dm-crypt.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288
  1. /*
  2. * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
  3. * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
  4. * Copyright (C) 2006-2008 Red Hat, Inc. All rights reserved.
  5. *
  6. * This file is released under the GPL.
  7. */
  8. #include <linux/completion.h>
  9. #include <linux/err.h>
  10. #include <linux/module.h>
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/mempool.h>
  16. #include <linux/slab.h>
  17. #include <linux/crypto.h>
  18. #include <linux/workqueue.h>
  19. #include <linux/backing-dev.h>
  20. #include <asm/atomic.h>
  21. #include <linux/scatterlist.h>
  22. #include <asm/page.h>
  23. #include <asm/unaligned.h>
  24. #include "dm.h"
  25. #define DM_MSG_PREFIX "crypt"
  26. #define MESG_STR(x) x, sizeof(x)
  27. /*
  28. * context holding the current state of a multi-part conversion
  29. */
  30. struct convert_context {
  31. struct completion restart;
  32. struct bio *bio_in;
  33. struct bio *bio_out;
  34. unsigned int offset_in;
  35. unsigned int offset_out;
  36. unsigned int idx_in;
  37. unsigned int idx_out;
  38. sector_t sector;
  39. atomic_t pending;
  40. };
  41. /*
  42. * per bio private data
  43. */
  44. struct dm_crypt_io {
  45. struct dm_target *target;
  46. struct bio *base_bio;
  47. struct work_struct work;
  48. struct convert_context ctx;
  49. atomic_t pending;
  50. int error;
  51. sector_t sector;
  52. };
  53. struct dm_crypt_request {
  54. struct scatterlist sg_in;
  55. struct scatterlist sg_out;
  56. };
  57. struct crypt_config;
  58. struct crypt_iv_operations {
  59. int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  60. const char *opts);
  61. void (*dtr)(struct crypt_config *cc);
  62. const char *(*status)(struct crypt_config *cc);
  63. int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
  64. };
  65. /*
  66. * Crypt: maps a linear range of a block device
  67. * and encrypts / decrypts at the same time.
  68. */
  69. enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
  70. struct crypt_config {
  71. struct dm_dev *dev;
  72. sector_t start;
  73. /*
  74. * pool for per bio private data, crypto requests and
  75. * encryption requeusts/buffer pages
  76. */
  77. mempool_t *io_pool;
  78. mempool_t *req_pool;
  79. mempool_t *page_pool;
  80. struct bio_set *bs;
  81. struct workqueue_struct *io_queue;
  82. struct workqueue_struct *crypt_queue;
  83. wait_queue_head_t writeq;
  84. /*
  85. * crypto related data
  86. */
  87. struct crypt_iv_operations *iv_gen_ops;
  88. char *iv_mode;
  89. union {
  90. struct crypto_cipher *essiv_tfm;
  91. int benbi_shift;
  92. } iv_gen_private;
  93. sector_t iv_offset;
  94. unsigned int iv_size;
  95. /*
  96. * Layout of each crypto request:
  97. *
  98. * struct ablkcipher_request
  99. * context
  100. * padding
  101. * struct dm_crypt_request
  102. * padding
  103. * IV
  104. *
  105. * The padding is added so that dm_crypt_request and the IV are
  106. * correctly aligned.
  107. */
  108. unsigned int dmreq_start;
  109. struct ablkcipher_request *req;
  110. char cipher[CRYPTO_MAX_ALG_NAME];
  111. char chainmode[CRYPTO_MAX_ALG_NAME];
  112. struct crypto_ablkcipher *tfm;
  113. unsigned long flags;
  114. unsigned int key_size;
  115. u8 key[0];
  116. };
  117. #define MIN_IOS 16
  118. #define MIN_POOL_PAGES 32
  119. #define MIN_BIO_PAGES 8
  120. static struct kmem_cache *_crypt_io_pool;
  121. static void clone_init(struct dm_crypt_io *, struct bio *);
  122. static void kcryptd_queue_crypt(struct dm_crypt_io *io);
  123. /*
  124. * Different IV generation algorithms:
  125. *
  126. * plain: the initial vector is the 32-bit little-endian version of the sector
  127. * number, padded with zeros if necessary.
  128. *
  129. * essiv: "encrypted sector|salt initial vector", the sector number is
  130. * encrypted with the bulk cipher using a salt as key. The salt
  131. * should be derived from the bulk cipher's key via hashing.
  132. *
  133. * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
  134. * (needed for LRW-32-AES and possible other narrow block modes)
  135. *
  136. * null: the initial vector is always zero. Provides compatibility with
  137. * obsolete loop_fish2 devices. Do not use for new devices.
  138. *
  139. * plumb: unimplemented, see:
  140. * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
  141. */
  142. static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
  143. {
  144. memset(iv, 0, cc->iv_size);
  145. *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
  146. return 0;
  147. }
  148. static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
  149. const char *opts)
  150. {
  151. struct crypto_cipher *essiv_tfm;
  152. struct crypto_hash *hash_tfm;
  153. struct hash_desc desc;
  154. struct scatterlist sg;
  155. unsigned int saltsize;
  156. u8 *salt;
  157. int err;
  158. if (opts == NULL) {
  159. ti->error = "Digest algorithm missing for ESSIV mode";
  160. return -EINVAL;
  161. }
  162. /* Hash the cipher key with the given hash algorithm */
  163. hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
  164. if (IS_ERR(hash_tfm)) {
  165. ti->error = "Error initializing ESSIV hash";
  166. return PTR_ERR(hash_tfm);
  167. }
  168. saltsize = crypto_hash_digestsize(hash_tfm);
  169. salt = kmalloc(saltsize, GFP_KERNEL);
  170. if (salt == NULL) {
  171. ti->error = "Error kmallocing salt storage in ESSIV";
  172. crypto_free_hash(hash_tfm);
  173. return -ENOMEM;
  174. }
  175. sg_init_one(&sg, cc->key, cc->key_size);
  176. desc.tfm = hash_tfm;
  177. desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
  178. err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
  179. crypto_free_hash(hash_tfm);
  180. if (err) {
  181. ti->error = "Error calculating hash in ESSIV";
  182. kfree(salt);
  183. return err;
  184. }
  185. /* Setup the essiv_tfm with the given salt */
  186. essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
  187. if (IS_ERR(essiv_tfm)) {
  188. ti->error = "Error allocating crypto tfm for ESSIV";
  189. kfree(salt);
  190. return PTR_ERR(essiv_tfm);
  191. }
  192. if (crypto_cipher_blocksize(essiv_tfm) !=
  193. crypto_ablkcipher_ivsize(cc->tfm)) {
  194. ti->error = "Block size of ESSIV cipher does "
  195. "not match IV size of block cipher";
  196. crypto_free_cipher(essiv_tfm);
  197. kfree(salt);
  198. return -EINVAL;
  199. }
  200. err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
  201. if (err) {
  202. ti->error = "Failed to set key for ESSIV cipher";
  203. crypto_free_cipher(essiv_tfm);
  204. kfree(salt);
  205. return err;
  206. }
  207. kfree(salt);
  208. cc->iv_gen_private.essiv_tfm = essiv_tfm;
  209. return 0;
  210. }
  211. static void crypt_iv_essiv_dtr(struct crypt_config *cc)
  212. {
  213. crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
  214. cc->iv_gen_private.essiv_tfm = NULL;
  215. }
  216. static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
  217. {
  218. memset(iv, 0, cc->iv_size);
  219. *(u64 *)iv = cpu_to_le64(sector);
  220. crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
  221. return 0;
  222. }
  223. static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
  224. const char *opts)
  225. {
  226. unsigned bs = crypto_ablkcipher_blocksize(cc->tfm);
  227. int log = ilog2(bs);
  228. /* we need to calculate how far we must shift the sector count
  229. * to get the cipher block count, we use this shift in _gen */
  230. if (1 << log != bs) {
  231. ti->error = "cypher blocksize is not a power of 2";
  232. return -EINVAL;
  233. }
  234. if (log > 9) {
  235. ti->error = "cypher blocksize is > 512";
  236. return -EINVAL;
  237. }
  238. cc->iv_gen_private.benbi_shift = 9 - log;
  239. return 0;
  240. }
  241. static void crypt_iv_benbi_dtr(struct crypt_config *cc)
  242. {
  243. }
  244. static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
  245. {
  246. __be64 val;
  247. memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
  248. val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
  249. put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
  250. return 0;
  251. }
  252. static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
  253. {
  254. memset(iv, 0, cc->iv_size);
  255. return 0;
  256. }
  257. static struct crypt_iv_operations crypt_iv_plain_ops = {
  258. .generator = crypt_iv_plain_gen
  259. };
  260. static struct crypt_iv_operations crypt_iv_essiv_ops = {
  261. .ctr = crypt_iv_essiv_ctr,
  262. .dtr = crypt_iv_essiv_dtr,
  263. .generator = crypt_iv_essiv_gen
  264. };
  265. static struct crypt_iv_operations crypt_iv_benbi_ops = {
  266. .ctr = crypt_iv_benbi_ctr,
  267. .dtr = crypt_iv_benbi_dtr,
  268. .generator = crypt_iv_benbi_gen
  269. };
  270. static struct crypt_iv_operations crypt_iv_null_ops = {
  271. .generator = crypt_iv_null_gen
  272. };
  273. static void crypt_convert_init(struct crypt_config *cc,
  274. struct convert_context *ctx,
  275. struct bio *bio_out, struct bio *bio_in,
  276. sector_t sector)
  277. {
  278. ctx->bio_in = bio_in;
  279. ctx->bio_out = bio_out;
  280. ctx->offset_in = 0;
  281. ctx->offset_out = 0;
  282. ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
  283. ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
  284. ctx->sector = sector + cc->iv_offset;
  285. init_completion(&ctx->restart);
  286. atomic_set(&ctx->pending, 1);
  287. }
  288. static int crypt_convert_block(struct crypt_config *cc,
  289. struct convert_context *ctx,
  290. struct ablkcipher_request *req)
  291. {
  292. struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
  293. struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
  294. struct dm_crypt_request *dmreq;
  295. u8 *iv;
  296. int r = 0;
  297. dmreq = (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
  298. iv = (u8 *)ALIGN((unsigned long)(dmreq + 1),
  299. crypto_ablkcipher_alignmask(cc->tfm) + 1);
  300. sg_init_table(&dmreq->sg_in, 1);
  301. sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
  302. bv_in->bv_offset + ctx->offset_in);
  303. sg_init_table(&dmreq->sg_out, 1);
  304. sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
  305. bv_out->bv_offset + ctx->offset_out);
  306. ctx->offset_in += 1 << SECTOR_SHIFT;
  307. if (ctx->offset_in >= bv_in->bv_len) {
  308. ctx->offset_in = 0;
  309. ctx->idx_in++;
  310. }
  311. ctx->offset_out += 1 << SECTOR_SHIFT;
  312. if (ctx->offset_out >= bv_out->bv_len) {
  313. ctx->offset_out = 0;
  314. ctx->idx_out++;
  315. }
  316. if (cc->iv_gen_ops) {
  317. r = cc->iv_gen_ops->generator(cc, iv, ctx->sector);
  318. if (r < 0)
  319. return r;
  320. }
  321. ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
  322. 1 << SECTOR_SHIFT, iv);
  323. if (bio_data_dir(ctx->bio_in) == WRITE)
  324. r = crypto_ablkcipher_encrypt(req);
  325. else
  326. r = crypto_ablkcipher_decrypt(req);
  327. return r;
  328. }
  329. static void kcryptd_async_done(struct crypto_async_request *async_req,
  330. int error);
  331. static void crypt_alloc_req(struct crypt_config *cc,
  332. struct convert_context *ctx)
  333. {
  334. if (!cc->req)
  335. cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
  336. ablkcipher_request_set_tfm(cc->req, cc->tfm);
  337. ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG |
  338. CRYPTO_TFM_REQ_MAY_SLEEP,
  339. kcryptd_async_done, ctx);
  340. }
  341. /*
  342. * Encrypt / decrypt data from one bio to another one (can be the same one)
  343. */
  344. static int crypt_convert(struct crypt_config *cc,
  345. struct convert_context *ctx)
  346. {
  347. int r;
  348. while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
  349. ctx->idx_out < ctx->bio_out->bi_vcnt) {
  350. crypt_alloc_req(cc, ctx);
  351. atomic_inc(&ctx->pending);
  352. r = crypt_convert_block(cc, ctx, cc->req);
  353. switch (r) {
  354. /* async */
  355. case -EBUSY:
  356. wait_for_completion(&ctx->restart);
  357. INIT_COMPLETION(ctx->restart);
  358. /* fall through*/
  359. case -EINPROGRESS:
  360. cc->req = NULL;
  361. ctx->sector++;
  362. continue;
  363. /* sync */
  364. case 0:
  365. atomic_dec(&ctx->pending);
  366. ctx->sector++;
  367. cond_resched();
  368. continue;
  369. /* error */
  370. default:
  371. atomic_dec(&ctx->pending);
  372. return r;
  373. }
  374. }
  375. return 0;
  376. }
  377. static void dm_crypt_bio_destructor(struct bio *bio)
  378. {
  379. struct dm_crypt_io *io = bio->bi_private;
  380. struct crypt_config *cc = io->target->private;
  381. bio_free(bio, cc->bs);
  382. }
  383. /*
  384. * Generate a new unfragmented bio with the given size
  385. * This should never violate the device limitations
  386. * May return a smaller bio when running out of pages
  387. */
  388. static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
  389. {
  390. struct crypt_config *cc = io->target->private;
  391. struct bio *clone;
  392. unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  393. gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
  394. unsigned i, len;
  395. struct page *page;
  396. clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
  397. if (!clone)
  398. return NULL;
  399. clone_init(io, clone);
  400. for (i = 0; i < nr_iovecs; i++) {
  401. page = mempool_alloc(cc->page_pool, gfp_mask);
  402. if (!page)
  403. break;
  404. /*
  405. * if additional pages cannot be allocated without waiting,
  406. * return a partially allocated bio, the caller will then try
  407. * to allocate additional bios while submitting this partial bio
  408. */
  409. if (i == (MIN_BIO_PAGES - 1))
  410. gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
  411. len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
  412. if (!bio_add_page(clone, page, len, 0)) {
  413. mempool_free(page, cc->page_pool);
  414. break;
  415. }
  416. size -= len;
  417. }
  418. if (!clone->bi_size) {
  419. bio_put(clone);
  420. return NULL;
  421. }
  422. return clone;
  423. }
  424. static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
  425. {
  426. unsigned int i;
  427. struct bio_vec *bv;
  428. for (i = 0; i < clone->bi_vcnt; i++) {
  429. bv = bio_iovec_idx(clone, i);
  430. BUG_ON(!bv->bv_page);
  431. mempool_free(bv->bv_page, cc->page_pool);
  432. bv->bv_page = NULL;
  433. }
  434. }
  435. static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
  436. struct bio *bio, sector_t sector)
  437. {
  438. struct crypt_config *cc = ti->private;
  439. struct dm_crypt_io *io;
  440. io = mempool_alloc(cc->io_pool, GFP_NOIO);
  441. io->target = ti;
  442. io->base_bio = bio;
  443. io->sector = sector;
  444. io->error = 0;
  445. atomic_set(&io->pending, 0);
  446. return io;
  447. }
  448. static void crypt_inc_pending(struct dm_crypt_io *io)
  449. {
  450. atomic_inc(&io->pending);
  451. }
  452. /*
  453. * One of the bios was finished. Check for completion of
  454. * the whole request and correctly clean up the buffer.
  455. */
  456. static void crypt_dec_pending(struct dm_crypt_io *io)
  457. {
  458. struct crypt_config *cc = io->target->private;
  459. if (!atomic_dec_and_test(&io->pending))
  460. return;
  461. bio_endio(io->base_bio, io->error);
  462. mempool_free(io, cc->io_pool);
  463. }
  464. /*
  465. * kcryptd/kcryptd_io:
  466. *
  467. * Needed because it would be very unwise to do decryption in an
  468. * interrupt context.
  469. *
  470. * kcryptd performs the actual encryption or decryption.
  471. *
  472. * kcryptd_io performs the IO submission.
  473. *
  474. * They must be separated as otherwise the final stages could be
  475. * starved by new requests which can block in the first stages due
  476. * to memory allocation.
  477. */
  478. static void crypt_endio(struct bio *clone, int error)
  479. {
  480. struct dm_crypt_io *io = clone->bi_private;
  481. struct crypt_config *cc = io->target->private;
  482. unsigned rw = bio_data_dir(clone);
  483. if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
  484. error = -EIO;
  485. /*
  486. * free the processed pages
  487. */
  488. if (rw == WRITE)
  489. crypt_free_buffer_pages(cc, clone);
  490. bio_put(clone);
  491. if (rw == READ && !error) {
  492. kcryptd_queue_crypt(io);
  493. return;
  494. }
  495. if (unlikely(error))
  496. io->error = error;
  497. crypt_dec_pending(io);
  498. }
  499. static void clone_init(struct dm_crypt_io *io, struct bio *clone)
  500. {
  501. struct crypt_config *cc = io->target->private;
  502. clone->bi_private = io;
  503. clone->bi_end_io = crypt_endio;
  504. clone->bi_bdev = cc->dev->bdev;
  505. clone->bi_rw = io->base_bio->bi_rw;
  506. clone->bi_destructor = dm_crypt_bio_destructor;
  507. }
  508. static void kcryptd_io_read(struct dm_crypt_io *io)
  509. {
  510. struct crypt_config *cc = io->target->private;
  511. struct bio *base_bio = io->base_bio;
  512. struct bio *clone;
  513. crypt_inc_pending(io);
  514. /*
  515. * The block layer might modify the bvec array, so always
  516. * copy the required bvecs because we need the original
  517. * one in order to decrypt the whole bio data *afterwards*.
  518. */
  519. clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
  520. if (unlikely(!clone)) {
  521. io->error = -ENOMEM;
  522. crypt_dec_pending(io);
  523. return;
  524. }
  525. clone_init(io, clone);
  526. clone->bi_idx = 0;
  527. clone->bi_vcnt = bio_segments(base_bio);
  528. clone->bi_size = base_bio->bi_size;
  529. clone->bi_sector = cc->start + io->sector;
  530. memcpy(clone->bi_io_vec, bio_iovec(base_bio),
  531. sizeof(struct bio_vec) * clone->bi_vcnt);
  532. generic_make_request(clone);
  533. }
  534. static void kcryptd_io_write(struct dm_crypt_io *io)
  535. {
  536. struct bio *clone = io->ctx.bio_out;
  537. struct crypt_config *cc = io->target->private;
  538. generic_make_request(clone);
  539. wake_up(&cc->writeq);
  540. }
  541. static void kcryptd_io(struct work_struct *work)
  542. {
  543. struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
  544. if (bio_data_dir(io->base_bio) == READ)
  545. kcryptd_io_read(io);
  546. else
  547. kcryptd_io_write(io);
  548. }
  549. static void kcryptd_queue_io(struct dm_crypt_io *io)
  550. {
  551. struct crypt_config *cc = io->target->private;
  552. INIT_WORK(&io->work, kcryptd_io);
  553. queue_work(cc->io_queue, &io->work);
  554. }
  555. static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
  556. int error, int async)
  557. {
  558. struct bio *clone = io->ctx.bio_out;
  559. struct crypt_config *cc = io->target->private;
  560. if (unlikely(error < 0)) {
  561. crypt_free_buffer_pages(cc, clone);
  562. bio_put(clone);
  563. io->error = -EIO;
  564. crypt_dec_pending(io);
  565. return;
  566. }
  567. /* crypt_convert should have filled the clone bio */
  568. BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
  569. clone->bi_sector = cc->start + io->sector;
  570. io->sector += bio_sectors(clone);
  571. if (async)
  572. kcryptd_queue_io(io);
  573. else
  574. generic_make_request(clone);
  575. }
  576. static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
  577. {
  578. struct crypt_config *cc = io->target->private;
  579. struct bio *clone;
  580. unsigned remaining = io->base_bio->bi_size;
  581. int r;
  582. /*
  583. * Prevent io from disappearing until this function completes.
  584. */
  585. crypt_inc_pending(io);
  586. crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, io->sector);
  587. /*
  588. * The allocated buffers can be smaller than the whole bio,
  589. * so repeat the whole process until all the data can be handled.
  590. */
  591. while (remaining) {
  592. clone = crypt_alloc_buffer(io, remaining);
  593. if (unlikely(!clone)) {
  594. io->error = -ENOMEM;
  595. break;
  596. }
  597. io->ctx.bio_out = clone;
  598. io->ctx.idx_out = 0;
  599. remaining -= clone->bi_size;
  600. crypt_inc_pending(io);
  601. r = crypt_convert(cc, &io->ctx);
  602. if (atomic_dec_and_test(&io->ctx.pending)) {
  603. /* processed, no running async crypto */
  604. kcryptd_crypt_write_io_submit(io, r, 0);
  605. if (unlikely(r < 0))
  606. break;
  607. }
  608. /* out of memory -> run queues */
  609. if (unlikely(remaining)) {
  610. /* wait for async crypto then reinitialize pending */
  611. wait_event(cc->writeq, !atomic_read(&io->ctx.pending));
  612. atomic_set(&io->ctx.pending, 1);
  613. congestion_wait(WRITE, HZ/100);
  614. }
  615. }
  616. crypt_dec_pending(io);
  617. }
  618. static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
  619. {
  620. if (unlikely(error < 0))
  621. io->error = -EIO;
  622. crypt_dec_pending(io);
  623. }
  624. static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
  625. {
  626. struct crypt_config *cc = io->target->private;
  627. int r = 0;
  628. crypt_inc_pending(io);
  629. crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
  630. io->sector);
  631. r = crypt_convert(cc, &io->ctx);
  632. if (atomic_dec_and_test(&io->ctx.pending))
  633. kcryptd_crypt_read_done(io, r);
  634. crypt_dec_pending(io);
  635. }
  636. static void kcryptd_async_done(struct crypto_async_request *async_req,
  637. int error)
  638. {
  639. struct convert_context *ctx = async_req->data;
  640. struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
  641. struct crypt_config *cc = io->target->private;
  642. if (error == -EINPROGRESS) {
  643. complete(&ctx->restart);
  644. return;
  645. }
  646. mempool_free(ablkcipher_request_cast(async_req), cc->req_pool);
  647. if (!atomic_dec_and_test(&ctx->pending))
  648. return;
  649. if (bio_data_dir(io->base_bio) == READ)
  650. kcryptd_crypt_read_done(io, error);
  651. else
  652. kcryptd_crypt_write_io_submit(io, error, 1);
  653. }
  654. static void kcryptd_crypt(struct work_struct *work)
  655. {
  656. struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
  657. if (bio_data_dir(io->base_bio) == READ)
  658. kcryptd_crypt_read_convert(io);
  659. else
  660. kcryptd_crypt_write_convert(io);
  661. }
  662. static void kcryptd_queue_crypt(struct dm_crypt_io *io)
  663. {
  664. struct crypt_config *cc = io->target->private;
  665. INIT_WORK(&io->work, kcryptd_crypt);
  666. queue_work(cc->crypt_queue, &io->work);
  667. }
  668. /*
  669. * Decode key from its hex representation
  670. */
  671. static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
  672. {
  673. char buffer[3];
  674. char *endp;
  675. unsigned int i;
  676. buffer[2] = '\0';
  677. for (i = 0; i < size; i++) {
  678. buffer[0] = *hex++;
  679. buffer[1] = *hex++;
  680. key[i] = (u8)simple_strtoul(buffer, &endp, 16);
  681. if (endp != &buffer[2])
  682. return -EINVAL;
  683. }
  684. if (*hex != '\0')
  685. return -EINVAL;
  686. return 0;
  687. }
  688. /*
  689. * Encode key into its hex representation
  690. */
  691. static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
  692. {
  693. unsigned int i;
  694. for (i = 0; i < size; i++) {
  695. sprintf(hex, "%02x", *key);
  696. hex += 2;
  697. key++;
  698. }
  699. }
  700. static int crypt_set_key(struct crypt_config *cc, char *key)
  701. {
  702. unsigned key_size = strlen(key) >> 1;
  703. if (cc->key_size && cc->key_size != key_size)
  704. return -EINVAL;
  705. cc->key_size = key_size; /* initial settings */
  706. if ((!key_size && strcmp(key, "-")) ||
  707. (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
  708. return -EINVAL;
  709. set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
  710. return 0;
  711. }
  712. static int crypt_wipe_key(struct crypt_config *cc)
  713. {
  714. clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
  715. memset(&cc->key, 0, cc->key_size * sizeof(u8));
  716. return 0;
  717. }
  718. /*
  719. * Construct an encryption mapping:
  720. * <cipher> <key> <iv_offset> <dev_path> <start>
  721. */
  722. static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
  723. {
  724. struct crypt_config *cc;
  725. struct crypto_ablkcipher *tfm;
  726. char *tmp;
  727. char *cipher;
  728. char *chainmode;
  729. char *ivmode;
  730. char *ivopts;
  731. unsigned int key_size;
  732. unsigned long long tmpll;
  733. if (argc != 5) {
  734. ti->error = "Not enough arguments";
  735. return -EINVAL;
  736. }
  737. tmp = argv[0];
  738. cipher = strsep(&tmp, "-");
  739. chainmode = strsep(&tmp, "-");
  740. ivopts = strsep(&tmp, "-");
  741. ivmode = strsep(&ivopts, ":");
  742. if (tmp)
  743. DMWARN("Unexpected additional cipher options");
  744. key_size = strlen(argv[1]) >> 1;
  745. cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
  746. if (cc == NULL) {
  747. ti->error =
  748. "Cannot allocate transparent encryption context";
  749. return -ENOMEM;
  750. }
  751. if (crypt_set_key(cc, argv[1])) {
  752. ti->error = "Error decoding key";
  753. goto bad_cipher;
  754. }
  755. /* Compatiblity mode for old dm-crypt cipher strings */
  756. if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
  757. chainmode = "cbc";
  758. ivmode = "plain";
  759. }
  760. if (strcmp(chainmode, "ecb") && !ivmode) {
  761. ti->error = "This chaining mode requires an IV mechanism";
  762. goto bad_cipher;
  763. }
  764. if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
  765. chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
  766. ti->error = "Chain mode + cipher name is too long";
  767. goto bad_cipher;
  768. }
  769. tfm = crypto_alloc_ablkcipher(cc->cipher, 0, 0);
  770. if (IS_ERR(tfm)) {
  771. ti->error = "Error allocating crypto tfm";
  772. goto bad_cipher;
  773. }
  774. strcpy(cc->cipher, cipher);
  775. strcpy(cc->chainmode, chainmode);
  776. cc->tfm = tfm;
  777. /*
  778. * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
  779. * See comments at iv code
  780. */
  781. if (ivmode == NULL)
  782. cc->iv_gen_ops = NULL;
  783. else if (strcmp(ivmode, "plain") == 0)
  784. cc->iv_gen_ops = &crypt_iv_plain_ops;
  785. else if (strcmp(ivmode, "essiv") == 0)
  786. cc->iv_gen_ops = &crypt_iv_essiv_ops;
  787. else if (strcmp(ivmode, "benbi") == 0)
  788. cc->iv_gen_ops = &crypt_iv_benbi_ops;
  789. else if (strcmp(ivmode, "null") == 0)
  790. cc->iv_gen_ops = &crypt_iv_null_ops;
  791. else {
  792. ti->error = "Invalid IV mode";
  793. goto bad_ivmode;
  794. }
  795. if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
  796. cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
  797. goto bad_ivmode;
  798. cc->iv_size = crypto_ablkcipher_ivsize(tfm);
  799. if (cc->iv_size)
  800. /* at least a 64 bit sector number should fit in our buffer */
  801. cc->iv_size = max(cc->iv_size,
  802. (unsigned int)(sizeof(u64) / sizeof(u8)));
  803. else {
  804. if (cc->iv_gen_ops) {
  805. DMWARN("Selected cipher does not support IVs");
  806. if (cc->iv_gen_ops->dtr)
  807. cc->iv_gen_ops->dtr(cc);
  808. cc->iv_gen_ops = NULL;
  809. }
  810. }
  811. cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
  812. if (!cc->io_pool) {
  813. ti->error = "Cannot allocate crypt io mempool";
  814. goto bad_slab_pool;
  815. }
  816. cc->dmreq_start = sizeof(struct ablkcipher_request);
  817. cc->dmreq_start += crypto_ablkcipher_reqsize(tfm);
  818. cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
  819. cc->dmreq_start += crypto_ablkcipher_alignmask(tfm) &
  820. ~(crypto_tfm_ctx_alignment() - 1);
  821. cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
  822. sizeof(struct dm_crypt_request) + cc->iv_size);
  823. if (!cc->req_pool) {
  824. ti->error = "Cannot allocate crypt request mempool";
  825. goto bad_req_pool;
  826. }
  827. cc->req = NULL;
  828. cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
  829. if (!cc->page_pool) {
  830. ti->error = "Cannot allocate page mempool";
  831. goto bad_page_pool;
  832. }
  833. cc->bs = bioset_create(MIN_IOS, MIN_IOS);
  834. if (!cc->bs) {
  835. ti->error = "Cannot allocate crypt bioset";
  836. goto bad_bs;
  837. }
  838. if (crypto_ablkcipher_setkey(tfm, cc->key, key_size) < 0) {
  839. ti->error = "Error setting key";
  840. goto bad_device;
  841. }
  842. if (sscanf(argv[2], "%llu", &tmpll) != 1) {
  843. ti->error = "Invalid iv_offset sector";
  844. goto bad_device;
  845. }
  846. cc->iv_offset = tmpll;
  847. if (sscanf(argv[4], "%llu", &tmpll) != 1) {
  848. ti->error = "Invalid device sector";
  849. goto bad_device;
  850. }
  851. cc->start = tmpll;
  852. if (dm_get_device(ti, argv[3], cc->start, ti->len,
  853. dm_table_get_mode(ti->table), &cc->dev)) {
  854. ti->error = "Device lookup failed";
  855. goto bad_device;
  856. }
  857. if (ivmode && cc->iv_gen_ops) {
  858. if (ivopts)
  859. *(ivopts - 1) = ':';
  860. cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
  861. if (!cc->iv_mode) {
  862. ti->error = "Error kmallocing iv_mode string";
  863. goto bad_ivmode_string;
  864. }
  865. strcpy(cc->iv_mode, ivmode);
  866. } else
  867. cc->iv_mode = NULL;
  868. cc->io_queue = create_singlethread_workqueue("kcryptd_io");
  869. if (!cc->io_queue) {
  870. ti->error = "Couldn't create kcryptd io queue";
  871. goto bad_io_queue;
  872. }
  873. cc->crypt_queue = create_singlethread_workqueue("kcryptd");
  874. if (!cc->crypt_queue) {
  875. ti->error = "Couldn't create kcryptd queue";
  876. goto bad_crypt_queue;
  877. }
  878. init_waitqueue_head(&cc->writeq);
  879. ti->private = cc;
  880. return 0;
  881. bad_crypt_queue:
  882. destroy_workqueue(cc->io_queue);
  883. bad_io_queue:
  884. kfree(cc->iv_mode);
  885. bad_ivmode_string:
  886. dm_put_device(ti, cc->dev);
  887. bad_device:
  888. bioset_free(cc->bs);
  889. bad_bs:
  890. mempool_destroy(cc->page_pool);
  891. bad_page_pool:
  892. mempool_destroy(cc->req_pool);
  893. bad_req_pool:
  894. mempool_destroy(cc->io_pool);
  895. bad_slab_pool:
  896. if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
  897. cc->iv_gen_ops->dtr(cc);
  898. bad_ivmode:
  899. crypto_free_ablkcipher(tfm);
  900. bad_cipher:
  901. /* Must zero key material before freeing */
  902. memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
  903. kfree(cc);
  904. return -EINVAL;
  905. }
  906. static void crypt_dtr(struct dm_target *ti)
  907. {
  908. struct crypt_config *cc = (struct crypt_config *) ti->private;
  909. destroy_workqueue(cc->io_queue);
  910. destroy_workqueue(cc->crypt_queue);
  911. if (cc->req)
  912. mempool_free(cc->req, cc->req_pool);
  913. bioset_free(cc->bs);
  914. mempool_destroy(cc->page_pool);
  915. mempool_destroy(cc->req_pool);
  916. mempool_destroy(cc->io_pool);
  917. kfree(cc->iv_mode);
  918. if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
  919. cc->iv_gen_ops->dtr(cc);
  920. crypto_free_ablkcipher(cc->tfm);
  921. dm_put_device(ti, cc->dev);
  922. /* Must zero key material before freeing */
  923. memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
  924. kfree(cc);
  925. }
  926. static int crypt_map(struct dm_target *ti, struct bio *bio,
  927. union map_info *map_context)
  928. {
  929. struct dm_crypt_io *io;
  930. io = crypt_io_alloc(ti, bio, bio->bi_sector - ti->begin);
  931. if (bio_data_dir(io->base_bio) == READ)
  932. kcryptd_queue_io(io);
  933. else
  934. kcryptd_queue_crypt(io);
  935. return DM_MAPIO_SUBMITTED;
  936. }
  937. static int crypt_status(struct dm_target *ti, status_type_t type,
  938. char *result, unsigned int maxlen)
  939. {
  940. struct crypt_config *cc = (struct crypt_config *) ti->private;
  941. unsigned int sz = 0;
  942. switch (type) {
  943. case STATUSTYPE_INFO:
  944. result[0] = '\0';
  945. break;
  946. case STATUSTYPE_TABLE:
  947. if (cc->iv_mode)
  948. DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
  949. cc->iv_mode);
  950. else
  951. DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
  952. if (cc->key_size > 0) {
  953. if ((maxlen - sz) < ((cc->key_size << 1) + 1))
  954. return -ENOMEM;
  955. crypt_encode_key(result + sz, cc->key, cc->key_size);
  956. sz += cc->key_size << 1;
  957. } else {
  958. if (sz >= maxlen)
  959. return -ENOMEM;
  960. result[sz++] = '-';
  961. }
  962. DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
  963. cc->dev->name, (unsigned long long)cc->start);
  964. break;
  965. }
  966. return 0;
  967. }
  968. static void crypt_postsuspend(struct dm_target *ti)
  969. {
  970. struct crypt_config *cc = ti->private;
  971. set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
  972. }
  973. static int crypt_preresume(struct dm_target *ti)
  974. {
  975. struct crypt_config *cc = ti->private;
  976. if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
  977. DMERR("aborting resume - crypt key is not set.");
  978. return -EAGAIN;
  979. }
  980. return 0;
  981. }
  982. static void crypt_resume(struct dm_target *ti)
  983. {
  984. struct crypt_config *cc = ti->private;
  985. clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
  986. }
  987. /* Message interface
  988. * key set <key>
  989. * key wipe
  990. */
  991. static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
  992. {
  993. struct crypt_config *cc = ti->private;
  994. if (argc < 2)
  995. goto error;
  996. if (!strnicmp(argv[0], MESG_STR("key"))) {
  997. if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
  998. DMWARN("not suspended during key manipulation.");
  999. return -EINVAL;
  1000. }
  1001. if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
  1002. return crypt_set_key(cc, argv[2]);
  1003. if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
  1004. return crypt_wipe_key(cc);
  1005. }
  1006. error:
  1007. DMWARN("unrecognised message received.");
  1008. return -EINVAL;
  1009. }
  1010. static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
  1011. struct bio_vec *biovec, int max_size)
  1012. {
  1013. struct crypt_config *cc = ti->private;
  1014. struct request_queue *q = bdev_get_queue(cc->dev->bdev);
  1015. if (!q->merge_bvec_fn)
  1016. return max_size;
  1017. bvm->bi_bdev = cc->dev->bdev;
  1018. bvm->bi_sector = cc->start + bvm->bi_sector - ti->begin;
  1019. return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
  1020. }
  1021. static struct target_type crypt_target = {
  1022. .name = "crypt",
  1023. .version= {1, 6, 0},
  1024. .module = THIS_MODULE,
  1025. .ctr = crypt_ctr,
  1026. .dtr = crypt_dtr,
  1027. .map = crypt_map,
  1028. .status = crypt_status,
  1029. .postsuspend = crypt_postsuspend,
  1030. .preresume = crypt_preresume,
  1031. .resume = crypt_resume,
  1032. .message = crypt_message,
  1033. .merge = crypt_merge,
  1034. };
  1035. static int __init dm_crypt_init(void)
  1036. {
  1037. int r;
  1038. _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
  1039. if (!_crypt_io_pool)
  1040. return -ENOMEM;
  1041. r = dm_register_target(&crypt_target);
  1042. if (r < 0) {
  1043. DMERR("register failed %d", r);
  1044. kmem_cache_destroy(_crypt_io_pool);
  1045. }
  1046. return r;
  1047. }
  1048. static void __exit dm_crypt_exit(void)
  1049. {
  1050. int r = dm_unregister_target(&crypt_target);
  1051. if (r < 0)
  1052. DMERR("unregister failed %d", r);
  1053. kmem_cache_destroy(_crypt_io_pool);
  1054. }
  1055. module_init(dm_crypt_init);
  1056. module_exit(dm_crypt_exit);
  1057. MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
  1058. MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
  1059. MODULE_LICENSE("GPL");