math.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. /* $Id: math.c,v 1.11 1999/12/20 05:02:25 davem Exp $
  2. * arch/sparc64/math-emu/math.c
  3. *
  4. * Copyright (C) 1997,1999 Jakub Jelinek (jj@ultra.linux.cz)
  5. * Copyright (C) 1999 David S. Miller (davem@redhat.com)
  6. *
  7. * Emulation routines originate from soft-fp package, which is part
  8. * of glibc and has appropriate copyrights in it.
  9. */
  10. #include <linux/types.h>
  11. #include <linux/sched.h>
  12. #include <linux/errno.h>
  13. #include <asm/fpumacro.h>
  14. #include <asm/ptrace.h>
  15. #include <asm/uaccess.h>
  16. #include "sfp-util.h"
  17. #include <math-emu/soft-fp.h>
  18. #include <math-emu/single.h>
  19. #include <math-emu/double.h>
  20. #include <math-emu/quad.h>
  21. /* QUAD - ftt == 3 */
  22. #define FMOVQ 0x003
  23. #define FNEGQ 0x007
  24. #define FABSQ 0x00b
  25. #define FSQRTQ 0x02b
  26. #define FADDQ 0x043
  27. #define FSUBQ 0x047
  28. #define FMULQ 0x04b
  29. #define FDIVQ 0x04f
  30. #define FDMULQ 0x06e
  31. #define FQTOX 0x083
  32. #define FXTOQ 0x08c
  33. #define FQTOS 0x0c7
  34. #define FQTOD 0x0cb
  35. #define FITOQ 0x0cc
  36. #define FSTOQ 0x0cd
  37. #define FDTOQ 0x0ce
  38. #define FQTOI 0x0d3
  39. /* SUBNORMAL - ftt == 2 */
  40. #define FSQRTS 0x029
  41. #define FSQRTD 0x02a
  42. #define FADDS 0x041
  43. #define FADDD 0x042
  44. #define FSUBS 0x045
  45. #define FSUBD 0x046
  46. #define FMULS 0x049
  47. #define FMULD 0x04a
  48. #define FDIVS 0x04d
  49. #define FDIVD 0x04e
  50. #define FSMULD 0x069
  51. #define FSTOX 0x081
  52. #define FDTOX 0x082
  53. #define FDTOS 0x0c6
  54. #define FSTOD 0x0c9
  55. #define FSTOI 0x0d1
  56. #define FDTOI 0x0d2
  57. #define FXTOS 0x084 /* Only Ultra-III generates this. */
  58. #define FXTOD 0x088 /* Only Ultra-III generates this. */
  59. #if 0 /* Optimized inline in sparc64/kernel/entry.S */
  60. #define FITOS 0x0c4 /* Only Ultra-III generates this. */
  61. #endif
  62. #define FITOD 0x0c8 /* Only Ultra-III generates this. */
  63. /* FPOP2 */
  64. #define FCMPQ 0x053
  65. #define FCMPEQ 0x057
  66. #define FMOVQ0 0x003
  67. #define FMOVQ1 0x043
  68. #define FMOVQ2 0x083
  69. #define FMOVQ3 0x0c3
  70. #define FMOVQI 0x103
  71. #define FMOVQX 0x183
  72. #define FMOVQZ 0x027
  73. #define FMOVQLE 0x047
  74. #define FMOVQLZ 0x067
  75. #define FMOVQNZ 0x0a7
  76. #define FMOVQGZ 0x0c7
  77. #define FMOVQGE 0x0e7
  78. #define FSR_TEM_SHIFT 23UL
  79. #define FSR_TEM_MASK (0x1fUL << FSR_TEM_SHIFT)
  80. #define FSR_AEXC_SHIFT 5UL
  81. #define FSR_AEXC_MASK (0x1fUL << FSR_AEXC_SHIFT)
  82. #define FSR_CEXC_SHIFT 0UL
  83. #define FSR_CEXC_MASK (0x1fUL << FSR_CEXC_SHIFT)
  84. /* All routines returning an exception to raise should detect
  85. * such exceptions _before_ rounding to be consistent with
  86. * the behavior of the hardware in the implemented cases
  87. * (and thus with the recommendations in the V9 architecture
  88. * manual).
  89. *
  90. * We return 0 if a SIGFPE should be sent, 1 otherwise.
  91. */
  92. static inline int record_exception(struct pt_regs *regs, int eflag)
  93. {
  94. u64 fsr = current_thread_info()->xfsr[0];
  95. int would_trap;
  96. /* Determine if this exception would have generated a trap. */
  97. would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
  98. /* If trapping, we only want to signal one bit. */
  99. if(would_trap != 0) {
  100. eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
  101. if((eflag & (eflag - 1)) != 0) {
  102. if(eflag & FP_EX_INVALID)
  103. eflag = FP_EX_INVALID;
  104. else if(eflag & FP_EX_OVERFLOW)
  105. eflag = FP_EX_OVERFLOW;
  106. else if(eflag & FP_EX_UNDERFLOW)
  107. eflag = FP_EX_UNDERFLOW;
  108. else if(eflag & FP_EX_DIVZERO)
  109. eflag = FP_EX_DIVZERO;
  110. else if(eflag & FP_EX_INEXACT)
  111. eflag = FP_EX_INEXACT;
  112. }
  113. }
  114. /* Set CEXC, here is the rule:
  115. *
  116. * In general all FPU ops will set one and only one
  117. * bit in the CEXC field, this is always the case
  118. * when the IEEE exception trap is enabled in TEM.
  119. */
  120. fsr &= ~(FSR_CEXC_MASK);
  121. fsr |= ((long)eflag << FSR_CEXC_SHIFT);
  122. /* Set the AEXC field, rule is:
  123. *
  124. * If a trap would not be generated, the
  125. * CEXC just generated is OR'd into the
  126. * existing value of AEXC.
  127. */
  128. if(would_trap == 0)
  129. fsr |= ((long)eflag << FSR_AEXC_SHIFT);
  130. /* If trapping, indicate fault trap type IEEE. */
  131. if(would_trap != 0)
  132. fsr |= (1UL << 14);
  133. current_thread_info()->xfsr[0] = fsr;
  134. /* If we will not trap, advance the program counter over
  135. * the instruction being handled.
  136. */
  137. if(would_trap == 0) {
  138. regs->tpc = regs->tnpc;
  139. regs->tnpc += 4;
  140. }
  141. return (would_trap ? 0 : 1);
  142. }
  143. typedef union {
  144. u32 s;
  145. u64 d;
  146. u64 q[2];
  147. } *argp;
  148. int do_mathemu(struct pt_regs *regs, struct fpustate *f)
  149. {
  150. unsigned long pc = regs->tpc;
  151. unsigned long tstate = regs->tstate;
  152. u32 insn = 0;
  153. int type = 0;
  154. /* ftt tells which ftt it may happen in, r is rd, b is rs2 and a is rs1. The *u arg tells
  155. whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
  156. non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
  157. #define TYPE(ftt, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6) | (ftt << 9)
  158. int freg;
  159. static u64 zero[2] = { 0L, 0L };
  160. int flags;
  161. FP_DECL_EX;
  162. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  163. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  164. FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
  165. int IR;
  166. long XR, xfsr;
  167. if (tstate & TSTATE_PRIV)
  168. die_if_kernel("unfinished/unimplemented FPop from kernel", regs);
  169. if (test_thread_flag(TIF_32BIT))
  170. pc = (u32)pc;
  171. if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
  172. if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ {
  173. switch ((insn >> 5) & 0x1ff) {
  174. /* QUAD - ftt == 3 */
  175. case FMOVQ:
  176. case FNEGQ:
  177. case FABSQ: TYPE(3,3,0,3,0,0,0); break;
  178. case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
  179. case FADDQ:
  180. case FSUBQ:
  181. case FMULQ:
  182. case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
  183. case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
  184. case FQTOX: TYPE(3,2,0,3,1,0,0); break;
  185. case FXTOQ: TYPE(3,3,1,2,0,0,0); break;
  186. case FQTOS: TYPE(3,1,1,3,1,0,0); break;
  187. case FQTOD: TYPE(3,2,1,3,1,0,0); break;
  188. case FITOQ: TYPE(3,3,1,1,0,0,0); break;
  189. case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
  190. case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
  191. case FQTOI: TYPE(3,1,0,3,1,0,0); break;
  192. /* We can get either unimplemented or unfinished
  193. * for these cases. Pre-Niagara systems generate
  194. * unfinished fpop for SUBNORMAL cases, and Niagara
  195. * always gives unimplemented fpop for fsqrt{s,d}.
  196. */
  197. case FSQRTS: {
  198. unsigned long x = current_thread_info()->xfsr[0];
  199. x = (x >> 14) & 0xf;
  200. TYPE(x,1,1,1,1,0,0);
  201. printk("math-emu: type is %08x\n", type);
  202. break;
  203. }
  204. case FSQRTD: {
  205. unsigned long x = current_thread_info()->xfsr[0];
  206. x = (x >> 14) & 0xf;
  207. TYPE(x,2,1,2,1,0,0);
  208. break;
  209. }
  210. /* SUBNORMAL - ftt == 2 */
  211. case FADDD:
  212. case FSUBD:
  213. case FMULD:
  214. case FDIVD: TYPE(2,2,1,2,1,2,1); break;
  215. case FADDS:
  216. case FSUBS:
  217. case FMULS:
  218. case FDIVS: TYPE(2,1,1,1,1,1,1); break;
  219. case FSMULD: TYPE(2,2,1,1,1,1,1); break;
  220. case FSTOX: TYPE(2,2,0,1,1,0,0); break;
  221. case FDTOX: TYPE(2,2,0,2,1,0,0); break;
  222. case FDTOS: TYPE(2,1,1,2,1,0,0); break;
  223. case FSTOD: TYPE(2,2,1,1,1,0,0); break;
  224. case FSTOI: TYPE(2,1,0,1,1,0,0); break;
  225. case FDTOI: TYPE(2,1,0,2,1,0,0); break;
  226. /* Only Ultra-III generates these */
  227. case FXTOS: TYPE(2,1,1,2,0,0,0); break;
  228. case FXTOD: TYPE(2,2,1,2,0,0,0); break;
  229. #if 0 /* Optimized inline in sparc64/kernel/entry.S */
  230. case FITOS: TYPE(2,1,1,1,0,0,0); break;
  231. #endif
  232. case FITOD: TYPE(2,2,1,1,0,0,0); break;
  233. }
  234. }
  235. else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ {
  236. IR = 2;
  237. switch ((insn >> 5) & 0x1ff) {
  238. case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
  239. case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
  240. /* Now the conditional fmovq support */
  241. case FMOVQ0:
  242. case FMOVQ1:
  243. case FMOVQ2:
  244. case FMOVQ3:
  245. /* fmovq %fccX, %fY, %fZ */
  246. if (!((insn >> 11) & 3))
  247. XR = current_thread_info()->xfsr[0] >> 10;
  248. else
  249. XR = current_thread_info()->xfsr[0] >> (30 + ((insn >> 10) & 0x6));
  250. XR &= 3;
  251. IR = 0;
  252. switch ((insn >> 14) & 0x7) {
  253. /* case 0: IR = 0; break; */ /* Never */
  254. case 1: if (XR) IR = 1; break; /* Not Equal */
  255. case 2: if (XR == 1 || XR == 2) IR = 1; break; /* Less or Greater */
  256. case 3: if (XR & 1) IR = 1; break; /* Unordered or Less */
  257. case 4: if (XR == 1) IR = 1; break; /* Less */
  258. case 5: if (XR & 2) IR = 1; break; /* Unordered or Greater */
  259. case 6: if (XR == 2) IR = 1; break; /* Greater */
  260. case 7: if (XR == 3) IR = 1; break; /* Unordered */
  261. }
  262. if ((insn >> 14) & 8)
  263. IR ^= 1;
  264. break;
  265. case FMOVQI:
  266. case FMOVQX:
  267. /* fmovq %[ix]cc, %fY, %fZ */
  268. XR = regs->tstate >> 32;
  269. if ((insn >> 5) & 0x80)
  270. XR >>= 4;
  271. XR &= 0xf;
  272. IR = 0;
  273. freg = ((XR >> 2) ^ XR) & 2;
  274. switch ((insn >> 14) & 0x7) {
  275. /* case 0: IR = 0; break; */ /* Never */
  276. case 1: if (XR & 4) IR = 1; break; /* Equal */
  277. case 2: if ((XR & 4) || freg) IR = 1; break; /* Less or Equal */
  278. case 3: if (freg) IR = 1; break; /* Less */
  279. case 4: if (XR & 5) IR = 1; break; /* Less or Equal Unsigned */
  280. case 5: if (XR & 1) IR = 1; break; /* Carry Set */
  281. case 6: if (XR & 8) IR = 1; break; /* Negative */
  282. case 7: if (XR & 2) IR = 1; break; /* Overflow Set */
  283. }
  284. if ((insn >> 14) & 8)
  285. IR ^= 1;
  286. break;
  287. case FMOVQZ:
  288. case FMOVQLE:
  289. case FMOVQLZ:
  290. case FMOVQNZ:
  291. case FMOVQGZ:
  292. case FMOVQGE:
  293. freg = (insn >> 14) & 0x1f;
  294. if (!freg)
  295. XR = 0;
  296. else if (freg < 16)
  297. XR = regs->u_regs[freg];
  298. else if (test_thread_flag(TIF_32BIT)) {
  299. struct reg_window32 __user *win32;
  300. flushw_user ();
  301. win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
  302. get_user(XR, &win32->locals[freg - 16]);
  303. } else {
  304. struct reg_window __user *win;
  305. flushw_user ();
  306. win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  307. get_user(XR, &win->locals[freg - 16]);
  308. }
  309. IR = 0;
  310. switch ((insn >> 10) & 3) {
  311. case 1: if (!XR) IR = 1; break; /* Register Zero */
  312. case 2: if (XR <= 0) IR = 1; break; /* Register Less Than or Equal to Zero */
  313. case 3: if (XR < 0) IR = 1; break; /* Register Less Than Zero */
  314. }
  315. if ((insn >> 10) & 4)
  316. IR ^= 1;
  317. break;
  318. }
  319. if (IR == 0) {
  320. /* The fmov test was false. Do a nop instead */
  321. current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
  322. regs->tpc = regs->tnpc;
  323. regs->tnpc += 4;
  324. return 1;
  325. } else if (IR == 1) {
  326. /* Change the instruction into plain fmovq */
  327. insn = (insn & 0x3e00001f) | 0x81a00060;
  328. TYPE(3,3,0,3,0,0,0);
  329. }
  330. }
  331. }
  332. if (type) {
  333. argp rs1 = NULL, rs2 = NULL, rd = NULL;
  334. freg = (current_thread_info()->xfsr[0] >> 14) & 0xf;
  335. if (freg != (type >> 9))
  336. goto err;
  337. current_thread_info()->xfsr[0] &= ~0x1c000;
  338. freg = ((insn >> 14) & 0x1f);
  339. switch (type & 0x3) {
  340. case 3: if (freg & 2) {
  341. current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
  342. goto err;
  343. }
  344. case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
  345. case 1: rs1 = (argp)&f->regs[freg];
  346. flags = (freg < 32) ? FPRS_DL : FPRS_DU;
  347. if (!(current_thread_info()->fpsaved[0] & flags))
  348. rs1 = (argp)&zero;
  349. break;
  350. }
  351. switch (type & 0x7) {
  352. case 7: FP_UNPACK_QP (QA, rs1); break;
  353. case 6: FP_UNPACK_DP (DA, rs1); break;
  354. case 5: FP_UNPACK_SP (SA, rs1); break;
  355. }
  356. freg = (insn & 0x1f);
  357. switch ((type >> 3) & 0x3) {
  358. case 3: if (freg & 2) {
  359. current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
  360. goto err;
  361. }
  362. case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
  363. case 1: rs2 = (argp)&f->regs[freg];
  364. flags = (freg < 32) ? FPRS_DL : FPRS_DU;
  365. if (!(current_thread_info()->fpsaved[0] & flags))
  366. rs2 = (argp)&zero;
  367. break;
  368. }
  369. switch ((type >> 3) & 0x7) {
  370. case 7: FP_UNPACK_QP (QB, rs2); break;
  371. case 6: FP_UNPACK_DP (DB, rs2); break;
  372. case 5: FP_UNPACK_SP (SB, rs2); break;
  373. }
  374. freg = ((insn >> 25) & 0x1f);
  375. switch ((type >> 6) & 0x3) {
  376. case 3: if (freg & 2) {
  377. current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
  378. goto err;
  379. }
  380. case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
  381. case 1: rd = (argp)&f->regs[freg];
  382. flags = (freg < 32) ? FPRS_DL : FPRS_DU;
  383. if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
  384. current_thread_info()->fpsaved[0] = FPRS_FEF;
  385. current_thread_info()->gsr[0] = 0;
  386. }
  387. if (!(current_thread_info()->fpsaved[0] & flags)) {
  388. if (freg < 32)
  389. memset(f->regs, 0, 32*sizeof(u32));
  390. else
  391. memset(f->regs+32, 0, 32*sizeof(u32));
  392. }
  393. current_thread_info()->fpsaved[0] |= flags;
  394. break;
  395. }
  396. switch ((insn >> 5) & 0x1ff) {
  397. /* + */
  398. case FADDS: FP_ADD_S (SR, SA, SB); break;
  399. case FADDD: FP_ADD_D (DR, DA, DB); break;
  400. case FADDQ: FP_ADD_Q (QR, QA, QB); break;
  401. /* - */
  402. case FSUBS: FP_SUB_S (SR, SA, SB); break;
  403. case FSUBD: FP_SUB_D (DR, DA, DB); break;
  404. case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
  405. /* * */
  406. case FMULS: FP_MUL_S (SR, SA, SB); break;
  407. case FSMULD: FP_CONV (D, S, 1, 1, DA, SA);
  408. FP_CONV (D, S, 1, 1, DB, SB);
  409. case FMULD: FP_MUL_D (DR, DA, DB); break;
  410. case FDMULQ: FP_CONV (Q, D, 2, 1, QA, DA);
  411. FP_CONV (Q, D, 2, 1, QB, DB);
  412. case FMULQ: FP_MUL_Q (QR, QA, QB); break;
  413. /* / */
  414. case FDIVS: FP_DIV_S (SR, SA, SB); break;
  415. case FDIVD: FP_DIV_D (DR, DA, DB); break;
  416. case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
  417. /* sqrt */
  418. case FSQRTS: FP_SQRT_S (SR, SB); break;
  419. case FSQRTD: FP_SQRT_D (DR, DB); break;
  420. case FSQRTQ: FP_SQRT_Q (QR, QB); break;
  421. /* mov */
  422. case FMOVQ: rd->q[0] = rs2->q[0]; rd->q[1] = rs2->q[1]; break;
  423. case FABSQ: rd->q[0] = rs2->q[0] & 0x7fffffffffffffffUL; rd->q[1] = rs2->q[1]; break;
  424. case FNEGQ: rd->q[0] = rs2->q[0] ^ 0x8000000000000000UL; rd->q[1] = rs2->q[1]; break;
  425. /* float to int */
  426. case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
  427. case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
  428. case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
  429. case FSTOX: FP_TO_INT_S (XR, SB, 64, 1); break;
  430. case FDTOX: FP_TO_INT_D (XR, DB, 64, 1); break;
  431. case FQTOX: FP_TO_INT_Q (XR, QB, 64, 1); break;
  432. /* int to float */
  433. case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
  434. case FXTOQ: XR = rs2->d; FP_FROM_INT_Q (QR, XR, 64, long); break;
  435. /* Only Ultra-III generates these */
  436. case FXTOS: XR = rs2->d; FP_FROM_INT_S (SR, XR, 64, long); break;
  437. case FXTOD: XR = rs2->d; FP_FROM_INT_D (DR, XR, 64, long); break;
  438. #if 0 /* Optimized inline in sparc64/kernel/entry.S */
  439. case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
  440. #endif
  441. case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
  442. /* float to float */
  443. case FSTOD: FP_CONV (D, S, 1, 1, DR, SB); break;
  444. case FSTOQ: FP_CONV (Q, S, 2, 1, QR, SB); break;
  445. case FDTOQ: FP_CONV (Q, D, 2, 1, QR, DB); break;
  446. case FDTOS: FP_CONV (S, D, 1, 1, SR, DB); break;
  447. case FQTOS: FP_CONV (S, Q, 1, 2, SR, QB); break;
  448. case FQTOD: FP_CONV (D, Q, 1, 2, DR, QB); break;
  449. /* comparison */
  450. case FCMPQ:
  451. case FCMPEQ:
  452. FP_CMP_Q(XR, QB, QA, 3);
  453. if (XR == 3 &&
  454. (((insn >> 5) & 0x1ff) == FCMPEQ ||
  455. FP_ISSIGNAN_Q(QA) ||
  456. FP_ISSIGNAN_Q(QB)))
  457. FP_SET_EXCEPTION (FP_EX_INVALID);
  458. }
  459. if (!FP_INHIBIT_RESULTS) {
  460. switch ((type >> 6) & 0x7) {
  461. case 0: xfsr = current_thread_info()->xfsr[0];
  462. if (XR == -1) XR = 2;
  463. switch (freg & 3) {
  464. /* fcc0, 1, 2, 3 */
  465. case 0: xfsr &= ~0xc00; xfsr |= (XR << 10); break;
  466. case 1: xfsr &= ~0x300000000UL; xfsr |= (XR << 32); break;
  467. case 2: xfsr &= ~0xc00000000UL; xfsr |= (XR << 34); break;
  468. case 3: xfsr &= ~0x3000000000UL; xfsr |= (XR << 36); break;
  469. }
  470. current_thread_info()->xfsr[0] = xfsr;
  471. break;
  472. case 1: rd->s = IR; break;
  473. case 2: rd->d = XR; break;
  474. case 5: FP_PACK_SP (rd, SR); break;
  475. case 6: FP_PACK_DP (rd, DR); break;
  476. case 7: FP_PACK_QP (rd, QR); break;
  477. }
  478. }
  479. if(_fex != 0)
  480. return record_exception(regs, _fex);
  481. /* Success and no exceptions detected. */
  482. current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
  483. regs->tpc = regs->tnpc;
  484. regs->tnpc += 4;
  485. return 1;
  486. }
  487. err: return 0;
  488. }