_ONCE(1);
  393. return 0;
  394. case ODEBUG_STATE_ACTIVE:
  395. WARN_ON(1);
  396. default:
  397. return 0;
  398. }
  399. }
  400. /*
  401. * fixup_free is called when:
  402. * - an active object is freed
  403. */
  404. static int work_fixup_free(void *addr, enum debug_obj_state state)
  405. {
  406. struct work_struct *work = addr;
  407. switch (state) {
  408. case ODEBUG_STATE_ACTIVE:
  409. cancel_work_sync(work);
  410. debug_object_free(work, &work_debug_descr);
  411. return 1;
  412. default:
  413. return 0;
  414. }
  415. }
  416. static struct debug_obj_descr work_debug_descr = {
  417. .name = "work_struct",
  418. .debug_hint = work_debug_hint,
  419. .fixup_init = work_fixup_init,
  420. .fixup_activate = work_fixup_activate,
  421. .fixup_free = work_fixup_free,
  422. };
  423. static inline void debug_work_activate(struct work_struct *work)
  424. {
  425. debug_object_activate(work, &work_debug_descr);
  426. }
  427. static inline void debug_work_deactivate(struct work_struct *work)
  428. {
  429. debug_object_deactivate(work, &work_debug_descr);
  430. }
  431. void __init_work(struct work_struct *work, int onstack)
  432. {
  433. if (onstack)
  434. debug_object_init_on_stack(work, &work_debug_descr);
  435. else
  436. debug_object_init(work, &work_debug_descr);
  437. }
  438. EXPORT_SYMBOL_GPL(__init_work);
  439. void destroy_work_on_stack(struct work_struct *work)
  440. {
  441. debug_object_free(work, &work_debug_descr);
  442. }
  443. EXPORT_SYMBOL_GPL(destroy_work_on_stack);
  444. #else
  445. static inline void debug_work_activate(struct work_struct *work) { }
  446. static inline void debug_work_deactivate(struct work_struct *work) { }
  447. #endif
  448. /**
  449. * worker_pool_assign_id - allocate ID and assing it to @pool
  450. * @pool: the pool pointer of interest
  451. *
  452. * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
  453. * successfully, -errno on failure.
  454. */
  455. static int worker_pool_assign_id(struct worker_pool *pool)
  456. {
  457. int ret;
  458. lockdep_assert_held(&wq_pool_mutex);
  459. ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
  460. GFP_KERNEL);
  461. if (ret >= 0) {
  462. pool->id = ret;
  463. return 0;
  464. }
  465. return ret;
  466. }
  467. /**
  468. * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
  469. * @wq: the target workqueue
  470. * @node: the node ID
  471. *
  472. * This must be called either with pwq_lock held or sched RCU read locked.
  473. * If the pwq needs to be used beyond the locking in effect, the caller is
  474. * responsible for guaranteeing that the pwq stays online.
  475. *
  476. * Return: The unbound pool_workqueue for @node.
  477. */
  478. static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
  479. int node)
  480. {
  481. assert_rcu_or_wq_mutex(wq);
  482. return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
  483. }
  484. static unsigned int work_color_to_flags(int color)
  485. {
  486. return color << WORK_STRUCT_COLOR_SHIFT;
  487. }
  488. static int get_work_color(struct work_struct *work)
  489. {
  490. return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
  491. ((1 << WORK_STRUCT_COLOR_BITS) - 1);
  492. }
  493. static int work_next_color(int color)
  494. {
  495. return (color + 1) % WORK_NR_COLORS;
  496. }
  497. /*
  498. * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
  499. * contain the pointer to the queued pwq. Once execution starts, the flag
  500. * is cleared and the high bits contain OFFQ flags and pool ID.
  501. *
  502. * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
  503. * and clear_work_data() can be used to set the pwq, pool or clear
  504. * work->data. These functions should only be called while the work is
  505. * owned - ie. while the PENDING bit is set.
  506. *
  507. * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
  508. * corresponding to a work. Pool is available once the work has been
  509. * queued anywhere after initialization until it is sync canceled. pwq is
  510. * available only while the work item is queued.
  511. *
  512. * %WORK_OFFQ_CANCELING is used to mark a work item which is being
  513. * canceled. While being canceled, a work item may have its PENDING set
  514. * but stay off timer and worklist for arbitrarily long and nobody should
  515. * try to steal the PENDING bit.
  516. */
  517. static inline void set_work_data(struct work_struct *work, unsigned long data,
  518. unsigned long flags)
  519. {
  520. WARN_ON_ONCE(!work_pending(work));
  521. atomic_long_set(&work->data, data | flags | work_static(work));
  522. }
  523. static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
  524. unsigned long extra_flags)
  525. {
  526. set_work_data(work, (unsigned long)pwq,
  527. WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
  528. }
  529. static void set_work_pool_and_keep_pending(struct work_struct *work,
  530. int pool_id)
  531. {
  532. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
  533. WORK_STRUCT_PENDING);
  534. }
  535. static void set_work_pool_and_clear_pending(struct work_struct *work,
  536. int pool_id)
  537. {
  538. /*
  539. * The following wmb is paired with the implied mb in
  540. * test_and_set_bit(PENDING) and ensures all updates to @work made
  541. * here are visible to and precede any updates by the next PENDING
  542. * owner.
  543. */
  544. smp_wmb();
  545. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
  546. }
  547. static void clear_work_data(struct work_struct *work)
  548. {
  549. smp_wmb(); /* see set_work_pool_and_clear_pending() */
  550. set_work_data(work, WORK_STRUCT_NO_POOL, 0);
  551. }
  552. static struct pool_workqueue *get_work_pwq(struct work_struct *work)
  553. {
  554. unsigned long data = atomic_long_read(&work->data);
  555. if (data & WORK_STRUCT_PWQ)
  556. return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
  557. else
  558. return NULL;
  559. }
  560. /**
  561. * get_work_pool - return the worker_pool a given work was associated with
  562. * @work: the work item of interest
  563. *
  564. * Pools are created and destroyed under wq_pool_mutex, and allows read
  565. * access under sched-RCU read lock. As such, this function should be
  566. * called under wq_pool_mutex or with preemption disabled.
  567. *
  568. * All fields of the returned pool are accessible as long as the above
  569. * mentioned locking is in effect. If the returned pool needs to be used
  570. * beyond the critical section, the caller is responsible for ensuring the
  571. * returned pool is and stays online.
  572. *
  573. * Return: The worker_pool @work was last associated with. %NULL if none.
  574. */
  575. static struct worker_pool *get_work_pool(struct work_struct *work)
  576. {
  577. unsigned long data = atomic_long_read(&work->data);
  578. int pool_id;
  579. assert_rcu_or_pool_mutex();
  580. if (data & WORK_STRUCT_PWQ)
  581. return ((struct pool_workqueue *)
  582. (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
  583. pool_id = data >> WORK_OFFQ_POOL_SHIFT;
  584. if (pool_id == WORK_OFFQ_POOL_NONE)
  585. return NULL;
  586. return idr_find(&worker_pool_idr, pool_id);
  587. }
  588. /**
  589. * get_work_pool_id - return the worker pool ID a given work is associated with
  590. * @work: the work item of interest
  591. *
  592. * Return: The worker_pool ID @work was last associated with.
  593. * %WORK_OFFQ_POOL_NONE if none.
  594. */
  595. static int get_work_pool_id(struct work_struct *work)
  596. {
  597. unsigned long data = atomic_long_read(&work->data);
  598. if (data & WORK_STRUCT_PWQ)
  599. return ((struct pool_workqueue *)
  600. (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
  601. return data >> WORK_OFFQ_POOL_SHIFT;
  602. }
  603. static void mark_work_canceling(struct work_struct *work)
  604. {
  605. unsigned long pool_id = get_work_pool_id(work);
  606. pool_id <<= WORK_OFFQ_POOL_SHIFT;
  607. set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
  608. }
  609. static bool work_is_canceling(struct work_struct *work)
  610. {
  611. unsigned long data = atomic_long_read(&work->data);
  612. return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
  613. }
  614. /*
  615. * Policy functions. These define the policies on how the global worker
  616. * pools are managed. Unless noted otherwise, these functions assume that
  617. * they're being called with pool->lock held.
  618. */
  619. static bool __need_more_worker(struct worker_pool *pool)
  620. {
  621. return !atomic_read(&pool->nr_running);
  622. }
  623. /*
  624. * Need to wake up a worker? Called from anything but currently
  625. * running workers.
  626. *
  627. * Note that, because unbound workers never contribute to nr_running, this
  628. * function will always return %true for unbound pools as long as the
  629. * worklist isn't empty.
  630. */
  631. static bool need_more_worker(struct worker_pool *pool)
  632. {
  633. return !list_empty(&pool->worklist) && __need_more_worker(pool);
  634. }
  635. /* Can I start working? Called from busy but !running workers. */
  636. static bool may_start_working(struct worker_pool *pool)
  637. {
  638. return pool->nr_idle;
  639. }
  640. /* Do I need to keep working? Called from currently running workers. */
  641. static bool keep_working(struct worker_pool *pool)
  642. {
  643. return !list_empty(&pool->worklist) &&
  644. atomic_read(&pool->nr_running) <= 1;
  645. }
  646. /* Do we need a new worker? Called from manager. */
  647. static bool need_to_create_worker(struct worker_pool *pool)
  648. {
  649. return need_more_worker(pool) && !may_start_working(pool);
  650. }
  651. /* Do I need to be the manager? */
  652. static bool need_to_manage_workers(struct worker_pool *pool)
  653. {
  654. return need_to_create_worker(pool) ||
  655. (pool->flags & POOL_MANAGE_WORKERS);
  656. }
  657. /* Do we have too many workers and should some go away? */
  658. static bool too_many_workers(struct worker_pool *pool)
  659. {
  660. bool managing = mutex_is_locked(&pool->manager_arb);
  661. int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
  662. int nr_busy = pool->nr_workers - nr_idle;
  663. /*
  664. * nr_idle and idle_list may disagree if idle rebinding is in
  665. * progress. Never return %true if idle_list is empty.
  666. */
  667. if (list_empty(&pool->idle_list))
  668. return false;
  669. return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
  670. }
  671. /*
  672. * Wake up functions.
  673. */
  674. /* Return the first worker. Safe with preemption disabled */
  675. static struct worker *first_worker(struct worker_pool *pool)
  676. {
  677. if (unlikely(list_empty(&pool->idle_list)))
  678. return NULL;
  679. return list_first_entry(&pool->idle_list, struct worker, entry);
  680. }
  681. /**
  682. * wake_up_worker - wake up an idle worker
  683. * @pool: worker pool to wake worker from
  684. *
  685. * Wake up the first idle worker of @pool.
  686. *
  687. * CONTEXT:
  688. * spin_lock_irq(pool->lock).
  689. */
  690. static void wake_up_worker(struct worker_pool *pool)
  691. {
  692. struct worker *worker = first_worker(pool);
  693. if (likely(worker))
  694. wake_up_process(worker->task);
  695. }
  696. /**
  697. * wq_worker_waking_up - a worker is waking up
  698. * @task: task waking up
  699. * @cpu: CPU @task is waking up to
  700. *
  701. * This function is called during try_to_wake_up() when a worker is
  702. * being awoken.
  703. *
  704. * CONTEXT:
  705. * spin_lock_irq(rq->lock)
  706. */
  707. void wq_worker_waking_up(struct task_struct *task, int cpu)
  708. {
  709. struct worker *worker = kthread_data(task);
  710. if (!(worker->flags & WORKER_NOT_RUNNING)) {
  711. WARN_ON_ONCE(worker->pool->cpu != cpu);
  712. atomic_inc(&worker->pool->nr_running);
  713. }
  714. }
  715. /**
  716. * wq_worker_sleeping - a worker is going to sleep
  717. * @task: task going to sleep
  718. * @cpu: CPU in question, must be the current CPU number
  719. *
  720. * This function is called during schedule() when a busy worker is
  721. * going to sleep. Worker on the same cpu can be woken up by
  722. * returning pointer to its task.
  723. *
  724. * CONTEXT:
  725. * spin_lock_irq(rq->lock)
  726. *
  727. * Return:
  728. * Worker task on @cpu to wake up, %NULL if none.
  729. */
  730. struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
  731. {
  732. struct worker *worker = kthread_data(task), *to_wakeup = NULL;
  733. struct worker_pool *pool;
  734. /*
  735. * Rescuers, which may not have all the fields set up like normal
  736. * workers, also reach here, let's not access anything before
  737. * checking NOT_RUNNING.
  738. */
  739. if (worker->flags & WORKER_NOT_RUNNING)
  740. return NULL;
  741. pool = worker->pool;
  742. /* this can only happen on the local cpu */
  743. if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
  744. return NULL;
  745. /*
  746. * The counterpart of the following dec_and_test, implied mb,
  747. * worklist not empty test sequence is in insert_work().
  748. * Please read comment there.
  749. *
  750. * NOT_RUNNING is clear. This means that we're bound to and
  751. * running on the local cpu w/ rq lock held and preemption
  752. * disabled, which in turn means that none else could be
  753. * manipulating idle_list, so dereferencing idle_list without pool
  754. * lock is safe.
  755. */
  756. if (atomic_dec_and_test(&pool->nr_running) &&
  757. !list_empty(&pool->worklist))
  758. to_wakeup = first_worker(pool);
  759. return to_wakeup ? to_wakeup->task : NULL;
  760. }
  761. /**
  762. * worker_set_flags - set worker flags and adjust nr_running accordingly
  763. * @worker: self
  764. * @flags: flags to set
  765. * @wakeup: wakeup an idle worker if necessary
  766. *
  767. * Set @flags in @worker->flags and adjust nr_running accordingly. If
  768. * nr_running becomes zero and @wakeup is %true, an idle worker is
  769. * woken up.
  770. *
  771. * CONTEXT:
  772. * spin_lock_irq(pool->lock)
  773. */
  774. static inline void worker_set_flags(struct worker *worker, unsigned int flags,
  775. bool wakeup)
  776. {
  777. struct worker_pool *pool = worker->pool;
  778. WARN_ON_ONCE(worker->task != current);
  779. /*
  780. * If transitioning into NOT_RUNNING, adjust nr_running and
  781. * wake up an idle worker as necessary if requested by
  782. * @wakeup.
  783. */
  784. if ((flags & WORKER_NOT_RUNNING) &&
  785. !(worker->flags & WORKER_NOT_RUNNING)) {
  786. if (wakeup) {
  787. if (atomic_dec_and_test(&pool->nr_running) &&
  788. !list_empty(&pool->worklist))
  789. wake_up_worker(pool);
  790. } else
  791. atomic_dec(&pool->nr_running);
  792. }
  793. worker->flags |= flags;
  794. }
  795. /**
  796. * worker_clr_flags - clear worker flags and adjust nr_running accordingly
  797. * @worker: self
  798. * @flags: flags to clear
  799. *
  800. * Clear @flags in @worker->flags and adjust nr_running accordingly.
  801. *
  802. * CONTEXT:
  803. * spin_lock_irq(pool->lock)
  804. */
  805. static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
  806. {
  807. struct worker_pool *pool = worker->pool;
  808. unsigned int oflags = worker->flags;
  809. WARN_ON_ONCE(worker->task != current);
  810. worker->flags &= ~flags;
  811. /*
  812. * If transitioning out of NOT_RUNNING, increment nr_running. Note
  813. * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
  814. * of multiple flags, not a single flag.
  815. */
  816. if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
  817. if (!(worker->flags & WORKER_NOT_RUNNING))
  818. atomic_inc(&pool->nr_running);
  819. }
  820. /**
  821. * find_worker_executing_work - find worker which is executing a work
  822. * @pool: pool of interest
  823. * @work: work to find worker for
  824. *
  825. * Find a worker which is executing @work on @pool by searching
  826. * @pool->busy_hash which is keyed by the address of @work. For a worker
  827. * to match, its current execution should match the address of @work and
  828. * its work function. This is to avoid unwanted dependency between
  829. * unrelated work executions through a work item being recycled while still
  830. * being executed.
  831. *
  832. * This is a bit tricky. A work item may be freed once its execution
  833. * starts and nothing prevents the freed area from being recycled for
  834. * another work item. If the same work item address ends up being reused
  835. * before the original execution finishes, workqueue will identify the
  836. * recycled work item as currently executing and make it wait until the
  837. * current execution finishes, introducing an unwanted dependency.
  838. *
  839. * This function checks the work item address and work function to avoid
  840. * false positives. Note that this isn't complete as one may construct a
  841. * work function which can introduce dependency onto itself through a
  842. * recycled work item. Well, if somebody wants to shoot oneself in the
  843. * foot that badly, there's only so much we can do, and if such deadlock
  844. * actually occurs, it should be easy to locate the culprit work function.
  845. *
  846. * CONTEXT:
  847. * spin_lock_irq(pool->lock).
  848. *
  849. * Return:
  850. * Pointer to worker which is executing @work if found, %NULL
  851. * otherwise.
  852. */
  853. static struct worker *find_worker_executing_work(struct worker_pool *pool,
  854. struct work_struct *work)
  855. {
  856. struct worker *worker;
  857. hash_for_each_possible(pool->busy_hash, worker, hentry,
  858. (unsigned long)work)
  859. if (worker->current_work == work &&
  860. worker->current_func == work->func)
  861. return worker;
  862. return NULL;
  863. }
  864. /**
  865. * move_linked_works - move linked works to a list
  866. * @work: start of series of works to be scheduled
  867. * @head: target list to append @work to
  868. * @nextp: out paramter for nested worklist walking
  869. *
  870. * Schedule linked works starting from @work to @head. Work series to
  871. * be scheduled starts at @work and includes any consecutive work with
  872. * WORK_STRUCT_LINKED set in its predecessor.
  873. *
  874. * If @nextp is not NULL, it's updated to point to the next work of
  875. * the last scheduled work. This allows move_linked_works() to be
  876. * nested inside outer list_for_each_entry_safe().
  877. *
  878. * CONTEXT:
  879. * spin_lock_irq(pool->lock).
  880. */
  881. static void move_linked_works(struct work_struct *work, struct list_head *head,
  882. struct work_struct **nextp)
  883. {
  884. struct work_struct *n;
  885. /*
  886. * Linked worklist will always end before the end of the list,
  887. * use NULL for list head.
  888. */
  889. list_for_each_entry_safe_from(work, n, NULL, entry) {
  890. list_move_tail(&work->entry, head);
  891. if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
  892. break;
  893. }
  894. /*
  895. * If we're already inside safe list traversal and have moved
  896. * multiple works to the scheduled queue, the next position
  897. * needs to be updated.
  898. */
  899. if (nextp)
  900. *nextp = n;
  901. }
  902. /**
  903. * get_pwq - get an extra reference on the specified pool_workqueue
  904. * @pwq: pool_workqueue to get
  905. *
  906. * Obtain an extra reference on @pwq. The caller should guarantee that
  907. * @pwq has positive refcnt and be holding the matching pool->lock.
  908. */
  909. static void get_pwq(struct pool_workqueue *pwq)
  910. {
  911. lockdep_assert_held(&pwq->pool->lock);
  912. WARN_ON_ONCE(pwq->refcnt <= 0);
  913. pwq->refcnt++;
  914. }
  915. /**
  916. * put_pwq - put a pool_workqueue reference
  917. * @pwq: pool_workqueue to put
  918. *
  919. * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
  920. * destruction. The caller should be holding the matching pool->lock.
  921. */
  922. static void put_pwq(struct pool_workqueue *pwq)
  923. {
  924. lockdep_assert_held(&pwq->pool->lock);
  925. if (likely(--pwq->refcnt))
  926. return;
  927. if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
  928. return;
  929. /*
  930. * @pwq can't be released under pool->lock, bounce to
  931. * pwq_unbound_release_workfn(). This never recurses on the same
  932. * pool->lock as this path is taken only for unbound workqueues and
  933. * the release work item is scheduled on a per-cpu workqueue. To
  934. * avoid lockdep warning, unbound pool->locks are given lockdep
  935. * subclass of 1 in get_unbound_pool().
  936. */
  937. schedule_work(&pwq->unbound_release_work);
  938. }
  939. /**
  940. * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
  941. * @pwq: pool_workqueue to put (can be %NULL)
  942. *
  943. * put_pwq() with locking. This function also allows %NULL @pwq.
  944. */
  945. static void put_pwq_unlocked(struct pool_workqueue *pwq)
  946. {
  947. if (pwq) {
  948. /*
  949. * As both pwqs and pools are sched-RCU protected, the
  950. * following lock operations are safe.
  951. */
  952. spin_lock_irq(&pwq->pool->lock);
  953. put_pwq(pwq);
  954. spin_unlock_irq(&pwq->pool->lock);
  955. }
  956. }
  957. static void pwq_activate_delayed_work(struct work_struct *work)
  958. {
  959. struct pool_workqueue *pwq = get_work_pwq(work);
  960. trace_workqueue_activate_work(work);
  961. move_linked_works(work, &pwq->pool->worklist, NULL);
  962. __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
  963. pwq->nr_active++;
  964. }
  965. static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
  966. {
  967. struct work_struct *work = list_first_entry(&pwq->delayed_works,
  968. struct work_struct, entry);
  969. pwq_activate_delayed_work(work);
  970. }
  971. /**
  972. * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
  973. * @pwq: pwq of interest
  974. * @color: color of work which left the queue
  975. *
  976. * A work either has completed or is removed from pending queue,
  977. * decrement nr_in_flight of its pwq and handle workqueue flushing.
  978. *
  979. * CONTEXT:
  980. * spin_lock_irq(pool->lock).
  981. */
  982. static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
  983. {
  984. /* uncolored work items don't participate in flushing or nr_active */
  985. if (color == WORK_NO_COLOR)
  986. goto out_put;
  987. pwq->nr_in_flight[color]--;
  988. pwq->nr_active--;
  989. if (!list_empty(&pwq->delayed_works)) {
  990. /* one down, submit a delayed one */
  991. if (pwq->nr_active < pwq->max_active)
  992. pwq_activate_first_delayed(pwq);
  993. }
  994. /* is flush in progress and are we at the flushing tip? */
  995. if (likely(pwq->flush_color != color))
  996. goto out_put;
  997. /* are there still in-flight works? */
  998. if (pwq->nr_in_flight[color])
  999. goto out_put;
  1000. /* this pwq is done, clear flush_color */
  1001. pwq->flush_color = -1;
  1002. /*
  1003. * If this was the last pwq, wake up the first flusher. It
  1004. * will handle the rest.
  1005. */
  1006. if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
  1007. complete(&pwq->wq->first_flusher->done);
  1008. out_put:
  1009. put_pwq(pwq);
  1010. }
  1011. /**
  1012. * try_to_grab_pending - steal work item from worklist and disable irq
  1013. * @work: work item to steal
  1014. * @is_dwork: @work is a delayed_work
  1015. * @flags: place to store irq state
  1016. *
  1017. * Try to grab PENDING bit of @work. This function can handle @work in any
  1018. * stable state - idle, on timer or on worklist.
  1019. *
  1020. * Return:
  1021. * 1 if @work was pending and we successfully stole PENDING
  1022. * 0 if @work was idle and we claimed PENDING
  1023. * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
  1024. * -ENOENT if someone else is canceling @work, this state may persist
  1025. * for arbitrarily long
  1026. *
  1027. * Note:
  1028. * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
  1029. * interrupted while holding PENDING and @work off queue, irq must be
  1030. * disabled on entry. This, combined with delayed_work->timer being
  1031. * irqsafe, ensures that we return -EAGAIN for finite short period of time.
  1032. *
  1033. * On successful return, >= 0, irq is disabled and the caller is
  1034. * responsible for releasing it using local_irq_restore(*@flags).
  1035. *
  1036. * This function is safe to call from any context including IRQ handler.
  1037. */
  1038. static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
  1039. unsigned long *flags)
  1040. {
  1041. struct worker_pool *pool;
  1042. struct pool_workqueue *pwq;
  1043. local_irq_save(*flags);
  1044. /* try to steal the timer if it exists */
  1045. if (is_dwork) {
  1046. struct delayed_work *dwork = to_delayed_work(work);
  1047. /*
  1048. * dwork->timer is irqsafe. If del_timer() fails, it's
  1049. * guaranteed that the timer is not queued anywhere and not
  1050. * running on the local CPU.
  1051. */
  1052. if (likely(del_timer(&dwork->timer)))
  1053. return 1;
  1054. }
  1055. /* try to claim PENDING the normal way */
  1056. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
  1057. return 0;
  1058. /*
  1059. * The queueing is in progress, or it is already queued. Try to
  1060. * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
  1061. */
  1062. pool = get_work_pool(work);
  1063. if (!pool)
  1064. goto fail;
  1065. spin_lock(&pool->lock);
  1066. /*
  1067. * work->data is guaranteed to point to pwq only while the work
  1068. * item is queued on pwq->wq, and both updating work->data to point
  1069. * to pwq on queueing and to pool on dequeueing are done under
  1070. * pwq->pool->lock. This in turn guarantees that, if work->data
  1071. * points to pwq which is associated with a locked pool, the work
  1072. * item is currently queued on that pool.
  1073. */
  1074. pwq = get_work_pwq(work);
  1075. if (pwq && pwq->pool == pool) {
  1076. debug_work_deactivate(work);
  1077. /*
  1078. * A delayed work item cannot be grabbed directly because
  1079. * it might have linked NO_COLOR work items which, if left
  1080. * on the delayed_list, will confuse pwq->nr_active
  1081. * management later on and cause stall. Make sure the work
  1082. * item is activated before grabbing.
  1083. */
  1084. if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
  1085. pwq_activate_delayed_work(work);
  1086. list_del_init(&work->entry);
  1087. pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
  1088. /* work->data points to pwq iff queued, point to pool */
  1089. set_work_pool_and_keep_pending(work, pool->id);
  1090. spin_unlock(&pool->lock);
  1091. return 1;
  1092. }
  1093. spin_unlock(&pool->lock);
  1094. fail:
  1095. local_irq_restore(*flags);
  1096. if (work_is_canceling(work))
  1097. return -ENOENT;
  1098. cpu_relax();
  1099. return -EAGAIN;
  1100. }
  1101. /**
  1102. * insert_work - insert a work into a pool
  1103. * @pwq: pwq @work belongs to
  1104. * @work: work to insert
  1105. * @head: insertion point
  1106. * @extra_flags: extra WORK_STRUCT_* flags to set
  1107. *
  1108. * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
  1109. * work_struct flags.
  1110. *
  1111. * CONTEXT:
  1112. * spin_lock_irq(pool->lock).
  1113. */
  1114. static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
  1115. struct list_head *head, unsigned int extra_flags)
  1116. {
  1117. struct worker_pool *pool = pwq->pool;
  1118. /* we own @work, set data and link */
  1119. set_work_pwq(work, pwq, extra_flags);
  1120. list_add_tail(&work->entry, head);
  1121. get_pwq(pwq);
  1122. /*
  1123. * Ensure either wq_worker_sleeping() sees the above
  1124. * list_add_tail() or we see zero nr_running to avoid workers lying
  1125. * around lazily while there are works to be processed.
  1126. */
  1127. smp_mb();
  1128. if (__need_more_worker(pool))
  1129. wake_up_worker(pool);
  1130. }
  1131. /*
  1132. * Test whether @work is being queued from another work executing on the
  1133. * same workqueue.
  1134. */
  1135. static bool is_chained_work(struct workqueue_struct *wq)
  1136. {
  1137. struct worker *worker;
  1138. worker = current_wq_worker();
  1139. /*
  1140. * Return %true iff I'm a worker execuing a work item on @wq. If
  1141. * I'm @worker, it's safe to dereference it without locking.
  1142. */
  1143. return worker && worker->current_pwq->wq == wq;
  1144. }
  1145. static void __queue_work(int cpu, struct workqueue_struct *wq,
  1146. struct work_struct *work)
  1147. {
  1148. struct pool_workqueue *pwq;
  1149. struct worker_pool *last_pool;
  1150. struct list_head *worklist;
  1151. unsigned int work_flags;
  1152. unsigned int req_cpu = cpu;
  1153. /*
  1154. * While a work item is PENDING && off queue, a task trying to
  1155. * steal the PENDING will busy-loop waiting for it to either get
  1156. * queued or lose PENDING. Grabbing PENDING and queueing should
  1157. * happen with IRQ disabled.
  1158. */
  1159. WARN_ON_ONCE(!irqs_disabled());
  1160. debug_work_activate(work);
  1161. /* if draining, only works from the same workqueue are allowed */
  1162. if (unlikely(wq->flags & __WQ_DRAINING) &&
  1163. WARN_ON_ONCE(!is_chained_work(wq)))
  1164. return;
  1165. retry:
  1166. if (req_cpu == WORK_CPU_UNBOUND)
  1167. cpu = raw_smp_processor_id();
  1168. /* pwq which will be used unless @work is executing elsewhere */
  1169. if (!(wq->flags & WQ_UNBOUND))
  1170. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  1171. else
  1172. pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
  1173. /*
  1174. * If @work was previously on a different pool, it might still be
  1175. * running there, in which case the work needs to be queued on that
  1176. * pool to guarantee non-reentrancy.
  1177. */
  1178. last_pool = get_work_pool(work);
  1179. if (last_pool && last_pool != pwq->pool) {
  1180. struct worker *worker;
  1181. spin_lock(&last_pool->lock);
  1182. worker = find_worker_executing_work(last_pool, work);
  1183. if (worker && worker->current_pwq->wq == wq) {
  1184. pwq = worker->current_pwq;
  1185. } else {
  1186. /* meh... not running there, queue here */
  1187. spin_unlock(&last_pool->lock);
  1188. spin_lock(&pwq->pool->lock);
  1189. }
  1190. } else {
  1191. spin_lock(&pwq->pool->lock);
  1192. }
  1193. /*
  1194. * pwq is determined and locked. For unbound pools, we could have
  1195. * raced with pwq release and it could already be dead. If its
  1196. * refcnt is zero, repeat pwq selection. Note that pwqs never die
  1197. * without another pwq replacing it in the numa_pwq_tbl or while
  1198. * work items are executing on it, so the retrying is guaranteed to
  1199. * make forward-progress.
  1200. */
  1201. if (unlikely(!pwq->refcnt)) {
  1202. if (wq->flags & WQ_UNBOUND) {
  1203. spin_unlock(&pwq->pool->lock);
  1204. cpu_relax();
  1205. goto retry;
  1206. }
  1207. /* oops */
  1208. WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
  1209. wq->name, cpu);
  1210. }
  1211. /* pwq determined, queue */
  1212. trace_workqueue_queue_work(req_cpu, pwq, work);
  1213. if (WARN_ON(!list_empty(&work->entry))) {
  1214. spin_unlock(&pwq->pool->lock);
  1215. return;
  1216. }
  1217. pwq->nr_in_flight[pwq->work_color]++;
  1218. work_flags = work_color_to_flags(pwq->work_color);
  1219. if (likely(pwq->nr_active < pwq->max_active)) {
  1220. trace_workqueue_activate_work(work);
  1221. pwq->nr_active++;
  1222. worklist = &pwq->pool->worklist;
  1223. } else {
  1224. work_flags |= WORK_STRUCT_DELAYED;
  1225. worklist = &pwq->delayed_works;
  1226. }
  1227. insert_work(pwq, work, worklist, work_flags);
  1228. spin_unlock(&pwq->pool->lock);
  1229. }
  1230. /**
  1231. * queue_work_on - queue work on specific cpu
  1232. * @cpu: CPU number to execute work on
  1233. * @wq: workqueue to use
  1234. * @work: work to queue
  1235. *
  1236. * We queue the work to a specific CPU, the caller must ensure it
  1237. * can't go away.
  1238. *
  1239. * Return: %false if @work was already on a queue, %true otherwise.
  1240. */
  1241. bool queue_work_on(int cpu, struct workqueue_struct *wq,
  1242. struct work_struct *work)
  1243. {
  1244. bool ret = false;
  1245. unsigned long flags;
  1246. local_irq_save(flags);
  1247. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1248. __queue_work(cpu, wq, work);
  1249. ret = true;
  1250. }
  1251. local_irq_restore(flags);
  1252. return ret;
  1253. }
  1254. EXPORT_SYMBOL(queue_work_on);
  1255. void delayed_work_timer_fn(unsigned long __data)
  1256. {
  1257. struct delayed_work *dwork = (struct delayed_work *)__data;
  1258. /* should have been called from irqsafe timer with irq already off */
  1259. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  1260. }
  1261. EXPORT_SYMBOL(delayed_work_timer_fn);
  1262. static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
  1263. struct delayed_work *dwork, unsigned long delay)
  1264. {
  1265. struct timer_list *timer = &dwork->timer;
  1266. struct work_struct *work = &dwork->work;
  1267. WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
  1268. timer->data != (unsigned long)dwork);
  1269. WARN_ON_ONCE(timer_pending(timer));
  1270. WARN_ON_ONCE(!list_empty(&work->entry));
  1271. /*
  1272. * If @delay is 0, queue @dwork->work immediately. This is for
  1273. * both optimization and correctness. The earliest @timer can
  1274. * expire is on the closest next tick and delayed_work users depend
  1275. * on that there's no such delay when @delay is 0.
  1276. */
  1277. if (!delay) {
  1278. __queue_work(cpu, wq, &dwork->work);
  1279. return;
  1280. }
  1281. timer_stats_timer_set_start_info(&dwork->timer);
  1282. dwork->wq = wq;
  1283. dwork->cpu = cpu;
  1284. timer->expires = jiffies + delay;
  1285. if (unlikely(cpu != WORK_CPU_UNBOUND))
  1286. add_timer_on(timer, cpu);
  1287. else
  1288. add_timer(timer);
  1289. }
  1290. /**
  1291. * queue_delayed_work_on - queue work on specific CPU after delay
  1292. * @cpu: CPU number to execute work on
  1293. * @wq: workqueue to use
  1294. * @dwork: work to queue
  1295. * @delay: number of jiffies to wait before queueing
  1296. *
  1297. * Return: %false if @work was already on a queue, %true otherwise. If
  1298. * @delay is zero and @dwork is idle, it will be scheduled for immediate
  1299. * execution.
  1300. */
  1301. bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1302. struct delayed_work *dwork, unsigned long delay)
  1303. {
  1304. struct work_struct *work = &dwork->work;
  1305. bool ret = false;
  1306. unsigned long flags;
  1307. /* read the comment in __queue_work() */
  1308. local_irq_save(flags);
  1309. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1310. __queue_delayed_work(cpu, wq, dwork, delay);
  1311. ret = true;
  1312. }
  1313. local_irq_restore(flags);
  1314. return ret;
  1315. }
  1316. EXPORT_SYMBOL(queue_delayed_work_on);
  1317. /**
  1318. * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
  1319. * @cpu: CPU number to execute work on
  1320. * @wq: workqueue to use
  1321. * @dwork: work to queue
  1322. * @delay: number of jiffies to wait before queueing
  1323. *
  1324. * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
  1325. * modify @dwork's timer so that it expires after @delay. If @delay is
  1326. * zero, @work is guaranteed to be scheduled immediately regardless of its
  1327. * current state.
  1328. *
  1329. * Return: %false if @dwork was idle and queued, %true if @dwork was
  1330. * pending and its timer was modified.
  1331. *
  1332. * This function is safe to call from any context including IRQ handler.
  1333. * See try_to_grab_pending() for details.
  1334. */
  1335. bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1336. struct delayed_work *dwork, unsigned long delay)
  1337. {
  1338. unsigned long flags;
  1339. int ret;
  1340. do {
  1341. ret = try_to_grab_pending(&dwork->work, true, &flags);
  1342. } while (unlikely(ret == -EAGAIN));
  1343. if (likely(ret >= 0)) {
  1344. __queue_delayed_work(cpu, wq, dwork, delay);
  1345. local_irq_restore(flags);
  1346. }
  1347. /* -ENOENT from try_to_grab_pending() becomes %true */
  1348. return ret;
  1349. }
  1350. EXPORT_SYMBOL_GPL(mod_delayed_work_on);
  1351. /**
  1352. * worker_enter_idle - enter idle state
  1353. * @worker: worker which is entering idle state
  1354. *
  1355. * @worker is entering idle state. Update stats and idle timer if
  1356. * necessary.
  1357. *
  1358. * LOCKING:
  1359. * spin_lock_irq(pool->lock).
  1360. */
  1361. static void worker_enter_idle(struct worker *worker)
  1362. {
  1363. struct worker_pool *pool = worker->pool;
  1364. if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
  1365. WARN_ON_ONCE(!list_empty(&worker->entry) &&
  1366. (worker->hentry.next || worker->hentry.pprev)))
  1367. return;
  1368. /* can't use worker_set_flags(), also called from start_worker() */
  1369. worker->flags |= WORKER_IDLE;
  1370. pool->nr_idle++;
  1371. worker->last_active = jiffies;
  1372. /* idle_list is LIFO */
  1373. list_add(&worker->entry, &pool->idle_list);
  1374. if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
  1375. mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
  1376. /*
  1377. * Sanity check nr_running. Because wq_unbind_fn() releases
  1378. * pool->lock between setting %WORKER_UNBOUND and zapping
  1379. * nr_running, the warning may trigger spuriously. Check iff
  1380. * unbind is not in progress.
  1381. */
  1382. WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
  1383. pool->nr_workers == pool->nr_idle &&
  1384. atomic_read(&pool->nr_running));
  1385. }
  1386. /**
  1387. * worker_leave_idle - leave idle state
  1388. * @worker: worker which is leaving idle state
  1389. *
  1390. * @worker is leaving idle state. Update stats.
  1391. *
  1392. * LOCKING:
  1393. * spin_lock_irq(pool->lock).
  1394. */
  1395. static void worker_leave_idle(struct worker *worker)
  1396. {
  1397. struct worker_pool *pool = worker->pool;
  1398. if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
  1399. return;
  1400. worker_clr_flags(worker, WORKER_IDLE);
  1401. pool->nr_idle--;
  1402. list_del_init(&worker->entry);
  1403. }
  1404. /**
  1405. * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
  1406. * @pool: target worker_pool
  1407. *
  1408. * Bind %current to the cpu of @pool if it is associated and lock @pool.
  1409. *
  1410. * Works which are scheduled while the cpu is online must at least be
  1411. * scheduled to a worker which is bound to the cpu so that if they are
  1412. * flushed from cpu callbacks while cpu is going down, they are
  1413. * guaranteed to execute on the cpu.
  1414. *
  1415. * This function is to be used by unbound workers and rescuers to bind
  1416. * themselves to the target cpu and may race with cpu going down or
  1417. * coming online. kthread_bind() can't be used because it may put the
  1418. * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
  1419. * verbatim as it's best effort and blocking and pool may be
  1420. * [dis]associated in the meantime.
  1421. *
  1422. * This function tries set_cpus_allowed() and locks pool and verifies the
  1423. * binding against %POOL_DISASSOCIATED which is set during
  1424. * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
  1425. * enters idle state or fetches works without dropping lock, it can
  1426. * guarantee the scheduling requirement described in the first paragraph.
  1427. *
  1428. * CONTEXT:
  1429. * Might sleep. Called without any lock but returns with pool->lock
  1430. * held.
  1431. *
  1432. * Return:
  1433. * %true if the associated pool is online (@worker is successfully
  1434. * bound), %false if offline.
  1435. */
  1436. static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
  1437. __acquires(&pool->lock)
  1438. {
  1439. while (true) {
  1440. /*
  1441. * The following call may fail, succeed or succeed
  1442. * without actually migrating the task to the cpu if
  1443. * it races with cpu hotunplug operation. Verify
  1444. * against POOL_DISASSOCIATED.
  1445. */
  1446. if (!(pool->flags & POOL_DISASSOCIATED))
  1447. set_cpus_allowed_ptr(current, pool->attrs->cpumask);
  1448. spin_lock_irq(&pool->lock);
  1449. if (pool->flags & POOL_DISASSOCIATED)
  1450. return false;
  1451. if (task_cpu(current) == pool->cpu &&
  1452. cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
  1453. return true;
  1454. spin_unlock_irq(&pool->lock);
  1455. /*
  1456. * We've raced with CPU hot[un]plug. Give it a breather
  1457. * and retry migration. cond_resched() is required here;
  1458. * otherwise, we might deadlock against cpu_stop trying to
  1459. * bring down the CPU on non-preemptive kernel.
  1460. */
  1461. cpu_relax();
  1462. cond_resched();
  1463. }
  1464. }
  1465. static struct worker *alloc_worker(void)
  1466. {
  1467. struct worker *worker;
  1468. worker = kzalloc(sizeof(*worker), GFP_KERNEL);
  1469. if (worker) {
  1470. INIT_LIST_HEAD(&worker->entry);
  1471. INIT_LIST_HEAD(&worker->scheduled);
  1472. /* on creation a worker is in !idle && prep state */
  1473. worker->flags = WORKER_PREP;
  1474. }
  1475. return worker;
  1476. }
  1477. /**
  1478. * create_worker - create a new workqueue worker
  1479. * @pool: pool the new worker will belong to
  1480. *
  1481. * Create a new worker which is bound to @pool. The returned worker
  1482. * can be started by calling start_worker() or destroyed using
  1483. * destroy_worker().
  1484. *
  1485. * CONTEXT:
  1486. * Might sleep. Does GFP_KERNEL allocations.
  1487. *
  1488. * Return:
  1489. * Pointer to the newly created worker.
  1490. */
  1491. static struct worker *create_worker(struct worker_pool *pool)
  1492. {
  1493. struct worker *worker = NULL;
  1494. int id = -1;
  1495. char id_buf[16];
  1496. lockdep_assert_held(&pool->manager_mutex);
  1497. /*
  1498. * ID is needed to determine kthread name. Allocate ID first
  1499. * without installing the pointer.
  1500. */
  1501. idr_preload(GFP_KERNEL);
  1502. spin_lock_irq(&pool->lock);
  1503. id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
  1504. spin_unlock_irq(&pool->lock);
  1505. idr_preload_end();
  1506. if (id < 0)
  1507. goto fail;
  1508. worker = alloc_worker();
  1509. if (!worker)
  1510. goto fail;
  1511. worker->pool = pool;
  1512. worker->id = id;
  1513. if (pool->cpu >= 0)
  1514. snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
  1515. pool->attrs->nice < 0 ? "H" : "");
  1516. else
  1517. snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
  1518. worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
  1519. "kworker/%s", id_buf);
  1520. if (IS_ERR(worker->task))
  1521. goto fail;
  1522. set_user_nice(worker->task, pool->attrs->nice);
  1523. /* prevent userland from meddling with cpumask of workqueue workers */
  1524. worker->task->flags |= PF_NO_SETAFFINITY;
  1525. /*
  1526. * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
  1527. * online CPUs. It'll be re-applied when any of the CPUs come up.
  1528. */
  1529. set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
  1530. /*
  1531. * The caller is responsible for ensuring %POOL_DISASSOCIATED
  1532. * remains stable across this function. See the comments above the
  1533. * flag definition for details.
  1534. */
  1535. if (pool->flags & POOL_DISASSOCIATED)
  1536. worker->flags |= WORKER_UNBOUND;
  1537. /* successful, commit the pointer to idr */
  1538. spin_lock_irq(&pool->lock);
  1539. idr_replace(&pool->worker_idr, worker, worker->id);
  1540. spin_unlock_irq(&pool->lock);
  1541. return worker;
  1542. fail:
  1543. if (id >= 0) {
  1544. spin_lock_irq(&pool->lock);
  1545. idr_remove(&pool->worker_idr, id);
  1546. spin_unlock_irq(&pool->lock);
  1547. }
  1548. kfree(worker);
  1549. return NULL;
  1550. }
  1551. /**
  1552. * start_worker - start a newly created worker
  1553. * @worker: worker to start
  1554. *
  1555. * Make the pool aware of @worker and start it.
  1556. *
  1557. * CONTEXT:
  1558. * spin_lock_irq(pool->lock).
  1559. */
  1560. static void start_worker(struct worker *worker)
  1561. {
  1562. worker->flags |= WORKER_STARTED;
  1563. worker->pool->nr_workers++;
  1564. worker_enter_idle(worker);
  1565. wake_up_process(worker->task);
  1566. }
  1567. /**
  1568. * create_and_start_worker - create and start a worker for a pool
  1569. * @pool: the target pool
  1570. *
  1571. * Grab the managership of @pool and create and start a new worker for it.
  1572. *
  1573. * Return: 0 on success. A negative error code otherwise.
  1574. */
  1575. static int create_and_start_worker(struct worker_pool *pool)
  1576. {
  1577. struct worker *worker;
  1578. mutex_lock(&pool->manager_mutex);
  1579. worker = create_worker(pool);
  1580. if (worker) {
  1581. spin_lock_irq(&pool->lock);
  1582. start_worker(worker);
  1583. spin_unlock_irq(&pool->lock);
  1584. }
  1585. mutex_unlock(&pool->manager_mutex);
  1586. return worker ? 0 : -ENOMEM;
  1587. }
  1588. /**
  1589. * destroy_worker - destroy a workqueue worker
  1590. * @worker: worker to be destroyed
  1591. *
  1592. * Destroy @worker and adjust @pool stats accordingly.
  1593. *
  1594. * CONTEXT:
  1595. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1596. */
  1597. static void destroy_worker(struct worker *worker)
  1598. {
  1599. struct worker_pool *pool = worker->pool;
  1600. lockdep_assert_held(&pool->manager_mutex);
  1601. lockdep_assert_held(&pool->lock);
  1602. /* sanity check frenzy */
  1603. if (WARN_ON(worker->current_work) ||
  1604. WARN_ON(!list_empty(&worker->scheduled)))
  1605. return;
  1606. if (worker->flags & WORKER_STARTED)
  1607. pool->nr_workers--;
  1608. if (worker->flags & WORKER_IDLE)
  1609. pool->nr_idle--;
  1610. list_del_init(&worker->entry);
  1611. worker->flags |= WORKER_DIE;
  1612. idr_remove(&pool->worker_idr, worker->id);
  1613. spin_unlock_irq(&pool->lock);
  1614. kthread_stop(worker->task);
  1615. kfree(worker);
  1616. spin_lock_irq(&pool->lock);
  1617. }
  1618. static void idle_worker_timeout(unsigned long __pool)
  1619. {
  1620. struct worker_pool *pool = (void *)__pool;
  1621. spin_lock_irq(&pool->lock);
  1622. if (too_many_workers(pool)) {
  1623. struct worker *worker;
  1624. unsigned long expires;
  1625. /* idle_list is kept in LIFO order, check the last one */
  1626. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1627. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1628. if (time_before(jiffies, expires))
  1629. mod_timer(&pool->idle_timer, expires);
  1630. else {
  1631. /* it's been idle for too long, wake up manager */
  1632. pool->flags |= POOL_MANAGE_WORKERS;
  1633. wake_up_worker(pool);
  1634. }
  1635. }
  1636. spin_unlock_irq(&pool->lock);
  1637. }
  1638. static void send_mayday(struct work_struct *work)
  1639. {
  1640. struct pool_workqueue *pwq = get_work_pwq(work);
  1641. struct workqueue_struct *wq = pwq->wq;
  1642. lockdep_assert_held(&wq_mayday_lock);
  1643. if (!wq->rescuer)
  1644. return;
  1645. /* mayday mayday mayday */
  1646. if (list_empty(&pwq->mayday_node)) {
  1647. list_add_tail(&pwq->mayday_node, &wq->maydays);
  1648. wake_up_process(wq->rescuer->task);
  1649. }
  1650. }
  1651. static void pool_mayday_timeout(unsigned long __pool)
  1652. {
  1653. struct worker_pool *pool = (void *)__pool;
  1654. struct work_struct *work;
  1655. spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
  1656. spin_lock(&pool->lock);
  1657. if (need_to_create_worker(pool)) {
  1658. /*
  1659. * We've been trying to create a new worker but
  1660. * haven't been successful. We might be hitting an
  1661. * allocation deadlock. Send distress signals to
  1662. * rescuers.
  1663. */
  1664. list_for_each_entry(work, &pool->worklist, entry)
  1665. send_mayday(work);
  1666. }
  1667. spin_unlock(&pool->lock);
  1668. spin_unlock_irq(&wq_mayday_lock);
  1669. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
  1670. }
  1671. /**
  1672. * maybe_create_worker - create a new worker if necessary
  1673. * @pool: pool to create a new worker for
  1674. *
  1675. * Create a new worker for @pool if necessary. @pool is guaranteed to
  1676. * have at least one idle worker on return from this function. If
  1677. * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
  1678. * sent to all rescuers with works scheduled on @pool to resolve
  1679. * possible allocation deadlock.
  1680. *
  1681. * On return, need_to_create_worker() is guaranteed to be %false and
  1682. * may_start_working() %true.
  1683. *
  1684. * LOCKING:
  1685. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1686. * multiple times. Does GFP_KERNEL allocations. Called only from
  1687. * manager.
  1688. *
  1689. * Return:
  1690. * %false if no action was taken and pool->lock stayed locked, %true
  1691. * otherwise.
  1692. */
  1693. static bool maybe_create_worker(struct worker_pool *pool)
  1694. __releases(&pool->lock)
  1695. __acquires(&pool->lock)
  1696. {
  1697. if (!need_to_create_worker(pool))
  1698. return false;
  1699. restart:
  1700. spin_unlock_irq(&pool->lock);
  1701. /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
  1702. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
  1703. while (true) {
  1704. struct worker *worker;
  1705. worker = create_worker(pool);
  1706. if (worker) {
  1707. del_timer_sync(&pool->mayday_timer);
  1708. spin_lock_irq(&pool->lock);
  1709. start_worker(worker);
  1710. if (WARN_ON_ONCE(need_to_create_worker(pool)))
  1711. goto restart;
  1712. return true;
  1713. }
  1714. if (!need_to_create_worker(pool))
  1715. break;
  1716. __set_current_state(TASK_INTERRUPTIBLE);
  1717. schedule_timeout(CREATE_COOLDOWN);
  1718. if (!need_to_create_worker(pool))
  1719. break;
  1720. }
  1721. del_timer_sync(&pool->mayday_timer);
  1722. spin_lock_irq(&pool->lock);
  1723. if (need_to_create_worker(pool))
  1724. goto restart;
  1725. return true;
  1726. }
  1727. /**
  1728. * maybe_destroy_worker - destroy workers which have been idle for a while
  1729. * @pool: pool to destroy workers for
  1730. *
  1731. * Destroy @pool workers which have been idle for longer than
  1732. * IDLE_WORKER_TIMEOUT.
  1733. *
  1734. * LOCKING:
  1735. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1736. * multiple times. Called only from manager.
  1737. *
  1738. * Return:
  1739. * %false if no action was taken and pool->lock stayed locked, %true
  1740. * otherwise.
  1741. */
  1742. static bool maybe_destroy_workers(struct worker_pool *pool)
  1743. {
  1744. bool ret = false;
  1745. while (too_many_workers(pool)) {
  1746. struct worker *worker;
  1747. unsigned long expires;
  1748. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1749. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1750. if (time_before(jiffies, expires)) {
  1751. mod_timer(&pool->idle_timer, expires);
  1752. break;
  1753. }
  1754. destroy_worker(worker);
  1755. ret = true;
  1756. }
  1757. return ret;
  1758. }
  1759. /**
  1760. * manage_workers - manage worker pool
  1761. * @worker: self
  1762. *
  1763. * Assume the manager role and manage the worker pool @worker belongs
  1764. * to. At any given time, there can be only zero or one manager per
  1765. * pool. The exclusion is handled automatically by this function.
  1766. *
  1767. * The caller can safely start processing works on false return. On
  1768. * true return, it's guaranteed that need_to_create_worker() is false
  1769. * and may_start_working() is true.
  1770. *
  1771. * CONTEXT:
  1772. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1773. * multiple times. Does GFP_KERNEL allocations.
  1774. *
  1775. * Return:
  1776. * %false if the pool don't need management and the caller can safely start
  1777. * processing works, %true indicates that the function released pool->lock
  1778. * and reacquired it to perform some management function and that the
  1779. * conditions that the caller verified while holding the lock before
  1780. * calling the function might no longer be true.
  1781. */
  1782. static bool manage_workers(struct worker *worker)
  1783. {
  1784. struct worker_pool *pool = worker->pool;
  1785. bool ret = false;
  1786. /*
  1787. * Managership is governed by two mutexes - manager_arb and
  1788. * manager_mutex. manager_arb handles arbitration of manager role.
  1789. * Anyone who successfully grabs manager_arb wins the arbitration
  1790. * and becomes the manager. mutex_trylock() on pool->manager_arb
  1791. * failure while holding pool->lock reliably indicates that someone
  1792. * else is managing the pool and the worker which failed trylock
  1793. * can proceed to executing work items. This means that anyone
  1794. * grabbing manager_arb is responsible for actually performing
  1795. * manager duties. If manager_arb is grabbed and released without
  1796. * actual management, the pool may stall indefinitely.
  1797. *
  1798. * manager_mutex is used for exclusion of actual management
  1799. * operations. The holder of manager_mutex can be sure that none
  1800. * of management operations, including creation and destruction of
  1801. * workers, won't take place until the mutex is released. Because
  1802. * manager_mutex doesn't interfere with manager role arbitration,
  1803. * it is guaranteed that the pool's management, while may be
  1804. * delayed, won't be disturbed by someone else grabbing
  1805. * manager_mutex.
  1806. */
  1807. if (!mutex_trylock(&pool->manager_arb))
  1808. return ret;
  1809. /*
  1810. * With manager arbitration won, manager_mutex would be free in
  1811. * most cases. trylock first without dropping @pool->lock.
  1812. */
  1813. if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
  1814. spin_unlock_irq(&pool->lock);
  1815. mutex_lock(&pool->manager_mutex);
  1816. spin_lock_irq(&pool->lock);
  1817. ret = true;
  1818. }
  1819. pool->flags &= ~POOL_MANAGE_WORKERS;
  1820. /*
  1821. * Destroy and then create so that may_start_working() is true
  1822. * on return.
  1823. */
  1824. ret |= maybe_destroy_workers(pool);
  1825. ret |= maybe_create_worker(pool);
  1826. mutex_unlock(&pool->manager_mutex);
  1827. mutex_unlock(&pool->manager_arb);
  1828. return ret;
  1829. }
  1830. /**
  1831. * process_one_work - process single work
  1832. * @worker: self
  1833. * @work: work to process
  1834. *
  1835. * Process @work. This function contains all the logics necessary to
  1836. * process a single work including synchronization against and
  1837. * interaction with other workers on the same cpu, queueing and
  1838. * flushing. As long as context requirement is met, any worker can
  1839. * call this function to process a work.
  1840. *
  1841. * CONTEXT:
  1842. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1843. */
  1844. static void process_one_work(struct worker *worker, struct work_struct *work)
  1845. __releases(&pool->lock)
  1846. __acquires(&pool->lock)
  1847. {
  1848. struct pool_workqueue *pwq = get_work_pwq(work);
  1849. struct worker_pool *pool = worker->pool;
  1850. bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
  1851. int work_color;
  1852. struct worker *collision;
  1853. #ifdef CONFIG_LOCKDEP
  1854. /*
  1855. * It is permissible to free the struct work_struct from
  1856. * inside the function that is called from it, this we need to
  1857. * take into account for lockdep too. To avoid bogus "held
  1858. * lock freed" warnings as well as problems when looking into
  1859. * work->lockdep_map, make a copy and use that here.
  1860. */
  1861. struct lockdep_map lockdep_map;
  1862. lockdep_copy_map(&lockdep_map, &work->lockdep_map);
  1863. #endif
  1864. /*
  1865. * Ensure we're on the correct CPU. DISASSOCIATED test is
  1866. * necessary to avoid spurious warnings from rescuers servicing the
  1867. * unbound or a disassociated pool.
  1868. */
  1869. WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
  1870. !(pool->flags & POOL_DISASSOCIATED) &&
  1871. raw_smp_processor_id() != pool->cpu);
  1872. /*
  1873. * A single work shouldn't be executed concurrently by
  1874. * multiple workers on a single cpu. Check whether anyone is
  1875. * already processing the work. If so, defer the work to the
  1876. * currently executing one.
  1877. */
  1878. collision = find_worker_executing_work(pool, work);
  1879. if (unlikely(collision)) {
  1880. move_linked_works(work, &collision->scheduled, NULL);
  1881. return;
  1882. }
  1883. /* claim and dequeue */
  1884. debug_work_deactivate(work);
  1885. hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
  1886. worker->current_work = work;
  1887. worker->current_func = work->func;
  1888. worker->current_pwq = pwq;
  1889. work_color = get_work_color(work);
  1890. list_del_init(&work->entry);
  1891. /*
  1892. * CPU intensive works don't participate in concurrency
  1893. * management. They're the scheduler's responsibility.
  1894. */
  1895. if (unlikely(cpu_intensive))
  1896. worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
  1897. /*
  1898. * Unbound pool isn't concurrency managed and work items should be
  1899. * executed ASAP. Wake up another worker if necessary.
  1900. */
  1901. if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
  1902. wake_up_worker(pool);
  1903. /*
  1904. * Record the last pool and clear PENDING which should be the last
  1905. * update to @work. Also, do this inside @pool->lock so that
  1906. * PENDING and queued state changes happen together while IRQ is
  1907. * disabled.
  1908. */
  1909. set_work_pool_and_clear_pending(work, pool->id);
  1910. spin_unlock_irq(&pool->lock);
  1911. lock_map_acquire_read(&pwq->wq->lockdep_map);
  1912. lock_map_acquire(&lockdep_map);
  1913. trace_workqueue_execute_start(work);
  1914. worker->current_func(work);
  1915. /*
  1916. * While we must be careful to not use "work" after this, the trace
  1917. * point will only record its address.
  1918. */
  1919. trace_workqueue_execute_end(work);
  1920. lock_map_release(&lockdep_map);
  1921. lock_map_release(&pwq->wq->lockdep_map);
  1922. if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
  1923. pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
  1924. " last function: %pf\n",
  1925. current->comm, preempt_count(), task_pid_nr(current),
  1926. worker->current_func);
  1927. debug_show_held_locks(current);
  1928. dump_stack();
  1929. }
  1930. /*
  1931. * The following prevents a kworker from hogging CPU on !PREEMPT
  1932. * kernels, where a requeueing work item waiting for something to
  1933. * happen could deadlock with stop_machine as such work item could
  1934. * indefinitely requeue itself while all other CPUs are trapped in
  1935. * stop_machine.
  1936. */
  1937. cond_resched();
  1938. spin_lock_irq(&pool->lock);
  1939. /* clear cpu intensive status */
  1940. if (unlikely(cpu_intensive))
  1941. worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
  1942. /* we're done with it, release */
  1943. hash_del(&worker->hentry);
  1944. worker->current_work = NULL;
  1945. worker->current_func = NULL;
  1946. worker->current_pwq = NULL;
  1947. worker->desc_valid = false;
  1948. pwq_dec_nr_in_flight(pwq, work_color);
  1949. }
  1950. /**
  1951. * process_scheduled_works - process scheduled works
  1952. * @worker: self
  1953. *
  1954. * Process all scheduled works. Please note that the scheduled list
  1955. * may change while processing a work, so this function repeatedly
  1956. * fetches a work from the top and executes it.
  1957. *
  1958. * CONTEXT:
  1959. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1960. * multiple times.
  1961. */
  1962. static void process_scheduled_works(struct worker *worker)
  1963. {
  1964. while (!list_empty(&worker->scheduled)) {
  1965. struct work_struct *work = list_first_entry(&worker->scheduled,
  1966. struct work_struct, entry);
  1967. process_one_work(worker, work);
  1968. }
  1969. }
  1970. /**
  1971. * worker_thread - the worker thread function
  1972. * @__worker: self
  1973. *
  1974. * The worker thread function. All workers belong to a worker_pool -
  1975. * either a per-cpu one or dynamic unbound one. These workers process all
  1976. * work items regardless of their specific target workqueue. The only
  1977. * exception is work items which belong to workqueues with a rescuer which
  1978. * will be explained in rescuer_thread().
  1979. *
  1980. * Return: 0
  1981. */
  1982. static int worker_thread(void *__worker)
  1983. {
  1984. struct worker *worker = __worker;
  1985. struct worker_pool *pool = worker->pool;
  1986. /* tell the scheduler that this is a workqueue worker */
  1987. worker->task->flags |= PF_WQ_WORKER;
  1988. woke_up:
  1989. spin_lock_irq(&pool->lock);
  1990. /* am I supposed to die? */
  1991. if (unlikely(worker->flags & WORKER_DIE)) {
  1992. spin_unlock_irq(&pool->lock);
  1993. WARN_ON_ONCE(!list_empty(&worker->entry));
  1994. worker->task->flags &= ~PF_WQ_WORKER;
  1995. return 0;
  1996. }
  1997. worker_leave_idle(worker);
  1998. recheck:
  1999. /* no more worker necessary? */
  2000. if (!need_more_worker(pool))
  2001. goto sleep;
  2002. /* do we need to manage? */
  2003. if (unlikely(!may_start_working(pool)) && manage_workers(worker))
  2004. goto recheck;
  2005. /*
  2006. * ->scheduled list can only be filled while a worker is
  2007. * preparing to process a work or actually processing it.
  2008. * Make sure nobody diddled with it while I was sleeping.
  2009. */
  2010. WARN_ON_ONCE(!list_empty(&worker->scheduled));
  2011. /*
  2012. * Finish PREP stage. We're guaranteed to have at least one idle
  2013. * worker or that someone else has already assumed the manager
  2014. * role. This is where @worker starts participating in concurrency
  2015. * management if applicable and concurrency management is restored
  2016. * after being rebound. See rebind_workers() for details.
  2017. */
  2018. worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
  2019. do {
  2020. struct work_struct *work =
  2021. list_first_entry(&pool->worklist,
  2022. struct work_struct, entry);
  2023. if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
  2024. /* optimization path, not strictly necessary */
  2025. process_one_work(worker, work);
  2026. if (unlikely(!list_empty(&worker->scheduled)))
  2027. process_scheduled_works(worker);
  2028. } else {
  2029. move_linked_works(work, &worker->scheduled, NULL);
  2030. process_scheduled_works(worker);
  2031. }
  2032. } while (keep_working(pool));
  2033. worker_set_flags(worker, WORKER_PREP, false);
  2034. sleep:
  2035. if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
  2036. goto recheck;
  2037. /*
  2038. * pool->lock is held and there's no work to process and no need to
  2039. * manage, sleep. Workers are woken up only while holding
  2040. * pool->lock or from local cpu, so setting the current state
  2041. * before releasing pool->lock is enough to prevent losing any
  2042. * event.
  2043. */
  2044. worker_enter_idle(worker);
  2045. __set_current_state(TASK_INTERRUPTIBLE);
  2046. spin_unlock_irq(&pool->lock);
  2047. schedule();
  2048. goto woke_up;
  2049. }
  2050. /**
  2051. * rescuer_thread - the rescuer thread function
  2052. * @__rescuer: self
  2053. *
  2054. * Workqueue rescuer thread function. There's one rescuer for each
  2055. * workqueue which has WQ_MEM_RECLAIM set.
  2056. *
  2057. * Regular work processing on a pool may block trying to create a new
  2058. * worker which uses GFP_KERNEL allocation which has slight chance of
  2059. * developing into deadlock if some works currently on the same queue
  2060. * need to be processed to satisfy the GFP_KERNEL allocation. This is
  2061. * the problem rescuer solves.
  2062. *
  2063. * When such condition is possible, the pool summons rescuers of all
  2064. * workqueues which have works queued on the pool and let them process
  2065. * those works so that forward progress can be guaranteed.
  2066. *
  2067. * This should happen rarely.
  2068. *
  2069. * Return: 0
  2070. */
  2071. static int rescuer_thread(void *__rescuer)
  2072. {
  2073. struct worker *rescuer = __rescuer;
  2074. struct workqueue_struct *wq = rescuer->rescue_wq;
  2075. struct list_head *scheduled = &rescuer->scheduled;
  2076. set_user_nice(current, RESCUER_NICE_LEVEL);
  2077. /*
  2078. * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
  2079. * doesn't participate in concurrency management.
  2080. */
  2081. rescuer->task->flags |= PF_WQ_WORKER;
  2082. repeat:
  2083. set_current_state(TASK_INTERRUPTIBLE);
  2084. if (kthread_should_stop()) {
  2085. __set_current_state(TASK_RUNNING);
  2086. rescuer->task->flags &= ~PF_WQ_WORKER;
  2087. return 0;
  2088. }
  2089. /* see whether any pwq is asking for help */
  2090. spin_lock_irq(&wq_mayday_lock);
  2091. while (!list_empty(&wq->maydays)) {
  2092. struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
  2093. struct pool_workqueue, mayday_node);
  2094. struct worker_pool *pool = pwq->pool;
  2095. struct work_struct *work, *n;
  2096. __set_current_state(TASK_RUNNING);
  2097. list_del_init(&pwq->mayday_node);
  2098. spin_unlock_irq(&wq_mayday_lock);
  2099. /* migrate to the target cpu if possible */
  2100. worker_maybe_bind_and_lock(pool);
  2101. rescuer->pool = pool;
  2102. /*
  2103. * Slurp in all works issued via this workqueue and
  2104. * process'em.
  2105. */
  2106. WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
  2107. list_for_each_entry_safe(work, n, &pool->worklist, entry)
  2108. if (get_work_pwq(work) == pwq)
  2109. move_linked_works(work, scheduled, &n);
  2110. process_scheduled_works(rescuer);
  2111. /*
  2112. * Leave this pool. If keep_working() is %true, notify a
  2113. * regular worker; otherwise, we end up with 0 concurrency
  2114. * and stalling the execution.
  2115. */
  2116. if (keep_working(pool))
  2117. wake_up_worker(pool);
  2118. rescuer->pool = NULL;
  2119. spin_unlock(&pool->lock);
  2120. spin_lock(&wq_mayday_lock);
  2121. }
  2122. spin_unlock_irq(&wq_mayday_lock);
  2123. /* rescuers should never participate in concurrency management */
  2124. WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
  2125. schedule();
  2126. goto repeat;
  2127. }
  2128. struct wq_barrier {
  2129. struct work_struct work;
  2130. struct completion done;
  2131. };
  2132. static void wq_barrier_func(struct work_struct *work)
  2133. {
  2134. struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
  2135. complete(&barr->done);
  2136. }
  2137. /**
  2138. * insert_wq_barrier - insert a barrier work
  2139. * @pwq: pwq to insert barrier into
  2140. * @barr: wq_barrier to insert
  2141. * @target: target work to attach @barr to
  2142. * @worker: worker currently executing @target, NULL if @target is not executing
  2143. *
  2144. * @barr is linked to @target such that @barr is completed only after
  2145. * @target finishes execution. Please note that the ordering
  2146. * guarantee is observed only with respect to @target and on the local
  2147. * cpu.
  2148. *
  2149. * Currently, a queued barrier can't be canceled. This is because
  2150. * try_to_grab_pending() can't determine whether the work to be
  2151. * grabbed is at the head of the queue and thus can't clear LINKED
  2152. * flag of the previous work while there must be a valid next work
  2153. * after a work with LINKED flag set.
  2154. *
  2155. * Note that when @worker is non-NULL, @target may be modified
  2156. * underneath us, so we can't reliably determine pwq from @target.
  2157. *
  2158. * CONTEXT:
  2159. * spin_lock_irq(pool->lock).
  2160. */
  2161. static void insert_wq_barrier(struct pool_workqueue *pwq,
  2162. struct wq_barrier *barr,
  2163. struct work_struct *target, struct worker *worker)
  2164. {
  2165. struct list_head *head;
  2166. unsigned int linked = 0;
  2167. /*
  2168. * debugobject calls are safe here even with pool->lock locked
  2169. * as we know for sure that this will not trigger any of the
  2170. * checks and call back into the fixup functions where we
  2171. * might deadlock.
  2172. */
  2173. INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
  2174. __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
  2175. init_completion(&barr->done);
  2176. /*
  2177. * If @target is currently being executed, schedule the
  2178. * barrier to the worker; otherwise, put it after @target.
  2179. */
  2180. if (worker)
  2181. head = worker->scheduled.next;
  2182. else {
  2183. unsigned long *bits = work_data_bits(target);
  2184. head = target->entry.next;
  2185. /* there can already be other linked works, inherit and set */
  2186. linked = *bits & WORK_STRUCT_LINKED;
  2187. __set_bit(WORK_STRUCT_LINKED_BIT, bits);
  2188. }
  2189. debug_work_activate(&barr->work);
  2190. insert_work(pwq, &barr->work, head,
  2191. work_color_to_flags(WORK_NO_COLOR) | linked);
  2192. }
  2193. /**
  2194. * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
  2195. * @wq: workqueue being flushed
  2196. * @flush_color: new flush color, < 0 for no-op
  2197. * @work_color: new work color, < 0 for no-op
  2198. *
  2199. * Prepare pwqs for workqueue flushing.
  2200. *
  2201. * If @flush_color is non-negative, flush_color on all pwqs should be
  2202. * -1. If no pwq has in-flight commands at the specified color, all
  2203. * pwq->flush_color's stay at -1 and %false is returned. If any pwq
  2204. * has in flight commands, its pwq->flush_color is set to
  2205. * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
  2206. * wakeup logic is armed and %true is returned.
  2207. *
  2208. * The caller should have initialized @wq->first_flusher prior to
  2209. * calling this function with non-negative @flush_color. If
  2210. * @flush_color is negative, no flush color update is done and %false
  2211. * is returned.
  2212. *
  2213. * If @work_color is non-negative, all pwqs should have the same
  2214. * work_color which is previous to @work_color and all will be
  2215. * advanced to @work_color.
  2216. *
  2217. * CONTEXT:
  2218. * mutex_lock(wq->mutex).
  2219. *
  2220. * Return:
  2221. * %true if @flush_color >= 0 and there's something to flush. %false
  2222. * otherwise.
  2223. */
  2224. static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
  2225. int flush_color, int work_color)
  2226. {
  2227. bool wait = false;
  2228. struct pool_workqueue *pwq;
  2229. if (flush_color >= 0) {
  2230. WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
  2231. atomic_set(&wq->nr_pwqs_to_flush, 1);
  2232. }
  2233. for_each_pwq(pwq, wq) {
  2234. struct worker_pool *pool = pwq->pool;
  2235. spin_lock_irq(&pool->lock);
  2236. if (flush_color >= 0) {
  2237. WARN_ON_ONCE(pwq->flush_color != -1);
  2238. if (pwq->nr_in_flight[flush_color]) {
  2239. pwq->flush_color = flush_color;
  2240. atomic_inc(&wq->nr_pwqs_to_flush);
  2241. wait = true;
  2242. }
  2243. }
  2244. if (work_color >= 0) {
  2245. WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
  2246. pwq->work_color = work_color;
  2247. }
  2248. spin_unlock_irq(&pool->lock);
  2249. }
  2250. if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
  2251. complete(&wq->first_flusher->done);
  2252. return wait;
  2253. }
  2254. /**
  2255. * flush_workqueue - ensure that any scheduled work has run to completion.
  2256. * @wq: workqueue to flush
  2257. *
  2258. * This function sleeps until all work items which were queued on entry
  2259. * have finished execution, but it is not livelocked by new incoming ones.
  2260. */
  2261. void flush_workqueue(struct workqueue_struct *wq)
  2262. {
  2263. struct wq_flusher this_flusher = {
  2264. .list = LIST_HEAD_INIT(this_flusher.list),
  2265. .flush_color = -1,
  2266. .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
  2267. };
  2268. int next_color;
  2269. lock_map_acquire(&wq->lockdep_map);
  2270. lock_map_release(&wq->lockdep_map);
  2271. mutex_lock(&wq->mutex);
  2272. /*
  2273. * Start-to-wait phase
  2274. */
  2275. next_color = work_next_color(wq->work_color);
  2276. if (next_color != wq->flush_color) {
  2277. /*
  2278. * Color space is not full. The current work_color
  2279. * becomes our flush_color and work_color is advanced
  2280. * by one.
  2281. */
  2282. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
  2283. this_flusher.flush_color = wq->work_color;
  2284. wq->work_color = next_color;
  2285. if (!wq->first_flusher) {
  2286. /* no flush in progress, become the first flusher */
  2287. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2288. wq->first_flusher = &this_flusher;
  2289. if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
  2290. wq->work_color)) {
  2291. /* nothing to flush, done */
  2292. wq->flush_color = next_color;
  2293. wq->first_flusher = NULL;
  2294. goto out_unlock;
  2295. }
  2296. } else {
  2297. /* wait in queue */
  2298. WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
  2299. list_add_tail(&this_flusher.list, &wq->flusher_queue);
  2300. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2301. }
  2302. } else {
  2303. /*
  2304. * Oops, color space is full, wait on overflow queue.
  2305. * The next flush completion will assign us
  2306. * flush_color and transfer to flusher_queue.
  2307. */
  2308. list_add_tail(&this_flusher.list, &wq->flusher_overflow);
  2309. }
  2310. mutex_unlock(&wq->mutex);
  2311. wait_for_completion(&this_flusher.done);
  2312. /*
  2313. * Wake-up-and-cascade phase
  2314. *
  2315. * First flushers are responsible for cascading flushes and
  2316. * handling overflow. Non-first flushers can simply return.
  2317. */
  2318. if (wq->first_flusher != &this_flusher)
  2319. return;
  2320. mutex_lock(&wq->mutex);
  2321. /* we might have raced, check again with mutex held */
  2322. if (wq->first_flusher != &this_flusher)
  2323. goto out_unlock;
  2324. wq->first_flusher = NULL;
  2325. WARN_ON_ONCE(!list_empty(&this_flusher.list));
  2326. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2327. while (true) {
  2328. struct wq_flusher *next, *tmp;
  2329. /* complete all the flushers sharing the current flush color */
  2330. list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
  2331. if (next->flush_color != wq->flush_color)
  2332. break;
  2333. list_del_init(&next->list);
  2334. complete(&next->done);
  2335. }
  2336. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
  2337. wq->flush_color != work_next_color(wq->work_color));
  2338. /* this flush_color is finished, advance by one */
  2339. wq->flush_color = work_next_color(wq->flush_color);
  2340. /* one color has been freed, handle overflow queue */
  2341. if (!list_empty(&wq->flusher_overflow)) {
  2342. /*
  2343. * Assign the same color to all overflowed
  2344. * flushers, advance work_color and append to
  2345. * flusher_queue. This is the start-to-wait
  2346. * phase for these overflowed flushers.
  2347. */
  2348. list_for_each_entry(tmp, &wq->flusher_overflow, list)
  2349. tmp->flush_color = wq->work_color;
  2350. wq->work_color = work_next_color(wq->work_color);
  2351. list_splice_tail_init(&wq->flusher_overflow,
  2352. &wq->flusher_queue);
  2353. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2354. }
  2355. if (list_empty(&wq->flusher_queue)) {
  2356. WARN_ON_ONCE(wq->flush_color != wq->work_color);
  2357. break;
  2358. }
  2359. /*
  2360. * Need to flush more colors. Make the next flusher
  2361. * the new first flusher and arm pwqs.
  2362. */
  2363. WARN_ON_ONCE(wq->flush_color == wq->work_color);
  2364. WARN_ON_ONCE(wq->flush_color != next->flush_color);
  2365. list_del_init(&next->list);
  2366. wq->first_flusher = next;
  2367. if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
  2368. break;
  2369. /*
  2370. * Meh... this color is already done, clear first
  2371. * flusher and repeat cascading.
  2372. */
  2373. wq->first_flusher = NULL;
  2374. }
  2375. out_unlock:
  2376. mutex_unlock(&wq->mutex);
  2377. }
  2378. EXPORT_SYMBOL_GPL(flush_workqueue);
  2379. /**
  2380. * drain_workqueue - drain a workqueue
  2381. * @wq: workqueue to drain
  2382. *
  2383. * Wait until the workqueue becomes empty. While draining is in progress,
  2384. * only chain queueing is allowed. IOW, only currently pending or running
  2385. * work items on @wq can queue further work items on it. @wq is flushed
  2386. * repeatedly until it becomes empty. The number of flushing is detemined
  2387. * by the depth of chaining and should be relatively short. Whine if it
  2388. * takes too long.
  2389. */
  2390. void drain_workqueue(struct workqueue_struct *wq)
  2391. {
  2392. unsigned int flush_cnt = 0;
  2393. struct pool_workqueue *pwq;
  2394. /*
  2395. * __queue_work() needs to test whether there are drainers, is much
  2396. * hotter than drain_workqueue() and already looks at @wq->flags.
  2397. * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
  2398. */
  2399. mutex_lock(&wq->mutex);
  2400. if (!wq->nr_drainers++)
  2401. wq->flags |= __WQ_DRAINING;
  2402. mutex_unlock(&wq->mutex);
  2403. reflush:
  2404. flush_workqueue(wq);
  2405. mutex_lock(&wq->mutex);
  2406. for_each_pwq(pwq, wq) {
  2407. bool drained;
  2408. spin_lock_irq(&pwq->pool->lock);
  2409. drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
  2410. spin_unlock_irq(&pwq->pool->lock);
  2411. if (drained)
  2412. continue;
  2413. if (++flush_cnt == 10 ||
  2414. (flush_cnt % 100 == 0 && flush_cnt <= 1000))
  2415. pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
  2416. wq->name, flush_cnt);
  2417. mutex_unlock(&wq->mutex);
  2418. goto reflush;
  2419. }
  2420. if (!--wq->nr_drainers)
  2421. wq->flags &= ~__WQ_DRAINING;
  2422. mutex_unlock(&wq->mutex);
  2423. }
  2424. EXPORT_SYMBOL_GPL(drain_workqueue);
  2425. static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
  2426. {
  2427. struct worker *worker = NULL;
  2428. struct worker_pool *pool;
  2429. struct pool_workqueue *pwq;
  2430. might_sleep();
  2431. local_irq_disable();
  2432. pool = get_work_pool(work);
  2433. if (!pool) {
  2434. local_irq_enable();
  2435. return false;
  2436. }
  2437. spin_lock(&pool->lock);
  2438. /* see the comment in try_to_grab_pending() with the same code */
  2439. pwq = get_work_pwq(work);
  2440. if (pwq) {
  2441. if (unlikely(pwq->pool != pool))
  2442. goto already_gone;
  2443. } else {
  2444. worker = find_worker_executing_work(pool, work);
  2445. if (!worker)
  2446. goto already_gone;
  2447. pwq = worker->current_pwq;
  2448. }
  2449. insert_wq_barrier(pwq, barr, work, worker);
  2450. spin_unlock_irq(&pool->lock);
  2451. /*
  2452. * If @max_active is 1 or rescuer is in use, flushing another work
  2453. * item on the same workqueue may lead to deadlock. Make sure the
  2454. * flusher is not running on the same workqueue by verifying write
  2455. * access.
  2456. */
  2457. if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
  2458. lock_map_acquire(&pwq->wq->lockdep_map);
  2459. else
  2460. lock_map_acquire_read(&pwq->wq->lockdep_map);
  2461. lock_map_release(&pwq->wq->lockdep_map);
  2462. return true;
  2463. already_gone:
  2464. spin_unlock_irq(&pool->lock);
  2465. return false;
  2466. }
  2467. static bool __flush_work(struct work_struct *work)
  2468. {
  2469. struct wq_barrier barr;
  2470. if (start_flush_work(work, &barr)) {
  2471. wait_for_completion(&barr.done);
  2472. destroy_work_on_stack(&barr.work);
  2473. return true;
  2474. } else {
  2475. return false;
  2476. }
  2477. }
  2478. /**
  2479. * flush_work - wait for a work to finish executing the last queueing instance
  2480. * @work: the work to flush
  2481. *
  2482. * Wait until @work has finished execution. @work is guaranteed to be idle
  2483. * on return if it hasn't been requeued since flush started.
  2484. *
  2485. * Return:
  2486. * %true if flush_work() waited for the work to finish execution,
  2487. * %false if it was already idle.
  2488. */
  2489. bool flush_work(struct work_struct *work)
  2490. {
  2491. lock_map_acquire(&work->lockdep_map);
  2492. lock_map_release(&work->lockdep_map);
  2493. return __flush_work(work);
  2494. }
  2495. EXPORT_SYMBOL_GPL(flush_work);
  2496. static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
  2497. {
  2498. unsigned long flags;
  2499. int ret;
  2500. do {
  2501. ret = try_to_grab_pending(work, is_dwork, &flags);
  2502. /*
  2503. * If someone else is canceling, wait for the same event it
  2504. * would be waiting for before retrying.
  2505. */
  2506. if (unlikely(ret == -ENOENT))
  2507. flush_work(work);
  2508. } while (unlikely(ret < 0));
  2509. /* tell other tasks trying to grab @work to back off */
  2510. mark_work_canceling(work);
  2511. local_irq_restore(flags);
  2512. flush_work(work);
  2513. clear_work_data(work);
  2514. return ret;
  2515. }
  2516. /**
  2517. * cancel_work_sync - cancel a work and wait for it to finish
  2518. * @work: the work to cancel
  2519. *
  2520. * Cancel @work and wait for its execution to finish. This function
  2521. * can be used even if the work re-queues itself or migrates to
  2522. * another workqueue. On return from this function, @work is
  2523. * guaranteed to be not pending or executing on any CPU.
  2524. *
  2525. * cancel_work_sync(&delayed_work->work) must not be used for
  2526. * delayed_work's. Use cancel_delayed_work_sync() instead.
  2527. *
  2528. * The caller must ensure that the workqueue on which @work was last
  2529. * queued can't be destroyed before this function returns.
  2530. *
  2531. * Return:
  2532. * %true if @work was pending, %false otherwise.
  2533. */
  2534. bool cancel_work_sync(struct work_struct *work)
  2535. {
  2536. return __cancel_work_timer(work, false);
  2537. }
  2538. EXPORT_SYMBOL_GPL(cancel_work_sync);
  2539. /**
  2540. * flush_delayed_work - wait for a dwork to finish executing the last queueing
  2541. * @dwork: the delayed work to flush
  2542. *
  2543. * Delayed timer is cancelled and the pending work is queued for
  2544. * immediate execution. Like flush_work(), this function only
  2545. * considers the last queueing instance of @dwork.
  2546. *
  2547. * Return:
  2548. * %true if flush_work() waited for the work to finish execution,
  2549. * %false if it was already idle.
  2550. */
  2551. bool flush_delayed_work(struct delayed_work *dwork)
  2552. {
  2553. local_irq_disable();
  2554. if (del_timer_sync(&dwork->timer))
  2555. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  2556. local_irq_enable();
  2557. return flush_work(&dwork->work);
  2558. }
  2559. EXPORT_SYMBOL(flush_delayed_work);
  2560. /**
  2561. * cancel_delayed_work - cancel a delayed work
  2562. * @dwork: delayed_work to cancel
  2563. *
  2564. * Kill off a pending delayed_work.
  2565. *
  2566. * Return: %true if @dwork was pending and canceled; %false if it wasn't
  2567. * pending.
  2568. *
  2569. * Note:
  2570. * The work callback function may still be running on return, unless
  2571. * it returns %true and the work doesn't re-arm itself. Explicitly flush or
  2572. * use cancel_delayed_work_sync() to wait on it.
  2573. *
  2574. * This function is safe to call from any context including IRQ handler.
  2575. */
  2576. bool cancel_delayed_work(struct delayed_work *dwork)
  2577. {
  2578. unsigned long flags;
  2579. int ret;
  2580. do {
  2581. ret = try_to_grab_pending(&dwork->work, true, &flags);
  2582. } while (unlikely(ret == -EAGAIN));
  2583. if (unlikely(ret < 0))
  2584. return false;
  2585. set_work_pool_and_clear_pending(&dwork->work,
  2586. get_work_pool_id(&dwork->work));
  2587. local_irq_restore(flags);
  2588. return ret;
  2589. }
  2590. EXPORT_SYMBOL(cancel_delayed_work);
  2591. /**
  2592. * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
  2593. * @dwork: the delayed work cancel
  2594. *
  2595. * This is cancel_work_sync() for delayed works.
  2596. *
  2597. * Return:
  2598. * %true if @dwork was pending, %false otherwise.
  2599. */
  2600. bool cancel_delayed_work_sync(struct delayed_work *dwork)
  2601. {
  2602. return __cancel_work_timer(&dwork->work, true);
  2603. }
  2604. EXPORT_SYMBOL(cancel_delayed_work_sync);
  2605. /**
  2606. * schedule_on_each_cpu - execute a function synchronously on each online CPU
  2607. * @func: the function to call
  2608. *
  2609. * schedule_on_each_cpu() executes @func on each online CPU using the
  2610. * system workqueue and blocks until all CPUs have completed.
  2611. * schedule_on_each_cpu() is very slow.
  2612. *
  2613. * Return:
  2614. * 0 on success, -errno on failure.
  2615. */
  2616. int schedule_on_each_cpu(work_func_t func)
  2617. {
  2618. int cpu;
  2619. struct work_struct __percpu *works;
  2620. works = alloc_percpu(struct work_struct);
  2621. if (!works)
  2622. return -ENOMEM;
  2623. get_online_cpus();
  2624. for_each_online_cpu(cpu) {
  2625. struct work_struct *work = per_cpu_ptr(works, cpu);
  2626. INIT_WORK(work, func);
  2627. schedule_work_on(cpu, work);
  2628. }
  2629. for_each_online_cpu(cpu)
  2630. flush_work(per_cpu_ptr(works, cpu));
  2631. put_online_cpus();
  2632. free_percpu(works);
  2633. return 0;
  2634. }
  2635. /**
  2636. * flush_scheduled_work - ensure that any scheduled work has run to completion.
  2637. *
  2638. * Forces execution of the kernel-global workqueue and blocks until its
  2639. * completion.
  2640. *
  2641. * Think twice before calling this function! It's very easy to get into
  2642. * trouble if you don't take great care. Either of the following situations
  2643. * will lead to deadlock:
  2644. *
  2645. * One of the work items currently on the workqueue needs to acquire
  2646. * a lock held by your code or its caller.
  2647. *
  2648. * Your code is running in the context of a work routine.
  2649. *
  2650. * They will be detected by lockdep when they occur, but the first might not
  2651. * occur very often. It depends on what work items are on the workqueue and
  2652. * what locks they need, which you have no control over.
  2653. *
  2654. * In most situations flushing the entire workqueue is overkill; you merely
  2655. * need to know that a particular work item isn't queued and isn't running.
  2656. * In such cases you should use cancel_delayed_work_sync() or
  2657. * cancel_work_sync() instead.
  2658. */
  2659. void flush_scheduled_work(void)
  2660. {
  2661. flush_workqueue(system_wq);
  2662. }
  2663. EXPORT_SYMBOL(flush_scheduled_work);
  2664. /**
  2665. * execute_in_process_context - reliably execute the routine with user context
  2666. * @fn: the function to execute
  2667. * @ew: guaranteed storage for the execute work structure (must
  2668. * be available when the work executes)
  2669. *
  2670. * Executes the function immediately if process context is available,
  2671. * otherwise schedules the function for delayed execution.
  2672. *
  2673. * Return: 0 - function was executed
  2674. * 1 - function was scheduled for execution
  2675. */
  2676. int execute_in_process_context(work_func_t fn, struct execute_work *ew)
  2677. {
  2678. if (!in_interrupt()) {
  2679. fn(&ew->work);
  2680. return 0;
  2681. }
  2682. INIT_WORK(&ew->work, fn);
  2683. schedule_work(&ew->work);
  2684. return 1;
  2685. }
  2686. EXPORT_SYMBOL_GPL(execute_in_process_context);
  2687. #ifdef CONFIG_SYSFS
  2688. /*
  2689. * Workqueues with WQ_SYSFS flag set is visible to userland via
  2690. * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
  2691. * following attributes.
  2692. *
  2693. * per_cpu RO bool : whether the workqueue is per-cpu or unbound
  2694. * max_active RW int : maximum number of in-flight work items
  2695. *
  2696. * Unbound workqueues have the following extra attributes.
  2697. *
  2698. * id RO int : the associated pool ID
  2699. * nice RW int : nice value of the workers
  2700. * cpumask RW mask : bitmask of allowed CPUs for the workers
  2701. */
  2702. struct wq_device {
  2703. struct workqueue_struct *wq;
  2704. struct device dev;
  2705. };
  2706. static struct workqueue_struct *dev_to_wq(struct device *dev)
  2707. {
  2708. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2709. return wq_dev->wq;
  2710. }
  2711. static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
  2712. char *buf)
  2713. {
  2714. struct workqueue_struct *wq = dev_to_wq(dev);
  2715. return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
  2716. }
  2717. static DEVICE_ATTR_RO(per_cpu);
  2718. static ssize_t max_active_show(struct device *dev,
  2719. struct device_attribute *attr, char *buf)
  2720. {
  2721. struct workqueue_struct *wq = dev_to_wq(dev);
  2722. return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
  2723. }
  2724. static ssize_t max_active_store(struct device *dev,
  2725. struct device_attribute *attr, const char *buf,
  2726. size_t count)
  2727. {
  2728. struct workqueue_struct *wq = dev_to_wq(dev);
  2729. int val;
  2730. if (sscanf(buf, "%d", &val) != 1 || val <= 0)
  2731. return -EINVAL;
  2732. workqueue_set_max_active(wq, val);
  2733. return count;
  2734. }
  2735. static DEVICE_ATTR_RW(max_active);
  2736. static struct attribute *wq_sysfs_attrs[] = {
  2737. &dev_attr_per_cpu.attr,
  2738. &dev_attr_max_active.attr,
  2739. NULL,
  2740. };
  2741. ATTRIBUTE_GROUPS(wq_sysfs);
  2742. static ssize_t wq_pool_ids_show(struct device *dev,
  2743. struct device_attribute *attr, char *buf)
  2744. {
  2745. struct workqueue_struct *wq = dev_to_wq(dev);
  2746. const char *delim = "";
  2747. int node, written = 0;
  2748. rcu_read_lock_sched();
  2749. for_each_node(node) {
  2750. written += scnprintf(buf + written, PAGE_SIZE - written,
  2751. "%s%d:%d", delim, node,
  2752. unbound_pwq_by_node(wq, node)->pool->id);
  2753. delim = " ";
  2754. }
  2755. written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
  2756. rcu_read_unlock_sched();
  2757. return written;
  2758. }
  2759. static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
  2760. char *buf)
  2761. {
  2762. struct workqueue_struct *wq = dev_to_wq(dev);
  2763. int written;
  2764. mutex_lock(&wq->mutex);
  2765. written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
  2766. mutex_unlock(&wq->mutex);
  2767. return written;
  2768. }
  2769. /* prepare workqueue_attrs for sysfs store operations */
  2770. static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
  2771. {
  2772. struct workqueue_attrs *attrs;
  2773. attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2774. if (!attrs)
  2775. return NULL;
  2776. mutex_lock(&wq->mutex);
  2777. copy_workqueue_attrs(attrs, wq->unbound_attrs);
  2778. mutex_unlock(&wq->mutex);
  2779. return attrs;
  2780. }
  2781. static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
  2782. const char *buf, size_t count)
  2783. {
  2784. struct workqueue_struct *wq = dev_to_wq(dev);
  2785. struct workqueue_attrs *attrs;
  2786. int ret;
  2787. attrs = wq_sysfs_prep_attrs(wq);
  2788. if (!attrs)
  2789. return -ENOMEM;
  2790. if (sscanf(buf, "%d", &attrs->nice) == 1 &&
  2791. attrs->nice >= -20 && attrs->nice <= 19)
  2792. ret = apply_workqueue_attrs(wq, attrs);
  2793. else
  2794. ret = -EINVAL;
  2795. free_workqueue_attrs(attrs);
  2796. return ret ?: count;
  2797. }
  2798. static ssize_t wq_cpumask_show(struct device *dev,
  2799. struct device_attribute *attr, char *buf)
  2800. {
  2801. struct workqueue_struct *wq = dev_to_wq(dev);
  2802. int written;
  2803. mutex_lock(&wq->mutex);
  2804. written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
  2805. mutex_unlock(&wq->mutex);
  2806. written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
  2807. return written;
  2808. }
  2809. static ssize_t wq_cpumask_store(struct device *dev,
  2810. struct device_attribute *attr,
  2811. const char *buf, size_t count)
  2812. {
  2813. struct workqueue_struct *wq = dev_to_wq(dev);
  2814. struct workqueue_attrs *attrs;
  2815. int ret;
  2816. attrs = wq_sysfs_prep_attrs(wq);
  2817. if (!attrs)
  2818. return -ENOMEM;
  2819. ret = cpumask_parse(buf, attrs->cpumask);
  2820. if (!ret)
  2821. ret = apply_workqueue_attrs(wq, attrs);
  2822. free_workqueue_attrs(attrs);
  2823. return ret ?: count;
  2824. }
  2825. static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
  2826. char *buf)
  2827. {
  2828. struct workqueue_struct *wq = dev_to_wq(dev);
  2829. int written;
  2830. mutex_lock(&wq->mutex);
  2831. written = scnprintf(buf, PAGE_SIZE, "%d\n",
  2832. !wq->unbound_attrs->no_numa);
  2833. mutex_unlock(&wq->mutex);
  2834. return written;
  2835. }
  2836. static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
  2837. const char *buf, size_t count)
  2838. {
  2839. struct workqueue_struct *wq = dev_to_wq(dev);
  2840. struct workqueue_attrs *attrs;
  2841. int v, ret;
  2842. attrs = wq_sysfs_prep_attrs(wq);
  2843. if (!attrs)
  2844. return -ENOMEM;
  2845. ret = -EINVAL;
  2846. if (sscanf(buf, "%d", &v) == 1) {
  2847. attrs->no_numa = !v;
  2848. ret = apply_workqueue_attrs(wq, attrs);
  2849. }
  2850. free_workqueue_attrs(attrs);
  2851. return ret ?: count;
  2852. }
  2853. static struct device_attribute wq_sysfs_unbound_attrs[] = {
  2854. __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
  2855. __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
  2856. __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
  2857. __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
  2858. __ATTR_NULL,
  2859. };
  2860. static struct bus_type wq_subsys = {
  2861. .name = "workqueue",
  2862. .dev_groups = wq_sysfs_groups,
  2863. };
  2864. static int __init wq_sysfs_init(void)
  2865. {
  2866. return subsys_virtual_register(&wq_subsys, NULL);
  2867. }
  2868. core_initcall(wq_sysfs_init);
  2869. static void wq_device_release(struct device *dev)
  2870. {
  2871. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2872. kfree(wq_dev);
  2873. }
  2874. /**
  2875. * workqueue_sysfs_register - make a workqueue visible in sysfs
  2876. * @wq: the workqueue to register
  2877. *
  2878. * Expose @wq in sysfs under /sys/bus/workqueue/devices.
  2879. * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
  2880. * which is the preferred method.
  2881. *
  2882. * Workqueue user should use this function directly iff it wants to apply
  2883. * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
  2884. * apply_workqueue_attrs() may race against userland updating the
  2885. * attributes.
  2886. *
  2887. * Return: 0 on success, -errno on failure.
  2888. */
  2889. int workqueue_sysfs_register(struct workqueue_struct *wq)
  2890. {
  2891. struct wq_device *wq_dev;
  2892. int ret;
  2893. /*
  2894. * Adjusting max_active or creating new pwqs by applyting
  2895. * attributes breaks ordering guarantee. Disallow exposing ordered
  2896. * workqueues.
  2897. */
  2898. if (WARN_ON(wq->flags & __WQ_ORDERED))
  2899. return -EINVAL;
  2900. wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
  2901. if (!wq_dev)
  2902. return -ENOMEM;
  2903. wq_dev->wq = wq;
  2904. wq_dev->dev.bus = &wq_subsys;
  2905. wq_dev->dev.init_name = wq->name;
  2906. wq_dev->dev.release = wq_device_release;
  2907. /*
  2908. * unbound_attrs are created separately. Suppress uevent until
  2909. * everything is ready.
  2910. */
  2911. dev_set_uevent_suppress(&wq_dev->dev, true);
  2912. ret = device_register(&wq_dev->dev);
  2913. if (ret) {
  2914. kfree(wq_dev);
  2915. wq->wq_dev = NULL;
  2916. return ret;
  2917. }
  2918. if (wq->flags & WQ_UNBOUND) {
  2919. struct device_attribute *attr;
  2920. for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
  2921. ret = device_create_file(&wq_dev->dev, attr);
  2922. if (ret) {
  2923. device_unregister(&wq_dev->dev);
  2924. wq->wq_dev = NULL;
  2925. return ret;
  2926. }
  2927. }
  2928. }
  2929. kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
  2930. return 0;
  2931. }
  2932. /**
  2933. * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
  2934. * @wq: the workqueue to unregister
  2935. *
  2936. * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
  2937. */
  2938. static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
  2939. {
  2940. struct wq_device *wq_dev = wq->wq_dev;
  2941. if (!wq->wq_dev)
  2942. return;
  2943. wq->wq_dev = NULL;
  2944. device_unregister(&wq_dev->dev);
  2945. }
  2946. #else /* CONFIG_SYSFS */
  2947. static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
  2948. #endif /* CONFIG_SYSFS */
  2949. /**
  2950. * free_workqueue_attrs - free a workqueue_attrs
  2951. * @attrs: workqueue_attrs to free
  2952. *
  2953. * Undo alloc_workqueue_attrs().
  2954. */
  2955. void free_workqueue_attrs(struct workqueue_attrs *attrs)
  2956. {
  2957. if (attrs) {
  2958. free_cpumask_var(attrs->cpumask);
  2959. kfree(attrs);
  2960. }
  2961. }
  2962. /**
  2963. * alloc_workqueue_attrs - allocate a workqueue_attrs
  2964. * @gfp_mask: allocation mask to use
  2965. *
  2966. * Allocate a new workqueue_attrs, initialize with default settings and
  2967. * return it.
  2968. *
  2969. * Return: The allocated new workqueue_attr on success. %NULL on failure.
  2970. */
  2971. struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
  2972. {
  2973. struct workqueue_attrs *attrs;
  2974. attrs = kzalloc(sizeof(*attrs), gfp_mask);
  2975. if (!attrs)
  2976. goto fail;
  2977. if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
  2978. goto fail;
  2979. cpumask_copy(attrs->cpumask, cpu_possible_mask);
  2980. return attrs;
  2981. fail:
  2982. free_workqueue_attrs(attrs);
  2983. return NULL;
  2984. }
  2985. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  2986. const struct workqueue_attrs *from)
  2987. {
  2988. to->nice = from->nice;
  2989. cpumask_copy(to->cpumask, from->cpumask);
  2990. /*
  2991. * Unlike hash and equality test, this function doesn't ignore
  2992. * ->no_numa as it is used for both pool and wq attrs. Instead,
  2993. * get_unbound_pool() explicitly clears ->no_numa after copying.
  2994. */
  2995. to->no_numa = from->no_numa;
  2996. }
  2997. /* hash value of the content of @attr */
  2998. static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
  2999. {
  3000. u32 hash = 0;
  3001. hash = jhash_1word(attrs->nice, hash);
  3002. hash = jhash(cpumask_bits(attrs->cpumask),
  3003. BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
  3004. return hash;
  3005. }
  3006. /* content equality test */
  3007. static bool wqattrs_equal(const struct workqueue_attrs *a,
  3008. const struct workqueue_attrs *b)
  3009. {
  3010. if (a->nice != b->nice)
  3011. return false;
  3012. if (!cpumask_equal(a->cpumask, b->cpumask))
  3013. return false;
  3014. return true;
  3015. }
  3016. /**
  3017. * init_worker_pool - initialize a newly zalloc'd worker_pool
  3018. * @pool: worker_pool to initialize
  3019. *
  3020. * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
  3021. *
  3022. * Return: 0 on success, -errno on failure. Even on failure, all fields
  3023. * inside @pool proper are initialized and put_unbound_pool() can be called
  3024. * on @pool safely to release it.
  3025. */
  3026. static int init_worker_pool(struct worker_pool *pool)
  3027. {
  3028. spin_lock_init(&pool->lock);
  3029. pool->id = -1;
  3030. pool->cpu = -1;
  3031. pool->node = NUMA_NO_NODE;
  3032. pool->flags |= POOL_DISASSOCIATED;
  3033. INIT_LIST_HEAD(&pool->worklist);
  3034. INIT_LIST_HEAD(&pool->idle_list);
  3035. hash_init(pool->busy_hash);
  3036. init_timer_deferrable(&pool->idle_timer);
  3037. pool->idle_timer.function = idle_worker_timeout;
  3038. pool->idle_timer.data = (unsigned long)pool;
  3039. setup_timer(&pool->mayday_timer, pool_mayday_timeout,
  3040. (unsigned long)pool);
  3041. mutex_init(&pool->manager_arb);
  3042. mutex_init(&pool->manager_mutex);
  3043. idr_init(&pool->worker_idr);
  3044. INIT_HLIST_NODE(&pool->hash_node);
  3045. pool->refcnt = 1;
  3046. /* shouldn't fail above this point */
  3047. pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3048. if (!pool->attrs)
  3049. return -ENOMEM;
  3050. return 0;
  3051. }
  3052. static void rcu_free_pool(struct rcu_head *rcu)
  3053. {
  3054. struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
  3055. idr_destroy(&pool->worker_idr);
  3056. free_workqueue_attrs(pool->attrs);
  3057. kfree(pool);
  3058. }
  3059. /**
  3060. * put_unbound_pool - put a worker_pool
  3061. * @pool: worker_pool to put
  3062. *
  3063. * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
  3064. * safe manner. get_unbound_pool() calls this function on its failure path
  3065. * and this function should be able to release pools which went through,
  3066. * successfully or not, init_worker_pool().
  3067. *
  3068. * Should be called with wq_pool_mutex held.
  3069. */
  3070. static void put_unbound_pool(struct worker_pool *pool)
  3071. {
  3072. struct worker *worker;
  3073. lockdep_assert_held(&wq_pool_mutex);
  3074. if (--pool->refcnt)
  3075. return;
  3076. /* sanity checks */
  3077. if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
  3078. WARN_ON(!list_empty(&pool->worklist)))
  3079. return;
  3080. /* release id and unhash */
  3081. if (pool->id >= 0)
  3082. idr_remove(&worker_pool_idr, pool->id);
  3083. hash_del(&pool->hash_node);
  3084. /*
  3085. * Become the manager and destroy all workers. Grabbing
  3086. * manager_arb prevents @pool's workers from blocking on
  3087. * manager_mutex.
  3088. */
  3089. mutex_lock(&pool->manager_arb);
  3090. mutex_lock(&pool->manager_mutex);
  3091. spin_lock_irq(&pool->lock);
  3092. while ((worker = first_worker(pool)))
  3093. destroy_worker(worker);
  3094. WARN_ON(pool->nr_workers || pool->nr_idle);
  3095. spin_unlock_irq(&pool->lock);
  3096. mutex_unlock(&pool->manager_mutex);
  3097. mutex_unlock(&pool->manager_arb);
  3098. /* shut down the timers */
  3099. del_timer_sync(&pool->idle_timer);
  3100. del_timer_sync(&pool->mayday_timer);
  3101. /* sched-RCU protected to allow dereferences from get_work_pool() */
  3102. call_rcu_sched(&pool->rcu, rcu_free_pool);
  3103. }
  3104. /**
  3105. * get_unbound_pool - get a worker_pool with the specified attributes
  3106. * @attrs: the attributes of the worker_pool to get
  3107. *
  3108. * Obtain a worker_pool which has the same attributes as @attrs, bump the
  3109. * reference count and return it. If there already is a matching
  3110. * worker_pool, it will be used; otherwise, this function attempts to
  3111. * create a new one.
  3112. *
  3113. * Should be called with wq_pool_mutex held.
  3114. *
  3115. * Return: On success, a worker_pool with the same attributes as @attrs.
  3116. * On failure, %NULL.
  3117. */
  3118. static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
  3119. {
  3120. u32 hash = wqattrs_hash(attrs);
  3121. struct worker_pool *pool;
  3122. int node;
  3123. lockdep_assert_held(&wq_pool_mutex);
  3124. /* do we already have a matching pool? */
  3125. hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
  3126. if (wqattrs_equal(pool->attrs, attrs)) {
  3127. pool->refcnt++;
  3128. goto out_unlock;
  3129. }
  3130. }
  3131. /* nope, create a new one */
  3132. pool = kzalloc(sizeof(*pool), GFP_KERNEL);
  3133. if (!pool || init_worker_pool(pool) < 0)
  3134. goto fail;
  3135. if (workqueue_freezing)
  3136. pool->flags |= POOL_FREEZING;
  3137. lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
  3138. copy_workqueue_attrs(pool->attrs, attrs);
  3139. /*
  3140. * no_numa isn't a worker_pool attribute, always clear it. See
  3141. * 'struct workqueue_attrs' comments for detail.
  3142. */
  3143. pool->attrs->no_numa = false;
  3144. /* if cpumask is contained inside a NUMA node, we belong to that node */
  3145. if (wq_numa_enabled) {
  3146. for_each_node(node) {
  3147. if (cpumask_subset(pool->attrs->cpumask,
  3148. wq_numa_possible_cpumask[node])) {
  3149. pool->node = node;
  3150. break;
  3151. }
  3152. }
  3153. }
  3154. if (worker_pool_assign_id(pool) < 0)
  3155. goto fail;
  3156. /* create and start the initial worker */
  3157. if (create_and_start_worker(pool) < 0)
  3158. goto fail;
  3159. /* install */
  3160. hash_add(unbound_pool_hash, &pool->hash_node, hash);
  3161. out_unlock:
  3162. return pool;
  3163. fail:
  3164. if (pool)
  3165. put_unbound_pool(pool);
  3166. return NULL;
  3167. }
  3168. static void rcu_free_pwq(struct rcu_head *rcu)
  3169. {
  3170. kmem_cache_free(pwq_cache,
  3171. container_of(rcu, struct pool_workqueue, rcu));
  3172. }
  3173. /*
  3174. * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
  3175. * and needs to be destroyed.
  3176. */
  3177. static void pwq_unbound_release_workfn(struct work_struct *work)
  3178. {
  3179. struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
  3180. unbound_release_work);
  3181. struct workqueue_struct *wq = pwq->wq;
  3182. struct worker_pool *pool = pwq->pool;
  3183. bool is_last;
  3184. if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
  3185. return;
  3186. /*
  3187. * Unlink @pwq. Synchronization against wq->mutex isn't strictly
  3188. * necessary on release but do it anyway. It's easier to verify
  3189. * and consistent with the linking path.
  3190. */
  3191. mutex_lock(&wq->mutex);
  3192. list_del_rcu(&pwq->pwqs_node);
  3193. is_last = list_empty(&wq->pwqs);
  3194. mutex_unlock(&wq->mutex);
  3195. mutex_lock(&wq_pool_mutex);
  3196. put_unbound_pool(pool);
  3197. mutex_unlock(&wq_pool_mutex);
  3198. call_rcu_sched(&pwq->rcu, rcu_free_pwq);
  3199. /*
  3200. * If we're the last pwq going away, @wq is already dead and no one
  3201. * is gonna access it anymore. Free it.
  3202. */
  3203. if (is_last) {
  3204. free_workqueue_attrs(wq->unbound_attrs);
  3205. kfree(wq);
  3206. }
  3207. }
  3208. /**
  3209. * pwq_adjust_max_active - update a pwq's max_active to the current setting
  3210. * @pwq: target pool_workqueue
  3211. *
  3212. * If @pwq isn't freezing, set @pwq->max_active to the associated
  3213. * workqueue's saved_max_active and activate delayed work items
  3214. * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
  3215. */
  3216. static void pwq_adjust_max_active(struct pool_workqueue *pwq)
  3217. {
  3218. struct workqueue_struct *wq = pwq->wq;
  3219. bool freezable = wq->flags & WQ_FREEZABLE;
  3220. /* for @wq->saved_max_active */
  3221. lockdep_assert_held(&wq->mutex);
  3222. /* fast exit for non-freezable wqs */
  3223. if (!freezable && pwq->max_active == wq->saved_max_active)
  3224. return;
  3225. spin_lock_irq(&pwq->pool->lock);
  3226. if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
  3227. pwq->max_active = wq->saved_max_active;
  3228. while (!list_empty(&pwq->delayed_works) &&
  3229. pwq->nr_active < pwq->max_active)
  3230. pwq_activate_first_delayed(pwq);
  3231. /*
  3232. * Need to kick a worker after thawed or an unbound wq's
  3233. * max_active is bumped. It's a slow path. Do it always.
  3234. */
  3235. wake_up_worker(pwq->pool);
  3236. } else {
  3237. pwq->max_active = 0;
  3238. }
  3239. spin_unlock_irq(&pwq->pool->lock);
  3240. }
  3241. /* initialize newly alloced @pwq which is associated with @wq and @pool */
  3242. static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
  3243. struct worker_pool *pool)
  3244. {
  3245. BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
  3246. memset(pwq, 0, sizeof(*pwq));
  3247. pwq->pool = pool;
  3248. pwq->wq = wq;
  3249. pwq->flush_color = -1;
  3250. pwq->refcnt = 1;
  3251. INIT_LIST_HEAD(&pwq->delayed_works);
  3252. INIT_LIST_HEAD(&pwq->pwqs_node);
  3253. INIT_LIST_HEAD(&pwq->mayday_node);
  3254. INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
  3255. }
  3256. /* sync @pwq with the current state of its associated wq and link it */
  3257. static void link_pwq(struct pool_workqueue *pwq)
  3258. {
  3259. struct workqueue_struct *wq = pwq->wq;
  3260. lockdep_assert_held(&wq->mutex);
  3261. /* may be called multiple times, ignore if already linked */
  3262. if (!list_empty(&pwq->pwqs_node))
  3263. return;
  3264. /*
  3265. * Set the matching work_color. This is synchronized with
  3266. * wq->mutex to avoid confusing flush_workqueue().
  3267. */
  3268. pwq->work_color = wq->work_color;
  3269. /* sync max_active to the current setting */
  3270. pwq_adjust_max_active(pwq);
  3271. /* link in @pwq */
  3272. list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
  3273. }
  3274. /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
  3275. static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
  3276. const struct workqueue_attrs *attrs)
  3277. {
  3278. struct worker_pool *pool;
  3279. struct pool_workqueue *pwq;
  3280. lockdep_assert_held(&wq_pool_mutex);
  3281. pool = get_unbound_pool(attrs);
  3282. if (!pool)
  3283. return NULL;
  3284. pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
  3285. if (!pwq) {
  3286. put_unbound_pool(pool);
  3287. return NULL;
  3288. }
  3289. init_pwq(pwq, wq, pool);
  3290. return pwq;
  3291. }
  3292. /* undo alloc_unbound_pwq(), used only in the error path */
  3293. static void free_unbound_pwq(struct pool_workqueue *pwq)
  3294. {
  3295. lockdep_assert_held(&wq_pool_mutex);
  3296. if (pwq) {
  3297. put_unbound_pool(pwq->pool);
  3298. kmem_cache_free(pwq_cache, pwq);
  3299. }
  3300. }
  3301. /**
  3302. * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
  3303. * @attrs: the wq_attrs of interest
  3304. * @node: the target NUMA node
  3305. * @cpu_going_down: if >= 0, the CPU to consider as offline
  3306. * @cpumask: outarg, the resulting cpumask
  3307. *
  3308. * Calculate the cpumask a workqueue with @attrs should use on @node. If
  3309. * @cpu_going_down is >= 0, that cpu is considered offline during
  3310. * calculation. The result is stored in @cpumask.
  3311. *
  3312. * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
  3313. * enabled and @node has online CPUs requested by @attrs, the returned
  3314. * cpumask is the intersection of the possible CPUs of @node and
  3315. * @attrs->cpumask.
  3316. *
  3317. * The caller is responsible for ensuring that the cpumask of @node stays
  3318. * stable.
  3319. *
  3320. * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
  3321. * %false if equal.
  3322. */
  3323. static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
  3324. int cpu_going_down, cpumask_t *cpumask)
  3325. {
  3326. if (!wq_numa_enabled || attrs->no_numa)
  3327. goto use_dfl;
  3328. /* does @node have any online CPUs @attrs wants? */
  3329. cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
  3330. if (cpu_going_down >= 0)
  3331. cpumask_clear_cpu(cpu_going_down, cpumask);
  3332. if (cpumask_empty(cpumask))
  3333. goto use_dfl;
  3334. /* yeap, return possible CPUs in @node that @attrs wants */
  3335. cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
  3336. return !cpumask_equal(cpumask, attrs->cpumask);
  3337. use_dfl:
  3338. cpumask_copy(cpumask, attrs->cpumask);
  3339. return false;
  3340. }
  3341. /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
  3342. static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
  3343. int node,
  3344. struct pool_workqueue *pwq)
  3345. {
  3346. struct pool_workqueue *old_pwq;
  3347. lockdep_assert_held(&wq->mutex);
  3348. /* link_pwq() can handle duplicate calls */
  3349. link_pwq(pwq);
  3350. old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
  3351. rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
  3352. return old_pwq;
  3353. }
  3354. /**
  3355. * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
  3356. * @wq: the target workqueue
  3357. * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
  3358. *
  3359. * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
  3360. * machines, this function maps a separate pwq to each NUMA node with
  3361. * possibles CPUs in @attrs->cpumask so that work items are affine to the
  3362. * NUMA node it was issued on. Older pwqs are released as in-flight work
  3363. * items finish. Note that a work item which repeatedly requeues itself
  3364. * back-to-back will stay on its current pwq.
  3365. *
  3366. * Performs GFP_KERNEL allocations.
  3367. *
  3368. * Return: 0 on success and -errno on failure.
  3369. */
  3370. int apply_workqueue_attrs(struct workqueue_struct *wq,
  3371. const struct workqueue_attrs *attrs)
  3372. {
  3373. struct workqueue_attrs *new_attrs, *tmp_attrs;
  3374. struct pool_workqueue **pwq_tbl, *dfl_pwq;
  3375. int node, ret;
  3376. /* only unbound workqueues can change attributes */
  3377. if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
  3378. return -EINVAL;
  3379. /* creating multiple pwqs breaks ordering guarantee */
  3380. if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
  3381. return -EINVAL;
  3382. pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
  3383. new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3384. tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3385. if (!pwq_tbl || !new_attrs || !tmp_attrs)
  3386. goto enomem;
  3387. /* make a copy of @attrs and sanitize it */
  3388. copy_workqueue_attrs(new_attrs, attrs);
  3389. cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
  3390. /*
  3391. * We may create multiple pwqs with differing cpumasks. Make a
  3392. * copy of @new_attrs which will be modified and used to obtain
  3393. * pools.
  3394. */
  3395. copy_workqueue_attrs(tmp_attrs, new_attrs);
  3396. /*
  3397. * CPUs should stay stable across pwq creations and installations.
  3398. * Pin CPUs, determine the target cpumask for each node and create
  3399. * pwqs accordingly.
  3400. */
  3401. get_online_cpus();
  3402. mutex_lock(&wq_pool_mutex);
  3403. /*
  3404. * If something goes wrong during CPU up/down, we'll fall back to
  3405. * the default pwq covering whole @attrs->cpumask. Always create
  3406. * it even if we don't use it immediately.
  3407. */
  3408. dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
  3409. if (!dfl_pwq)
  3410. goto enomem_pwq;
  3411. for_each_node(node) {
  3412. if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
  3413. pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
  3414. if (!pwq_tbl[node])
  3415. goto enomem_pwq;
  3416. } else {
  3417. dfl_pwq->refcnt++;
  3418. pwq_tbl[node] = dfl_pwq;
  3419. }
  3420. }
  3421. mutex_unlock(&wq_pool_mutex);
  3422. /* all pwqs have been created successfully, let's install'em */
  3423. mutex_lock(&wq->mutex);
  3424. copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
  3425. /* save the previous pwq and install the new one */
  3426. for_each_node(node)
  3427. pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
  3428. /* @dfl_pwq might not have been used, ensure it's linked */
  3429. link_pwq(dfl_pwq);
  3430. swap(wq->dfl_pwq, dfl_pwq);
  3431. mutex_unlock(&wq->mutex);
  3432. /* put the old pwqs */
  3433. for_each_node(node)
  3434. put_pwq_unlocked(pwq_tbl[node]);
  3435. put_pwq_unlocked(dfl_pwq);
  3436. put_online_cpus();
  3437. ret = 0;
  3438. /* fall through */
  3439. out_free:
  3440. free_workqueue_attrs(tmp_attrs);
  3441. free_workqueue_attrs(new_attrs);
  3442. kfree(pwq_tbl);
  3443. return ret;
  3444. enomem_pwq:
  3445. free_unbound_pwq(dfl_pwq);
  3446. for_each_node(node)
  3447. if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
  3448. free_unbound_pwq(pwq_tbl[node]);
  3449. mutex_unlock(&wq_pool_mutex);
  3450. put_online_cpus();
  3451. enomem:
  3452. ret = -ENOMEM;
  3453. goto out_free;
  3454. }
  3455. /**
  3456. * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
  3457. * @wq: the target workqueue
  3458. * @cpu: the CPU coming up or going down
  3459. * @online: whether @cpu is coming up or going down
  3460. *
  3461. * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
  3462. * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
  3463. * @wq accordingly.
  3464. *
  3465. * If NUMA affinity can't be adjusted due to memory allocation failure, it
  3466. * falls back to @wq->dfl_pwq which may not be optimal but is always
  3467. * correct.
  3468. *
  3469. * Note that when the last allowed CPU of a NUMA node goes offline for a
  3470. * workqueue with a cpumask spanning multiple nodes, the workers which were
  3471. * already executing the work items for the workqueue will lose their CPU
  3472. * affinity and may execute on any CPU. This is similar to how per-cpu
  3473. * workqueues behave on CPU_DOWN. If a workqueue user wants strict
  3474. * affinity, it's the user's responsibility to flush the work item from
  3475. * CPU_DOWN_PREPARE.
  3476. */
  3477. static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
  3478. bool online)
  3479. {
  3480. int node = cpu_to_node(cpu);
  3481. int cpu_off = online ? -1 : cpu;
  3482. struct pool_workqueue *old_pwq = NULL, *pwq;
  3483. struct workqueue_attrs *target_attrs;
  3484. cpumask_t *cpumask;
  3485. lockdep_assert_held(&wq_pool_mutex);
  3486. if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
  3487. return;
  3488. /*
  3489. * We don't wanna alloc/free wq_attrs for each wq for each CPU.
  3490. * Let's use a preallocated one. The following buf is protected by
  3491. * CPU hotplug exclusion.
  3492. */
  3493. target_attrs = wq_update_unbound_numa_attrs_buf;
  3494. cpumask = target_attrs->cpumask;
  3495. mutex_lock(&wq->mutex);
  3496. if (wq->unbound_attrs->no_numa)
  3497. goto out_unlock;
  3498. copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
  3499. pwq = unbound_pwq_by_node(wq, node);
  3500. /*
  3501. * Let's determine what needs to be done. If the target cpumask is
  3502. * different from wq's, we need to compare it to @pwq's and create
  3503. * a new one if they don't match. If the target cpumask equals
  3504. * wq's, the default pwq should be used. If @pwq is already the
  3505. * default one, nothing to do; otherwise, install the default one.
  3506. */
  3507. if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
  3508. if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
  3509. goto out_unlock;
  3510. } else {
  3511. if (pwq == wq->dfl_pwq)
  3512. goto out_unlock;
  3513. else
  3514. goto use_dfl_pwq;
  3515. }
  3516. mutex_unlock(&wq->mutex);
  3517. /* create a new pwq */
  3518. pwq = alloc_unbound_pwq(wq, target_attrs);
  3519. if (!pwq) {
  3520. pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
  3521. wq->name);
  3522. goto out_unlock;
  3523. }
  3524. /*
  3525. * Install the new pwq. As this function is called only from CPU
  3526. * hotplug callbacks and applying a new attrs is wrapped with
  3527. * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
  3528. * inbetween.
  3529. */
  3530. mutex_lock(&wq->mutex);
  3531. old_pwq = numa_pwq_tbl_install(wq, node, pwq);
  3532. goto out_unlock;
  3533. use_dfl_pwq:
  3534. spin_lock_irq(&wq->dfl_pwq->pool->lock);
  3535. get_pwq(wq->dfl_pwq);
  3536. spin_unlock_irq(&wq->dfl_pwq->pool->lock);
  3537. old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
  3538. out_unlock:
  3539. mutex_unlock(&wq->mutex);
  3540. put_pwq_unlocked(old_pwq);
  3541. }
  3542. static int alloc_and_link_pwqs(struct workqueue_struct *wq)
  3543. {
  3544. bool highpri = wq->flags & WQ_HIGHPRI;
  3545. int cpu, ret;
  3546. if (!(wq->flags & WQ_UNBOUND)) {
  3547. wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
  3548. if (!wq->cpu_pwqs)
  3549. return -ENOMEM;
  3550. for_each_possible_cpu(cpu) {
  3551. struct pool_workqueue *pwq =
  3552. per_cpu_ptr(wq->cpu_pwqs, cpu);
  3553. struct worker_pool *cpu_pools =
  3554. per_cpu(cpu_worker_pools, cpu);
  3555. init_pwq(pwq, wq, &cpu_pools[highpri]);
  3556. mutex_lock(&wq->mutex);
  3557. link_pwq(pwq);
  3558. mutex_unlock(&wq->mutex);
  3559. }
  3560. return 0;
  3561. } else if (wq->flags & __WQ_ORDERED) {
  3562. ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
  3563. /* there should only be single pwq for ordering guarantee */
  3564. WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
  3565. wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
  3566. "ordering guarantee broken for workqueue %s\n", wq->name);
  3567. return ret;
  3568. } else {
  3569. return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
  3570. }
  3571. }
  3572. static int wq_clamp_max_active(int max_active, unsigned int flags,
  3573. const char *name)
  3574. {
  3575. int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
  3576. if (max_active < 1 || max_active > lim)
  3577. pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
  3578. max_active, name, 1, lim);
  3579. return clamp_val(max_active, 1, lim);
  3580. }
  3581. struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
  3582. unsigned int flags,
  3583. int max_active,
  3584. struct lock_class_key *key,
  3585. const char *lock_name, ...)
  3586. {
  3587. size_t tbl_size = 0;
  3588. va_list args;
  3589. struct workqueue_struct *wq;
  3590. struct pool_workqueue *pwq;
  3591. /* see the comment above the definition of WQ_POWER_EFFICIENT */
  3592. if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
  3593. flags |= WQ_UNBOUND;
  3594. /* allocate wq and format name */
  3595. if (flags & WQ_UNBOUND)
  3596. tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
  3597. wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
  3598. if (!wq)
  3599. return NULL;
  3600. if (flags & WQ_UNBOUND) {
  3601. wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3602. if (!wq->unbound_attrs)
  3603. goto err_free_wq;
  3604. }
  3605. va_start(args, lock_name);
  3606. vsnprintf(wq->name, sizeof(wq->name), fmt, args);
  3607. va_end(args);
  3608. max_active = max_active ?: WQ_DFL_ACTIVE;
  3609. max_active = wq_clamp_max_active(max_active, flags, wq->name);
  3610. /* init wq */
  3611. wq->flags = flags;
  3612. wq->saved_max_active = max_active;
  3613. mutex_init(&wq->mutex);
  3614. atomic_set(&wq->nr_pwqs_to_flush, 0);
  3615. INIT_LIST_HEAD(&wq->pwqs);
  3616. INIT_LIST_HEAD(&wq->flusher_queue);
  3617. INIT_LIST_HEAD(&wq->flusher_overflow);
  3618. INIT_LIST_HEAD(&wq->maydays);
  3619. lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
  3620. INIT_LIST_HEAD(&wq->list);
  3621. if (alloc_and_link_pwqs(wq) < 0)
  3622. goto err_free_wq;
  3623. /*
  3624. * Workqueues which may be used during memory reclaim should
  3625. * have a rescuer to guarantee forward progress.
  3626. */
  3627. if (flags & WQ_MEM_RECLAIM) {
  3628. struct worker *rescuer;
  3629. rescuer = alloc_worker();
  3630. if (!rescuer)
  3631. goto err_destroy;
  3632. rescuer->rescue_wq = wq;
  3633. rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
  3634. wq->name);
  3635. if (IS_ERR(rescuer->task)) {
  3636. kfree(rescuer);
  3637. goto err_destroy;
  3638. }
  3639. wq->rescuer = rescuer;
  3640. rescuer->task->flags |= PF_NO_SETAFFINITY;
  3641. wake_up_process(rescuer->task);
  3642. }
  3643. if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
  3644. goto err_destroy;
  3645. /*
  3646. * wq_pool_mutex protects global freeze state and workqueues list.
  3647. * Grab it, adjust max_active and add the new @wq to workqueues
  3648. * list.
  3649. */
  3650. mutex_lock(&wq_pool_mutex);
  3651. mutex_lock(&wq->mutex);
  3652. for_each_pwq(pwq, wq)
  3653. pwq_adjust_max_active(pwq);
  3654. mutex_unlock(&wq->mutex);
  3655. list_add(&wq->list, &workqueues);
  3656. mutex_unlock(&wq_pool_mutex);
  3657. return wq;
  3658. err_free_wq:
  3659. free_workqueue_attrs(wq->unbound_attrs);
  3660. kfree(wq);
  3661. return NULL;
  3662. err_destroy:
  3663. destroy_workqueue(wq);
  3664. return NULL;
  3665. }
  3666. EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
  3667. /**
  3668. * destroy_workqueue - safely terminate a workqueue
  3669. * @wq: target workqueue
  3670. *
  3671. * Safely destroy a workqueue. All work currently pending will be done first.
  3672. */
  3673. void destroy_workqueue(struct workqueue_struct *wq)
  3674. {
  3675. struct pool_workqueue *pwq;
  3676. int node;
  3677. /* drain it before proceeding with destruction */
  3678. drain_workqueue(wq);
  3679. /* sanity checks */
  3680. mutex_lock(&wq->mutex);
  3681. for_each_pwq(pwq, wq) {
  3682. int i;
  3683. for (i = 0; i < WORK_NR_COLORS; i++) {
  3684. if (WARN_ON(pwq->nr_in_flight[i])) {
  3685. mutex_unlock(&wq->mutex);
  3686. return;
  3687. }
  3688. }
  3689. if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
  3690. WARN_ON(pwq->nr_active) ||
  3691. WARN_ON(!list_empty(&pwq->delayed_works))) {
  3692. mutex_unlock(&wq->mutex);
  3693. return;
  3694. }
  3695. }
  3696. mutex_unlock(&wq->mutex);
  3697. /*
  3698. * wq list is used to freeze wq, remove from list after
  3699. * flushing is complete in case freeze races us.
  3700. */
  3701. mutex_lock(&wq_pool_mutex);
  3702. list_del_init(&wq->list);
  3703. mutex_unlock(&wq_pool_mutex);
  3704. workqueue_sysfs_unregister(wq);
  3705. if (wq->rescuer) {
  3706. kthread_stop(wq->rescuer->task);
  3707. kfree(wq->rescuer);
  3708. wq->rescuer = NULL;
  3709. }
  3710. if (!(wq->flags & WQ_UNBOUND)) {
  3711. /*
  3712. * The base ref is never dropped on per-cpu pwqs. Directly
  3713. * free the pwqs and wq.
  3714. */
  3715. free_percpu(wq->cpu_pwqs);
  3716. kfree(wq);
  3717. } else {
  3718. /*
  3719. * We're the sole accessor of @wq at this point. Directly
  3720. * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
  3721. * @wq will be freed when the last pwq is released.
  3722. */
  3723. for_each_node(node) {
  3724. pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
  3725. RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
  3726. put_pwq_unlocked(pwq);
  3727. }
  3728. /*
  3729. * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
  3730. * put. Don't access it afterwards.
  3731. */
  3732. pwq = wq->dfl_pwq;
  3733. wq->dfl_pwq = NULL;
  3734. put_pwq_unlocked(pwq);
  3735. }
  3736. }
  3737. EXPORT_SYMBOL_GPL(destroy_workqueue);
  3738. /**
  3739. * workqueue_set_max_active - adjust max_active of a workqueue
  3740. * @wq: target workqueue
  3741. * @max_active: new max_active value.
  3742. *
  3743. * Set max_active of @wq to @max_active.
  3744. *
  3745. * CONTEXT:
  3746. * Don't call from IRQ context.
  3747. */
  3748. void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
  3749. {
  3750. struct pool_workqueue *pwq;
  3751. /* disallow meddling with max_active for ordered workqueues */
  3752. if (WARN_ON(wq->flags & __WQ_ORDERED))
  3753. return;
  3754. max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
  3755. mutex_lock(&wq->mutex);
  3756. wq->saved_max_active = max_active;
  3757. for_each_pwq(pwq, wq)
  3758. pwq_adjust_max_active(pwq);
  3759. mutex_unlock(&wq->mutex);
  3760. }
  3761. EXPORT_SYMBOL_GPL(workqueue_set_max_active);
  3762. /**
  3763. * current_is_workqueue_rescuer - is %current workqueue rescuer?
  3764. *
  3765. * Determine whether %current is a workqueue rescuer. Can be used from
  3766. * work functions to determine whether it's being run off the rescuer task.
  3767. *
  3768. * Return: %true if %current is a workqueue rescuer. %false otherwise.
  3769. */
  3770. bool current_is_workqueue_rescuer(void)
  3771. {
  3772. struct worker *worker = current_wq_worker();
  3773. return worker && worker->rescue_wq;
  3774. }
  3775. /**
  3776. * workqueue_congested - test whether a workqueue is congested
  3777. * @cpu: CPU in question
  3778. * @wq: target workqueue
  3779. *
  3780. * Test whether @wq's cpu workqueue for @cpu is congested. There is
  3781. * no synchronization around this function and the test result is
  3782. * unreliable and only useful as advisory hints or for debugging.
  3783. *
  3784. * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
  3785. * Note that both per-cpu and unbound workqueues may be associated with
  3786. * multiple pool_workqueues which have separate congested states. A
  3787. * workqueue being congested on one CPU doesn't mean the workqueue is also
  3788. * contested on other CPUs / NUMA nodes.
  3789. *
  3790. * Return:
  3791. * %true if congested, %false otherwise.
  3792. */
  3793. bool workqueue_congested(int cpu, struct workqueue_struct *wq)
  3794. {
  3795. struct pool_workqueue *pwq;
  3796. bool ret;
  3797. rcu_read_lock_sched();
  3798. if (cpu == WORK_CPU_UNBOUND)
  3799. cpu = smp_processor_id();
  3800. if (!(wq->flags & WQ_UNBOUND))
  3801. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  3802. else
  3803. pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
  3804. ret = !list_empty(&pwq->delayed_works);
  3805. rcu_read_unlock_sched();
  3806. return ret;
  3807. }
  3808. EXPORT_SYMBOL_GPL(workqueue_congested);
  3809. /**
  3810. * work_busy - test whether a work is currently pending or running
  3811. * @work: the work to be tested
  3812. *
  3813. * Test whether @work is currently pending or running. There is no
  3814. * synchronization around this function and the test result is
  3815. * unreliable and only useful as advisory hints or for debugging.
  3816. *
  3817. * Return:
  3818. * OR'd bitmask of WORK_BUSY_* bits.
  3819. */
  3820. unsigned int work_busy(struct work_struct *work)
  3821. {
  3822. struct worker_pool *pool;
  3823. unsigned long flags;
  3824. unsigned int ret = 0;
  3825. if (work_pending(work))
  3826. ret |= WORK_BUSY_PENDING;
  3827. local_irq_save(flags);
  3828. pool = get_work_pool(work);
  3829. if (pool) {
  3830. spin_lock(&pool->lock);
  3831. if (find_worker_executing_work(pool, work))
  3832. ret |= WORK_BUSY_RUNNING;
  3833. spin_unlock(&pool->lock);
  3834. }
  3835. local_irq_restore(flags);
  3836. return ret;
  3837. }
  3838. EXPORT_SYMBOL_GPL(work_busy);
  3839. /**
  3840. * set_worker_desc - set description for the current work item
  3841. * @fmt: printf-style format string
  3842. * @...: arguments for the format string
  3843. *
  3844. * This function can be called by a running work function to describe what
  3845. * the work item is about. If the worker task gets dumped, this
  3846. * information will be printed out together to help debugging. The
  3847. * description can be at most WORKER_DESC_LEN including the trailing '\0'.
  3848. */
  3849. void set_worker_desc(const char *fmt, ...)
  3850. {
  3851. struct worker *worker = current_wq_worker();
  3852. va_list args;
  3853. if (worker) {
  3854. va_start(args, fmt);
  3855. vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
  3856. va_end(args);
  3857. worker->desc_valid = true;
  3858. }
  3859. }
  3860. /**
  3861. * print_worker_info - print out worker information and description
  3862. * @log_lvl: the log level to use when printing
  3863. * @task: target task
  3864. *
  3865. * If @task is a worker and currently executing a work item, print out the
  3866. * name of the workqueue being serviced and worker description set with
  3867. * set_worker_desc() by the currently executing work item.
  3868. *
  3869. * This function can be safely called on any task as long as the
  3870. * task_struct itself is accessible. While safe, this function isn't
  3871. * synchronized and may print out mixups or garbages of limited length.
  3872. */
  3873. void print_worker_info(const char *log_lvl, struct task_struct *task)
  3874. {
  3875. work_func_t *fn = NULL;
  3876. char name[WQ_NAME_LEN] = { };
  3877. char desc[WORKER_DESC_LEN] = { };
  3878. struct pool_workqueue *pwq = NULL;
  3879. struct workqueue_struct *wq = NULL;
  3880. bool desc_valid = false;
  3881. struct worker *worker;
  3882. if (!(task->flags & PF_WQ_WORKER))
  3883. return;
  3884. /*
  3885. * This function is called without any synchronization and @task
  3886. * could be in any state. Be careful with dereferences.
  3887. */
  3888. worker = probe_kthread_data(task);
  3889. /*
  3890. * Carefully copy the associated workqueue's workfn and name. Keep
  3891. * the original last '\0' in case the original contains garbage.
  3892. */
  3893. probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
  3894. probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
  3895. probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
  3896. probe_kernel_read(name, wq->name, sizeof(name) - 1);
  3897. /* copy worker description */
  3898. probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
  3899. if (desc_valid)
  3900. probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
  3901. if (fn || name[0] || desc[0]) {
  3902. printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
  3903. if (desc[0])
  3904. pr_cont(" (%s)", desc);
  3905. pr_cont("\n");
  3906. }
  3907. }
  3908. /*
  3909. * CPU hotplug.
  3910. *
  3911. * There are two challenges in supporting CPU hotplug. Firstly, there
  3912. * are a lot of assumptions on strong associations among work, pwq and
  3913. * pool which make migrating pending and scheduled works very
  3914. * difficult to implement without impacting hot paths. Secondly,
  3915. * worker pools serve mix of short, long and very long running works making
  3916. * blocked draining impractical.
  3917. *
  3918. * This is solved by allowing the pools to be disassociated from the CPU
  3919. * running as an unbound one and allowing it to be reattached later if the
  3920. * cpu comes back online.
  3921. */
  3922. static void wq_unbind_fn(struct work_struct *work)
  3923. {
  3924. int cpu = smp_processor_id();
  3925. struct worker_pool *pool;
  3926. struct worker *worker;
  3927. int wi;
  3928. for_each_cpu_worker_pool(pool, cpu) {
  3929. WARN_ON_ONCE(cpu != smp_processor_id());
  3930. mutex_lock(&pool->manager_mutex);
  3931. spin_lock_irq(&pool->lock);
  3932. /*
  3933. * We've blocked all manager operations. Make all workers
  3934. * unbound and set DISASSOCIATED. Before this, all workers
  3935. * except for the ones which are still executing works from
  3936. * before the last CPU down must be on the cpu. After
  3937. * this, they may become diasporas.
  3938. */
  3939. for_each_pool_worker(worker, wi, pool)
  3940. worker->flags |= WORKER_UNBOUND;
  3941. pool->flags |= POOL_DISASSOCIATED;
  3942. spin_unlock_irq(&pool->lock);
  3943. mutex_unlock(&pool->manager_mutex);
  3944. /*
  3945. * Call schedule() so that we cross rq->lock and thus can
  3946. * guarantee sched callbacks see the %WORKER_UNBOUND flag.
  3947. * This is necessary as scheduler callbacks may be invoked
  3948. * from other cpus.
  3949. */
  3950. schedule();
  3951. /*
  3952. * Sched callbacks are disabled now. Zap nr_running.
  3953. * After this, nr_running stays zero and need_more_worker()
  3954. * and keep_working() are always true as long as the
  3955. * worklist is not empty. This pool now behaves as an
  3956. * unbound (in terms of concurrency management) pool which
  3957. * are served by workers tied to the pool.
  3958. */
  3959. atomic_set(&pool->nr_running, 0);
  3960. /*
  3961. * With concurrency management just turned off, a busy
  3962. * worker blocking could lead to lengthy stalls. Kick off
  3963. * unbound chain execution of currently pending work items.
  3964. */
  3965. spin_lock_irq(&pool->lock);
  3966. wake_up_worker(pool);
  3967. spin_unlock_irq(&pool->lock);
  3968. }
  3969. }
  3970. /**
  3971. * rebind_workers - rebind all workers of a pool to the associated CPU
  3972. * @pool: pool of interest
  3973. *
  3974. * @pool->cpu is coming online. Rebind all workers to the CPU.
  3975. */
  3976. static void rebind_workers(struct worker_pool *pool)
  3977. {
  3978. struct worker *worker;
  3979. int wi;
  3980. lockdep_assert_held(&pool->manager_mutex);
  3981. /*
  3982. * Restore CPU affinity of all workers. As all idle workers should
  3983. * be on the run-queue of the associated CPU before any local
  3984. * wake-ups for concurrency management happen, restore CPU affinty
  3985. * of all workers first and then clear UNBOUND. As we're called
  3986. * from CPU_ONLINE, the following shouldn't fail.
  3987. */
  3988. for_each_pool_worker(worker, wi, pool)
  3989. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  3990. pool->attrs->cpumask) < 0);
  3991. spin_lock_irq(&pool->lock);
  3992. for_each_pool_worker(worker, wi, pool) {
  3993. unsigned int worker_flags = worker->flags;
  3994. /*
  3995. * A bound idle worker should actually be on the runqueue
  3996. * of the associated CPU for local wake-ups targeting it to
  3997. * work. Kick all idle workers so that they migrate to the
  3998. * associated CPU. Doing this in the same loop as
  3999. * replacing UNBOUND with REBOUND is safe as no worker will
  4000. * be bound before @pool->lock is released.
  4001. */
  4002. if (worker_flags & WORKER_IDLE)
  4003. wake_up_process(worker->task);
  4004. /*
  4005. * We want to clear UNBOUND but can't directly call
  4006. * worker_clr_flags() or adjust nr_running. Atomically
  4007. * replace UNBOUND with another NOT_RUNNING flag REBOUND.
  4008. * @worker will clear REBOUND using worker_clr_flags() when
  4009. * it initiates the next execution cycle thus restoring
  4010. * concurrency management. Note that when or whether
  4011. * @worker clears REBOUND doesn't affect correctness.
  4012. *
  4013. * ACCESS_ONCE() is necessary because @worker->flags may be
  4014. * tested without holding any lock in
  4015. * wq_worker_waking_up(). Without it, NOT_RUNNING test may
  4016. * fail incorrectly leading to premature concurrency
  4017. * management operations.
  4018. */
  4019. WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
  4020. worker_flags |= WORKER_REBOUND;
  4021. worker_flags &= ~WORKER_UNBOUND;
  4022. ACCESS_ONCE(worker->flags) = worker_flags;
  4023. }
  4024. spin_unlock_irq(&pool->lock);
  4025. }
  4026. /**
  4027. * restore_unbound_workers_cpumask - restore cpumask of unbound workers
  4028. * @pool: unbound pool of interest
  4029. * @cpu: the CPU which is coming up
  4030. *
  4031. * An unbound pool may end up with a cpumask which doesn't have any online
  4032. * CPUs. When a worker of such pool get scheduled, the scheduler resets
  4033. * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
  4034. * online CPU before, cpus_allowed of all its workers should be restored.
  4035. */
  4036. static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
  4037. {
  4038. static cpumask_t cpumask;
  4039. struct worker *worker;
  4040. int wi;
  4041. lockdep_assert_held(&pool->manager_mutex);
  4042. /* is @cpu allowed for @pool? */
  4043. if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
  4044. return;
  4045. /* is @cpu the only online CPU? */
  4046. cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
  4047. if (cpumask_weight(&cpumask) != 1)
  4048. return;
  4049. /* as we're called from CPU_ONLINE, the following shouldn't fail */
  4050. for_each_pool_worker(worker, wi, pool)
  4051. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  4052. pool->attrs->cpumask) < 0);
  4053. }
  4054. /*
  4055. * Workqueues should be brought up before normal priority CPU notifiers.
  4056. * This will be registered high priority CPU notifier.
  4057. */
  4058. static int workqueue_cpu_up_callback(struct notifier_block *nfb,
  4059. unsigned long action,
  4060. void *hcpu)
  4061. {
  4062. int cpu = (unsigned long)hcpu;
  4063. struct worker_pool *pool;
  4064. struct workqueue_struct *wq;
  4065. int pi;
  4066. switch (action & ~CPU_TASKS_FROZEN) {
  4067. case CPU_UP_PREPARE:
  4068. for_each_cpu_worker_pool(pool, cpu) {
  4069. if (pool->nr_workers)
  4070. continue;
  4071. if (create_and_start_worker(pool) < 0)
  4072. return NOTIFY_BAD;
  4073. }
  4074. break;
  4075. case CPU_DOWN_FAILED:
  4076. case CPU_ONLINE:
  4077. mutex_lock(&wq_pool_mutex);
  4078. for_each_pool(pool, pi) {
  4079. mutex_lock(&pool->manager_mutex);
  4080. if (pool->cpu == cpu) {
  4081. spin_lock_irq(&pool->lock);
  4082. pool->flags &= ~POOL_DISASSOCIATED;
  4083. spin_unlock_irq(&pool->lock);
  4084. rebind_workers(pool);
  4085. } else if (pool->cpu < 0) {
  4086. restore_unbound_workers_cpumask(pool, cpu);
  4087. }
  4088. mutex_unlock(&pool->manager_mutex);
  4089. }
  4090. /* update NUMA affinity of unbound workqueues */
  4091. list_for_each_entry(wq, &workqueues, list)
  4092. wq_update_unbound_numa(wq, cpu, true);
  4093. mutex_unlock(&wq_pool_mutex);
  4094. break;
  4095. }
  4096. return NOTIFY_OK;
  4097. }
  4098. /*
  4099. * Workqueues should be brought down after normal priority CPU notifiers.
  4100. * This will be registered as low priority CPU notifier.
  4101. */
  4102. static int workqueue_cpu_down_callback(struct notifier_block *nfb,
  4103. unsigned long action,
  4104. void *hcpu)
  4105. {
  4106. int cpu = (unsigned long)hcpu;
  4107. struct work_struct unbind_work;
  4108. struct workqueue_struct *wq;
  4109. switch (action & ~CPU_TASKS_FROZEN) {
  4110. case CPU_DOWN_PREPARE:
  4111. /* unbinding per-cpu workers should happen on the local CPU */
  4112. INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
  4113. queue_work_on(cpu, system_highpri_wq, &unbind_work);
  4114. /* update NUMA affinity of unbound workqueues */
  4115. mutex_lock(&wq_pool_mutex);
  4116. list_for_each_entry(wq, &workqueues, list)
  4117. wq_update_unbound_numa(wq, cpu, false);
  4118. mutex_unlock(&wq_pool_mutex);
  4119. /* wait for per-cpu unbinding to finish */
  4120. flush_work(&unbind_work);
  4121. break;
  4122. }
  4123. return NOTIFY_OK;
  4124. }
  4125. #ifdef CONFIG_SMP
  4126. struct work_for_cpu {
  4127. struct work_struct work;
  4128. long (*fn)(void *);
  4129. void *arg;
  4130. long ret;
  4131. };
  4132. static void work_for_cpu_fn(struct work_struct *work)
  4133. {
  4134. struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
  4135. wfc->ret = wfc->fn(wfc->arg);
  4136. }
  4137. /**
  4138. * work_on_cpu - run a function in user context on a particular cpu
  4139. * @cpu: the cpu to run on
  4140. * @fn: the function to run
  4141. * @arg: the function arg
  4142. *
  4143. * It is up to the caller to ensure that the cpu doesn't go offline.
  4144. * The caller must not hold any locks which would prevent @fn from completing.
  4145. *
  4146. * Return: The value @fn returns.
  4147. */
  4148. long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
  4149. {
  4150. struct work_for_cpu wfc = { .fn = fn, .arg = arg };
  4151. INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
  4152. schedule_work_on(cpu, &wfc.work);
  4153. /*
  4154. * The work item is on-stack and can't lead to deadlock through
  4155. * flushing. Use __flush_work() to avoid spurious lockdep warnings
  4156. * when work_on_cpu()s are nested.
  4157. */
  4158. __flush_work(&wfc.work);
  4159. return wfc.ret;
  4160. }
  4161. EXPORT_SYMBOL_GPL(work_on_cpu);
  4162. #endif /* CONFIG_SMP */
  4163. #ifdef CONFIG_FREEZER
  4164. /**
  4165. * freeze_workqueues_begin - begin freezing workqueues
  4166. *
  4167. * Start freezing workqueues. After this function returns, all freezable
  4168. * workqueues will queue new works to their delayed_works list instead of
  4169. * pool->worklist.
  4170. *
  4171. * CONTEXT:
  4172. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  4173. */
  4174. void freeze_workqueues_begin(void)
  4175. {
  4176. struct worker_pool *pool;
  4177. struct workqueue_struct *wq;
  4178. struct pool_workqueue *pwq;
  4179. int pi;
  4180. mutex_lock(&wq_pool_mutex);
  4181. WARN_ON_ONCE(workqueue_freezing);
  4182. workqueue_freezing = true;
  4183. /* set FREEZING */
  4184. for_each_pool(pool, pi) {
  4185. spin_lock_irq(&pool->lock);
  4186. WARN_ON_ONCE(pool->flags & POOL_FREEZING);
  4187. pool->flags |= POOL_FREEZING;
  4188. spin_unlock_irq(&pool->lock);
  4189. }
  4190. list_for_each_entry(wq, &workqueues, list) {
  4191. mutex_lock(&wq->mutex);
  4192. for_each_pwq(pwq, wq)
  4193. pwq_adjust_max_active(pwq);
  4194. mutex_unlock(&wq->mutex);
  4195. }
  4196. mutex_unlock(&wq_pool_mutex);
  4197. }
  4198. /**
  4199. * freeze_workqueues_busy - are freezable workqueues still busy?
  4200. *
  4201. * Check whether freezing is complete. This function must be called
  4202. * between freeze_workqueues_begin() and thaw_workqueues().
  4203. *
  4204. * CONTEXT:
  4205. * Grabs and releases wq_pool_mutex.
  4206. *
  4207. * Return:
  4208. * %true if some freezable workqueues are still busy. %false if freezing
  4209. * is complete.
  4210. */
  4211. bool freeze_workqueues_busy(void)
  4212. {
  4213. bool busy = false;
  4214. struct workqueue_struct *wq;
  4215. struct pool_workqueue *pwq;
  4216. mutex_lock(&wq_pool_mutex);
  4217. WARN_ON_ONCE(!workqueue_freezing);
  4218. list_for_each_entry(wq, &workqueues, list) {
  4219. if (!(wq->flags & WQ_FREEZABLE))
  4220. continue;
  4221. /*
  4222. * nr_active is monotonically decreasing. It's safe
  4223. * to peek without lock.
  4224. */
  4225. rcu_read_lock_sched();
  4226. for_each_pwq(pwq, wq) {
  4227. WARN_ON_ONCE(pwq->nr_active < 0);
  4228. if (pwq->nr_active) {
  4229. busy = true;
  4230. rcu_read_unlock_sched();
  4231. goto out_unlock;
  4232. }
  4233. }
  4234. rcu_read_unlock_sched();
  4235. }
  4236. out_unlock:
  4237. mutex_unlock(&wq_pool_mutex);
  4238. return busy;
  4239. }
  4240. /**
  4241. * thaw_workqueues - thaw workqueues
  4242. *
  4243. * Thaw workqueues. Normal queueing is restored and all collected
  4244. * frozen works are transferred to their respective pool worklists.
  4245. *
  4246. * CONTEXT:
  4247. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  4248. */
  4249. void thaw_workqueues(void)
  4250. {
  4251. struct workqueue_struct *wq;
  4252. struct pool_workqueue *pwq;
  4253. struct worker_pool *pool;
  4254. int pi;
  4255. mutex_lock(&wq_pool_mutex);
  4256. if (!workqueue_freezing)
  4257. goto out_unlock;
  4258. /* clear FREEZING */
  4259. for_each_pool(pool, pi) {
  4260. spin_lock_irq(&pool->lock);
  4261. WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
  4262. pool->flags &= ~POOL_FREEZING;
  4263. spin_unlock_irq(&pool->lock);
  4264. }
  4265. /* restore max_active and repopulate worklist */
  4266. list_for_each_entry(wq, &workqueues, list) {
  4267. mutex_lock(&wq->mutex);
  4268. for_each_pwq(pwq, wq)
  4269. pwq_adjust_max_active(pwq);
  4270. mutex_unlock(&wq->mutex);
  4271. }
  4272. workqueue_freezing = false;
  4273. out_unlock:
  4274. mutex_unlock(&wq_pool_mutex);
  4275. }
  4276. #endif /* CONFIG_FREEZER */
  4277. static void __init wq_numa_init(void)
  4278. {
  4279. cpumask_var_t *tbl;
  4280. int node, cpu;
  4281. /* determine NUMA pwq table len - highest node id + 1 */
  4282. for_each_node(node)
  4283. wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
  4284. if (num_possible_nodes() <= 1)
  4285. return;
  4286. if (wq_disable_numa) {
  4287. pr_info("workqueue: NUMA affinity support disabled\n");
  4288. return;
  4289. }
  4290. wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
  4291. BUG_ON(!wq_update_unbound_numa_attrs_buf);
  4292. /*
  4293. * We want masks of possible CPUs of each node which isn't readily
  4294. * available. Build one from cpu_to_node() which should have been
  4295. * fully initialized by now.
  4296. */
  4297. tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
  4298. BUG_ON(!tbl);
  4299. for_each_node(node)
  4300. BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
  4301. node_online(node) ? node : NUMA_NO_NODE));
  4302. for_each_possible_cpu(cpu) {
  4303. node = cpu_to_node(cpu);
  4304. if (WARN_ON(node == NUMA_NO_NODE)) {
  4305. pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
  4306. /* happens iff arch is bonkers, let's just proceed */
  4307. return;
  4308. }
  4309. cpumask_set_cpu(cpu, tbl[node]);
  4310. }
  4311. wq_numa_possible_cpumask = tbl;
  4312. wq_numa_enabled = true;
  4313. }
  4314. static int __init init_workqueues(void)
  4315. {
  4316. int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
  4317. int i, cpu;
  4318. WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
  4319. pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
  4320. cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
  4321. hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
  4322. wq_numa_init();
  4323. /* initialize CPU pools */
  4324. for_each_possible_cpu(cpu) {
  4325. struct worker_pool *pool;
  4326. i = 0;
  4327. for_each_cpu_worker_pool(pool, cpu) {
  4328. BUG_ON(init_worker_pool(pool));
  4329. pool->cpu = cpu;
  4330. cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
  4331. pool->attrs->nice = std_nice[i++];
  4332. pool->node = cpu_to_node(cpu);
  4333. /* alloc pool ID */
  4334. mutex_lock(&wq_pool_mutex);
  4335. BUG_ON(worker_pool_assign_id(pool));
  4336. mutex_unlock(&wq_pool_mutex);
  4337. }
  4338. }
  4339. /* create the initial worker */
  4340. for_each_online_cpu(cpu) {
  4341. struct worker_pool *pool;
  4342. for_each_cpu_worker_pool(pool, cpu) {
  4343. pool->flags &= ~POOL_DISASSOCIATED;
  4344. BUG_ON(create_and_start_worker(pool) < 0);
  4345. }
  4346. }
  4347. /* create default unbound and ordered wq attrs */
  4348. for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
  4349. struct workqueue_attrs *attrs;
  4350. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  4351. attrs->nice = std_nice[i];
  4352. unbound_std_wq_attrs[i] = attrs;
  4353. /*
  4354. * An ordered wq should have only one pwq as ordering is
  4355. * guaranteed by max_active which is enforced by pwqs.
  4356. * Turn off NUMA so that dfl_pwq is used for all nodes.
  4357. */
  4358. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  4359. attrs->nice = std_nice[i];
  4360. attrs->no_numa = true;
  4361. ordered_wq_attrs[i] = attrs;
  4362. }
  4363. system_wq = alloc_workqueue("events", 0, 0);
  4364. system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
  4365. system_long_wq = alloc_workqueue("events_long", 0, 0);
  4366. system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
  4367. WQ_UNBOUND_MAX_ACTIVE);
  4368. system_freezable_wq = alloc_workqueue("events_freezable",
  4369. WQ_FREEZABLE, 0);
  4370. system_power_efficient_wq = alloc_workqueue("events_power_efficient",
  4371. WQ_POWER_EFFICIENT, 0);
  4372. system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
  4373. WQ_FREEZABLE | WQ_POWER_EFFICIENT,
  4374. 0);
  4375. BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
  4376. !system_unbound_wq || !system_freezable_wq ||
  4377. !system_power_efficient_wq ||
  4378. !system_freezable_power_efficient_wq);
  4379. return 0;
  4380. }
  4381. early_initcall(init_workqueues);