paging_tmpl.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #else
  36. #define PT_MAX_FULL_LEVELS 2
  37. #endif
  38. #elif PTTYPE == 32
  39. #define pt_element_t u32
  40. #define guest_walker guest_walker32
  41. #define FNAME(name) paging##32_##name
  42. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  43. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  44. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  45. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  46. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  47. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  48. #define PT_MAX_FULL_LEVELS 2
  49. #else
  50. #error Invalid PTTYPE value
  51. #endif
  52. #define gpte_to_gfn FNAME(gpte_to_gfn)
  53. #define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde)
  54. /*
  55. * The guest_walker structure emulates the behavior of the hardware page
  56. * table walker.
  57. */
  58. struct guest_walker {
  59. int level;
  60. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  61. pt_element_t pte;
  62. pt_element_t inherited_ar;
  63. gfn_t gfn;
  64. u32 error_code;
  65. };
  66. static gfn_t gpte_to_gfn(pt_element_t gpte)
  67. {
  68. return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  69. }
  70. static gfn_t gpte_to_gfn_pde(pt_element_t gpte)
  71. {
  72. return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  73. }
  74. /*
  75. * Fetch a guest pte for a guest virtual address
  76. */
  77. static int FNAME(walk_addr)(struct guest_walker *walker,
  78. struct kvm_vcpu *vcpu, gva_t addr,
  79. int write_fault, int user_fault, int fetch_fault)
  80. {
  81. pt_element_t pte;
  82. gfn_t table_gfn;
  83. unsigned index;
  84. gpa_t pte_gpa;
  85. pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
  86. walker->level = vcpu->mmu.root_level;
  87. pte = vcpu->cr3;
  88. #if PTTYPE == 64
  89. if (!is_long_mode(vcpu)) {
  90. pte = vcpu->pdptrs[(addr >> 30) & 3];
  91. if (!is_present_pte(pte))
  92. goto not_present;
  93. --walker->level;
  94. }
  95. #endif
  96. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  97. (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  98. walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
  99. for (;;) {
  100. index = PT_INDEX(addr, walker->level);
  101. table_gfn = gpte_to_gfn(pte);
  102. pte_gpa = table_gfn << PAGE_SHIFT;
  103. pte_gpa += index * sizeof(pt_element_t);
  104. walker->table_gfn[walker->level - 1] = table_gfn;
  105. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  106. walker->level - 1, table_gfn);
  107. kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  108. if (!is_present_pte(pte))
  109. goto not_present;
  110. if (write_fault && !is_writeble_pte(pte))
  111. if (user_fault || is_write_protection(vcpu))
  112. goto access_error;
  113. if (user_fault && !(pte & PT_USER_MASK))
  114. goto access_error;
  115. #if PTTYPE == 64
  116. if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
  117. goto access_error;
  118. #endif
  119. if (!(pte & PT_ACCESSED_MASK)) {
  120. mark_page_dirty(vcpu->kvm, table_gfn);
  121. pte |= PT_ACCESSED_MASK;
  122. kvm_write_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  123. }
  124. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  125. walker->gfn = gpte_to_gfn(pte);
  126. break;
  127. }
  128. if (walker->level == PT_DIRECTORY_LEVEL
  129. && (pte & PT_PAGE_SIZE_MASK)
  130. && (PTTYPE == 64 || is_pse(vcpu))) {
  131. walker->gfn = gpte_to_gfn_pde(pte);
  132. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  133. if (PTTYPE == 32 && is_cpuid_PSE36())
  134. walker->gfn += pse36_gfn_delta(pte);
  135. break;
  136. }
  137. walker->inherited_ar &= pte;
  138. --walker->level;
  139. }
  140. if (write_fault && !is_dirty_pte(pte)) {
  141. mark_page_dirty(vcpu->kvm, table_gfn);
  142. pte |= PT_DIRTY_MASK;
  143. kvm_write_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  144. kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte));
  145. }
  146. walker->pte = pte;
  147. pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)pte);
  148. return 1;
  149. not_present:
  150. walker->error_code = 0;
  151. goto err;
  152. access_error:
  153. walker->error_code = PFERR_PRESENT_MASK;
  154. err:
  155. if (write_fault)
  156. walker->error_code |= PFERR_WRITE_MASK;
  157. if (user_fault)
  158. walker->error_code |= PFERR_USER_MASK;
  159. if (fetch_fault)
  160. walker->error_code |= PFERR_FETCH_MASK;
  161. return 0;
  162. }
  163. static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
  164. u64 *shadow_pte,
  165. pt_element_t gpte,
  166. u64 access_bits,
  167. int user_fault,
  168. int write_fault,
  169. int *ptwrite,
  170. struct guest_walker *walker,
  171. gfn_t gfn)
  172. {
  173. int dirty = gpte & PT_DIRTY_MASK;
  174. u64 spte;
  175. int was_rmapped = is_rmap_pte(*shadow_pte);
  176. struct page *page;
  177. pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
  178. " user_fault %d gfn %lx\n",
  179. __FUNCTION__, *shadow_pte, (u64)gpte, access_bits,
  180. write_fault, user_fault, gfn);
  181. /*
  182. * We don't set the accessed bit, since we sometimes want to see
  183. * whether the guest actually used the pte (in order to detect
  184. * demand paging).
  185. */
  186. spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
  187. spte |= gpte & PT64_NX_MASK;
  188. if (!dirty)
  189. access_bits &= ~PT_WRITABLE_MASK;
  190. page = gfn_to_page(vcpu->kvm, gfn);
  191. spte |= PT_PRESENT_MASK;
  192. if (access_bits & PT_USER_MASK)
  193. spte |= PT_USER_MASK;
  194. if (is_error_page(page)) {
  195. set_shadow_pte(shadow_pte,
  196. shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
  197. kvm_release_page_clean(page);
  198. return;
  199. }
  200. spte |= page_to_phys(page);
  201. if ((access_bits & PT_WRITABLE_MASK)
  202. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  203. struct kvm_mmu_page *shadow;
  204. spte |= PT_WRITABLE_MASK;
  205. if (user_fault) {
  206. mmu_unshadow(vcpu->kvm, gfn);
  207. goto unshadowed;
  208. }
  209. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  210. if (shadow) {
  211. pgprintk("%s: found shadow page for %lx, marking ro\n",
  212. __FUNCTION__, gfn);
  213. access_bits &= ~PT_WRITABLE_MASK;
  214. if (is_writeble_pte(spte)) {
  215. spte &= ~PT_WRITABLE_MASK;
  216. kvm_x86_ops->tlb_flush(vcpu);
  217. }
  218. if (write_fault)
  219. *ptwrite = 1;
  220. }
  221. }
  222. unshadowed:
  223. if (access_bits & PT_WRITABLE_MASK)
  224. mark_page_dirty(vcpu->kvm, gfn);
  225. pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
  226. set_shadow_pte(shadow_pte, spte);
  227. page_header_update_slot(vcpu->kvm, shadow_pte,
  228. (gpa_t)gfn << PAGE_SHIFT);
  229. if (!was_rmapped) {
  230. rmap_add(vcpu, shadow_pte, gfn);
  231. if (!is_rmap_pte(*shadow_pte))
  232. kvm_release_page_clean(page);
  233. }
  234. else
  235. kvm_release_page_clean(page);
  236. if (!ptwrite || !*ptwrite)
  237. vcpu->last_pte_updated = shadow_pte;
  238. }
  239. static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
  240. u64 *shadow_pte, u64 access_bits,
  241. int user_fault, int write_fault, int *ptwrite,
  242. struct guest_walker *walker, gfn_t gfn)
  243. {
  244. access_bits &= gpte;
  245. FNAME(set_pte_common)(vcpu, shadow_pte,
  246. gpte, access_bits, user_fault, write_fault,
  247. ptwrite, walker, gfn);
  248. }
  249. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  250. u64 *spte, const void *pte, int bytes,
  251. int offset_in_pte)
  252. {
  253. pt_element_t gpte;
  254. gpte = *(const pt_element_t *)pte;
  255. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  256. if (!offset_in_pte && !is_present_pte(gpte))
  257. set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
  258. return;
  259. }
  260. if (bytes < sizeof(pt_element_t))
  261. return;
  262. pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
  263. FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
  264. 0, NULL, NULL, gpte_to_gfn(gpte));
  265. }
  266. static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t gpde,
  267. u64 *shadow_pte, u64 access_bits,
  268. int user_fault, int write_fault, int *ptwrite,
  269. struct guest_walker *walker, gfn_t gfn)
  270. {
  271. access_bits &= gpde;
  272. FNAME(set_pte_common)(vcpu, shadow_pte,
  273. gpde, access_bits, user_fault, write_fault,
  274. ptwrite, walker, gfn);
  275. }
  276. /*
  277. * Fetch a shadow pte for a specific level in the paging hierarchy.
  278. */
  279. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  280. struct guest_walker *walker,
  281. int user_fault, int write_fault, int *ptwrite)
  282. {
  283. hpa_t shadow_addr;
  284. int level;
  285. u64 *shadow_ent;
  286. u64 *prev_shadow_ent = NULL;
  287. if (!is_present_pte(walker->pte))
  288. return NULL;
  289. shadow_addr = vcpu->mmu.root_hpa;
  290. level = vcpu->mmu.shadow_root_level;
  291. if (level == PT32E_ROOT_LEVEL) {
  292. shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
  293. shadow_addr &= PT64_BASE_ADDR_MASK;
  294. --level;
  295. }
  296. for (; ; level--) {
  297. u32 index = SHADOW_PT_INDEX(addr, level);
  298. struct kvm_mmu_page *shadow_page;
  299. u64 shadow_pte;
  300. int metaphysical;
  301. gfn_t table_gfn;
  302. unsigned hugepage_access = 0;
  303. shadow_ent = ((u64 *)__va(shadow_addr)) + index;
  304. if (is_shadow_present_pte(*shadow_ent)) {
  305. if (level == PT_PAGE_TABLE_LEVEL)
  306. break;
  307. shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
  308. prev_shadow_ent = shadow_ent;
  309. continue;
  310. }
  311. if (level == PT_PAGE_TABLE_LEVEL)
  312. break;
  313. if (level - 1 == PT_PAGE_TABLE_LEVEL
  314. && walker->level == PT_DIRECTORY_LEVEL) {
  315. metaphysical = 1;
  316. hugepage_access = walker->pte;
  317. hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
  318. if (!is_dirty_pte(walker->pte))
  319. hugepage_access &= ~PT_WRITABLE_MASK;
  320. hugepage_access >>= PT_WRITABLE_SHIFT;
  321. if (walker->pte & PT64_NX_MASK)
  322. hugepage_access |= (1 << 2);
  323. table_gfn = gpte_to_gfn(walker->pte);
  324. } else {
  325. metaphysical = 0;
  326. table_gfn = walker->table_gfn[level - 2];
  327. }
  328. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  329. metaphysical, hugepage_access,
  330. shadow_ent);
  331. shadow_addr = __pa(shadow_page->spt);
  332. shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
  333. | PT_WRITABLE_MASK | PT_USER_MASK;
  334. *shadow_ent = shadow_pte;
  335. prev_shadow_ent = shadow_ent;
  336. }
  337. if (walker->level == PT_DIRECTORY_LEVEL) {
  338. FNAME(set_pde)(vcpu, walker->pte, shadow_ent,
  339. walker->inherited_ar, user_fault, write_fault,
  340. ptwrite, walker, walker->gfn);
  341. } else {
  342. ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
  343. FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
  344. walker->inherited_ar, user_fault, write_fault,
  345. ptwrite, walker, walker->gfn);
  346. }
  347. return shadow_ent;
  348. }
  349. /*
  350. * Page fault handler. There are several causes for a page fault:
  351. * - there is no shadow pte for the guest pte
  352. * - write access through a shadow pte marked read only so that we can set
  353. * the dirty bit
  354. * - write access to a shadow pte marked read only so we can update the page
  355. * dirty bitmap, when userspace requests it
  356. * - mmio access; in this case we will never install a present shadow pte
  357. * - normal guest page fault due to the guest pte marked not present, not
  358. * writable, or not executable
  359. *
  360. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  361. * a negative value on error.
  362. */
  363. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  364. u32 error_code)
  365. {
  366. int write_fault = error_code & PFERR_WRITE_MASK;
  367. int user_fault = error_code & PFERR_USER_MASK;
  368. int fetch_fault = error_code & PFERR_FETCH_MASK;
  369. struct guest_walker walker;
  370. u64 *shadow_pte;
  371. int write_pt = 0;
  372. int r;
  373. pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
  374. kvm_mmu_audit(vcpu, "pre page fault");
  375. r = mmu_topup_memory_caches(vcpu);
  376. if (r)
  377. return r;
  378. /*
  379. * Look up the shadow pte for the faulting address.
  380. */
  381. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  382. fetch_fault);
  383. /*
  384. * The page is not mapped by the guest. Let the guest handle it.
  385. */
  386. if (!r) {
  387. pgprintk("%s: guest page fault\n", __FUNCTION__);
  388. inject_page_fault(vcpu, addr, walker.error_code);
  389. vcpu->last_pt_write_count = 0; /* reset fork detector */
  390. return 0;
  391. }
  392. shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  393. &write_pt);
  394. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
  395. shadow_pte, *shadow_pte, write_pt);
  396. if (!write_pt)
  397. vcpu->last_pt_write_count = 0; /* reset fork detector */
  398. /*
  399. * mmio: emulate if accessible, otherwise its a guest fault.
  400. */
  401. if (is_io_pte(*shadow_pte))
  402. return 1;
  403. ++vcpu->stat.pf_fixed;
  404. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  405. return write_pt;
  406. }
  407. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  408. {
  409. struct guest_walker walker;
  410. gpa_t gpa = UNMAPPED_GVA;
  411. int r;
  412. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  413. if (r) {
  414. gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
  415. gpa |= vaddr & ~PAGE_MASK;
  416. }
  417. return gpa;
  418. }
  419. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  420. struct kvm_mmu_page *sp)
  421. {
  422. int i, offset = 0;
  423. pt_element_t *gpt;
  424. struct page *page;
  425. if (sp->role.metaphysical
  426. || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
  427. nonpaging_prefetch_page(vcpu, sp);
  428. return;
  429. }
  430. if (PTTYPE == 32)
  431. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  432. page = gfn_to_page(vcpu->kvm, sp->gfn);
  433. gpt = kmap_atomic(page, KM_USER0);
  434. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  435. if (is_present_pte(gpt[offset + i]))
  436. sp->spt[i] = shadow_trap_nonpresent_pte;
  437. else
  438. sp->spt[i] = shadow_notrap_nonpresent_pte;
  439. kunmap_atomic(gpt, KM_USER0);
  440. kvm_release_page_clean(page);
  441. }
  442. #undef pt_element_t
  443. #undef guest_walker
  444. #undef FNAME
  445. #undef PT_BASE_ADDR_MASK
  446. #undef PT_INDEX
  447. #undef SHADOW_PT_INDEX
  448. #undef PT_LEVEL_MASK
  449. #undef PT_DIR_BASE_ADDR_MASK
  450. #undef PT_LEVEL_BITS
  451. #undef PT_MAX_FULL_LEVELS
  452. #undef gpte_to_gfn
  453. #undef gpte_to_gfn_pde