encrypted.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988
  1. /*
  2. * Copyright (C) 2010 IBM Corporation
  3. * Copyright (C) 2010 Politecnico di Torino, Italy
  4. * TORSEC group -- http://security.polito.it
  5. *
  6. * Authors:
  7. * Mimi Zohar <zohar@us.ibm.com>
  8. * Roberto Sassu <roberto.sassu@polito.it>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation, version 2 of the License.
  13. *
  14. * See Documentation/security/keys-trusted-encrypted.txt
  15. */
  16. #include <linux/uaccess.h>
  17. #include <linux/module.h>
  18. #include <linux/init.h>
  19. #include <linux/slab.h>
  20. #include <linux/parser.h>
  21. #include <linux/string.h>
  22. #include <linux/err.h>
  23. #include <keys/user-type.h>
  24. #include <keys/trusted-type.h>
  25. #include <keys/encrypted-type.h>
  26. #include <linux/key-type.h>
  27. #include <linux/random.h>
  28. #include <linux/rcupdate.h>
  29. #include <linux/scatterlist.h>
  30. #include <linux/crypto.h>
  31. #include <crypto/hash.h>
  32. #include <crypto/sha.h>
  33. #include <crypto/aes.h>
  34. #include "encrypted.h"
  35. static const char KEY_TRUSTED_PREFIX[] = "trusted:";
  36. static const char KEY_USER_PREFIX[] = "user:";
  37. static const char hash_alg[] = "sha256";
  38. static const char hmac_alg[] = "hmac(sha256)";
  39. static const char blkcipher_alg[] = "cbc(aes)";
  40. static const char key_format_default[] = "default";
  41. static unsigned int ivsize;
  42. static int blksize;
  43. #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
  44. #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
  45. #define HASH_SIZE SHA256_DIGEST_SIZE
  46. #define MAX_DATA_SIZE 4096
  47. #define MIN_DATA_SIZE 20
  48. struct sdesc {
  49. struct shash_desc shash;
  50. char ctx[];
  51. };
  52. static struct crypto_shash *hashalg;
  53. static struct crypto_shash *hmacalg;
  54. enum {
  55. Opt_err = -1, Opt_new, Opt_load, Opt_update
  56. };
  57. enum {
  58. Opt_error = -1, Opt_default
  59. };
  60. static const match_table_t key_format_tokens = {
  61. {Opt_default, "default"},
  62. {Opt_error, NULL}
  63. };
  64. static const match_table_t key_tokens = {
  65. {Opt_new, "new"},
  66. {Opt_load, "load"},
  67. {Opt_update, "update"},
  68. {Opt_err, NULL}
  69. };
  70. static int aes_get_sizes(void)
  71. {
  72. struct crypto_blkcipher *tfm;
  73. tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  74. if (IS_ERR(tfm)) {
  75. pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
  76. PTR_ERR(tfm));
  77. return PTR_ERR(tfm);
  78. }
  79. ivsize = crypto_blkcipher_ivsize(tfm);
  80. blksize = crypto_blkcipher_blocksize(tfm);
  81. crypto_free_blkcipher(tfm);
  82. return 0;
  83. }
  84. /*
  85. * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
  86. *
  87. * key-type:= "trusted:" | "user:"
  88. * desc:= master-key description
  89. *
  90. * Verify that 'key-type' is valid and that 'desc' exists. On key update,
  91. * only the master key description is permitted to change, not the key-type.
  92. * The key-type remains constant.
  93. *
  94. * On success returns 0, otherwise -EINVAL.
  95. */
  96. static int valid_master_desc(const char *new_desc, const char *orig_desc)
  97. {
  98. if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
  99. if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
  100. goto out;
  101. if (orig_desc)
  102. if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
  103. goto out;
  104. } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
  105. if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
  106. goto out;
  107. if (orig_desc)
  108. if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
  109. goto out;
  110. } else
  111. goto out;
  112. return 0;
  113. out:
  114. return -EINVAL;
  115. }
  116. /*
  117. * datablob_parse - parse the keyctl data
  118. *
  119. * datablob format:
  120. * new [<format>] <master-key name> <decrypted data length>
  121. * load [<format>] <master-key name> <decrypted data length>
  122. * <encrypted iv + data>
  123. * update <new-master-key name>
  124. *
  125. * Tokenizes a copy of the keyctl data, returning a pointer to each token,
  126. * which is null terminated.
  127. *
  128. * On success returns 0, otherwise -EINVAL.
  129. */
  130. static int datablob_parse(char *datablob, const char **format,
  131. char **master_desc, char **decrypted_datalen,
  132. char **hex_encoded_iv)
  133. {
  134. substring_t args[MAX_OPT_ARGS];
  135. int ret = -EINVAL;
  136. int key_cmd;
  137. int key_format;
  138. char *p, *keyword;
  139. keyword = strsep(&datablob, " \t");
  140. if (!keyword) {
  141. pr_info("encrypted_key: insufficient parameters specified\n");
  142. return ret;
  143. }
  144. key_cmd = match_token(keyword, key_tokens, args);
  145. /* Get optional format: default */
  146. p = strsep(&datablob, " \t");
  147. if (!p) {
  148. pr_err("encrypted_key: insufficient parameters specified\n");
  149. return ret;
  150. }
  151. key_format = match_token(p, key_format_tokens, args);
  152. switch (key_format) {
  153. case Opt_default:
  154. *format = p;
  155. *master_desc = strsep(&datablob, " \t");
  156. break;
  157. case Opt_error:
  158. *master_desc = p;
  159. break;
  160. }
  161. if (!*master_desc) {
  162. pr_info("encrypted_key: master key parameter is missing\n");
  163. goto out;
  164. }
  165. if (valid_master_desc(*master_desc, NULL) < 0) {
  166. pr_info("encrypted_key: master key parameter \'%s\' "
  167. "is invalid\n", *master_desc);
  168. goto out;
  169. }
  170. if (decrypted_datalen) {
  171. *decrypted_datalen = strsep(&datablob, " \t");
  172. if (!*decrypted_datalen) {
  173. pr_info("encrypted_key: keylen parameter is missing\n");
  174. goto out;
  175. }
  176. }
  177. switch (key_cmd) {
  178. case Opt_new:
  179. if (!decrypted_datalen) {
  180. pr_info("encrypted_key: keyword \'%s\' not allowed "
  181. "when called from .update method\n", keyword);
  182. break;
  183. }
  184. ret = 0;
  185. break;
  186. case Opt_load:
  187. if (!decrypted_datalen) {
  188. pr_info("encrypted_key: keyword \'%s\' not allowed "
  189. "when called from .update method\n", keyword);
  190. break;
  191. }
  192. *hex_encoded_iv = strsep(&datablob, " \t");
  193. if (!*hex_encoded_iv) {
  194. pr_info("encrypted_key: hex blob is missing\n");
  195. break;
  196. }
  197. ret = 0;
  198. break;
  199. case Opt_update:
  200. if (decrypted_datalen) {
  201. pr_info("encrypted_key: keyword \'%s\' not allowed "
  202. "when called from .instantiate method\n",
  203. keyword);
  204. break;
  205. }
  206. ret = 0;
  207. break;
  208. case Opt_err:
  209. pr_info("encrypted_key: keyword \'%s\' not recognized\n",
  210. keyword);
  211. break;
  212. }
  213. out:
  214. return ret;
  215. }
  216. /*
  217. * datablob_format - format as an ascii string, before copying to userspace
  218. */
  219. static char *datablob_format(struct encrypted_key_payload *epayload,
  220. size_t asciiblob_len)
  221. {
  222. char *ascii_buf, *bufp;
  223. u8 *iv = epayload->iv;
  224. int len;
  225. int i;
  226. ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
  227. if (!ascii_buf)
  228. goto out;
  229. ascii_buf[asciiblob_len] = '\0';
  230. /* copy datablob master_desc and datalen strings */
  231. len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
  232. epayload->master_desc, epayload->datalen);
  233. /* convert the hex encoded iv, encrypted-data and HMAC to ascii */
  234. bufp = &ascii_buf[len];
  235. for (i = 0; i < (asciiblob_len - len) / 2; i++)
  236. bufp = pack_hex_byte(bufp, iv[i]);
  237. out:
  238. return ascii_buf;
  239. }
  240. /*
  241. * request_trusted_key - request the trusted key
  242. *
  243. * Trusted keys are sealed to PCRs and other metadata. Although userspace
  244. * manages both trusted/encrypted key-types, like the encrypted key type
  245. * data, trusted key type data is not visible decrypted from userspace.
  246. */
  247. static struct key *request_trusted_key(const char *trusted_desc,
  248. u8 **master_key, size_t *master_keylen)
  249. {
  250. struct trusted_key_payload *tpayload;
  251. struct key *tkey;
  252. tkey = request_key(&key_type_trusted, trusted_desc, NULL);
  253. if (IS_ERR(tkey))
  254. goto error;
  255. down_read(&tkey->sem);
  256. tpayload = rcu_dereference(tkey->payload.data);
  257. *master_key = tpayload->key;
  258. *master_keylen = tpayload->key_len;
  259. error:
  260. return tkey;
  261. }
  262. /*
  263. * request_user_key - request the user key
  264. *
  265. * Use a user provided key to encrypt/decrypt an encrypted-key.
  266. */
  267. static struct key *request_user_key(const char *master_desc, u8 **master_key,
  268. size_t *master_keylen)
  269. {
  270. struct user_key_payload *upayload;
  271. struct key *ukey;
  272. ukey = request_key(&key_type_user, master_desc, NULL);
  273. if (IS_ERR(ukey))
  274. goto error;
  275. down_read(&ukey->sem);
  276. upayload = rcu_dereference(ukey->payload.data);
  277. *master_key = upayload->data;
  278. *master_keylen = upayload->datalen;
  279. error:
  280. return ukey;
  281. }
  282. static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
  283. {
  284. struct sdesc *sdesc;
  285. int size;
  286. size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
  287. sdesc = kmalloc(size, GFP_KERNEL);
  288. if (!sdesc)
  289. return ERR_PTR(-ENOMEM);
  290. sdesc->shash.tfm = alg;
  291. sdesc->shash.flags = 0x0;
  292. return sdesc;
  293. }
  294. static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
  295. const u8 *buf, unsigned int buflen)
  296. {
  297. struct sdesc *sdesc;
  298. int ret;
  299. sdesc = alloc_sdesc(hmacalg);
  300. if (IS_ERR(sdesc)) {
  301. pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
  302. return PTR_ERR(sdesc);
  303. }
  304. ret = crypto_shash_setkey(hmacalg, key, keylen);
  305. if (!ret)
  306. ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
  307. kfree(sdesc);
  308. return ret;
  309. }
  310. static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
  311. {
  312. struct sdesc *sdesc;
  313. int ret;
  314. sdesc = alloc_sdesc(hashalg);
  315. if (IS_ERR(sdesc)) {
  316. pr_info("encrypted_key: can't alloc %s\n", hash_alg);
  317. return PTR_ERR(sdesc);
  318. }
  319. ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
  320. kfree(sdesc);
  321. return ret;
  322. }
  323. enum derived_key_type { ENC_KEY, AUTH_KEY };
  324. /* Derive authentication/encryption key from trusted key */
  325. static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
  326. const u8 *master_key, size_t master_keylen)
  327. {
  328. u8 *derived_buf;
  329. unsigned int derived_buf_len;
  330. int ret;
  331. derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
  332. if (derived_buf_len < HASH_SIZE)
  333. derived_buf_len = HASH_SIZE;
  334. derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
  335. if (!derived_buf) {
  336. pr_err("encrypted_key: out of memory\n");
  337. return -ENOMEM;
  338. }
  339. if (key_type)
  340. strcpy(derived_buf, "AUTH_KEY");
  341. else
  342. strcpy(derived_buf, "ENC_KEY");
  343. memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
  344. master_keylen);
  345. ret = calc_hash(derived_key, derived_buf, derived_buf_len);
  346. kfree(derived_buf);
  347. return ret;
  348. }
  349. static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key,
  350. unsigned int key_len, const u8 *iv,
  351. unsigned int ivsize)
  352. {
  353. int ret;
  354. desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  355. if (IS_ERR(desc->tfm)) {
  356. pr_err("encrypted_key: failed to load %s transform (%ld)\n",
  357. blkcipher_alg, PTR_ERR(desc->tfm));
  358. return PTR_ERR(desc->tfm);
  359. }
  360. desc->flags = 0;
  361. ret = crypto_blkcipher_setkey(desc->tfm, key, key_len);
  362. if (ret < 0) {
  363. pr_err("encrypted_key: failed to setkey (%d)\n", ret);
  364. crypto_free_blkcipher(desc->tfm);
  365. return ret;
  366. }
  367. crypto_blkcipher_set_iv(desc->tfm, iv, ivsize);
  368. return 0;
  369. }
  370. static struct key *request_master_key(struct encrypted_key_payload *epayload,
  371. u8 **master_key, size_t *master_keylen)
  372. {
  373. struct key *mkey = NULL;
  374. if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
  375. KEY_TRUSTED_PREFIX_LEN)) {
  376. mkey = request_trusted_key(epayload->master_desc +
  377. KEY_TRUSTED_PREFIX_LEN,
  378. master_key, master_keylen);
  379. } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
  380. KEY_USER_PREFIX_LEN)) {
  381. mkey = request_user_key(epayload->master_desc +
  382. KEY_USER_PREFIX_LEN,
  383. master_key, master_keylen);
  384. } else
  385. goto out;
  386. if (IS_ERR(mkey)) {
  387. pr_info("encrypted_key: key %s not found",
  388. epayload->master_desc);
  389. goto out;
  390. }
  391. dump_master_key(*master_key, *master_keylen);
  392. out:
  393. return mkey;
  394. }
  395. /* Before returning data to userspace, encrypt decrypted data. */
  396. static int derived_key_encrypt(struct encrypted_key_payload *epayload,
  397. const u8 *derived_key,
  398. unsigned int derived_keylen)
  399. {
  400. struct scatterlist sg_in[2];
  401. struct scatterlist sg_out[1];
  402. struct blkcipher_desc desc;
  403. unsigned int encrypted_datalen;
  404. unsigned int padlen;
  405. char pad[16];
  406. int ret;
  407. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  408. padlen = encrypted_datalen - epayload->decrypted_datalen;
  409. ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
  410. epayload->iv, ivsize);
  411. if (ret < 0)
  412. goto out;
  413. dump_decrypted_data(epayload);
  414. memset(pad, 0, sizeof pad);
  415. sg_init_table(sg_in, 2);
  416. sg_set_buf(&sg_in[0], epayload->decrypted_data,
  417. epayload->decrypted_datalen);
  418. sg_set_buf(&sg_in[1], pad, padlen);
  419. sg_init_table(sg_out, 1);
  420. sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
  421. ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen);
  422. crypto_free_blkcipher(desc.tfm);
  423. if (ret < 0)
  424. pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
  425. else
  426. dump_encrypted_data(epayload, encrypted_datalen);
  427. out:
  428. return ret;
  429. }
  430. static int datablob_hmac_append(struct encrypted_key_payload *epayload,
  431. const u8 *master_key, size_t master_keylen)
  432. {
  433. u8 derived_key[HASH_SIZE];
  434. u8 *digest;
  435. int ret;
  436. ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
  437. if (ret < 0)
  438. goto out;
  439. digest = epayload->format + epayload->datablob_len;
  440. ret = calc_hmac(digest, derived_key, sizeof derived_key,
  441. epayload->format, epayload->datablob_len);
  442. if (!ret)
  443. dump_hmac(NULL, digest, HASH_SIZE);
  444. out:
  445. return ret;
  446. }
  447. /* verify HMAC before decrypting encrypted key */
  448. static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
  449. const u8 *format, const u8 *master_key,
  450. size_t master_keylen)
  451. {
  452. u8 derived_key[HASH_SIZE];
  453. u8 digest[HASH_SIZE];
  454. int ret;
  455. char *p;
  456. unsigned short len;
  457. ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
  458. if (ret < 0)
  459. goto out;
  460. len = epayload->datablob_len;
  461. if (!format) {
  462. p = epayload->master_desc;
  463. len -= strlen(epayload->format) + 1;
  464. } else
  465. p = epayload->format;
  466. ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
  467. if (ret < 0)
  468. goto out;
  469. ret = memcmp(digest, epayload->format + epayload->datablob_len,
  470. sizeof digest);
  471. if (ret) {
  472. ret = -EINVAL;
  473. dump_hmac("datablob",
  474. epayload->format + epayload->datablob_len,
  475. HASH_SIZE);
  476. dump_hmac("calc", digest, HASH_SIZE);
  477. }
  478. out:
  479. return ret;
  480. }
  481. static int derived_key_decrypt(struct encrypted_key_payload *epayload,
  482. const u8 *derived_key,
  483. unsigned int derived_keylen)
  484. {
  485. struct scatterlist sg_in[1];
  486. struct scatterlist sg_out[2];
  487. struct blkcipher_desc desc;
  488. unsigned int encrypted_datalen;
  489. char pad[16];
  490. int ret;
  491. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  492. ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
  493. epayload->iv, ivsize);
  494. if (ret < 0)
  495. goto out;
  496. dump_encrypted_data(epayload, encrypted_datalen);
  497. memset(pad, 0, sizeof pad);
  498. sg_init_table(sg_in, 1);
  499. sg_init_table(sg_out, 2);
  500. sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
  501. sg_set_buf(&sg_out[0], epayload->decrypted_data,
  502. epayload->decrypted_datalen);
  503. sg_set_buf(&sg_out[1], pad, sizeof pad);
  504. ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen);
  505. crypto_free_blkcipher(desc.tfm);
  506. if (ret < 0)
  507. goto out;
  508. dump_decrypted_data(epayload);
  509. out:
  510. return ret;
  511. }
  512. /* Allocate memory for decrypted key and datablob. */
  513. static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
  514. const char *format,
  515. const char *master_desc,
  516. const char *datalen)
  517. {
  518. struct encrypted_key_payload *epayload = NULL;
  519. unsigned short datablob_len;
  520. unsigned short decrypted_datalen;
  521. unsigned short payload_datalen;
  522. unsigned int encrypted_datalen;
  523. unsigned int format_len;
  524. long dlen;
  525. int ret;
  526. ret = strict_strtol(datalen, 10, &dlen);
  527. if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
  528. return ERR_PTR(-EINVAL);
  529. format_len = (!format) ? strlen(key_format_default) : strlen(format);
  530. decrypted_datalen = dlen;
  531. payload_datalen = decrypted_datalen;
  532. encrypted_datalen = roundup(decrypted_datalen, blksize);
  533. datablob_len = format_len + 1 + strlen(master_desc) + 1
  534. + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
  535. ret = key_payload_reserve(key, payload_datalen + datablob_len
  536. + HASH_SIZE + 1);
  537. if (ret < 0)
  538. return ERR_PTR(ret);
  539. epayload = kzalloc(sizeof(*epayload) + payload_datalen +
  540. datablob_len + HASH_SIZE + 1, GFP_KERNEL);
  541. if (!epayload)
  542. return ERR_PTR(-ENOMEM);
  543. epayload->payload_datalen = payload_datalen;
  544. epayload->decrypted_datalen = decrypted_datalen;
  545. epayload->datablob_len = datablob_len;
  546. return epayload;
  547. }
  548. static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
  549. const char *format, const char *hex_encoded_iv)
  550. {
  551. struct key *mkey;
  552. u8 derived_key[HASH_SIZE];
  553. u8 *master_key;
  554. u8 *hmac;
  555. const char *hex_encoded_data;
  556. unsigned int encrypted_datalen;
  557. size_t master_keylen;
  558. size_t asciilen;
  559. int ret;
  560. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  561. asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
  562. if (strlen(hex_encoded_iv) != asciilen)
  563. return -EINVAL;
  564. hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
  565. hex2bin(epayload->iv, hex_encoded_iv, ivsize);
  566. hex2bin(epayload->encrypted_data, hex_encoded_data, encrypted_datalen);
  567. hmac = epayload->format + epayload->datablob_len;
  568. hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2), HASH_SIZE);
  569. mkey = request_master_key(epayload, &master_key, &master_keylen);
  570. if (IS_ERR(mkey))
  571. return PTR_ERR(mkey);
  572. ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
  573. if (ret < 0) {
  574. pr_err("encrypted_key: bad hmac (%d)\n", ret);
  575. goto out;
  576. }
  577. ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
  578. if (ret < 0)
  579. goto out;
  580. ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
  581. if (ret < 0)
  582. pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
  583. out:
  584. up_read(&mkey->sem);
  585. key_put(mkey);
  586. return ret;
  587. }
  588. static void __ekey_init(struct encrypted_key_payload *epayload,
  589. const char *format, const char *master_desc,
  590. const char *datalen)
  591. {
  592. unsigned int format_len;
  593. format_len = (!format) ? strlen(key_format_default) : strlen(format);
  594. epayload->format = epayload->payload_data + epayload->payload_datalen;
  595. epayload->master_desc = epayload->format + format_len + 1;
  596. epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
  597. epayload->iv = epayload->datalen + strlen(datalen) + 1;
  598. epayload->encrypted_data = epayload->iv + ivsize + 1;
  599. epayload->decrypted_data = epayload->payload_data;
  600. if (!format)
  601. memcpy(epayload->format, key_format_default, format_len);
  602. else
  603. memcpy(epayload->format, format, format_len);
  604. memcpy(epayload->master_desc, master_desc, strlen(master_desc));
  605. memcpy(epayload->datalen, datalen, strlen(datalen));
  606. }
  607. /*
  608. * encrypted_init - initialize an encrypted key
  609. *
  610. * For a new key, use a random number for both the iv and data
  611. * itself. For an old key, decrypt the hex encoded data.
  612. */
  613. static int encrypted_init(struct encrypted_key_payload *epayload,
  614. const char *format, const char *master_desc,
  615. const char *datalen, const char *hex_encoded_iv)
  616. {
  617. int ret = 0;
  618. __ekey_init(epayload, format, master_desc, datalen);
  619. if (!hex_encoded_iv) {
  620. get_random_bytes(epayload->iv, ivsize);
  621. get_random_bytes(epayload->decrypted_data,
  622. epayload->decrypted_datalen);
  623. } else
  624. ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
  625. return ret;
  626. }
  627. /*
  628. * encrypted_instantiate - instantiate an encrypted key
  629. *
  630. * Decrypt an existing encrypted datablob or create a new encrypted key
  631. * based on a kernel random number.
  632. *
  633. * On success, return 0. Otherwise return errno.
  634. */
  635. static int encrypted_instantiate(struct key *key, const void *data,
  636. size_t datalen)
  637. {
  638. struct encrypted_key_payload *epayload = NULL;
  639. char *datablob = NULL;
  640. const char *format = NULL;
  641. char *master_desc = NULL;
  642. char *decrypted_datalen = NULL;
  643. char *hex_encoded_iv = NULL;
  644. int ret;
  645. if (datalen <= 0 || datalen > 32767 || !data)
  646. return -EINVAL;
  647. datablob = kmalloc(datalen + 1, GFP_KERNEL);
  648. if (!datablob)
  649. return -ENOMEM;
  650. datablob[datalen] = 0;
  651. memcpy(datablob, data, datalen);
  652. ret = datablob_parse(datablob, &format, &master_desc,
  653. &decrypted_datalen, &hex_encoded_iv);
  654. if (ret < 0)
  655. goto out;
  656. epayload = encrypted_key_alloc(key, format, master_desc,
  657. decrypted_datalen);
  658. if (IS_ERR(epayload)) {
  659. ret = PTR_ERR(epayload);
  660. goto out;
  661. }
  662. ret = encrypted_init(epayload, format, master_desc, decrypted_datalen,
  663. hex_encoded_iv);
  664. if (ret < 0) {
  665. kfree(epayload);
  666. goto out;
  667. }
  668. rcu_assign_pointer(key->payload.data, epayload);
  669. out:
  670. kfree(datablob);
  671. return ret;
  672. }
  673. static void encrypted_rcu_free(struct rcu_head *rcu)
  674. {
  675. struct encrypted_key_payload *epayload;
  676. epayload = container_of(rcu, struct encrypted_key_payload, rcu);
  677. memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
  678. kfree(epayload);
  679. }
  680. /*
  681. * encrypted_update - update the master key description
  682. *
  683. * Change the master key description for an existing encrypted key.
  684. * The next read will return an encrypted datablob using the new
  685. * master key description.
  686. *
  687. * On success, return 0. Otherwise return errno.
  688. */
  689. static int encrypted_update(struct key *key, const void *data, size_t datalen)
  690. {
  691. struct encrypted_key_payload *epayload = key->payload.data;
  692. struct encrypted_key_payload *new_epayload;
  693. char *buf;
  694. char *new_master_desc = NULL;
  695. const char *format = NULL;
  696. int ret = 0;
  697. if (datalen <= 0 || datalen > 32767 || !data)
  698. return -EINVAL;
  699. buf = kmalloc(datalen + 1, GFP_KERNEL);
  700. if (!buf)
  701. return -ENOMEM;
  702. buf[datalen] = 0;
  703. memcpy(buf, data, datalen);
  704. ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
  705. if (ret < 0)
  706. goto out;
  707. ret = valid_master_desc(new_master_desc, epayload->master_desc);
  708. if (ret < 0)
  709. goto out;
  710. new_epayload = encrypted_key_alloc(key, epayload->format,
  711. new_master_desc, epayload->datalen);
  712. if (IS_ERR(new_epayload)) {
  713. ret = PTR_ERR(new_epayload);
  714. goto out;
  715. }
  716. __ekey_init(new_epayload, epayload->format, new_master_desc,
  717. epayload->datalen);
  718. memcpy(new_epayload->iv, epayload->iv, ivsize);
  719. memcpy(new_epayload->payload_data, epayload->payload_data,
  720. epayload->payload_datalen);
  721. rcu_assign_pointer(key->payload.data, new_epayload);
  722. call_rcu(&epayload->rcu, encrypted_rcu_free);
  723. out:
  724. kfree(buf);
  725. return ret;
  726. }
  727. /*
  728. * encrypted_read - format and copy the encrypted data to userspace
  729. *
  730. * The resulting datablob format is:
  731. * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
  732. *
  733. * On success, return to userspace the encrypted key datablob size.
  734. */
  735. static long encrypted_read(const struct key *key, char __user *buffer,
  736. size_t buflen)
  737. {
  738. struct encrypted_key_payload *epayload;
  739. struct key *mkey;
  740. u8 *master_key;
  741. size_t master_keylen;
  742. char derived_key[HASH_SIZE];
  743. char *ascii_buf;
  744. size_t asciiblob_len;
  745. int ret;
  746. epayload = rcu_dereference_key(key);
  747. /* returns the hex encoded iv, encrypted-data, and hmac as ascii */
  748. asciiblob_len = epayload->datablob_len + ivsize + 1
  749. + roundup(epayload->decrypted_datalen, blksize)
  750. + (HASH_SIZE * 2);
  751. if (!buffer || buflen < asciiblob_len)
  752. return asciiblob_len;
  753. mkey = request_master_key(epayload, &master_key, &master_keylen);
  754. if (IS_ERR(mkey))
  755. return PTR_ERR(mkey);
  756. ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
  757. if (ret < 0)
  758. goto out;
  759. ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
  760. if (ret < 0)
  761. goto out;
  762. ret = datablob_hmac_append(epayload, master_key, master_keylen);
  763. if (ret < 0)
  764. goto out;
  765. ascii_buf = datablob_format(epayload, asciiblob_len);
  766. if (!ascii_buf) {
  767. ret = -ENOMEM;
  768. goto out;
  769. }
  770. up_read(&mkey->sem);
  771. key_put(mkey);
  772. if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
  773. ret = -EFAULT;
  774. kfree(ascii_buf);
  775. return asciiblob_len;
  776. out:
  777. up_read(&mkey->sem);
  778. key_put(mkey);
  779. return ret;
  780. }
  781. /*
  782. * encrypted_destroy - before freeing the key, clear the decrypted data
  783. *
  784. * Before freeing the key, clear the memory containing the decrypted
  785. * key data.
  786. */
  787. static void encrypted_destroy(struct key *key)
  788. {
  789. struct encrypted_key_payload *epayload = key->payload.data;
  790. if (!epayload)
  791. return;
  792. memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
  793. kfree(key->payload.data);
  794. }
  795. struct key_type key_type_encrypted = {
  796. .name = "encrypted",
  797. .instantiate = encrypted_instantiate,
  798. .update = encrypted_update,
  799. .match = user_match,
  800. .destroy = encrypted_destroy,
  801. .describe = user_describe,
  802. .read = encrypted_read,
  803. };
  804. EXPORT_SYMBOL_GPL(key_type_encrypted);
  805. static void encrypted_shash_release(void)
  806. {
  807. if (hashalg)
  808. crypto_free_shash(hashalg);
  809. if (hmacalg)
  810. crypto_free_shash(hmacalg);
  811. }
  812. static int __init encrypted_shash_alloc(void)
  813. {
  814. int ret;
  815. hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
  816. if (IS_ERR(hmacalg)) {
  817. pr_info("encrypted_key: could not allocate crypto %s\n",
  818. hmac_alg);
  819. return PTR_ERR(hmacalg);
  820. }
  821. hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
  822. if (IS_ERR(hashalg)) {
  823. pr_info("encrypted_key: could not allocate crypto %s\n",
  824. hash_alg);
  825. ret = PTR_ERR(hashalg);
  826. goto hashalg_fail;
  827. }
  828. return 0;
  829. hashalg_fail:
  830. crypto_free_shash(hmacalg);
  831. return ret;
  832. }
  833. static int __init init_encrypted(void)
  834. {
  835. int ret;
  836. ret = encrypted_shash_alloc();
  837. if (ret < 0)
  838. return ret;
  839. ret = register_key_type(&key_type_encrypted);
  840. if (ret < 0)
  841. goto out;
  842. return aes_get_sizes();
  843. out:
  844. encrypted_shash_release();
  845. return ret;
  846. }
  847. static void __exit cleanup_encrypted(void)
  848. {
  849. encrypted_shash_release();
  850. unregister_key_type(&key_type_encrypted);
  851. }
  852. late_initcall(init_encrypted);
  853. module_exit(cleanup_encrypted);
  854. MODULE_LICENSE("GPL");