x86.c 129 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/user-return-notifier.h>
  39. #include <trace/events/kvm.h>
  40. #undef TRACE_INCLUDE_FILE
  41. #define CREATE_TRACE_POINTS
  42. #include "trace.h"
  43. #include <asm/debugreg.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/msr.h>
  46. #include <asm/desc.h>
  47. #include <asm/mtrr.h>
  48. #include <asm/mce.h>
  49. #define MAX_IO_MSRS 256
  50. #define CR0_RESERVED_BITS \
  51. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  52. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  53. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  54. #define CR4_RESERVED_BITS \
  55. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  56. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  57. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  58. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  59. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  60. #define KVM_MAX_MCE_BANKS 32
  61. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  62. /* EFER defaults:
  63. * - enable syscall per default because its emulated by KVM
  64. * - enable LME and LMA per default on 64 bit KVM
  65. */
  66. #ifdef CONFIG_X86_64
  67. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  68. #else
  69. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  70. #endif
  71. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  72. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  73. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  74. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  75. struct kvm_cpuid_entry2 __user *entries);
  76. struct kvm_x86_ops *kvm_x86_ops;
  77. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  78. int ignore_msrs = 0;
  79. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  80. #define KVM_NR_SHARED_MSRS 16
  81. struct kvm_shared_msrs_global {
  82. int nr;
  83. u32 msrs[KVM_NR_SHARED_MSRS];
  84. };
  85. struct kvm_shared_msrs {
  86. struct user_return_notifier urn;
  87. bool registered;
  88. struct kvm_shared_msr_values {
  89. u64 host;
  90. u64 curr;
  91. } values[KVM_NR_SHARED_MSRS];
  92. };
  93. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  94. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  95. struct kvm_stats_debugfs_item debugfs_entries[] = {
  96. { "pf_fixed", VCPU_STAT(pf_fixed) },
  97. { "pf_guest", VCPU_STAT(pf_guest) },
  98. { "tlb_flush", VCPU_STAT(tlb_flush) },
  99. { "invlpg", VCPU_STAT(invlpg) },
  100. { "exits", VCPU_STAT(exits) },
  101. { "io_exits", VCPU_STAT(io_exits) },
  102. { "mmio_exits", VCPU_STAT(mmio_exits) },
  103. { "signal_exits", VCPU_STAT(signal_exits) },
  104. { "irq_window", VCPU_STAT(irq_window_exits) },
  105. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  106. { "halt_exits", VCPU_STAT(halt_exits) },
  107. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  108. { "hypercalls", VCPU_STAT(hypercalls) },
  109. { "request_irq", VCPU_STAT(request_irq_exits) },
  110. { "irq_exits", VCPU_STAT(irq_exits) },
  111. { "host_state_reload", VCPU_STAT(host_state_reload) },
  112. { "efer_reload", VCPU_STAT(efer_reload) },
  113. { "fpu_reload", VCPU_STAT(fpu_reload) },
  114. { "insn_emulation", VCPU_STAT(insn_emulation) },
  115. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  116. { "irq_injections", VCPU_STAT(irq_injections) },
  117. { "nmi_injections", VCPU_STAT(nmi_injections) },
  118. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  119. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  120. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  121. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  122. { "mmu_flooded", VM_STAT(mmu_flooded) },
  123. { "mmu_recycled", VM_STAT(mmu_recycled) },
  124. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  125. { "mmu_unsync", VM_STAT(mmu_unsync) },
  126. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  127. { "largepages", VM_STAT(lpages) },
  128. { NULL }
  129. };
  130. static void kvm_on_user_return(struct user_return_notifier *urn)
  131. {
  132. unsigned slot;
  133. struct kvm_shared_msrs *locals
  134. = container_of(urn, struct kvm_shared_msrs, urn);
  135. struct kvm_shared_msr_values *values;
  136. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  137. values = &locals->values[slot];
  138. if (values->host != values->curr) {
  139. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  140. values->curr = values->host;
  141. }
  142. }
  143. locals->registered = false;
  144. user_return_notifier_unregister(urn);
  145. }
  146. static void shared_msr_update(unsigned slot, u32 msr)
  147. {
  148. struct kvm_shared_msrs *smsr;
  149. u64 value;
  150. smsr = &__get_cpu_var(shared_msrs);
  151. /* only read, and nobody should modify it at this time,
  152. * so don't need lock */
  153. if (slot >= shared_msrs_global.nr) {
  154. printk(KERN_ERR "kvm: invalid MSR slot!");
  155. return;
  156. }
  157. rdmsrl_safe(msr, &value);
  158. smsr->values[slot].host = value;
  159. smsr->values[slot].curr = value;
  160. }
  161. void kvm_define_shared_msr(unsigned slot, u32 msr)
  162. {
  163. if (slot >= shared_msrs_global.nr)
  164. shared_msrs_global.nr = slot + 1;
  165. shared_msrs_global.msrs[slot] = msr;
  166. /* we need ensured the shared_msr_global have been updated */
  167. smp_wmb();
  168. }
  169. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  170. static void kvm_shared_msr_cpu_online(void)
  171. {
  172. unsigned i;
  173. for (i = 0; i < shared_msrs_global.nr; ++i)
  174. shared_msr_update(i, shared_msrs_global.msrs[i]);
  175. }
  176. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  177. {
  178. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  179. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  180. return;
  181. smsr->values[slot].curr = value;
  182. wrmsrl(shared_msrs_global.msrs[slot], value);
  183. if (!smsr->registered) {
  184. smsr->urn.on_user_return = kvm_on_user_return;
  185. user_return_notifier_register(&smsr->urn);
  186. smsr->registered = true;
  187. }
  188. }
  189. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  190. static void drop_user_return_notifiers(void *ignore)
  191. {
  192. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  193. if (smsr->registered)
  194. kvm_on_user_return(&smsr->urn);
  195. }
  196. unsigned long segment_base(u16 selector)
  197. {
  198. struct descriptor_table gdt;
  199. struct desc_struct *d;
  200. unsigned long table_base;
  201. unsigned long v;
  202. if (selector == 0)
  203. return 0;
  204. kvm_get_gdt(&gdt);
  205. table_base = gdt.base;
  206. if (selector & 4) { /* from ldt */
  207. u16 ldt_selector = kvm_read_ldt();
  208. table_base = segment_base(ldt_selector);
  209. }
  210. d = (struct desc_struct *)(table_base + (selector & ~7));
  211. v = get_desc_base(d);
  212. #ifdef CONFIG_X86_64
  213. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  214. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  215. #endif
  216. return v;
  217. }
  218. EXPORT_SYMBOL_GPL(segment_base);
  219. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  220. {
  221. if (irqchip_in_kernel(vcpu->kvm))
  222. return vcpu->arch.apic_base;
  223. else
  224. return vcpu->arch.apic_base;
  225. }
  226. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  227. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  228. {
  229. /* TODO: reserve bits check */
  230. if (irqchip_in_kernel(vcpu->kvm))
  231. kvm_lapic_set_base(vcpu, data);
  232. else
  233. vcpu->arch.apic_base = data;
  234. }
  235. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  236. #define EXCPT_BENIGN 0
  237. #define EXCPT_CONTRIBUTORY 1
  238. #define EXCPT_PF 2
  239. static int exception_class(int vector)
  240. {
  241. switch (vector) {
  242. case PF_VECTOR:
  243. return EXCPT_PF;
  244. case DE_VECTOR:
  245. case TS_VECTOR:
  246. case NP_VECTOR:
  247. case SS_VECTOR:
  248. case GP_VECTOR:
  249. return EXCPT_CONTRIBUTORY;
  250. default:
  251. break;
  252. }
  253. return EXCPT_BENIGN;
  254. }
  255. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  256. unsigned nr, bool has_error, u32 error_code)
  257. {
  258. u32 prev_nr;
  259. int class1, class2;
  260. if (!vcpu->arch.exception.pending) {
  261. queue:
  262. vcpu->arch.exception.pending = true;
  263. vcpu->arch.exception.has_error_code = has_error;
  264. vcpu->arch.exception.nr = nr;
  265. vcpu->arch.exception.error_code = error_code;
  266. return;
  267. }
  268. /* to check exception */
  269. prev_nr = vcpu->arch.exception.nr;
  270. if (prev_nr == DF_VECTOR) {
  271. /* triple fault -> shutdown */
  272. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  273. return;
  274. }
  275. class1 = exception_class(prev_nr);
  276. class2 = exception_class(nr);
  277. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  278. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  279. /* generate double fault per SDM Table 5-5 */
  280. vcpu->arch.exception.pending = true;
  281. vcpu->arch.exception.has_error_code = true;
  282. vcpu->arch.exception.nr = DF_VECTOR;
  283. vcpu->arch.exception.error_code = 0;
  284. } else
  285. /* replace previous exception with a new one in a hope
  286. that instruction re-execution will regenerate lost
  287. exception */
  288. goto queue;
  289. }
  290. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  291. {
  292. kvm_multiple_exception(vcpu, nr, false, 0);
  293. }
  294. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  295. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  296. u32 error_code)
  297. {
  298. ++vcpu->stat.pf_guest;
  299. vcpu->arch.cr2 = addr;
  300. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  301. }
  302. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  303. {
  304. vcpu->arch.nmi_pending = 1;
  305. }
  306. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  307. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  308. {
  309. kvm_multiple_exception(vcpu, nr, true, error_code);
  310. }
  311. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  312. /*
  313. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  314. * a #GP and return false.
  315. */
  316. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  317. {
  318. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  319. return true;
  320. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  321. return false;
  322. }
  323. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  324. /*
  325. * Load the pae pdptrs. Return true is they are all valid.
  326. */
  327. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  328. {
  329. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  330. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  331. int i;
  332. int ret;
  333. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  334. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  335. offset * sizeof(u64), sizeof(pdpte));
  336. if (ret < 0) {
  337. ret = 0;
  338. goto out;
  339. }
  340. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  341. if (is_present_gpte(pdpte[i]) &&
  342. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  343. ret = 0;
  344. goto out;
  345. }
  346. }
  347. ret = 1;
  348. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  349. __set_bit(VCPU_EXREG_PDPTR,
  350. (unsigned long *)&vcpu->arch.regs_avail);
  351. __set_bit(VCPU_EXREG_PDPTR,
  352. (unsigned long *)&vcpu->arch.regs_dirty);
  353. out:
  354. return ret;
  355. }
  356. EXPORT_SYMBOL_GPL(load_pdptrs);
  357. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  358. {
  359. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  360. bool changed = true;
  361. int r;
  362. if (is_long_mode(vcpu) || !is_pae(vcpu))
  363. return false;
  364. if (!test_bit(VCPU_EXREG_PDPTR,
  365. (unsigned long *)&vcpu->arch.regs_avail))
  366. return true;
  367. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  368. if (r < 0)
  369. goto out;
  370. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  371. out:
  372. return changed;
  373. }
  374. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  375. {
  376. if (cr0 & CR0_RESERVED_BITS) {
  377. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  378. cr0, vcpu->arch.cr0);
  379. kvm_inject_gp(vcpu, 0);
  380. return;
  381. }
  382. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  383. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  384. kvm_inject_gp(vcpu, 0);
  385. return;
  386. }
  387. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  388. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  389. "and a clear PE flag\n");
  390. kvm_inject_gp(vcpu, 0);
  391. return;
  392. }
  393. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  394. #ifdef CONFIG_X86_64
  395. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  396. int cs_db, cs_l;
  397. if (!is_pae(vcpu)) {
  398. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  399. "in long mode while PAE is disabled\n");
  400. kvm_inject_gp(vcpu, 0);
  401. return;
  402. }
  403. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  404. if (cs_l) {
  405. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  406. "in long mode while CS.L == 1\n");
  407. kvm_inject_gp(vcpu, 0);
  408. return;
  409. }
  410. } else
  411. #endif
  412. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  413. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  414. "reserved bits\n");
  415. kvm_inject_gp(vcpu, 0);
  416. return;
  417. }
  418. }
  419. kvm_x86_ops->set_cr0(vcpu, cr0);
  420. vcpu->arch.cr0 = cr0;
  421. kvm_mmu_reset_context(vcpu);
  422. return;
  423. }
  424. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  425. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  426. {
  427. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  428. }
  429. EXPORT_SYMBOL_GPL(kvm_lmsw);
  430. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  431. {
  432. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  433. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  434. if (cr4 & CR4_RESERVED_BITS) {
  435. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  436. kvm_inject_gp(vcpu, 0);
  437. return;
  438. }
  439. if (is_long_mode(vcpu)) {
  440. if (!(cr4 & X86_CR4_PAE)) {
  441. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  442. "in long mode\n");
  443. kvm_inject_gp(vcpu, 0);
  444. return;
  445. }
  446. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  447. && ((cr4 ^ old_cr4) & pdptr_bits)
  448. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  449. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  450. kvm_inject_gp(vcpu, 0);
  451. return;
  452. }
  453. if (cr4 & X86_CR4_VMXE) {
  454. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  455. kvm_inject_gp(vcpu, 0);
  456. return;
  457. }
  458. kvm_x86_ops->set_cr4(vcpu, cr4);
  459. vcpu->arch.cr4 = cr4;
  460. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  461. kvm_mmu_reset_context(vcpu);
  462. }
  463. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  464. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  465. {
  466. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  467. kvm_mmu_sync_roots(vcpu);
  468. kvm_mmu_flush_tlb(vcpu);
  469. return;
  470. }
  471. if (is_long_mode(vcpu)) {
  472. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  473. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  474. kvm_inject_gp(vcpu, 0);
  475. return;
  476. }
  477. } else {
  478. if (is_pae(vcpu)) {
  479. if (cr3 & CR3_PAE_RESERVED_BITS) {
  480. printk(KERN_DEBUG
  481. "set_cr3: #GP, reserved bits\n");
  482. kvm_inject_gp(vcpu, 0);
  483. return;
  484. }
  485. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  486. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  487. "reserved bits\n");
  488. kvm_inject_gp(vcpu, 0);
  489. return;
  490. }
  491. }
  492. /*
  493. * We don't check reserved bits in nonpae mode, because
  494. * this isn't enforced, and VMware depends on this.
  495. */
  496. }
  497. /*
  498. * Does the new cr3 value map to physical memory? (Note, we
  499. * catch an invalid cr3 even in real-mode, because it would
  500. * cause trouble later on when we turn on paging anyway.)
  501. *
  502. * A real CPU would silently accept an invalid cr3 and would
  503. * attempt to use it - with largely undefined (and often hard
  504. * to debug) behavior on the guest side.
  505. */
  506. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  507. kvm_inject_gp(vcpu, 0);
  508. else {
  509. vcpu->arch.cr3 = cr3;
  510. vcpu->arch.mmu.new_cr3(vcpu);
  511. }
  512. }
  513. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  514. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  515. {
  516. if (cr8 & CR8_RESERVED_BITS) {
  517. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  518. kvm_inject_gp(vcpu, 0);
  519. return;
  520. }
  521. if (irqchip_in_kernel(vcpu->kvm))
  522. kvm_lapic_set_tpr(vcpu, cr8);
  523. else
  524. vcpu->arch.cr8 = cr8;
  525. }
  526. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  527. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  528. {
  529. if (irqchip_in_kernel(vcpu->kvm))
  530. return kvm_lapic_get_cr8(vcpu);
  531. else
  532. return vcpu->arch.cr8;
  533. }
  534. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  535. static inline u32 bit(int bitno)
  536. {
  537. return 1 << (bitno & 31);
  538. }
  539. /*
  540. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  541. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  542. *
  543. * This list is modified at module load time to reflect the
  544. * capabilities of the host cpu. This capabilities test skips MSRs that are
  545. * kvm-specific. Those are put in the beginning of the list.
  546. */
  547. #define KVM_SAVE_MSRS_BEGIN 2
  548. static u32 msrs_to_save[] = {
  549. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  550. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  551. MSR_K6_STAR,
  552. #ifdef CONFIG_X86_64
  553. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  554. #endif
  555. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  556. };
  557. static unsigned num_msrs_to_save;
  558. static u32 emulated_msrs[] = {
  559. MSR_IA32_MISC_ENABLE,
  560. };
  561. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  562. {
  563. if (efer & efer_reserved_bits) {
  564. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  565. efer);
  566. kvm_inject_gp(vcpu, 0);
  567. return;
  568. }
  569. if (is_paging(vcpu)
  570. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  571. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  572. kvm_inject_gp(vcpu, 0);
  573. return;
  574. }
  575. if (efer & EFER_FFXSR) {
  576. struct kvm_cpuid_entry2 *feat;
  577. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  578. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  579. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  580. kvm_inject_gp(vcpu, 0);
  581. return;
  582. }
  583. }
  584. if (efer & EFER_SVME) {
  585. struct kvm_cpuid_entry2 *feat;
  586. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  587. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  588. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  589. kvm_inject_gp(vcpu, 0);
  590. return;
  591. }
  592. }
  593. kvm_x86_ops->set_efer(vcpu, efer);
  594. efer &= ~EFER_LMA;
  595. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  596. vcpu->arch.shadow_efer = efer;
  597. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  598. kvm_mmu_reset_context(vcpu);
  599. }
  600. void kvm_enable_efer_bits(u64 mask)
  601. {
  602. efer_reserved_bits &= ~mask;
  603. }
  604. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  605. /*
  606. * Writes msr value into into the appropriate "register".
  607. * Returns 0 on success, non-0 otherwise.
  608. * Assumes vcpu_load() was already called.
  609. */
  610. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  611. {
  612. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  613. }
  614. /*
  615. * Adapt set_msr() to msr_io()'s calling convention
  616. */
  617. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  618. {
  619. return kvm_set_msr(vcpu, index, *data);
  620. }
  621. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  622. {
  623. static int version;
  624. struct pvclock_wall_clock wc;
  625. struct timespec boot;
  626. if (!wall_clock)
  627. return;
  628. version++;
  629. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  630. /*
  631. * The guest calculates current wall clock time by adding
  632. * system time (updated by kvm_write_guest_time below) to the
  633. * wall clock specified here. guest system time equals host
  634. * system time for us, thus we must fill in host boot time here.
  635. */
  636. getboottime(&boot);
  637. wc.sec = boot.tv_sec;
  638. wc.nsec = boot.tv_nsec;
  639. wc.version = version;
  640. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  641. version++;
  642. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  643. }
  644. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  645. {
  646. uint32_t quotient, remainder;
  647. /* Don't try to replace with do_div(), this one calculates
  648. * "(dividend << 32) / divisor" */
  649. __asm__ ( "divl %4"
  650. : "=a" (quotient), "=d" (remainder)
  651. : "0" (0), "1" (dividend), "r" (divisor) );
  652. return quotient;
  653. }
  654. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  655. {
  656. uint64_t nsecs = 1000000000LL;
  657. int32_t shift = 0;
  658. uint64_t tps64;
  659. uint32_t tps32;
  660. tps64 = tsc_khz * 1000LL;
  661. while (tps64 > nsecs*2) {
  662. tps64 >>= 1;
  663. shift--;
  664. }
  665. tps32 = (uint32_t)tps64;
  666. while (tps32 <= (uint32_t)nsecs) {
  667. tps32 <<= 1;
  668. shift++;
  669. }
  670. hv_clock->tsc_shift = shift;
  671. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  672. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  673. __func__, tsc_khz, hv_clock->tsc_shift,
  674. hv_clock->tsc_to_system_mul);
  675. }
  676. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  677. static void kvm_write_guest_time(struct kvm_vcpu *v)
  678. {
  679. struct timespec ts;
  680. unsigned long flags;
  681. struct kvm_vcpu_arch *vcpu = &v->arch;
  682. void *shared_kaddr;
  683. unsigned long this_tsc_khz;
  684. if ((!vcpu->time_page))
  685. return;
  686. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  687. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  688. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  689. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  690. }
  691. put_cpu_var(cpu_tsc_khz);
  692. /* Keep irq disabled to prevent changes to the clock */
  693. local_irq_save(flags);
  694. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  695. ktime_get_ts(&ts);
  696. monotonic_to_bootbased(&ts);
  697. local_irq_restore(flags);
  698. /* With all the info we got, fill in the values */
  699. vcpu->hv_clock.system_time = ts.tv_nsec +
  700. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  701. /*
  702. * The interface expects us to write an even number signaling that the
  703. * update is finished. Since the guest won't see the intermediate
  704. * state, we just increase by 2 at the end.
  705. */
  706. vcpu->hv_clock.version += 2;
  707. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  708. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  709. sizeof(vcpu->hv_clock));
  710. kunmap_atomic(shared_kaddr, KM_USER0);
  711. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  712. }
  713. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  714. {
  715. struct kvm_vcpu_arch *vcpu = &v->arch;
  716. if (!vcpu->time_page)
  717. return 0;
  718. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  719. return 1;
  720. }
  721. static bool msr_mtrr_valid(unsigned msr)
  722. {
  723. switch (msr) {
  724. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  725. case MSR_MTRRfix64K_00000:
  726. case MSR_MTRRfix16K_80000:
  727. case MSR_MTRRfix16K_A0000:
  728. case MSR_MTRRfix4K_C0000:
  729. case MSR_MTRRfix4K_C8000:
  730. case MSR_MTRRfix4K_D0000:
  731. case MSR_MTRRfix4K_D8000:
  732. case MSR_MTRRfix4K_E0000:
  733. case MSR_MTRRfix4K_E8000:
  734. case MSR_MTRRfix4K_F0000:
  735. case MSR_MTRRfix4K_F8000:
  736. case MSR_MTRRdefType:
  737. case MSR_IA32_CR_PAT:
  738. return true;
  739. case 0x2f8:
  740. return true;
  741. }
  742. return false;
  743. }
  744. static bool valid_pat_type(unsigned t)
  745. {
  746. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  747. }
  748. static bool valid_mtrr_type(unsigned t)
  749. {
  750. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  751. }
  752. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  753. {
  754. int i;
  755. if (!msr_mtrr_valid(msr))
  756. return false;
  757. if (msr == MSR_IA32_CR_PAT) {
  758. for (i = 0; i < 8; i++)
  759. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  760. return false;
  761. return true;
  762. } else if (msr == MSR_MTRRdefType) {
  763. if (data & ~0xcff)
  764. return false;
  765. return valid_mtrr_type(data & 0xff);
  766. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  767. for (i = 0; i < 8 ; i++)
  768. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  769. return false;
  770. return true;
  771. }
  772. /* variable MTRRs */
  773. return valid_mtrr_type(data & 0xff);
  774. }
  775. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  776. {
  777. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  778. if (!mtrr_valid(vcpu, msr, data))
  779. return 1;
  780. if (msr == MSR_MTRRdefType) {
  781. vcpu->arch.mtrr_state.def_type = data;
  782. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  783. } else if (msr == MSR_MTRRfix64K_00000)
  784. p[0] = data;
  785. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  786. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  787. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  788. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  789. else if (msr == MSR_IA32_CR_PAT)
  790. vcpu->arch.pat = data;
  791. else { /* Variable MTRRs */
  792. int idx, is_mtrr_mask;
  793. u64 *pt;
  794. idx = (msr - 0x200) / 2;
  795. is_mtrr_mask = msr - 0x200 - 2 * idx;
  796. if (!is_mtrr_mask)
  797. pt =
  798. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  799. else
  800. pt =
  801. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  802. *pt = data;
  803. }
  804. kvm_mmu_reset_context(vcpu);
  805. return 0;
  806. }
  807. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  808. {
  809. u64 mcg_cap = vcpu->arch.mcg_cap;
  810. unsigned bank_num = mcg_cap & 0xff;
  811. switch (msr) {
  812. case MSR_IA32_MCG_STATUS:
  813. vcpu->arch.mcg_status = data;
  814. break;
  815. case MSR_IA32_MCG_CTL:
  816. if (!(mcg_cap & MCG_CTL_P))
  817. return 1;
  818. if (data != 0 && data != ~(u64)0)
  819. return -1;
  820. vcpu->arch.mcg_ctl = data;
  821. break;
  822. default:
  823. if (msr >= MSR_IA32_MC0_CTL &&
  824. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  825. u32 offset = msr - MSR_IA32_MC0_CTL;
  826. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  827. if ((offset & 0x3) == 0 &&
  828. data != 0 && data != ~(u64)0)
  829. return -1;
  830. vcpu->arch.mce_banks[offset] = data;
  831. break;
  832. }
  833. return 1;
  834. }
  835. return 0;
  836. }
  837. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  838. {
  839. struct kvm *kvm = vcpu->kvm;
  840. int lm = is_long_mode(vcpu);
  841. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  842. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  843. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  844. : kvm->arch.xen_hvm_config.blob_size_32;
  845. u32 page_num = data & ~PAGE_MASK;
  846. u64 page_addr = data & PAGE_MASK;
  847. u8 *page;
  848. int r;
  849. r = -E2BIG;
  850. if (page_num >= blob_size)
  851. goto out;
  852. r = -ENOMEM;
  853. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  854. if (!page)
  855. goto out;
  856. r = -EFAULT;
  857. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  858. goto out_free;
  859. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  860. goto out_free;
  861. r = 0;
  862. out_free:
  863. kfree(page);
  864. out:
  865. return r;
  866. }
  867. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  868. {
  869. switch (msr) {
  870. case MSR_EFER:
  871. set_efer(vcpu, data);
  872. break;
  873. case MSR_K7_HWCR:
  874. data &= ~(u64)0x40; /* ignore flush filter disable */
  875. if (data != 0) {
  876. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  877. data);
  878. return 1;
  879. }
  880. break;
  881. case MSR_FAM10H_MMIO_CONF_BASE:
  882. if (data != 0) {
  883. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  884. "0x%llx\n", data);
  885. return 1;
  886. }
  887. break;
  888. case MSR_AMD64_NB_CFG:
  889. break;
  890. case MSR_IA32_DEBUGCTLMSR:
  891. if (!data) {
  892. /* We support the non-activated case already */
  893. break;
  894. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  895. /* Values other than LBR and BTF are vendor-specific,
  896. thus reserved and should throw a #GP */
  897. return 1;
  898. }
  899. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  900. __func__, data);
  901. break;
  902. case MSR_IA32_UCODE_REV:
  903. case MSR_IA32_UCODE_WRITE:
  904. case MSR_VM_HSAVE_PA:
  905. case MSR_AMD64_PATCH_LOADER:
  906. break;
  907. case 0x200 ... 0x2ff:
  908. return set_msr_mtrr(vcpu, msr, data);
  909. case MSR_IA32_APICBASE:
  910. kvm_set_apic_base(vcpu, data);
  911. break;
  912. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  913. return kvm_x2apic_msr_write(vcpu, msr, data);
  914. case MSR_IA32_MISC_ENABLE:
  915. vcpu->arch.ia32_misc_enable_msr = data;
  916. break;
  917. case MSR_KVM_WALL_CLOCK:
  918. vcpu->kvm->arch.wall_clock = data;
  919. kvm_write_wall_clock(vcpu->kvm, data);
  920. break;
  921. case MSR_KVM_SYSTEM_TIME: {
  922. if (vcpu->arch.time_page) {
  923. kvm_release_page_dirty(vcpu->arch.time_page);
  924. vcpu->arch.time_page = NULL;
  925. }
  926. vcpu->arch.time = data;
  927. /* we verify if the enable bit is set... */
  928. if (!(data & 1))
  929. break;
  930. /* ...but clean it before doing the actual write */
  931. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  932. vcpu->arch.time_page =
  933. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  934. if (is_error_page(vcpu->arch.time_page)) {
  935. kvm_release_page_clean(vcpu->arch.time_page);
  936. vcpu->arch.time_page = NULL;
  937. }
  938. kvm_request_guest_time_update(vcpu);
  939. break;
  940. }
  941. case MSR_IA32_MCG_CTL:
  942. case MSR_IA32_MCG_STATUS:
  943. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  944. return set_msr_mce(vcpu, msr, data);
  945. /* Performance counters are not protected by a CPUID bit,
  946. * so we should check all of them in the generic path for the sake of
  947. * cross vendor migration.
  948. * Writing a zero into the event select MSRs disables them,
  949. * which we perfectly emulate ;-). Any other value should be at least
  950. * reported, some guests depend on them.
  951. */
  952. case MSR_P6_EVNTSEL0:
  953. case MSR_P6_EVNTSEL1:
  954. case MSR_K7_EVNTSEL0:
  955. case MSR_K7_EVNTSEL1:
  956. case MSR_K7_EVNTSEL2:
  957. case MSR_K7_EVNTSEL3:
  958. if (data != 0)
  959. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  960. "0x%x data 0x%llx\n", msr, data);
  961. break;
  962. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  963. * so we ignore writes to make it happy.
  964. */
  965. case MSR_P6_PERFCTR0:
  966. case MSR_P6_PERFCTR1:
  967. case MSR_K7_PERFCTR0:
  968. case MSR_K7_PERFCTR1:
  969. case MSR_K7_PERFCTR2:
  970. case MSR_K7_PERFCTR3:
  971. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  972. "0x%x data 0x%llx\n", msr, data);
  973. break;
  974. default:
  975. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  976. return xen_hvm_config(vcpu, data);
  977. if (!ignore_msrs) {
  978. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  979. msr, data);
  980. return 1;
  981. } else {
  982. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  983. msr, data);
  984. break;
  985. }
  986. }
  987. return 0;
  988. }
  989. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  990. /*
  991. * Reads an msr value (of 'msr_index') into 'pdata'.
  992. * Returns 0 on success, non-0 otherwise.
  993. * Assumes vcpu_load() was already called.
  994. */
  995. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  996. {
  997. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  998. }
  999. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1000. {
  1001. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1002. if (!msr_mtrr_valid(msr))
  1003. return 1;
  1004. if (msr == MSR_MTRRdefType)
  1005. *pdata = vcpu->arch.mtrr_state.def_type +
  1006. (vcpu->arch.mtrr_state.enabled << 10);
  1007. else if (msr == MSR_MTRRfix64K_00000)
  1008. *pdata = p[0];
  1009. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1010. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1011. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1012. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1013. else if (msr == MSR_IA32_CR_PAT)
  1014. *pdata = vcpu->arch.pat;
  1015. else { /* Variable MTRRs */
  1016. int idx, is_mtrr_mask;
  1017. u64 *pt;
  1018. idx = (msr - 0x200) / 2;
  1019. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1020. if (!is_mtrr_mask)
  1021. pt =
  1022. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1023. else
  1024. pt =
  1025. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1026. *pdata = *pt;
  1027. }
  1028. return 0;
  1029. }
  1030. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1031. {
  1032. u64 data;
  1033. u64 mcg_cap = vcpu->arch.mcg_cap;
  1034. unsigned bank_num = mcg_cap & 0xff;
  1035. switch (msr) {
  1036. case MSR_IA32_P5_MC_ADDR:
  1037. case MSR_IA32_P5_MC_TYPE:
  1038. data = 0;
  1039. break;
  1040. case MSR_IA32_MCG_CAP:
  1041. data = vcpu->arch.mcg_cap;
  1042. break;
  1043. case MSR_IA32_MCG_CTL:
  1044. if (!(mcg_cap & MCG_CTL_P))
  1045. return 1;
  1046. data = vcpu->arch.mcg_ctl;
  1047. break;
  1048. case MSR_IA32_MCG_STATUS:
  1049. data = vcpu->arch.mcg_status;
  1050. break;
  1051. default:
  1052. if (msr >= MSR_IA32_MC0_CTL &&
  1053. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1054. u32 offset = msr - MSR_IA32_MC0_CTL;
  1055. data = vcpu->arch.mce_banks[offset];
  1056. break;
  1057. }
  1058. return 1;
  1059. }
  1060. *pdata = data;
  1061. return 0;
  1062. }
  1063. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1064. {
  1065. u64 data;
  1066. switch (msr) {
  1067. case MSR_IA32_PLATFORM_ID:
  1068. case MSR_IA32_UCODE_REV:
  1069. case MSR_IA32_EBL_CR_POWERON:
  1070. case MSR_IA32_DEBUGCTLMSR:
  1071. case MSR_IA32_LASTBRANCHFROMIP:
  1072. case MSR_IA32_LASTBRANCHTOIP:
  1073. case MSR_IA32_LASTINTFROMIP:
  1074. case MSR_IA32_LASTINTTOIP:
  1075. case MSR_K8_SYSCFG:
  1076. case MSR_K7_HWCR:
  1077. case MSR_VM_HSAVE_PA:
  1078. case MSR_P6_PERFCTR0:
  1079. case MSR_P6_PERFCTR1:
  1080. case MSR_P6_EVNTSEL0:
  1081. case MSR_P6_EVNTSEL1:
  1082. case MSR_K7_EVNTSEL0:
  1083. case MSR_K7_PERFCTR0:
  1084. case MSR_K8_INT_PENDING_MSG:
  1085. case MSR_AMD64_NB_CFG:
  1086. case MSR_FAM10H_MMIO_CONF_BASE:
  1087. data = 0;
  1088. break;
  1089. case MSR_MTRRcap:
  1090. data = 0x500 | KVM_NR_VAR_MTRR;
  1091. break;
  1092. case 0x200 ... 0x2ff:
  1093. return get_msr_mtrr(vcpu, msr, pdata);
  1094. case 0xcd: /* fsb frequency */
  1095. data = 3;
  1096. break;
  1097. case MSR_IA32_APICBASE:
  1098. data = kvm_get_apic_base(vcpu);
  1099. break;
  1100. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1101. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1102. break;
  1103. case MSR_IA32_MISC_ENABLE:
  1104. data = vcpu->arch.ia32_misc_enable_msr;
  1105. break;
  1106. case MSR_IA32_PERF_STATUS:
  1107. /* TSC increment by tick */
  1108. data = 1000ULL;
  1109. /* CPU multiplier */
  1110. data |= (((uint64_t)4ULL) << 40);
  1111. break;
  1112. case MSR_EFER:
  1113. data = vcpu->arch.shadow_efer;
  1114. break;
  1115. case MSR_KVM_WALL_CLOCK:
  1116. data = vcpu->kvm->arch.wall_clock;
  1117. break;
  1118. case MSR_KVM_SYSTEM_TIME:
  1119. data = vcpu->arch.time;
  1120. break;
  1121. case MSR_IA32_P5_MC_ADDR:
  1122. case MSR_IA32_P5_MC_TYPE:
  1123. case MSR_IA32_MCG_CAP:
  1124. case MSR_IA32_MCG_CTL:
  1125. case MSR_IA32_MCG_STATUS:
  1126. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1127. return get_msr_mce(vcpu, msr, pdata);
  1128. default:
  1129. if (!ignore_msrs) {
  1130. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1131. return 1;
  1132. } else {
  1133. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1134. data = 0;
  1135. }
  1136. break;
  1137. }
  1138. *pdata = data;
  1139. return 0;
  1140. }
  1141. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1142. /*
  1143. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1144. *
  1145. * @return number of msrs set successfully.
  1146. */
  1147. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1148. struct kvm_msr_entry *entries,
  1149. int (*do_msr)(struct kvm_vcpu *vcpu,
  1150. unsigned index, u64 *data))
  1151. {
  1152. int i;
  1153. vcpu_load(vcpu);
  1154. down_read(&vcpu->kvm->slots_lock);
  1155. for (i = 0; i < msrs->nmsrs; ++i)
  1156. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1157. break;
  1158. up_read(&vcpu->kvm->slots_lock);
  1159. vcpu_put(vcpu);
  1160. return i;
  1161. }
  1162. /*
  1163. * Read or write a bunch of msrs. Parameters are user addresses.
  1164. *
  1165. * @return number of msrs set successfully.
  1166. */
  1167. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1168. int (*do_msr)(struct kvm_vcpu *vcpu,
  1169. unsigned index, u64 *data),
  1170. int writeback)
  1171. {
  1172. struct kvm_msrs msrs;
  1173. struct kvm_msr_entry *entries;
  1174. int r, n;
  1175. unsigned size;
  1176. r = -EFAULT;
  1177. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1178. goto out;
  1179. r = -E2BIG;
  1180. if (msrs.nmsrs >= MAX_IO_MSRS)
  1181. goto out;
  1182. r = -ENOMEM;
  1183. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1184. entries = vmalloc(size);
  1185. if (!entries)
  1186. goto out;
  1187. r = -EFAULT;
  1188. if (copy_from_user(entries, user_msrs->entries, size))
  1189. goto out_free;
  1190. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1191. if (r < 0)
  1192. goto out_free;
  1193. r = -EFAULT;
  1194. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1195. goto out_free;
  1196. r = n;
  1197. out_free:
  1198. vfree(entries);
  1199. out:
  1200. return r;
  1201. }
  1202. int kvm_dev_ioctl_check_extension(long ext)
  1203. {
  1204. int r;
  1205. switch (ext) {
  1206. case KVM_CAP_IRQCHIP:
  1207. case KVM_CAP_HLT:
  1208. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1209. case KVM_CAP_SET_TSS_ADDR:
  1210. case KVM_CAP_EXT_CPUID:
  1211. case KVM_CAP_CLOCKSOURCE:
  1212. case KVM_CAP_PIT:
  1213. case KVM_CAP_NOP_IO_DELAY:
  1214. case KVM_CAP_MP_STATE:
  1215. case KVM_CAP_SYNC_MMU:
  1216. case KVM_CAP_REINJECT_CONTROL:
  1217. case KVM_CAP_IRQ_INJECT_STATUS:
  1218. case KVM_CAP_ASSIGN_DEV_IRQ:
  1219. case KVM_CAP_IRQFD:
  1220. case KVM_CAP_IOEVENTFD:
  1221. case KVM_CAP_PIT2:
  1222. case KVM_CAP_PIT_STATE2:
  1223. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1224. case KVM_CAP_XEN_HVM:
  1225. case KVM_CAP_ADJUST_CLOCK:
  1226. case KVM_CAP_VCPU_EVENTS:
  1227. r = 1;
  1228. break;
  1229. case KVM_CAP_COALESCED_MMIO:
  1230. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1231. break;
  1232. case KVM_CAP_VAPIC:
  1233. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1234. break;
  1235. case KVM_CAP_NR_VCPUS:
  1236. r = KVM_MAX_VCPUS;
  1237. break;
  1238. case KVM_CAP_NR_MEMSLOTS:
  1239. r = KVM_MEMORY_SLOTS;
  1240. break;
  1241. case KVM_CAP_PV_MMU: /* obsolete */
  1242. r = 0;
  1243. break;
  1244. case KVM_CAP_IOMMU:
  1245. r = iommu_found();
  1246. break;
  1247. case KVM_CAP_MCE:
  1248. r = KVM_MAX_MCE_BANKS;
  1249. break;
  1250. default:
  1251. r = 0;
  1252. break;
  1253. }
  1254. return r;
  1255. }
  1256. long kvm_arch_dev_ioctl(struct file *filp,
  1257. unsigned int ioctl, unsigned long arg)
  1258. {
  1259. void __user *argp = (void __user *)arg;
  1260. long r;
  1261. switch (ioctl) {
  1262. case KVM_GET_MSR_INDEX_LIST: {
  1263. struct kvm_msr_list __user *user_msr_list = argp;
  1264. struct kvm_msr_list msr_list;
  1265. unsigned n;
  1266. r = -EFAULT;
  1267. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1268. goto out;
  1269. n = msr_list.nmsrs;
  1270. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1271. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1272. goto out;
  1273. r = -E2BIG;
  1274. if (n < msr_list.nmsrs)
  1275. goto out;
  1276. r = -EFAULT;
  1277. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1278. num_msrs_to_save * sizeof(u32)))
  1279. goto out;
  1280. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1281. &emulated_msrs,
  1282. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1283. goto out;
  1284. r = 0;
  1285. break;
  1286. }
  1287. case KVM_GET_SUPPORTED_CPUID: {
  1288. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1289. struct kvm_cpuid2 cpuid;
  1290. r = -EFAULT;
  1291. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1292. goto out;
  1293. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1294. cpuid_arg->entries);
  1295. if (r)
  1296. goto out;
  1297. r = -EFAULT;
  1298. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1299. goto out;
  1300. r = 0;
  1301. break;
  1302. }
  1303. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1304. u64 mce_cap;
  1305. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1306. r = -EFAULT;
  1307. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1308. goto out;
  1309. r = 0;
  1310. break;
  1311. }
  1312. default:
  1313. r = -EINVAL;
  1314. }
  1315. out:
  1316. return r;
  1317. }
  1318. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1319. {
  1320. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1321. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1322. unsigned long khz = cpufreq_quick_get(cpu);
  1323. if (!khz)
  1324. khz = tsc_khz;
  1325. per_cpu(cpu_tsc_khz, cpu) = khz;
  1326. }
  1327. kvm_request_guest_time_update(vcpu);
  1328. }
  1329. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1330. {
  1331. kvm_x86_ops->vcpu_put(vcpu);
  1332. kvm_put_guest_fpu(vcpu);
  1333. }
  1334. static int is_efer_nx(void)
  1335. {
  1336. unsigned long long efer = 0;
  1337. rdmsrl_safe(MSR_EFER, &efer);
  1338. return efer & EFER_NX;
  1339. }
  1340. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1341. {
  1342. int i;
  1343. struct kvm_cpuid_entry2 *e, *entry;
  1344. entry = NULL;
  1345. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1346. e = &vcpu->arch.cpuid_entries[i];
  1347. if (e->function == 0x80000001) {
  1348. entry = e;
  1349. break;
  1350. }
  1351. }
  1352. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1353. entry->edx &= ~(1 << 20);
  1354. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1355. }
  1356. }
  1357. /* when an old userspace process fills a new kernel module */
  1358. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1359. struct kvm_cpuid *cpuid,
  1360. struct kvm_cpuid_entry __user *entries)
  1361. {
  1362. int r, i;
  1363. struct kvm_cpuid_entry *cpuid_entries;
  1364. r = -E2BIG;
  1365. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1366. goto out;
  1367. r = -ENOMEM;
  1368. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1369. if (!cpuid_entries)
  1370. goto out;
  1371. r = -EFAULT;
  1372. if (copy_from_user(cpuid_entries, entries,
  1373. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1374. goto out_free;
  1375. for (i = 0; i < cpuid->nent; i++) {
  1376. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1377. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1378. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1379. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1380. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1381. vcpu->arch.cpuid_entries[i].index = 0;
  1382. vcpu->arch.cpuid_entries[i].flags = 0;
  1383. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1384. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1385. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1386. }
  1387. vcpu->arch.cpuid_nent = cpuid->nent;
  1388. cpuid_fix_nx_cap(vcpu);
  1389. r = 0;
  1390. kvm_apic_set_version(vcpu);
  1391. kvm_x86_ops->cpuid_update(vcpu);
  1392. out_free:
  1393. vfree(cpuid_entries);
  1394. out:
  1395. return r;
  1396. }
  1397. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1398. struct kvm_cpuid2 *cpuid,
  1399. struct kvm_cpuid_entry2 __user *entries)
  1400. {
  1401. int r;
  1402. r = -E2BIG;
  1403. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1404. goto out;
  1405. r = -EFAULT;
  1406. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1407. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1408. goto out;
  1409. vcpu->arch.cpuid_nent = cpuid->nent;
  1410. kvm_apic_set_version(vcpu);
  1411. kvm_x86_ops->cpuid_update(vcpu);
  1412. return 0;
  1413. out:
  1414. return r;
  1415. }
  1416. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1417. struct kvm_cpuid2 *cpuid,
  1418. struct kvm_cpuid_entry2 __user *entries)
  1419. {
  1420. int r;
  1421. r = -E2BIG;
  1422. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1423. goto out;
  1424. r = -EFAULT;
  1425. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1426. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1427. goto out;
  1428. return 0;
  1429. out:
  1430. cpuid->nent = vcpu->arch.cpuid_nent;
  1431. return r;
  1432. }
  1433. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1434. u32 index)
  1435. {
  1436. entry->function = function;
  1437. entry->index = index;
  1438. cpuid_count(entry->function, entry->index,
  1439. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1440. entry->flags = 0;
  1441. }
  1442. #define F(x) bit(X86_FEATURE_##x)
  1443. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1444. u32 index, int *nent, int maxnent)
  1445. {
  1446. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1447. unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
  1448. #ifdef CONFIG_X86_64
  1449. unsigned f_lm = F(LM);
  1450. #else
  1451. unsigned f_lm = 0;
  1452. #endif
  1453. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1454. /* cpuid 1.edx */
  1455. const u32 kvm_supported_word0_x86_features =
  1456. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1457. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1458. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1459. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1460. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1461. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1462. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1463. 0 /* HTT, TM, Reserved, PBE */;
  1464. /* cpuid 0x80000001.edx */
  1465. const u32 kvm_supported_word1_x86_features =
  1466. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1467. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1468. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1469. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1470. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1471. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1472. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1473. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1474. /* cpuid 1.ecx */
  1475. const u32 kvm_supported_word4_x86_features =
  1476. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1477. 0 /* DS-CPL, VMX, SMX, EST */ |
  1478. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1479. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1480. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1481. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1482. 0 /* Reserved, XSAVE, OSXSAVE */;
  1483. /* cpuid 0x80000001.ecx */
  1484. const u32 kvm_supported_word6_x86_features =
  1485. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1486. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1487. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1488. 0 /* SKINIT */ | 0 /* WDT */;
  1489. /* all calls to cpuid_count() should be made on the same cpu */
  1490. get_cpu();
  1491. do_cpuid_1_ent(entry, function, index);
  1492. ++*nent;
  1493. switch (function) {
  1494. case 0:
  1495. entry->eax = min(entry->eax, (u32)0xb);
  1496. break;
  1497. case 1:
  1498. entry->edx &= kvm_supported_word0_x86_features;
  1499. entry->ecx &= kvm_supported_word4_x86_features;
  1500. /* we support x2apic emulation even if host does not support
  1501. * it since we emulate x2apic in software */
  1502. entry->ecx |= F(X2APIC);
  1503. break;
  1504. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1505. * may return different values. This forces us to get_cpu() before
  1506. * issuing the first command, and also to emulate this annoying behavior
  1507. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1508. case 2: {
  1509. int t, times = entry->eax & 0xff;
  1510. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1511. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1512. for (t = 1; t < times && *nent < maxnent; ++t) {
  1513. do_cpuid_1_ent(&entry[t], function, 0);
  1514. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1515. ++*nent;
  1516. }
  1517. break;
  1518. }
  1519. /* function 4 and 0xb have additional index. */
  1520. case 4: {
  1521. int i, cache_type;
  1522. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1523. /* read more entries until cache_type is zero */
  1524. for (i = 1; *nent < maxnent; ++i) {
  1525. cache_type = entry[i - 1].eax & 0x1f;
  1526. if (!cache_type)
  1527. break;
  1528. do_cpuid_1_ent(&entry[i], function, i);
  1529. entry[i].flags |=
  1530. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1531. ++*nent;
  1532. }
  1533. break;
  1534. }
  1535. case 0xb: {
  1536. int i, level_type;
  1537. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1538. /* read more entries until level_type is zero */
  1539. for (i = 1; *nent < maxnent; ++i) {
  1540. level_type = entry[i - 1].ecx & 0xff00;
  1541. if (!level_type)
  1542. break;
  1543. do_cpuid_1_ent(&entry[i], function, i);
  1544. entry[i].flags |=
  1545. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1546. ++*nent;
  1547. }
  1548. break;
  1549. }
  1550. case 0x80000000:
  1551. entry->eax = min(entry->eax, 0x8000001a);
  1552. break;
  1553. case 0x80000001:
  1554. entry->edx &= kvm_supported_word1_x86_features;
  1555. entry->ecx &= kvm_supported_word6_x86_features;
  1556. break;
  1557. }
  1558. put_cpu();
  1559. }
  1560. #undef F
  1561. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1562. struct kvm_cpuid_entry2 __user *entries)
  1563. {
  1564. struct kvm_cpuid_entry2 *cpuid_entries;
  1565. int limit, nent = 0, r = -E2BIG;
  1566. u32 func;
  1567. if (cpuid->nent < 1)
  1568. goto out;
  1569. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1570. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1571. r = -ENOMEM;
  1572. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1573. if (!cpuid_entries)
  1574. goto out;
  1575. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1576. limit = cpuid_entries[0].eax;
  1577. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1578. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1579. &nent, cpuid->nent);
  1580. r = -E2BIG;
  1581. if (nent >= cpuid->nent)
  1582. goto out_free;
  1583. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1584. limit = cpuid_entries[nent - 1].eax;
  1585. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1586. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1587. &nent, cpuid->nent);
  1588. r = -E2BIG;
  1589. if (nent >= cpuid->nent)
  1590. goto out_free;
  1591. r = -EFAULT;
  1592. if (copy_to_user(entries, cpuid_entries,
  1593. nent * sizeof(struct kvm_cpuid_entry2)))
  1594. goto out_free;
  1595. cpuid->nent = nent;
  1596. r = 0;
  1597. out_free:
  1598. vfree(cpuid_entries);
  1599. out:
  1600. return r;
  1601. }
  1602. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1603. struct kvm_lapic_state *s)
  1604. {
  1605. vcpu_load(vcpu);
  1606. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1607. vcpu_put(vcpu);
  1608. return 0;
  1609. }
  1610. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1611. struct kvm_lapic_state *s)
  1612. {
  1613. vcpu_load(vcpu);
  1614. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1615. kvm_apic_post_state_restore(vcpu);
  1616. update_cr8_intercept(vcpu);
  1617. vcpu_put(vcpu);
  1618. return 0;
  1619. }
  1620. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1621. struct kvm_interrupt *irq)
  1622. {
  1623. if (irq->irq < 0 || irq->irq >= 256)
  1624. return -EINVAL;
  1625. if (irqchip_in_kernel(vcpu->kvm))
  1626. return -ENXIO;
  1627. vcpu_load(vcpu);
  1628. kvm_queue_interrupt(vcpu, irq->irq, false);
  1629. vcpu_put(vcpu);
  1630. return 0;
  1631. }
  1632. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1633. {
  1634. vcpu_load(vcpu);
  1635. kvm_inject_nmi(vcpu);
  1636. vcpu_put(vcpu);
  1637. return 0;
  1638. }
  1639. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1640. struct kvm_tpr_access_ctl *tac)
  1641. {
  1642. if (tac->flags)
  1643. return -EINVAL;
  1644. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1645. return 0;
  1646. }
  1647. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1648. u64 mcg_cap)
  1649. {
  1650. int r;
  1651. unsigned bank_num = mcg_cap & 0xff, bank;
  1652. r = -EINVAL;
  1653. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1654. goto out;
  1655. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1656. goto out;
  1657. r = 0;
  1658. vcpu->arch.mcg_cap = mcg_cap;
  1659. /* Init IA32_MCG_CTL to all 1s */
  1660. if (mcg_cap & MCG_CTL_P)
  1661. vcpu->arch.mcg_ctl = ~(u64)0;
  1662. /* Init IA32_MCi_CTL to all 1s */
  1663. for (bank = 0; bank < bank_num; bank++)
  1664. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1665. out:
  1666. return r;
  1667. }
  1668. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1669. struct kvm_x86_mce *mce)
  1670. {
  1671. u64 mcg_cap = vcpu->arch.mcg_cap;
  1672. unsigned bank_num = mcg_cap & 0xff;
  1673. u64 *banks = vcpu->arch.mce_banks;
  1674. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1675. return -EINVAL;
  1676. /*
  1677. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1678. * reporting is disabled
  1679. */
  1680. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1681. vcpu->arch.mcg_ctl != ~(u64)0)
  1682. return 0;
  1683. banks += 4 * mce->bank;
  1684. /*
  1685. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1686. * reporting is disabled for the bank
  1687. */
  1688. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1689. return 0;
  1690. if (mce->status & MCI_STATUS_UC) {
  1691. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1692. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  1693. printk(KERN_DEBUG "kvm: set_mce: "
  1694. "injects mce exception while "
  1695. "previous one is in progress!\n");
  1696. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1697. return 0;
  1698. }
  1699. if (banks[1] & MCI_STATUS_VAL)
  1700. mce->status |= MCI_STATUS_OVER;
  1701. banks[2] = mce->addr;
  1702. banks[3] = mce->misc;
  1703. vcpu->arch.mcg_status = mce->mcg_status;
  1704. banks[1] = mce->status;
  1705. kvm_queue_exception(vcpu, MC_VECTOR);
  1706. } else if (!(banks[1] & MCI_STATUS_VAL)
  1707. || !(banks[1] & MCI_STATUS_UC)) {
  1708. if (banks[1] & MCI_STATUS_VAL)
  1709. mce->status |= MCI_STATUS_OVER;
  1710. banks[2] = mce->addr;
  1711. banks[3] = mce->misc;
  1712. banks[1] = mce->status;
  1713. } else
  1714. banks[1] |= MCI_STATUS_OVER;
  1715. return 0;
  1716. }
  1717. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  1718. struct kvm_vcpu_events *events)
  1719. {
  1720. vcpu_load(vcpu);
  1721. events->exception.injected = vcpu->arch.exception.pending;
  1722. events->exception.nr = vcpu->arch.exception.nr;
  1723. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  1724. events->exception.error_code = vcpu->arch.exception.error_code;
  1725. events->interrupt.injected = vcpu->arch.interrupt.pending;
  1726. events->interrupt.nr = vcpu->arch.interrupt.nr;
  1727. events->interrupt.soft = vcpu->arch.interrupt.soft;
  1728. events->nmi.injected = vcpu->arch.nmi_injected;
  1729. events->nmi.pending = vcpu->arch.nmi_pending;
  1730. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  1731. events->sipi_vector = vcpu->arch.sipi_vector;
  1732. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  1733. | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
  1734. vcpu_put(vcpu);
  1735. }
  1736. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  1737. struct kvm_vcpu_events *events)
  1738. {
  1739. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  1740. | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
  1741. return -EINVAL;
  1742. vcpu_load(vcpu);
  1743. vcpu->arch.exception.pending = events->exception.injected;
  1744. vcpu->arch.exception.nr = events->exception.nr;
  1745. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  1746. vcpu->arch.exception.error_code = events->exception.error_code;
  1747. vcpu->arch.interrupt.pending = events->interrupt.injected;
  1748. vcpu->arch.interrupt.nr = events->interrupt.nr;
  1749. vcpu->arch.interrupt.soft = events->interrupt.soft;
  1750. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  1751. kvm_pic_clear_isr_ack(vcpu->kvm);
  1752. vcpu->arch.nmi_injected = events->nmi.injected;
  1753. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  1754. vcpu->arch.nmi_pending = events->nmi.pending;
  1755. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  1756. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  1757. vcpu->arch.sipi_vector = events->sipi_vector;
  1758. vcpu_put(vcpu);
  1759. return 0;
  1760. }
  1761. long kvm_arch_vcpu_ioctl(struct file *filp,
  1762. unsigned int ioctl, unsigned long arg)
  1763. {
  1764. struct kvm_vcpu *vcpu = filp->private_data;
  1765. void __user *argp = (void __user *)arg;
  1766. int r;
  1767. struct kvm_lapic_state *lapic = NULL;
  1768. switch (ioctl) {
  1769. case KVM_GET_LAPIC: {
  1770. r = -EINVAL;
  1771. if (!vcpu->arch.apic)
  1772. goto out;
  1773. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1774. r = -ENOMEM;
  1775. if (!lapic)
  1776. goto out;
  1777. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1778. if (r)
  1779. goto out;
  1780. r = -EFAULT;
  1781. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1782. goto out;
  1783. r = 0;
  1784. break;
  1785. }
  1786. case KVM_SET_LAPIC: {
  1787. r = -EINVAL;
  1788. if (!vcpu->arch.apic)
  1789. goto out;
  1790. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1791. r = -ENOMEM;
  1792. if (!lapic)
  1793. goto out;
  1794. r = -EFAULT;
  1795. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1796. goto out;
  1797. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1798. if (r)
  1799. goto out;
  1800. r = 0;
  1801. break;
  1802. }
  1803. case KVM_INTERRUPT: {
  1804. struct kvm_interrupt irq;
  1805. r = -EFAULT;
  1806. if (copy_from_user(&irq, argp, sizeof irq))
  1807. goto out;
  1808. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1809. if (r)
  1810. goto out;
  1811. r = 0;
  1812. break;
  1813. }
  1814. case KVM_NMI: {
  1815. r = kvm_vcpu_ioctl_nmi(vcpu);
  1816. if (r)
  1817. goto out;
  1818. r = 0;
  1819. break;
  1820. }
  1821. case KVM_SET_CPUID: {
  1822. struct kvm_cpuid __user *cpuid_arg = argp;
  1823. struct kvm_cpuid cpuid;
  1824. r = -EFAULT;
  1825. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1826. goto out;
  1827. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1828. if (r)
  1829. goto out;
  1830. break;
  1831. }
  1832. case KVM_SET_CPUID2: {
  1833. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1834. struct kvm_cpuid2 cpuid;
  1835. r = -EFAULT;
  1836. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1837. goto out;
  1838. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1839. cpuid_arg->entries);
  1840. if (r)
  1841. goto out;
  1842. break;
  1843. }
  1844. case KVM_GET_CPUID2: {
  1845. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1846. struct kvm_cpuid2 cpuid;
  1847. r = -EFAULT;
  1848. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1849. goto out;
  1850. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1851. cpuid_arg->entries);
  1852. if (r)
  1853. goto out;
  1854. r = -EFAULT;
  1855. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1856. goto out;
  1857. r = 0;
  1858. break;
  1859. }
  1860. case KVM_GET_MSRS:
  1861. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1862. break;
  1863. case KVM_SET_MSRS:
  1864. r = msr_io(vcpu, argp, do_set_msr, 0);
  1865. break;
  1866. case KVM_TPR_ACCESS_REPORTING: {
  1867. struct kvm_tpr_access_ctl tac;
  1868. r = -EFAULT;
  1869. if (copy_from_user(&tac, argp, sizeof tac))
  1870. goto out;
  1871. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1872. if (r)
  1873. goto out;
  1874. r = -EFAULT;
  1875. if (copy_to_user(argp, &tac, sizeof tac))
  1876. goto out;
  1877. r = 0;
  1878. break;
  1879. };
  1880. case KVM_SET_VAPIC_ADDR: {
  1881. struct kvm_vapic_addr va;
  1882. r = -EINVAL;
  1883. if (!irqchip_in_kernel(vcpu->kvm))
  1884. goto out;
  1885. r = -EFAULT;
  1886. if (copy_from_user(&va, argp, sizeof va))
  1887. goto out;
  1888. r = 0;
  1889. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1890. break;
  1891. }
  1892. case KVM_X86_SETUP_MCE: {
  1893. u64 mcg_cap;
  1894. r = -EFAULT;
  1895. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1896. goto out;
  1897. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1898. break;
  1899. }
  1900. case KVM_X86_SET_MCE: {
  1901. struct kvm_x86_mce mce;
  1902. r = -EFAULT;
  1903. if (copy_from_user(&mce, argp, sizeof mce))
  1904. goto out;
  1905. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1906. break;
  1907. }
  1908. case KVM_GET_VCPU_EVENTS: {
  1909. struct kvm_vcpu_events events;
  1910. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  1911. r = -EFAULT;
  1912. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  1913. break;
  1914. r = 0;
  1915. break;
  1916. }
  1917. case KVM_SET_VCPU_EVENTS: {
  1918. struct kvm_vcpu_events events;
  1919. r = -EFAULT;
  1920. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  1921. break;
  1922. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  1923. break;
  1924. }
  1925. default:
  1926. r = -EINVAL;
  1927. }
  1928. out:
  1929. kfree(lapic);
  1930. return r;
  1931. }
  1932. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1933. {
  1934. int ret;
  1935. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1936. return -1;
  1937. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1938. return ret;
  1939. }
  1940. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  1941. u64 ident_addr)
  1942. {
  1943. kvm->arch.ept_identity_map_addr = ident_addr;
  1944. return 0;
  1945. }
  1946. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1947. u32 kvm_nr_mmu_pages)
  1948. {
  1949. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1950. return -EINVAL;
  1951. down_write(&kvm->slots_lock);
  1952. spin_lock(&kvm->mmu_lock);
  1953. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1954. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1955. spin_unlock(&kvm->mmu_lock);
  1956. up_write(&kvm->slots_lock);
  1957. return 0;
  1958. }
  1959. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1960. {
  1961. return kvm->arch.n_alloc_mmu_pages;
  1962. }
  1963. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1964. {
  1965. int i;
  1966. struct kvm_mem_alias *alias;
  1967. for (i = 0; i < kvm->arch.naliases; ++i) {
  1968. alias = &kvm->arch.aliases[i];
  1969. if (gfn >= alias->base_gfn
  1970. && gfn < alias->base_gfn + alias->npages)
  1971. return alias->target_gfn + gfn - alias->base_gfn;
  1972. }
  1973. return gfn;
  1974. }
  1975. /*
  1976. * Set a new alias region. Aliases map a portion of physical memory into
  1977. * another portion. This is useful for memory windows, for example the PC
  1978. * VGA region.
  1979. */
  1980. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1981. struct kvm_memory_alias *alias)
  1982. {
  1983. int r, n;
  1984. struct kvm_mem_alias *p;
  1985. r = -EINVAL;
  1986. /* General sanity checks */
  1987. if (alias->memory_size & (PAGE_SIZE - 1))
  1988. goto out;
  1989. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1990. goto out;
  1991. if (alias->slot >= KVM_ALIAS_SLOTS)
  1992. goto out;
  1993. if (alias->guest_phys_addr + alias->memory_size
  1994. < alias->guest_phys_addr)
  1995. goto out;
  1996. if (alias->target_phys_addr + alias->memory_size
  1997. < alias->target_phys_addr)
  1998. goto out;
  1999. down_write(&kvm->slots_lock);
  2000. spin_lock(&kvm->mmu_lock);
  2001. p = &kvm->arch.aliases[alias->slot];
  2002. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  2003. p->npages = alias->memory_size >> PAGE_SHIFT;
  2004. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  2005. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  2006. if (kvm->arch.aliases[n - 1].npages)
  2007. break;
  2008. kvm->arch.naliases = n;
  2009. spin_unlock(&kvm->mmu_lock);
  2010. kvm_mmu_zap_all(kvm);
  2011. up_write(&kvm->slots_lock);
  2012. return 0;
  2013. out:
  2014. return r;
  2015. }
  2016. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2017. {
  2018. int r;
  2019. r = 0;
  2020. switch (chip->chip_id) {
  2021. case KVM_IRQCHIP_PIC_MASTER:
  2022. memcpy(&chip->chip.pic,
  2023. &pic_irqchip(kvm)->pics[0],
  2024. sizeof(struct kvm_pic_state));
  2025. break;
  2026. case KVM_IRQCHIP_PIC_SLAVE:
  2027. memcpy(&chip->chip.pic,
  2028. &pic_irqchip(kvm)->pics[1],
  2029. sizeof(struct kvm_pic_state));
  2030. break;
  2031. case KVM_IRQCHIP_IOAPIC:
  2032. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2033. break;
  2034. default:
  2035. r = -EINVAL;
  2036. break;
  2037. }
  2038. return r;
  2039. }
  2040. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2041. {
  2042. int r;
  2043. r = 0;
  2044. switch (chip->chip_id) {
  2045. case KVM_IRQCHIP_PIC_MASTER:
  2046. spin_lock(&pic_irqchip(kvm)->lock);
  2047. memcpy(&pic_irqchip(kvm)->pics[0],
  2048. &chip->chip.pic,
  2049. sizeof(struct kvm_pic_state));
  2050. spin_unlock(&pic_irqchip(kvm)->lock);
  2051. break;
  2052. case KVM_IRQCHIP_PIC_SLAVE:
  2053. spin_lock(&pic_irqchip(kvm)->lock);
  2054. memcpy(&pic_irqchip(kvm)->pics[1],
  2055. &chip->chip.pic,
  2056. sizeof(struct kvm_pic_state));
  2057. spin_unlock(&pic_irqchip(kvm)->lock);
  2058. break;
  2059. case KVM_IRQCHIP_IOAPIC:
  2060. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2061. break;
  2062. default:
  2063. r = -EINVAL;
  2064. break;
  2065. }
  2066. kvm_pic_update_irq(pic_irqchip(kvm));
  2067. return r;
  2068. }
  2069. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2070. {
  2071. int r = 0;
  2072. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2073. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2074. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2075. return r;
  2076. }
  2077. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2078. {
  2079. int r = 0;
  2080. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2081. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2082. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2083. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2084. return r;
  2085. }
  2086. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2087. {
  2088. int r = 0;
  2089. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2090. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2091. sizeof(ps->channels));
  2092. ps->flags = kvm->arch.vpit->pit_state.flags;
  2093. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2094. return r;
  2095. }
  2096. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2097. {
  2098. int r = 0, start = 0;
  2099. u32 prev_legacy, cur_legacy;
  2100. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2101. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2102. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2103. if (!prev_legacy && cur_legacy)
  2104. start = 1;
  2105. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2106. sizeof(kvm->arch.vpit->pit_state.channels));
  2107. kvm->arch.vpit->pit_state.flags = ps->flags;
  2108. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2109. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2110. return r;
  2111. }
  2112. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2113. struct kvm_reinject_control *control)
  2114. {
  2115. if (!kvm->arch.vpit)
  2116. return -ENXIO;
  2117. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2118. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2119. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2120. return 0;
  2121. }
  2122. /*
  2123. * Get (and clear) the dirty memory log for a memory slot.
  2124. */
  2125. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2126. struct kvm_dirty_log *log)
  2127. {
  2128. int r;
  2129. int n;
  2130. struct kvm_memory_slot *memslot;
  2131. int is_dirty = 0;
  2132. down_write(&kvm->slots_lock);
  2133. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  2134. if (r)
  2135. goto out;
  2136. /* If nothing is dirty, don't bother messing with page tables. */
  2137. if (is_dirty) {
  2138. spin_lock(&kvm->mmu_lock);
  2139. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2140. spin_unlock(&kvm->mmu_lock);
  2141. memslot = &kvm->memslots[log->slot];
  2142. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  2143. memset(memslot->dirty_bitmap, 0, n);
  2144. }
  2145. r = 0;
  2146. out:
  2147. up_write(&kvm->slots_lock);
  2148. return r;
  2149. }
  2150. long kvm_arch_vm_ioctl(struct file *filp,
  2151. unsigned int ioctl, unsigned long arg)
  2152. {
  2153. struct kvm *kvm = filp->private_data;
  2154. void __user *argp = (void __user *)arg;
  2155. int r = -ENOTTY;
  2156. /*
  2157. * This union makes it completely explicit to gcc-3.x
  2158. * that these two variables' stack usage should be
  2159. * combined, not added together.
  2160. */
  2161. union {
  2162. struct kvm_pit_state ps;
  2163. struct kvm_pit_state2 ps2;
  2164. struct kvm_memory_alias alias;
  2165. struct kvm_pit_config pit_config;
  2166. } u;
  2167. switch (ioctl) {
  2168. case KVM_SET_TSS_ADDR:
  2169. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2170. if (r < 0)
  2171. goto out;
  2172. break;
  2173. case KVM_SET_IDENTITY_MAP_ADDR: {
  2174. u64 ident_addr;
  2175. r = -EFAULT;
  2176. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2177. goto out;
  2178. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2179. if (r < 0)
  2180. goto out;
  2181. break;
  2182. }
  2183. case KVM_SET_MEMORY_REGION: {
  2184. struct kvm_memory_region kvm_mem;
  2185. struct kvm_userspace_memory_region kvm_userspace_mem;
  2186. r = -EFAULT;
  2187. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2188. goto out;
  2189. kvm_userspace_mem.slot = kvm_mem.slot;
  2190. kvm_userspace_mem.flags = kvm_mem.flags;
  2191. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2192. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2193. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2194. if (r)
  2195. goto out;
  2196. break;
  2197. }
  2198. case KVM_SET_NR_MMU_PAGES:
  2199. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2200. if (r)
  2201. goto out;
  2202. break;
  2203. case KVM_GET_NR_MMU_PAGES:
  2204. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2205. break;
  2206. case KVM_SET_MEMORY_ALIAS:
  2207. r = -EFAULT;
  2208. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2209. goto out;
  2210. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2211. if (r)
  2212. goto out;
  2213. break;
  2214. case KVM_CREATE_IRQCHIP: {
  2215. struct kvm_pic *vpic;
  2216. mutex_lock(&kvm->lock);
  2217. r = -EEXIST;
  2218. if (kvm->arch.vpic)
  2219. goto create_irqchip_unlock;
  2220. r = -ENOMEM;
  2221. vpic = kvm_create_pic(kvm);
  2222. if (vpic) {
  2223. r = kvm_ioapic_init(kvm);
  2224. if (r) {
  2225. kfree(vpic);
  2226. goto create_irqchip_unlock;
  2227. }
  2228. } else
  2229. goto create_irqchip_unlock;
  2230. smp_wmb();
  2231. kvm->arch.vpic = vpic;
  2232. smp_wmb();
  2233. r = kvm_setup_default_irq_routing(kvm);
  2234. if (r) {
  2235. mutex_lock(&kvm->irq_lock);
  2236. kfree(kvm->arch.vpic);
  2237. kfree(kvm->arch.vioapic);
  2238. kvm->arch.vpic = NULL;
  2239. kvm->arch.vioapic = NULL;
  2240. mutex_unlock(&kvm->irq_lock);
  2241. }
  2242. create_irqchip_unlock:
  2243. mutex_unlock(&kvm->lock);
  2244. break;
  2245. }
  2246. case KVM_CREATE_PIT:
  2247. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2248. goto create_pit;
  2249. case KVM_CREATE_PIT2:
  2250. r = -EFAULT;
  2251. if (copy_from_user(&u.pit_config, argp,
  2252. sizeof(struct kvm_pit_config)))
  2253. goto out;
  2254. create_pit:
  2255. down_write(&kvm->slots_lock);
  2256. r = -EEXIST;
  2257. if (kvm->arch.vpit)
  2258. goto create_pit_unlock;
  2259. r = -ENOMEM;
  2260. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2261. if (kvm->arch.vpit)
  2262. r = 0;
  2263. create_pit_unlock:
  2264. up_write(&kvm->slots_lock);
  2265. break;
  2266. case KVM_IRQ_LINE_STATUS:
  2267. case KVM_IRQ_LINE: {
  2268. struct kvm_irq_level irq_event;
  2269. r = -EFAULT;
  2270. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2271. goto out;
  2272. if (irqchip_in_kernel(kvm)) {
  2273. __s32 status;
  2274. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2275. irq_event.irq, irq_event.level);
  2276. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2277. irq_event.status = status;
  2278. if (copy_to_user(argp, &irq_event,
  2279. sizeof irq_event))
  2280. goto out;
  2281. }
  2282. r = 0;
  2283. }
  2284. break;
  2285. }
  2286. case KVM_GET_IRQCHIP: {
  2287. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2288. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2289. r = -ENOMEM;
  2290. if (!chip)
  2291. goto out;
  2292. r = -EFAULT;
  2293. if (copy_from_user(chip, argp, sizeof *chip))
  2294. goto get_irqchip_out;
  2295. r = -ENXIO;
  2296. if (!irqchip_in_kernel(kvm))
  2297. goto get_irqchip_out;
  2298. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2299. if (r)
  2300. goto get_irqchip_out;
  2301. r = -EFAULT;
  2302. if (copy_to_user(argp, chip, sizeof *chip))
  2303. goto get_irqchip_out;
  2304. r = 0;
  2305. get_irqchip_out:
  2306. kfree(chip);
  2307. if (r)
  2308. goto out;
  2309. break;
  2310. }
  2311. case KVM_SET_IRQCHIP: {
  2312. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2313. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2314. r = -ENOMEM;
  2315. if (!chip)
  2316. goto out;
  2317. r = -EFAULT;
  2318. if (copy_from_user(chip, argp, sizeof *chip))
  2319. goto set_irqchip_out;
  2320. r = -ENXIO;
  2321. if (!irqchip_in_kernel(kvm))
  2322. goto set_irqchip_out;
  2323. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2324. if (r)
  2325. goto set_irqchip_out;
  2326. r = 0;
  2327. set_irqchip_out:
  2328. kfree(chip);
  2329. if (r)
  2330. goto out;
  2331. break;
  2332. }
  2333. case KVM_GET_PIT: {
  2334. r = -EFAULT;
  2335. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2336. goto out;
  2337. r = -ENXIO;
  2338. if (!kvm->arch.vpit)
  2339. goto out;
  2340. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2341. if (r)
  2342. goto out;
  2343. r = -EFAULT;
  2344. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2345. goto out;
  2346. r = 0;
  2347. break;
  2348. }
  2349. case KVM_SET_PIT: {
  2350. r = -EFAULT;
  2351. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2352. goto out;
  2353. r = -ENXIO;
  2354. if (!kvm->arch.vpit)
  2355. goto out;
  2356. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2357. if (r)
  2358. goto out;
  2359. r = 0;
  2360. break;
  2361. }
  2362. case KVM_GET_PIT2: {
  2363. r = -ENXIO;
  2364. if (!kvm->arch.vpit)
  2365. goto out;
  2366. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2367. if (r)
  2368. goto out;
  2369. r = -EFAULT;
  2370. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2371. goto out;
  2372. r = 0;
  2373. break;
  2374. }
  2375. case KVM_SET_PIT2: {
  2376. r = -EFAULT;
  2377. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2378. goto out;
  2379. r = -ENXIO;
  2380. if (!kvm->arch.vpit)
  2381. goto out;
  2382. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2383. if (r)
  2384. goto out;
  2385. r = 0;
  2386. break;
  2387. }
  2388. case KVM_REINJECT_CONTROL: {
  2389. struct kvm_reinject_control control;
  2390. r = -EFAULT;
  2391. if (copy_from_user(&control, argp, sizeof(control)))
  2392. goto out;
  2393. r = kvm_vm_ioctl_reinject(kvm, &control);
  2394. if (r)
  2395. goto out;
  2396. r = 0;
  2397. break;
  2398. }
  2399. case KVM_XEN_HVM_CONFIG: {
  2400. r = -EFAULT;
  2401. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2402. sizeof(struct kvm_xen_hvm_config)))
  2403. goto out;
  2404. r = -EINVAL;
  2405. if (kvm->arch.xen_hvm_config.flags)
  2406. goto out;
  2407. r = 0;
  2408. break;
  2409. }
  2410. case KVM_SET_CLOCK: {
  2411. struct timespec now;
  2412. struct kvm_clock_data user_ns;
  2413. u64 now_ns;
  2414. s64 delta;
  2415. r = -EFAULT;
  2416. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2417. goto out;
  2418. r = -EINVAL;
  2419. if (user_ns.flags)
  2420. goto out;
  2421. r = 0;
  2422. ktime_get_ts(&now);
  2423. now_ns = timespec_to_ns(&now);
  2424. delta = user_ns.clock - now_ns;
  2425. kvm->arch.kvmclock_offset = delta;
  2426. break;
  2427. }
  2428. case KVM_GET_CLOCK: {
  2429. struct timespec now;
  2430. struct kvm_clock_data user_ns;
  2431. u64 now_ns;
  2432. ktime_get_ts(&now);
  2433. now_ns = timespec_to_ns(&now);
  2434. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2435. user_ns.flags = 0;
  2436. r = -EFAULT;
  2437. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2438. goto out;
  2439. r = 0;
  2440. break;
  2441. }
  2442. default:
  2443. ;
  2444. }
  2445. out:
  2446. return r;
  2447. }
  2448. static void kvm_init_msr_list(void)
  2449. {
  2450. u32 dummy[2];
  2451. unsigned i, j;
  2452. /* skip the first msrs in the list. KVM-specific */
  2453. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2454. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2455. continue;
  2456. if (j < i)
  2457. msrs_to_save[j] = msrs_to_save[i];
  2458. j++;
  2459. }
  2460. num_msrs_to_save = j;
  2461. }
  2462. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2463. const void *v)
  2464. {
  2465. if (vcpu->arch.apic &&
  2466. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2467. return 0;
  2468. return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
  2469. }
  2470. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2471. {
  2472. if (vcpu->arch.apic &&
  2473. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2474. return 0;
  2475. return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
  2476. }
  2477. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2478. struct kvm_vcpu *vcpu)
  2479. {
  2480. void *data = val;
  2481. int r = X86EMUL_CONTINUE;
  2482. while (bytes) {
  2483. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2484. unsigned offset = addr & (PAGE_SIZE-1);
  2485. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2486. int ret;
  2487. if (gpa == UNMAPPED_GVA) {
  2488. r = X86EMUL_PROPAGATE_FAULT;
  2489. goto out;
  2490. }
  2491. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2492. if (ret < 0) {
  2493. r = X86EMUL_UNHANDLEABLE;
  2494. goto out;
  2495. }
  2496. bytes -= toread;
  2497. data += toread;
  2498. addr += toread;
  2499. }
  2500. out:
  2501. return r;
  2502. }
  2503. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2504. struct kvm_vcpu *vcpu)
  2505. {
  2506. void *data = val;
  2507. int r = X86EMUL_CONTINUE;
  2508. while (bytes) {
  2509. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2510. unsigned offset = addr & (PAGE_SIZE-1);
  2511. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2512. int ret;
  2513. if (gpa == UNMAPPED_GVA) {
  2514. r = X86EMUL_PROPAGATE_FAULT;
  2515. goto out;
  2516. }
  2517. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2518. if (ret < 0) {
  2519. r = X86EMUL_UNHANDLEABLE;
  2520. goto out;
  2521. }
  2522. bytes -= towrite;
  2523. data += towrite;
  2524. addr += towrite;
  2525. }
  2526. out:
  2527. return r;
  2528. }
  2529. static int emulator_read_emulated(unsigned long addr,
  2530. void *val,
  2531. unsigned int bytes,
  2532. struct kvm_vcpu *vcpu)
  2533. {
  2534. gpa_t gpa;
  2535. if (vcpu->mmio_read_completed) {
  2536. memcpy(val, vcpu->mmio_data, bytes);
  2537. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2538. vcpu->mmio_phys_addr, *(u64 *)val);
  2539. vcpu->mmio_read_completed = 0;
  2540. return X86EMUL_CONTINUE;
  2541. }
  2542. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2543. /* For APIC access vmexit */
  2544. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2545. goto mmio;
  2546. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2547. == X86EMUL_CONTINUE)
  2548. return X86EMUL_CONTINUE;
  2549. if (gpa == UNMAPPED_GVA)
  2550. return X86EMUL_PROPAGATE_FAULT;
  2551. mmio:
  2552. /*
  2553. * Is this MMIO handled locally?
  2554. */
  2555. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2556. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2557. return X86EMUL_CONTINUE;
  2558. }
  2559. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2560. vcpu->mmio_needed = 1;
  2561. vcpu->mmio_phys_addr = gpa;
  2562. vcpu->mmio_size = bytes;
  2563. vcpu->mmio_is_write = 0;
  2564. return X86EMUL_UNHANDLEABLE;
  2565. }
  2566. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2567. const void *val, int bytes)
  2568. {
  2569. int ret;
  2570. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2571. if (ret < 0)
  2572. return 0;
  2573. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2574. return 1;
  2575. }
  2576. static int emulator_write_emulated_onepage(unsigned long addr,
  2577. const void *val,
  2578. unsigned int bytes,
  2579. struct kvm_vcpu *vcpu)
  2580. {
  2581. gpa_t gpa;
  2582. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2583. if (gpa == UNMAPPED_GVA) {
  2584. kvm_inject_page_fault(vcpu, addr, 2);
  2585. return X86EMUL_PROPAGATE_FAULT;
  2586. }
  2587. /* For APIC access vmexit */
  2588. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2589. goto mmio;
  2590. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2591. return X86EMUL_CONTINUE;
  2592. mmio:
  2593. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2594. /*
  2595. * Is this MMIO handled locally?
  2596. */
  2597. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2598. return X86EMUL_CONTINUE;
  2599. vcpu->mmio_needed = 1;
  2600. vcpu->mmio_phys_addr = gpa;
  2601. vcpu->mmio_size = bytes;
  2602. vcpu->mmio_is_write = 1;
  2603. memcpy(vcpu->mmio_data, val, bytes);
  2604. return X86EMUL_CONTINUE;
  2605. }
  2606. int emulator_write_emulated(unsigned long addr,
  2607. const void *val,
  2608. unsigned int bytes,
  2609. struct kvm_vcpu *vcpu)
  2610. {
  2611. /* Crossing a page boundary? */
  2612. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2613. int rc, now;
  2614. now = -addr & ~PAGE_MASK;
  2615. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2616. if (rc != X86EMUL_CONTINUE)
  2617. return rc;
  2618. addr += now;
  2619. val += now;
  2620. bytes -= now;
  2621. }
  2622. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2623. }
  2624. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2625. static int emulator_cmpxchg_emulated(unsigned long addr,
  2626. const void *old,
  2627. const void *new,
  2628. unsigned int bytes,
  2629. struct kvm_vcpu *vcpu)
  2630. {
  2631. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2632. #ifndef CONFIG_X86_64
  2633. /* guests cmpxchg8b have to be emulated atomically */
  2634. if (bytes == 8) {
  2635. gpa_t gpa;
  2636. struct page *page;
  2637. char *kaddr;
  2638. u64 val;
  2639. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2640. if (gpa == UNMAPPED_GVA ||
  2641. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2642. goto emul_write;
  2643. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2644. goto emul_write;
  2645. val = *(u64 *)new;
  2646. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2647. kaddr = kmap_atomic(page, KM_USER0);
  2648. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2649. kunmap_atomic(kaddr, KM_USER0);
  2650. kvm_release_page_dirty(page);
  2651. }
  2652. emul_write:
  2653. #endif
  2654. return emulator_write_emulated(addr, new, bytes, vcpu);
  2655. }
  2656. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2657. {
  2658. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2659. }
  2660. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2661. {
  2662. kvm_mmu_invlpg(vcpu, address);
  2663. return X86EMUL_CONTINUE;
  2664. }
  2665. int emulate_clts(struct kvm_vcpu *vcpu)
  2666. {
  2667. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2668. return X86EMUL_CONTINUE;
  2669. }
  2670. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2671. {
  2672. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2673. switch (dr) {
  2674. case 0 ... 3:
  2675. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2676. return X86EMUL_CONTINUE;
  2677. default:
  2678. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2679. return X86EMUL_UNHANDLEABLE;
  2680. }
  2681. }
  2682. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2683. {
  2684. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2685. int exception;
  2686. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2687. if (exception) {
  2688. /* FIXME: better handling */
  2689. return X86EMUL_UNHANDLEABLE;
  2690. }
  2691. return X86EMUL_CONTINUE;
  2692. }
  2693. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2694. {
  2695. u8 opcodes[4];
  2696. unsigned long rip = kvm_rip_read(vcpu);
  2697. unsigned long rip_linear;
  2698. if (!printk_ratelimit())
  2699. return;
  2700. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2701. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2702. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2703. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2704. }
  2705. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2706. static struct x86_emulate_ops emulate_ops = {
  2707. .read_std = kvm_read_guest_virt,
  2708. .read_emulated = emulator_read_emulated,
  2709. .write_emulated = emulator_write_emulated,
  2710. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2711. };
  2712. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2713. {
  2714. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2715. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2716. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2717. vcpu->arch.regs_dirty = ~0;
  2718. }
  2719. int emulate_instruction(struct kvm_vcpu *vcpu,
  2720. unsigned long cr2,
  2721. u16 error_code,
  2722. int emulation_type)
  2723. {
  2724. int r, shadow_mask;
  2725. struct decode_cache *c;
  2726. struct kvm_run *run = vcpu->run;
  2727. kvm_clear_exception_queue(vcpu);
  2728. vcpu->arch.mmio_fault_cr2 = cr2;
  2729. /*
  2730. * TODO: fix emulate.c to use guest_read/write_register
  2731. * instead of direct ->regs accesses, can save hundred cycles
  2732. * on Intel for instructions that don't read/change RSP, for
  2733. * for example.
  2734. */
  2735. cache_all_regs(vcpu);
  2736. vcpu->mmio_is_write = 0;
  2737. vcpu->arch.pio.string = 0;
  2738. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2739. int cs_db, cs_l;
  2740. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2741. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2742. vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
  2743. vcpu->arch.emulate_ctxt.mode =
  2744. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2745. ? X86EMUL_MODE_REAL : cs_l
  2746. ? X86EMUL_MODE_PROT64 : cs_db
  2747. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2748. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2749. /* Only allow emulation of specific instructions on #UD
  2750. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2751. c = &vcpu->arch.emulate_ctxt.decode;
  2752. if (emulation_type & EMULTYPE_TRAP_UD) {
  2753. if (!c->twobyte)
  2754. return EMULATE_FAIL;
  2755. switch (c->b) {
  2756. case 0x01: /* VMMCALL */
  2757. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2758. return EMULATE_FAIL;
  2759. break;
  2760. case 0x34: /* sysenter */
  2761. case 0x35: /* sysexit */
  2762. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2763. return EMULATE_FAIL;
  2764. break;
  2765. case 0x05: /* syscall */
  2766. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2767. return EMULATE_FAIL;
  2768. break;
  2769. default:
  2770. return EMULATE_FAIL;
  2771. }
  2772. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2773. return EMULATE_FAIL;
  2774. }
  2775. ++vcpu->stat.insn_emulation;
  2776. if (r) {
  2777. ++vcpu->stat.insn_emulation_fail;
  2778. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2779. return EMULATE_DONE;
  2780. return EMULATE_FAIL;
  2781. }
  2782. }
  2783. if (emulation_type & EMULTYPE_SKIP) {
  2784. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2785. return EMULATE_DONE;
  2786. }
  2787. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2788. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2789. if (r == 0)
  2790. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2791. if (vcpu->arch.pio.string)
  2792. return EMULATE_DO_MMIO;
  2793. if ((r || vcpu->mmio_is_write) && run) {
  2794. run->exit_reason = KVM_EXIT_MMIO;
  2795. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2796. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2797. run->mmio.len = vcpu->mmio_size;
  2798. run->mmio.is_write = vcpu->mmio_is_write;
  2799. }
  2800. if (r) {
  2801. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2802. return EMULATE_DONE;
  2803. if (!vcpu->mmio_needed) {
  2804. kvm_report_emulation_failure(vcpu, "mmio");
  2805. return EMULATE_FAIL;
  2806. }
  2807. return EMULATE_DO_MMIO;
  2808. }
  2809. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2810. if (vcpu->mmio_is_write) {
  2811. vcpu->mmio_needed = 0;
  2812. return EMULATE_DO_MMIO;
  2813. }
  2814. return EMULATE_DONE;
  2815. }
  2816. EXPORT_SYMBOL_GPL(emulate_instruction);
  2817. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2818. {
  2819. void *p = vcpu->arch.pio_data;
  2820. gva_t q = vcpu->arch.pio.guest_gva;
  2821. unsigned bytes;
  2822. int ret;
  2823. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2824. if (vcpu->arch.pio.in)
  2825. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2826. else
  2827. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2828. return ret;
  2829. }
  2830. int complete_pio(struct kvm_vcpu *vcpu)
  2831. {
  2832. struct kvm_pio_request *io = &vcpu->arch.pio;
  2833. long delta;
  2834. int r;
  2835. unsigned long val;
  2836. if (!io->string) {
  2837. if (io->in) {
  2838. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2839. memcpy(&val, vcpu->arch.pio_data, io->size);
  2840. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2841. }
  2842. } else {
  2843. if (io->in) {
  2844. r = pio_copy_data(vcpu);
  2845. if (r)
  2846. return r;
  2847. }
  2848. delta = 1;
  2849. if (io->rep) {
  2850. delta *= io->cur_count;
  2851. /*
  2852. * The size of the register should really depend on
  2853. * current address size.
  2854. */
  2855. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2856. val -= delta;
  2857. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2858. }
  2859. if (io->down)
  2860. delta = -delta;
  2861. delta *= io->size;
  2862. if (io->in) {
  2863. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2864. val += delta;
  2865. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2866. } else {
  2867. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2868. val += delta;
  2869. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2870. }
  2871. }
  2872. io->count -= io->cur_count;
  2873. io->cur_count = 0;
  2874. return 0;
  2875. }
  2876. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2877. {
  2878. /* TODO: String I/O for in kernel device */
  2879. int r;
  2880. if (vcpu->arch.pio.in)
  2881. r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2882. vcpu->arch.pio.size, pd);
  2883. else
  2884. r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2885. vcpu->arch.pio.size, pd);
  2886. return r;
  2887. }
  2888. static int pio_string_write(struct kvm_vcpu *vcpu)
  2889. {
  2890. struct kvm_pio_request *io = &vcpu->arch.pio;
  2891. void *pd = vcpu->arch.pio_data;
  2892. int i, r = 0;
  2893. for (i = 0; i < io->cur_count; i++) {
  2894. if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
  2895. io->port, io->size, pd)) {
  2896. r = -EOPNOTSUPP;
  2897. break;
  2898. }
  2899. pd += io->size;
  2900. }
  2901. return r;
  2902. }
  2903. int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
  2904. {
  2905. unsigned long val;
  2906. vcpu->run->exit_reason = KVM_EXIT_IO;
  2907. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2908. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2909. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2910. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2911. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2912. vcpu->arch.pio.in = in;
  2913. vcpu->arch.pio.string = 0;
  2914. vcpu->arch.pio.down = 0;
  2915. vcpu->arch.pio.rep = 0;
  2916. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2917. size, 1);
  2918. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2919. memcpy(vcpu->arch.pio_data, &val, 4);
  2920. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2921. complete_pio(vcpu);
  2922. return 1;
  2923. }
  2924. return 0;
  2925. }
  2926. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2927. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
  2928. int size, unsigned long count, int down,
  2929. gva_t address, int rep, unsigned port)
  2930. {
  2931. unsigned now, in_page;
  2932. int ret = 0;
  2933. vcpu->run->exit_reason = KVM_EXIT_IO;
  2934. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2935. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2936. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2937. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2938. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2939. vcpu->arch.pio.in = in;
  2940. vcpu->arch.pio.string = 1;
  2941. vcpu->arch.pio.down = down;
  2942. vcpu->arch.pio.rep = rep;
  2943. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2944. size, count);
  2945. if (!count) {
  2946. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2947. return 1;
  2948. }
  2949. if (!down)
  2950. in_page = PAGE_SIZE - offset_in_page(address);
  2951. else
  2952. in_page = offset_in_page(address) + size;
  2953. now = min(count, (unsigned long)in_page / size);
  2954. if (!now)
  2955. now = 1;
  2956. if (down) {
  2957. /*
  2958. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2959. */
  2960. pr_unimpl(vcpu, "guest string pio down\n");
  2961. kvm_inject_gp(vcpu, 0);
  2962. return 1;
  2963. }
  2964. vcpu->run->io.count = now;
  2965. vcpu->arch.pio.cur_count = now;
  2966. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2967. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2968. vcpu->arch.pio.guest_gva = address;
  2969. if (!vcpu->arch.pio.in) {
  2970. /* string PIO write */
  2971. ret = pio_copy_data(vcpu);
  2972. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2973. kvm_inject_gp(vcpu, 0);
  2974. return 1;
  2975. }
  2976. if (ret == 0 && !pio_string_write(vcpu)) {
  2977. complete_pio(vcpu);
  2978. if (vcpu->arch.pio.count == 0)
  2979. ret = 1;
  2980. }
  2981. }
  2982. /* no string PIO read support yet */
  2983. return ret;
  2984. }
  2985. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2986. static void bounce_off(void *info)
  2987. {
  2988. /* nothing */
  2989. }
  2990. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2991. void *data)
  2992. {
  2993. struct cpufreq_freqs *freq = data;
  2994. struct kvm *kvm;
  2995. struct kvm_vcpu *vcpu;
  2996. int i, send_ipi = 0;
  2997. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2998. return 0;
  2999. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3000. return 0;
  3001. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  3002. spin_lock(&kvm_lock);
  3003. list_for_each_entry(kvm, &vm_list, vm_list) {
  3004. kvm_for_each_vcpu(i, vcpu, kvm) {
  3005. if (vcpu->cpu != freq->cpu)
  3006. continue;
  3007. if (!kvm_request_guest_time_update(vcpu))
  3008. continue;
  3009. if (vcpu->cpu != smp_processor_id())
  3010. send_ipi++;
  3011. }
  3012. }
  3013. spin_unlock(&kvm_lock);
  3014. if (freq->old < freq->new && send_ipi) {
  3015. /*
  3016. * We upscale the frequency. Must make the guest
  3017. * doesn't see old kvmclock values while running with
  3018. * the new frequency, otherwise we risk the guest sees
  3019. * time go backwards.
  3020. *
  3021. * In case we update the frequency for another cpu
  3022. * (which might be in guest context) send an interrupt
  3023. * to kick the cpu out of guest context. Next time
  3024. * guest context is entered kvmclock will be updated,
  3025. * so the guest will not see stale values.
  3026. */
  3027. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  3028. }
  3029. return 0;
  3030. }
  3031. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3032. .notifier_call = kvmclock_cpufreq_notifier
  3033. };
  3034. static void kvm_timer_init(void)
  3035. {
  3036. int cpu;
  3037. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3038. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3039. CPUFREQ_TRANSITION_NOTIFIER);
  3040. for_each_online_cpu(cpu) {
  3041. unsigned long khz = cpufreq_get(cpu);
  3042. if (!khz)
  3043. khz = tsc_khz;
  3044. per_cpu(cpu_tsc_khz, cpu) = khz;
  3045. }
  3046. } else {
  3047. for_each_possible_cpu(cpu)
  3048. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3049. }
  3050. }
  3051. int kvm_arch_init(void *opaque)
  3052. {
  3053. int r;
  3054. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3055. if (kvm_x86_ops) {
  3056. printk(KERN_ERR "kvm: already loaded the other module\n");
  3057. r = -EEXIST;
  3058. goto out;
  3059. }
  3060. if (!ops->cpu_has_kvm_support()) {
  3061. printk(KERN_ERR "kvm: no hardware support\n");
  3062. r = -EOPNOTSUPP;
  3063. goto out;
  3064. }
  3065. if (ops->disabled_by_bios()) {
  3066. printk(KERN_ERR "kvm: disabled by bios\n");
  3067. r = -EOPNOTSUPP;
  3068. goto out;
  3069. }
  3070. r = kvm_mmu_module_init();
  3071. if (r)
  3072. goto out;
  3073. kvm_init_msr_list();
  3074. kvm_x86_ops = ops;
  3075. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3076. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3077. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3078. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3079. kvm_timer_init();
  3080. return 0;
  3081. out:
  3082. return r;
  3083. }
  3084. void kvm_arch_exit(void)
  3085. {
  3086. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3087. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3088. CPUFREQ_TRANSITION_NOTIFIER);
  3089. kvm_x86_ops = NULL;
  3090. kvm_mmu_module_exit();
  3091. }
  3092. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3093. {
  3094. ++vcpu->stat.halt_exits;
  3095. if (irqchip_in_kernel(vcpu->kvm)) {
  3096. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3097. return 1;
  3098. } else {
  3099. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3100. return 0;
  3101. }
  3102. }
  3103. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3104. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3105. unsigned long a1)
  3106. {
  3107. if (is_long_mode(vcpu))
  3108. return a0;
  3109. else
  3110. return a0 | ((gpa_t)a1 << 32);
  3111. }
  3112. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3113. {
  3114. unsigned long nr, a0, a1, a2, a3, ret;
  3115. int r = 1;
  3116. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3117. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3118. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3119. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3120. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3121. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3122. if (!is_long_mode(vcpu)) {
  3123. nr &= 0xFFFFFFFF;
  3124. a0 &= 0xFFFFFFFF;
  3125. a1 &= 0xFFFFFFFF;
  3126. a2 &= 0xFFFFFFFF;
  3127. a3 &= 0xFFFFFFFF;
  3128. }
  3129. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3130. ret = -KVM_EPERM;
  3131. goto out;
  3132. }
  3133. switch (nr) {
  3134. case KVM_HC_VAPIC_POLL_IRQ:
  3135. ret = 0;
  3136. break;
  3137. case KVM_HC_MMU_OP:
  3138. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3139. break;
  3140. default:
  3141. ret = -KVM_ENOSYS;
  3142. break;
  3143. }
  3144. out:
  3145. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3146. ++vcpu->stat.hypercalls;
  3147. return r;
  3148. }
  3149. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3150. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3151. {
  3152. char instruction[3];
  3153. int ret = 0;
  3154. unsigned long rip = kvm_rip_read(vcpu);
  3155. /*
  3156. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3157. * to ensure that the updated hypercall appears atomically across all
  3158. * VCPUs.
  3159. */
  3160. kvm_mmu_zap_all(vcpu->kvm);
  3161. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3162. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  3163. != X86EMUL_CONTINUE)
  3164. ret = -EFAULT;
  3165. return ret;
  3166. }
  3167. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3168. {
  3169. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3170. }
  3171. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3172. {
  3173. struct descriptor_table dt = { limit, base };
  3174. kvm_x86_ops->set_gdt(vcpu, &dt);
  3175. }
  3176. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3177. {
  3178. struct descriptor_table dt = { limit, base };
  3179. kvm_x86_ops->set_idt(vcpu, &dt);
  3180. }
  3181. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  3182. unsigned long *rflags)
  3183. {
  3184. kvm_lmsw(vcpu, msw);
  3185. *rflags = kvm_get_rflags(vcpu);
  3186. }
  3187. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  3188. {
  3189. unsigned long value;
  3190. switch (cr) {
  3191. case 0:
  3192. value = vcpu->arch.cr0;
  3193. break;
  3194. case 2:
  3195. value = vcpu->arch.cr2;
  3196. break;
  3197. case 3:
  3198. value = vcpu->arch.cr3;
  3199. break;
  3200. case 4:
  3201. value = kvm_read_cr4(vcpu);
  3202. break;
  3203. case 8:
  3204. value = kvm_get_cr8(vcpu);
  3205. break;
  3206. default:
  3207. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3208. return 0;
  3209. }
  3210. return value;
  3211. }
  3212. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  3213. unsigned long *rflags)
  3214. {
  3215. switch (cr) {
  3216. case 0:
  3217. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  3218. *rflags = kvm_get_rflags(vcpu);
  3219. break;
  3220. case 2:
  3221. vcpu->arch.cr2 = val;
  3222. break;
  3223. case 3:
  3224. kvm_set_cr3(vcpu, val);
  3225. break;
  3226. case 4:
  3227. kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3228. break;
  3229. case 8:
  3230. kvm_set_cr8(vcpu, val & 0xfUL);
  3231. break;
  3232. default:
  3233. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3234. }
  3235. }
  3236. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3237. {
  3238. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3239. int j, nent = vcpu->arch.cpuid_nent;
  3240. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3241. /* when no next entry is found, the current entry[i] is reselected */
  3242. for (j = i + 1; ; j = (j + 1) % nent) {
  3243. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3244. if (ej->function == e->function) {
  3245. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3246. return j;
  3247. }
  3248. }
  3249. return 0; /* silence gcc, even though control never reaches here */
  3250. }
  3251. /* find an entry with matching function, matching index (if needed), and that
  3252. * should be read next (if it's stateful) */
  3253. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3254. u32 function, u32 index)
  3255. {
  3256. if (e->function != function)
  3257. return 0;
  3258. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3259. return 0;
  3260. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3261. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3262. return 0;
  3263. return 1;
  3264. }
  3265. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3266. u32 function, u32 index)
  3267. {
  3268. int i;
  3269. struct kvm_cpuid_entry2 *best = NULL;
  3270. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3271. struct kvm_cpuid_entry2 *e;
  3272. e = &vcpu->arch.cpuid_entries[i];
  3273. if (is_matching_cpuid_entry(e, function, index)) {
  3274. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3275. move_to_next_stateful_cpuid_entry(vcpu, i);
  3276. best = e;
  3277. break;
  3278. }
  3279. /*
  3280. * Both basic or both extended?
  3281. */
  3282. if (((e->function ^ function) & 0x80000000) == 0)
  3283. if (!best || e->function > best->function)
  3284. best = e;
  3285. }
  3286. return best;
  3287. }
  3288. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  3289. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3290. {
  3291. struct kvm_cpuid_entry2 *best;
  3292. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3293. if (best)
  3294. return best->eax & 0xff;
  3295. return 36;
  3296. }
  3297. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3298. {
  3299. u32 function, index;
  3300. struct kvm_cpuid_entry2 *best;
  3301. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3302. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3303. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3304. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3305. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3306. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3307. best = kvm_find_cpuid_entry(vcpu, function, index);
  3308. if (best) {
  3309. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3310. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3311. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3312. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3313. }
  3314. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3315. trace_kvm_cpuid(function,
  3316. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3317. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3318. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3319. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3320. }
  3321. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3322. /*
  3323. * Check if userspace requested an interrupt window, and that the
  3324. * interrupt window is open.
  3325. *
  3326. * No need to exit to userspace if we already have an interrupt queued.
  3327. */
  3328. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3329. {
  3330. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3331. vcpu->run->request_interrupt_window &&
  3332. kvm_arch_interrupt_allowed(vcpu));
  3333. }
  3334. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3335. {
  3336. struct kvm_run *kvm_run = vcpu->run;
  3337. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3338. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3339. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3340. if (irqchip_in_kernel(vcpu->kvm))
  3341. kvm_run->ready_for_interrupt_injection = 1;
  3342. else
  3343. kvm_run->ready_for_interrupt_injection =
  3344. kvm_arch_interrupt_allowed(vcpu) &&
  3345. !kvm_cpu_has_interrupt(vcpu) &&
  3346. !kvm_event_needs_reinjection(vcpu);
  3347. }
  3348. static void vapic_enter(struct kvm_vcpu *vcpu)
  3349. {
  3350. struct kvm_lapic *apic = vcpu->arch.apic;
  3351. struct page *page;
  3352. if (!apic || !apic->vapic_addr)
  3353. return;
  3354. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3355. vcpu->arch.apic->vapic_page = page;
  3356. }
  3357. static void vapic_exit(struct kvm_vcpu *vcpu)
  3358. {
  3359. struct kvm_lapic *apic = vcpu->arch.apic;
  3360. if (!apic || !apic->vapic_addr)
  3361. return;
  3362. down_read(&vcpu->kvm->slots_lock);
  3363. kvm_release_page_dirty(apic->vapic_page);
  3364. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3365. up_read(&vcpu->kvm->slots_lock);
  3366. }
  3367. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3368. {
  3369. int max_irr, tpr;
  3370. if (!kvm_x86_ops->update_cr8_intercept)
  3371. return;
  3372. if (!vcpu->arch.apic)
  3373. return;
  3374. if (!vcpu->arch.apic->vapic_addr)
  3375. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3376. else
  3377. max_irr = -1;
  3378. if (max_irr != -1)
  3379. max_irr >>= 4;
  3380. tpr = kvm_lapic_get_cr8(vcpu);
  3381. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3382. }
  3383. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3384. {
  3385. /* try to reinject previous events if any */
  3386. if (vcpu->arch.exception.pending) {
  3387. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3388. vcpu->arch.exception.has_error_code,
  3389. vcpu->arch.exception.error_code);
  3390. return;
  3391. }
  3392. if (vcpu->arch.nmi_injected) {
  3393. kvm_x86_ops->set_nmi(vcpu);
  3394. return;
  3395. }
  3396. if (vcpu->arch.interrupt.pending) {
  3397. kvm_x86_ops->set_irq(vcpu);
  3398. return;
  3399. }
  3400. /* try to inject new event if pending */
  3401. if (vcpu->arch.nmi_pending) {
  3402. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3403. vcpu->arch.nmi_pending = false;
  3404. vcpu->arch.nmi_injected = true;
  3405. kvm_x86_ops->set_nmi(vcpu);
  3406. }
  3407. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3408. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3409. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3410. false);
  3411. kvm_x86_ops->set_irq(vcpu);
  3412. }
  3413. }
  3414. }
  3415. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3416. {
  3417. int r;
  3418. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3419. vcpu->run->request_interrupt_window;
  3420. if (vcpu->requests)
  3421. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3422. kvm_mmu_unload(vcpu);
  3423. r = kvm_mmu_reload(vcpu);
  3424. if (unlikely(r))
  3425. goto out;
  3426. if (vcpu->requests) {
  3427. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3428. __kvm_migrate_timers(vcpu);
  3429. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3430. kvm_write_guest_time(vcpu);
  3431. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3432. kvm_mmu_sync_roots(vcpu);
  3433. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3434. kvm_x86_ops->tlb_flush(vcpu);
  3435. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3436. &vcpu->requests)) {
  3437. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3438. r = 0;
  3439. goto out;
  3440. }
  3441. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3442. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3443. r = 0;
  3444. goto out;
  3445. }
  3446. }
  3447. preempt_disable();
  3448. kvm_x86_ops->prepare_guest_switch(vcpu);
  3449. kvm_load_guest_fpu(vcpu);
  3450. local_irq_disable();
  3451. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3452. smp_mb__after_clear_bit();
  3453. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3454. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3455. local_irq_enable();
  3456. preempt_enable();
  3457. r = 1;
  3458. goto out;
  3459. }
  3460. inject_pending_event(vcpu);
  3461. /* enable NMI/IRQ window open exits if needed */
  3462. if (vcpu->arch.nmi_pending)
  3463. kvm_x86_ops->enable_nmi_window(vcpu);
  3464. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3465. kvm_x86_ops->enable_irq_window(vcpu);
  3466. if (kvm_lapic_enabled(vcpu)) {
  3467. update_cr8_intercept(vcpu);
  3468. kvm_lapic_sync_to_vapic(vcpu);
  3469. }
  3470. up_read(&vcpu->kvm->slots_lock);
  3471. kvm_guest_enter();
  3472. if (unlikely(vcpu->arch.switch_db_regs)) {
  3473. set_debugreg(0, 7);
  3474. set_debugreg(vcpu->arch.eff_db[0], 0);
  3475. set_debugreg(vcpu->arch.eff_db[1], 1);
  3476. set_debugreg(vcpu->arch.eff_db[2], 2);
  3477. set_debugreg(vcpu->arch.eff_db[3], 3);
  3478. }
  3479. trace_kvm_entry(vcpu->vcpu_id);
  3480. kvm_x86_ops->run(vcpu);
  3481. /*
  3482. * If the guest has used debug registers, at least dr7
  3483. * will be disabled while returning to the host.
  3484. * If we don't have active breakpoints in the host, we don't
  3485. * care about the messed up debug address registers. But if
  3486. * we have some of them active, restore the old state.
  3487. */
  3488. if (hw_breakpoint_active())
  3489. hw_breakpoint_restore();
  3490. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3491. local_irq_enable();
  3492. ++vcpu->stat.exits;
  3493. /*
  3494. * We must have an instruction between local_irq_enable() and
  3495. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3496. * the interrupt shadow. The stat.exits increment will do nicely.
  3497. * But we need to prevent reordering, hence this barrier():
  3498. */
  3499. barrier();
  3500. kvm_guest_exit();
  3501. preempt_enable();
  3502. down_read(&vcpu->kvm->slots_lock);
  3503. /*
  3504. * Profile KVM exit RIPs:
  3505. */
  3506. if (unlikely(prof_on == KVM_PROFILING)) {
  3507. unsigned long rip = kvm_rip_read(vcpu);
  3508. profile_hit(KVM_PROFILING, (void *)rip);
  3509. }
  3510. kvm_lapic_sync_from_vapic(vcpu);
  3511. r = kvm_x86_ops->handle_exit(vcpu);
  3512. out:
  3513. return r;
  3514. }
  3515. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3516. {
  3517. int r;
  3518. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3519. pr_debug("vcpu %d received sipi with vector # %x\n",
  3520. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3521. kvm_lapic_reset(vcpu);
  3522. r = kvm_arch_vcpu_reset(vcpu);
  3523. if (r)
  3524. return r;
  3525. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3526. }
  3527. down_read(&vcpu->kvm->slots_lock);
  3528. vapic_enter(vcpu);
  3529. r = 1;
  3530. while (r > 0) {
  3531. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3532. r = vcpu_enter_guest(vcpu);
  3533. else {
  3534. up_read(&vcpu->kvm->slots_lock);
  3535. kvm_vcpu_block(vcpu);
  3536. down_read(&vcpu->kvm->slots_lock);
  3537. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3538. {
  3539. switch(vcpu->arch.mp_state) {
  3540. case KVM_MP_STATE_HALTED:
  3541. vcpu->arch.mp_state =
  3542. KVM_MP_STATE_RUNNABLE;
  3543. case KVM_MP_STATE_RUNNABLE:
  3544. break;
  3545. case KVM_MP_STATE_SIPI_RECEIVED:
  3546. default:
  3547. r = -EINTR;
  3548. break;
  3549. }
  3550. }
  3551. }
  3552. if (r <= 0)
  3553. break;
  3554. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3555. if (kvm_cpu_has_pending_timer(vcpu))
  3556. kvm_inject_pending_timer_irqs(vcpu);
  3557. if (dm_request_for_irq_injection(vcpu)) {
  3558. r = -EINTR;
  3559. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3560. ++vcpu->stat.request_irq_exits;
  3561. }
  3562. if (signal_pending(current)) {
  3563. r = -EINTR;
  3564. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3565. ++vcpu->stat.signal_exits;
  3566. }
  3567. if (need_resched()) {
  3568. up_read(&vcpu->kvm->slots_lock);
  3569. kvm_resched(vcpu);
  3570. down_read(&vcpu->kvm->slots_lock);
  3571. }
  3572. }
  3573. up_read(&vcpu->kvm->slots_lock);
  3574. post_kvm_run_save(vcpu);
  3575. vapic_exit(vcpu);
  3576. return r;
  3577. }
  3578. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3579. {
  3580. int r;
  3581. sigset_t sigsaved;
  3582. vcpu_load(vcpu);
  3583. if (vcpu->sigset_active)
  3584. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3585. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3586. kvm_vcpu_block(vcpu);
  3587. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3588. r = -EAGAIN;
  3589. goto out;
  3590. }
  3591. /* re-sync apic's tpr */
  3592. if (!irqchip_in_kernel(vcpu->kvm))
  3593. kvm_set_cr8(vcpu, kvm_run->cr8);
  3594. if (vcpu->arch.pio.cur_count) {
  3595. r = complete_pio(vcpu);
  3596. if (r)
  3597. goto out;
  3598. }
  3599. if (vcpu->mmio_needed) {
  3600. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3601. vcpu->mmio_read_completed = 1;
  3602. vcpu->mmio_needed = 0;
  3603. down_read(&vcpu->kvm->slots_lock);
  3604. r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
  3605. EMULTYPE_NO_DECODE);
  3606. up_read(&vcpu->kvm->slots_lock);
  3607. if (r == EMULATE_DO_MMIO) {
  3608. /*
  3609. * Read-modify-write. Back to userspace.
  3610. */
  3611. r = 0;
  3612. goto out;
  3613. }
  3614. }
  3615. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3616. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3617. kvm_run->hypercall.ret);
  3618. r = __vcpu_run(vcpu);
  3619. out:
  3620. if (vcpu->sigset_active)
  3621. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3622. vcpu_put(vcpu);
  3623. return r;
  3624. }
  3625. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3626. {
  3627. vcpu_load(vcpu);
  3628. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3629. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3630. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3631. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3632. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3633. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3634. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3635. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3636. #ifdef CONFIG_X86_64
  3637. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3638. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3639. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3640. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3641. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3642. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3643. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3644. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3645. #endif
  3646. regs->rip = kvm_rip_read(vcpu);
  3647. regs->rflags = kvm_get_rflags(vcpu);
  3648. vcpu_put(vcpu);
  3649. return 0;
  3650. }
  3651. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3652. {
  3653. vcpu_load(vcpu);
  3654. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3655. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3656. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3657. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3658. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3659. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3660. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3661. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3662. #ifdef CONFIG_X86_64
  3663. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3664. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3665. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3666. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3667. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3668. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3669. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3670. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3671. #endif
  3672. kvm_rip_write(vcpu, regs->rip);
  3673. kvm_set_rflags(vcpu, regs->rflags);
  3674. vcpu->arch.exception.pending = false;
  3675. vcpu_put(vcpu);
  3676. return 0;
  3677. }
  3678. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3679. struct kvm_segment *var, int seg)
  3680. {
  3681. kvm_x86_ops->get_segment(vcpu, var, seg);
  3682. }
  3683. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3684. {
  3685. struct kvm_segment cs;
  3686. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3687. *db = cs.db;
  3688. *l = cs.l;
  3689. }
  3690. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3691. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3692. struct kvm_sregs *sregs)
  3693. {
  3694. struct descriptor_table dt;
  3695. vcpu_load(vcpu);
  3696. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3697. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3698. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3699. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3700. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3701. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3702. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3703. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3704. kvm_x86_ops->get_idt(vcpu, &dt);
  3705. sregs->idt.limit = dt.limit;
  3706. sregs->idt.base = dt.base;
  3707. kvm_x86_ops->get_gdt(vcpu, &dt);
  3708. sregs->gdt.limit = dt.limit;
  3709. sregs->gdt.base = dt.base;
  3710. sregs->cr0 = vcpu->arch.cr0;
  3711. sregs->cr2 = vcpu->arch.cr2;
  3712. sregs->cr3 = vcpu->arch.cr3;
  3713. sregs->cr4 = kvm_read_cr4(vcpu);
  3714. sregs->cr8 = kvm_get_cr8(vcpu);
  3715. sregs->efer = vcpu->arch.shadow_efer;
  3716. sregs->apic_base = kvm_get_apic_base(vcpu);
  3717. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3718. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3719. set_bit(vcpu->arch.interrupt.nr,
  3720. (unsigned long *)sregs->interrupt_bitmap);
  3721. vcpu_put(vcpu);
  3722. return 0;
  3723. }
  3724. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3725. struct kvm_mp_state *mp_state)
  3726. {
  3727. vcpu_load(vcpu);
  3728. mp_state->mp_state = vcpu->arch.mp_state;
  3729. vcpu_put(vcpu);
  3730. return 0;
  3731. }
  3732. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3733. struct kvm_mp_state *mp_state)
  3734. {
  3735. vcpu_load(vcpu);
  3736. vcpu->arch.mp_state = mp_state->mp_state;
  3737. vcpu_put(vcpu);
  3738. return 0;
  3739. }
  3740. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3741. struct kvm_segment *var, int seg)
  3742. {
  3743. kvm_x86_ops->set_segment(vcpu, var, seg);
  3744. }
  3745. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3746. struct kvm_segment *kvm_desct)
  3747. {
  3748. kvm_desct->base = get_desc_base(seg_desc);
  3749. kvm_desct->limit = get_desc_limit(seg_desc);
  3750. if (seg_desc->g) {
  3751. kvm_desct->limit <<= 12;
  3752. kvm_desct->limit |= 0xfff;
  3753. }
  3754. kvm_desct->selector = selector;
  3755. kvm_desct->type = seg_desc->type;
  3756. kvm_desct->present = seg_desc->p;
  3757. kvm_desct->dpl = seg_desc->dpl;
  3758. kvm_desct->db = seg_desc->d;
  3759. kvm_desct->s = seg_desc->s;
  3760. kvm_desct->l = seg_desc->l;
  3761. kvm_desct->g = seg_desc->g;
  3762. kvm_desct->avl = seg_desc->avl;
  3763. if (!selector)
  3764. kvm_desct->unusable = 1;
  3765. else
  3766. kvm_desct->unusable = 0;
  3767. kvm_desct->padding = 0;
  3768. }
  3769. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3770. u16 selector,
  3771. struct descriptor_table *dtable)
  3772. {
  3773. if (selector & 1 << 2) {
  3774. struct kvm_segment kvm_seg;
  3775. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3776. if (kvm_seg.unusable)
  3777. dtable->limit = 0;
  3778. else
  3779. dtable->limit = kvm_seg.limit;
  3780. dtable->base = kvm_seg.base;
  3781. }
  3782. else
  3783. kvm_x86_ops->get_gdt(vcpu, dtable);
  3784. }
  3785. /* allowed just for 8 bytes segments */
  3786. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3787. struct desc_struct *seg_desc)
  3788. {
  3789. struct descriptor_table dtable;
  3790. u16 index = selector >> 3;
  3791. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3792. if (dtable.limit < index * 8 + 7) {
  3793. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3794. return 1;
  3795. }
  3796. return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3797. }
  3798. /* allowed just for 8 bytes segments */
  3799. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3800. struct desc_struct *seg_desc)
  3801. {
  3802. struct descriptor_table dtable;
  3803. u16 index = selector >> 3;
  3804. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3805. if (dtable.limit < index * 8 + 7)
  3806. return 1;
  3807. return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3808. }
  3809. static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
  3810. struct desc_struct *seg_desc)
  3811. {
  3812. u32 base_addr = get_desc_base(seg_desc);
  3813. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3814. }
  3815. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3816. {
  3817. struct kvm_segment kvm_seg;
  3818. kvm_get_segment(vcpu, &kvm_seg, seg);
  3819. return kvm_seg.selector;
  3820. }
  3821. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3822. u16 selector,
  3823. struct kvm_segment *kvm_seg)
  3824. {
  3825. struct desc_struct seg_desc;
  3826. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3827. return 1;
  3828. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3829. return 0;
  3830. }
  3831. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3832. {
  3833. struct kvm_segment segvar = {
  3834. .base = selector << 4,
  3835. .limit = 0xffff,
  3836. .selector = selector,
  3837. .type = 3,
  3838. .present = 1,
  3839. .dpl = 3,
  3840. .db = 0,
  3841. .s = 1,
  3842. .l = 0,
  3843. .g = 0,
  3844. .avl = 0,
  3845. .unusable = 0,
  3846. };
  3847. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3848. return 0;
  3849. }
  3850. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  3851. {
  3852. return (seg != VCPU_SREG_LDTR) &&
  3853. (seg != VCPU_SREG_TR) &&
  3854. (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
  3855. }
  3856. static void kvm_check_segment_descriptor(struct kvm_vcpu *vcpu, int seg,
  3857. u16 selector)
  3858. {
  3859. /* NULL selector is not valid for CS and SS */
  3860. if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
  3861. if (!selector)
  3862. kvm_queue_exception_e(vcpu, TS_VECTOR, selector >> 3);
  3863. }
  3864. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3865. int type_bits, int seg)
  3866. {
  3867. struct kvm_segment kvm_seg;
  3868. if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
  3869. return kvm_load_realmode_segment(vcpu, selector, seg);
  3870. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3871. return 1;
  3872. kvm_check_segment_descriptor(vcpu, seg, selector);
  3873. kvm_seg.type |= type_bits;
  3874. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3875. seg != VCPU_SREG_LDTR)
  3876. if (!kvm_seg.s)
  3877. kvm_seg.unusable = 1;
  3878. kvm_set_segment(vcpu, &kvm_seg, seg);
  3879. return 0;
  3880. }
  3881. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3882. struct tss_segment_32 *tss)
  3883. {
  3884. tss->cr3 = vcpu->arch.cr3;
  3885. tss->eip = kvm_rip_read(vcpu);
  3886. tss->eflags = kvm_get_rflags(vcpu);
  3887. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3888. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3889. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3890. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3891. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3892. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3893. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3894. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3895. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3896. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3897. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3898. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3899. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3900. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3901. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3902. }
  3903. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3904. struct tss_segment_32 *tss)
  3905. {
  3906. kvm_set_cr3(vcpu, tss->cr3);
  3907. kvm_rip_write(vcpu, tss->eip);
  3908. kvm_set_rflags(vcpu, tss->eflags | 2);
  3909. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3910. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3911. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3912. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3913. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3914. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3915. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3916. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3917. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3918. return 1;
  3919. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3920. return 1;
  3921. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3922. return 1;
  3923. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3924. return 1;
  3925. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3926. return 1;
  3927. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3928. return 1;
  3929. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3930. return 1;
  3931. return 0;
  3932. }
  3933. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3934. struct tss_segment_16 *tss)
  3935. {
  3936. tss->ip = kvm_rip_read(vcpu);
  3937. tss->flag = kvm_get_rflags(vcpu);
  3938. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3939. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3940. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3941. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3942. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3943. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3944. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3945. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3946. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3947. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3948. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3949. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3950. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3951. }
  3952. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3953. struct tss_segment_16 *tss)
  3954. {
  3955. kvm_rip_write(vcpu, tss->ip);
  3956. kvm_set_rflags(vcpu, tss->flag | 2);
  3957. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3958. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3959. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3960. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3961. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3962. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3963. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3964. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3965. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3966. return 1;
  3967. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3968. return 1;
  3969. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3970. return 1;
  3971. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3972. return 1;
  3973. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3974. return 1;
  3975. return 0;
  3976. }
  3977. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3978. u16 old_tss_sel, u32 old_tss_base,
  3979. struct desc_struct *nseg_desc)
  3980. {
  3981. struct tss_segment_16 tss_segment_16;
  3982. int ret = 0;
  3983. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3984. sizeof tss_segment_16))
  3985. goto out;
  3986. save_state_to_tss16(vcpu, &tss_segment_16);
  3987. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3988. sizeof tss_segment_16))
  3989. goto out;
  3990. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3991. &tss_segment_16, sizeof tss_segment_16))
  3992. goto out;
  3993. if (old_tss_sel != 0xffff) {
  3994. tss_segment_16.prev_task_link = old_tss_sel;
  3995. if (kvm_write_guest(vcpu->kvm,
  3996. get_tss_base_addr(vcpu, nseg_desc),
  3997. &tss_segment_16.prev_task_link,
  3998. sizeof tss_segment_16.prev_task_link))
  3999. goto out;
  4000. }
  4001. if (load_state_from_tss16(vcpu, &tss_segment_16))
  4002. goto out;
  4003. ret = 1;
  4004. out:
  4005. return ret;
  4006. }
  4007. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  4008. u16 old_tss_sel, u32 old_tss_base,
  4009. struct desc_struct *nseg_desc)
  4010. {
  4011. struct tss_segment_32 tss_segment_32;
  4012. int ret = 0;
  4013. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  4014. sizeof tss_segment_32))
  4015. goto out;
  4016. save_state_to_tss32(vcpu, &tss_segment_32);
  4017. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  4018. sizeof tss_segment_32))
  4019. goto out;
  4020. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  4021. &tss_segment_32, sizeof tss_segment_32))
  4022. goto out;
  4023. if (old_tss_sel != 0xffff) {
  4024. tss_segment_32.prev_task_link = old_tss_sel;
  4025. if (kvm_write_guest(vcpu->kvm,
  4026. get_tss_base_addr(vcpu, nseg_desc),
  4027. &tss_segment_32.prev_task_link,
  4028. sizeof tss_segment_32.prev_task_link))
  4029. goto out;
  4030. }
  4031. if (load_state_from_tss32(vcpu, &tss_segment_32))
  4032. goto out;
  4033. ret = 1;
  4034. out:
  4035. return ret;
  4036. }
  4037. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  4038. {
  4039. struct kvm_segment tr_seg;
  4040. struct desc_struct cseg_desc;
  4041. struct desc_struct nseg_desc;
  4042. int ret = 0;
  4043. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  4044. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  4045. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  4046. /* FIXME: Handle errors. Failure to read either TSS or their
  4047. * descriptors should generate a pagefault.
  4048. */
  4049. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  4050. goto out;
  4051. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  4052. goto out;
  4053. if (reason != TASK_SWITCH_IRET) {
  4054. int cpl;
  4055. cpl = kvm_x86_ops->get_cpl(vcpu);
  4056. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  4057. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  4058. return 1;
  4059. }
  4060. }
  4061. if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
  4062. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  4063. return 1;
  4064. }
  4065. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  4066. cseg_desc.type &= ~(1 << 1); //clear the B flag
  4067. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  4068. }
  4069. if (reason == TASK_SWITCH_IRET) {
  4070. u32 eflags = kvm_get_rflags(vcpu);
  4071. kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  4072. }
  4073. /* set back link to prev task only if NT bit is set in eflags
  4074. note that old_tss_sel is not used afetr this point */
  4075. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  4076. old_tss_sel = 0xffff;
  4077. if (nseg_desc.type & 8)
  4078. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  4079. old_tss_base, &nseg_desc);
  4080. else
  4081. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  4082. old_tss_base, &nseg_desc);
  4083. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  4084. u32 eflags = kvm_get_rflags(vcpu);
  4085. kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  4086. }
  4087. if (reason != TASK_SWITCH_IRET) {
  4088. nseg_desc.type |= (1 << 1);
  4089. save_guest_segment_descriptor(vcpu, tss_selector,
  4090. &nseg_desc);
  4091. }
  4092. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  4093. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  4094. tr_seg.type = 11;
  4095. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  4096. out:
  4097. return ret;
  4098. }
  4099. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4100. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4101. struct kvm_sregs *sregs)
  4102. {
  4103. int mmu_reset_needed = 0;
  4104. int pending_vec, max_bits;
  4105. struct descriptor_table dt;
  4106. vcpu_load(vcpu);
  4107. dt.limit = sregs->idt.limit;
  4108. dt.base = sregs->idt.base;
  4109. kvm_x86_ops->set_idt(vcpu, &dt);
  4110. dt.limit = sregs->gdt.limit;
  4111. dt.base = sregs->gdt.base;
  4112. kvm_x86_ops->set_gdt(vcpu, &dt);
  4113. vcpu->arch.cr2 = sregs->cr2;
  4114. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4115. vcpu->arch.cr3 = sregs->cr3;
  4116. kvm_set_cr8(vcpu, sregs->cr8);
  4117. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  4118. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4119. kvm_set_apic_base(vcpu, sregs->apic_base);
  4120. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  4121. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4122. vcpu->arch.cr0 = sregs->cr0;
  4123. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4124. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4125. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4126. load_pdptrs(vcpu, vcpu->arch.cr3);
  4127. mmu_reset_needed = 1;
  4128. }
  4129. if (mmu_reset_needed)
  4130. kvm_mmu_reset_context(vcpu);
  4131. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4132. pending_vec = find_first_bit(
  4133. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4134. if (pending_vec < max_bits) {
  4135. kvm_queue_interrupt(vcpu, pending_vec, false);
  4136. pr_debug("Set back pending irq %d\n", pending_vec);
  4137. if (irqchip_in_kernel(vcpu->kvm))
  4138. kvm_pic_clear_isr_ack(vcpu->kvm);
  4139. }
  4140. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4141. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4142. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4143. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4144. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4145. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4146. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4147. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4148. update_cr8_intercept(vcpu);
  4149. /* Older userspace won't unhalt the vcpu on reset. */
  4150. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4151. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4152. !(vcpu->arch.cr0 & X86_CR0_PE))
  4153. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4154. vcpu_put(vcpu);
  4155. return 0;
  4156. }
  4157. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4158. struct kvm_guest_debug *dbg)
  4159. {
  4160. unsigned long rflags;
  4161. int i, r;
  4162. vcpu_load(vcpu);
  4163. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4164. r = -EBUSY;
  4165. if (vcpu->arch.exception.pending)
  4166. goto unlock_out;
  4167. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4168. kvm_queue_exception(vcpu, DB_VECTOR);
  4169. else
  4170. kvm_queue_exception(vcpu, BP_VECTOR);
  4171. }
  4172. /*
  4173. * Read rflags as long as potentially injected trace flags are still
  4174. * filtered out.
  4175. */
  4176. rflags = kvm_get_rflags(vcpu);
  4177. vcpu->guest_debug = dbg->control;
  4178. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4179. vcpu->guest_debug = 0;
  4180. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4181. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4182. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4183. vcpu->arch.switch_db_regs =
  4184. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4185. } else {
  4186. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4187. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4188. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4189. }
  4190. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
  4191. vcpu->arch.singlestep_cs =
  4192. get_segment_selector(vcpu, VCPU_SREG_CS);
  4193. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
  4194. }
  4195. /*
  4196. * Trigger an rflags update that will inject or remove the trace
  4197. * flags.
  4198. */
  4199. kvm_set_rflags(vcpu, rflags);
  4200. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4201. r = 0;
  4202. unlock_out:
  4203. vcpu_put(vcpu);
  4204. return r;
  4205. }
  4206. /*
  4207. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  4208. * we have asm/x86/processor.h
  4209. */
  4210. struct fxsave {
  4211. u16 cwd;
  4212. u16 swd;
  4213. u16 twd;
  4214. u16 fop;
  4215. u64 rip;
  4216. u64 rdp;
  4217. u32 mxcsr;
  4218. u32 mxcsr_mask;
  4219. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  4220. #ifdef CONFIG_X86_64
  4221. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  4222. #else
  4223. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  4224. #endif
  4225. };
  4226. /*
  4227. * Translate a guest virtual address to a guest physical address.
  4228. */
  4229. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4230. struct kvm_translation *tr)
  4231. {
  4232. unsigned long vaddr = tr->linear_address;
  4233. gpa_t gpa;
  4234. vcpu_load(vcpu);
  4235. down_read(&vcpu->kvm->slots_lock);
  4236. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  4237. up_read(&vcpu->kvm->slots_lock);
  4238. tr->physical_address = gpa;
  4239. tr->valid = gpa != UNMAPPED_GVA;
  4240. tr->writeable = 1;
  4241. tr->usermode = 0;
  4242. vcpu_put(vcpu);
  4243. return 0;
  4244. }
  4245. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4246. {
  4247. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4248. vcpu_load(vcpu);
  4249. memcpy(fpu->fpr, fxsave->st_space, 128);
  4250. fpu->fcw = fxsave->cwd;
  4251. fpu->fsw = fxsave->swd;
  4252. fpu->ftwx = fxsave->twd;
  4253. fpu->last_opcode = fxsave->fop;
  4254. fpu->last_ip = fxsave->rip;
  4255. fpu->last_dp = fxsave->rdp;
  4256. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4257. vcpu_put(vcpu);
  4258. return 0;
  4259. }
  4260. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4261. {
  4262. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4263. vcpu_load(vcpu);
  4264. memcpy(fxsave->st_space, fpu->fpr, 128);
  4265. fxsave->cwd = fpu->fcw;
  4266. fxsave->swd = fpu->fsw;
  4267. fxsave->twd = fpu->ftwx;
  4268. fxsave->fop = fpu->last_opcode;
  4269. fxsave->rip = fpu->last_ip;
  4270. fxsave->rdp = fpu->last_dp;
  4271. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4272. vcpu_put(vcpu);
  4273. return 0;
  4274. }
  4275. void fx_init(struct kvm_vcpu *vcpu)
  4276. {
  4277. unsigned after_mxcsr_mask;
  4278. /*
  4279. * Touch the fpu the first time in non atomic context as if
  4280. * this is the first fpu instruction the exception handler
  4281. * will fire before the instruction returns and it'll have to
  4282. * allocate ram with GFP_KERNEL.
  4283. */
  4284. if (!used_math())
  4285. kvm_fx_save(&vcpu->arch.host_fx_image);
  4286. /* Initialize guest FPU by resetting ours and saving into guest's */
  4287. preempt_disable();
  4288. kvm_fx_save(&vcpu->arch.host_fx_image);
  4289. kvm_fx_finit();
  4290. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4291. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4292. preempt_enable();
  4293. vcpu->arch.cr0 |= X86_CR0_ET;
  4294. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4295. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4296. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4297. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4298. }
  4299. EXPORT_SYMBOL_GPL(fx_init);
  4300. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4301. {
  4302. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  4303. return;
  4304. vcpu->guest_fpu_loaded = 1;
  4305. kvm_fx_save(&vcpu->arch.host_fx_image);
  4306. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4307. }
  4308. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  4309. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4310. {
  4311. if (!vcpu->guest_fpu_loaded)
  4312. return;
  4313. vcpu->guest_fpu_loaded = 0;
  4314. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4315. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4316. ++vcpu->stat.fpu_reload;
  4317. }
  4318. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  4319. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4320. {
  4321. if (vcpu->arch.time_page) {
  4322. kvm_release_page_dirty(vcpu->arch.time_page);
  4323. vcpu->arch.time_page = NULL;
  4324. }
  4325. kvm_x86_ops->vcpu_free(vcpu);
  4326. }
  4327. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4328. unsigned int id)
  4329. {
  4330. return kvm_x86_ops->vcpu_create(kvm, id);
  4331. }
  4332. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4333. {
  4334. int r;
  4335. /* We do fxsave: this must be aligned. */
  4336. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4337. vcpu->arch.mtrr_state.have_fixed = 1;
  4338. vcpu_load(vcpu);
  4339. r = kvm_arch_vcpu_reset(vcpu);
  4340. if (r == 0)
  4341. r = kvm_mmu_setup(vcpu);
  4342. vcpu_put(vcpu);
  4343. if (r < 0)
  4344. goto free_vcpu;
  4345. return 0;
  4346. free_vcpu:
  4347. kvm_x86_ops->vcpu_free(vcpu);
  4348. return r;
  4349. }
  4350. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4351. {
  4352. vcpu_load(vcpu);
  4353. kvm_mmu_unload(vcpu);
  4354. vcpu_put(vcpu);
  4355. kvm_x86_ops->vcpu_free(vcpu);
  4356. }
  4357. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4358. {
  4359. vcpu->arch.nmi_pending = false;
  4360. vcpu->arch.nmi_injected = false;
  4361. vcpu->arch.switch_db_regs = 0;
  4362. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4363. vcpu->arch.dr6 = DR6_FIXED_1;
  4364. vcpu->arch.dr7 = DR7_FIXED_1;
  4365. return kvm_x86_ops->vcpu_reset(vcpu);
  4366. }
  4367. int kvm_arch_hardware_enable(void *garbage)
  4368. {
  4369. /*
  4370. * Since this may be called from a hotplug notifcation,
  4371. * we can't get the CPU frequency directly.
  4372. */
  4373. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4374. int cpu = raw_smp_processor_id();
  4375. per_cpu(cpu_tsc_khz, cpu) = 0;
  4376. }
  4377. kvm_shared_msr_cpu_online();
  4378. return kvm_x86_ops->hardware_enable(garbage);
  4379. }
  4380. void kvm_arch_hardware_disable(void *garbage)
  4381. {
  4382. kvm_x86_ops->hardware_disable(garbage);
  4383. drop_user_return_notifiers(garbage);
  4384. }
  4385. int kvm_arch_hardware_setup(void)
  4386. {
  4387. return kvm_x86_ops->hardware_setup();
  4388. }
  4389. void kvm_arch_hardware_unsetup(void)
  4390. {
  4391. kvm_x86_ops->hardware_unsetup();
  4392. }
  4393. void kvm_arch_check_processor_compat(void *rtn)
  4394. {
  4395. kvm_x86_ops->check_processor_compatibility(rtn);
  4396. }
  4397. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4398. {
  4399. struct page *page;
  4400. struct kvm *kvm;
  4401. int r;
  4402. BUG_ON(vcpu->kvm == NULL);
  4403. kvm = vcpu->kvm;
  4404. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4405. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4406. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4407. else
  4408. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4409. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4410. if (!page) {
  4411. r = -ENOMEM;
  4412. goto fail;
  4413. }
  4414. vcpu->arch.pio_data = page_address(page);
  4415. r = kvm_mmu_create(vcpu);
  4416. if (r < 0)
  4417. goto fail_free_pio_data;
  4418. if (irqchip_in_kernel(kvm)) {
  4419. r = kvm_create_lapic(vcpu);
  4420. if (r < 0)
  4421. goto fail_mmu_destroy;
  4422. }
  4423. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4424. GFP_KERNEL);
  4425. if (!vcpu->arch.mce_banks) {
  4426. r = -ENOMEM;
  4427. goto fail_free_lapic;
  4428. }
  4429. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4430. return 0;
  4431. fail_free_lapic:
  4432. kvm_free_lapic(vcpu);
  4433. fail_mmu_destroy:
  4434. kvm_mmu_destroy(vcpu);
  4435. fail_free_pio_data:
  4436. free_page((unsigned long)vcpu->arch.pio_data);
  4437. fail:
  4438. return r;
  4439. }
  4440. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4441. {
  4442. kfree(vcpu->arch.mce_banks);
  4443. kvm_free_lapic(vcpu);
  4444. down_read(&vcpu->kvm->slots_lock);
  4445. kvm_mmu_destroy(vcpu);
  4446. up_read(&vcpu->kvm->slots_lock);
  4447. free_page((unsigned long)vcpu->arch.pio_data);
  4448. }
  4449. struct kvm *kvm_arch_create_vm(void)
  4450. {
  4451. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4452. if (!kvm)
  4453. return ERR_PTR(-ENOMEM);
  4454. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4455. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4456. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4457. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4458. rdtscll(kvm->arch.vm_init_tsc);
  4459. return kvm;
  4460. }
  4461. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4462. {
  4463. vcpu_load(vcpu);
  4464. kvm_mmu_unload(vcpu);
  4465. vcpu_put(vcpu);
  4466. }
  4467. static void kvm_free_vcpus(struct kvm *kvm)
  4468. {
  4469. unsigned int i;
  4470. struct kvm_vcpu *vcpu;
  4471. /*
  4472. * Unpin any mmu pages first.
  4473. */
  4474. kvm_for_each_vcpu(i, vcpu, kvm)
  4475. kvm_unload_vcpu_mmu(vcpu);
  4476. kvm_for_each_vcpu(i, vcpu, kvm)
  4477. kvm_arch_vcpu_free(vcpu);
  4478. mutex_lock(&kvm->lock);
  4479. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4480. kvm->vcpus[i] = NULL;
  4481. atomic_set(&kvm->online_vcpus, 0);
  4482. mutex_unlock(&kvm->lock);
  4483. }
  4484. void kvm_arch_sync_events(struct kvm *kvm)
  4485. {
  4486. kvm_free_all_assigned_devices(kvm);
  4487. }
  4488. void kvm_arch_destroy_vm(struct kvm *kvm)
  4489. {
  4490. kvm_iommu_unmap_guest(kvm);
  4491. kvm_free_pit(kvm);
  4492. kfree(kvm->arch.vpic);
  4493. kfree(kvm->arch.vioapic);
  4494. kvm_free_vcpus(kvm);
  4495. kvm_free_physmem(kvm);
  4496. if (kvm->arch.apic_access_page)
  4497. put_page(kvm->arch.apic_access_page);
  4498. if (kvm->arch.ept_identity_pagetable)
  4499. put_page(kvm->arch.ept_identity_pagetable);
  4500. kfree(kvm);
  4501. }
  4502. int kvm_arch_set_memory_region(struct kvm *kvm,
  4503. struct kvm_userspace_memory_region *mem,
  4504. struct kvm_memory_slot old,
  4505. int user_alloc)
  4506. {
  4507. int npages = mem->memory_size >> PAGE_SHIFT;
  4508. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4509. /*To keep backward compatibility with older userspace,
  4510. *x86 needs to hanlde !user_alloc case.
  4511. */
  4512. if (!user_alloc) {
  4513. if (npages && !old.rmap) {
  4514. unsigned long userspace_addr;
  4515. down_write(&current->mm->mmap_sem);
  4516. userspace_addr = do_mmap(NULL, 0,
  4517. npages * PAGE_SIZE,
  4518. PROT_READ | PROT_WRITE,
  4519. MAP_PRIVATE | MAP_ANONYMOUS,
  4520. 0);
  4521. up_write(&current->mm->mmap_sem);
  4522. if (IS_ERR((void *)userspace_addr))
  4523. return PTR_ERR((void *)userspace_addr);
  4524. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4525. spin_lock(&kvm->mmu_lock);
  4526. memslot->userspace_addr = userspace_addr;
  4527. spin_unlock(&kvm->mmu_lock);
  4528. } else {
  4529. if (!old.user_alloc && old.rmap) {
  4530. int ret;
  4531. down_write(&current->mm->mmap_sem);
  4532. ret = do_munmap(current->mm, old.userspace_addr,
  4533. old.npages * PAGE_SIZE);
  4534. up_write(&current->mm->mmap_sem);
  4535. if (ret < 0)
  4536. printk(KERN_WARNING
  4537. "kvm_vm_ioctl_set_memory_region: "
  4538. "failed to munmap memory\n");
  4539. }
  4540. }
  4541. }
  4542. spin_lock(&kvm->mmu_lock);
  4543. if (!kvm->arch.n_requested_mmu_pages) {
  4544. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4545. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4546. }
  4547. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4548. spin_unlock(&kvm->mmu_lock);
  4549. return 0;
  4550. }
  4551. void kvm_arch_flush_shadow(struct kvm *kvm)
  4552. {
  4553. kvm_mmu_zap_all(kvm);
  4554. kvm_reload_remote_mmus(kvm);
  4555. }
  4556. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4557. {
  4558. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4559. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4560. || vcpu->arch.nmi_pending ||
  4561. (kvm_arch_interrupt_allowed(vcpu) &&
  4562. kvm_cpu_has_interrupt(vcpu));
  4563. }
  4564. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4565. {
  4566. int me;
  4567. int cpu = vcpu->cpu;
  4568. if (waitqueue_active(&vcpu->wq)) {
  4569. wake_up_interruptible(&vcpu->wq);
  4570. ++vcpu->stat.halt_wakeup;
  4571. }
  4572. me = get_cpu();
  4573. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4574. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4575. smp_send_reschedule(cpu);
  4576. put_cpu();
  4577. }
  4578. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4579. {
  4580. return kvm_x86_ops->interrupt_allowed(vcpu);
  4581. }
  4582. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  4583. {
  4584. unsigned long rflags;
  4585. rflags = kvm_x86_ops->get_rflags(vcpu);
  4586. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4587. rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
  4588. return rflags;
  4589. }
  4590. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  4591. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  4592. {
  4593. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  4594. vcpu->arch.singlestep_cs ==
  4595. get_segment_selector(vcpu, VCPU_SREG_CS) &&
  4596. vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
  4597. rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  4598. kvm_x86_ops->set_rflags(vcpu, rflags);
  4599. }
  4600. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  4601. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4602. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4603. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4604. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4605. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4606. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4607. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4608. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  4609. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  4610. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  4611. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);