fork.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/config.h>
  13. #include <linux/slab.h>
  14. #include <linux/init.h>
  15. #include <linux/unistd.h>
  16. #include <linux/smp_lock.h>
  17. #include <linux/module.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/completion.h>
  20. #include <linux/namespace.h>
  21. #include <linux/personality.h>
  22. #include <linux/mempolicy.h>
  23. #include <linux/sem.h>
  24. #include <linux/file.h>
  25. #include <linux/key.h>
  26. #include <linux/binfmts.h>
  27. #include <linux/mman.h>
  28. #include <linux/fs.h>
  29. #include <linux/capability.h>
  30. #include <linux/cpu.h>
  31. #include <linux/cpuset.h>
  32. #include <linux/security.h>
  33. #include <linux/swap.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/jiffies.h>
  36. #include <linux/futex.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/mount.h>
  40. #include <linux/audit.h>
  41. #include <linux/profile.h>
  42. #include <linux/rmap.h>
  43. #include <linux/acct.h>
  44. #include <linux/cn_proc.h>
  45. #include <asm/pgtable.h>
  46. #include <asm/pgalloc.h>
  47. #include <asm/uaccess.h>
  48. #include <asm/mmu_context.h>
  49. #include <asm/cacheflush.h>
  50. #include <asm/tlbflush.h>
  51. /*
  52. * Protected counters by write_lock_irq(&tasklist_lock)
  53. */
  54. unsigned long total_forks; /* Handle normal Linux uptimes. */
  55. int nr_threads; /* The idle threads do not count.. */
  56. int max_threads; /* tunable limit on nr_threads */
  57. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  58. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  59. EXPORT_SYMBOL(tasklist_lock);
  60. int nr_processes(void)
  61. {
  62. int cpu;
  63. int total = 0;
  64. for_each_online_cpu(cpu)
  65. total += per_cpu(process_counts, cpu);
  66. return total;
  67. }
  68. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  69. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  70. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  71. static kmem_cache_t *task_struct_cachep;
  72. #endif
  73. /* SLAB cache for signal_struct structures (tsk->signal) */
  74. static kmem_cache_t *signal_cachep;
  75. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  76. kmem_cache_t *sighand_cachep;
  77. /* SLAB cache for files_struct structures (tsk->files) */
  78. kmem_cache_t *files_cachep;
  79. /* SLAB cache for fs_struct structures (tsk->fs) */
  80. kmem_cache_t *fs_cachep;
  81. /* SLAB cache for vm_area_struct structures */
  82. kmem_cache_t *vm_area_cachep;
  83. /* SLAB cache for mm_struct structures (tsk->mm) */
  84. static kmem_cache_t *mm_cachep;
  85. void free_task(struct task_struct *tsk)
  86. {
  87. free_thread_info(tsk->thread_info);
  88. free_task_struct(tsk);
  89. }
  90. EXPORT_SYMBOL(free_task);
  91. void __put_task_struct(struct task_struct *tsk)
  92. {
  93. WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
  94. WARN_ON(atomic_read(&tsk->usage));
  95. WARN_ON(tsk == current);
  96. security_task_free(tsk);
  97. free_uid(tsk->user);
  98. put_group_info(tsk->group_info);
  99. if (!profile_handoff_task(tsk))
  100. free_task(tsk);
  101. }
  102. void __init fork_init(unsigned long mempages)
  103. {
  104. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  105. #ifndef ARCH_MIN_TASKALIGN
  106. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  107. #endif
  108. /* create a slab on which task_structs can be allocated */
  109. task_struct_cachep =
  110. kmem_cache_create("task_struct", sizeof(struct task_struct),
  111. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
  112. #endif
  113. /*
  114. * The default maximum number of threads is set to a safe
  115. * value: the thread structures can take up at most half
  116. * of memory.
  117. */
  118. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  119. /*
  120. * we need to allow at least 20 threads to boot a system
  121. */
  122. if(max_threads < 20)
  123. max_threads = 20;
  124. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  125. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  126. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  127. init_task.signal->rlim[RLIMIT_NPROC];
  128. }
  129. static struct task_struct *dup_task_struct(struct task_struct *orig)
  130. {
  131. struct task_struct *tsk;
  132. struct thread_info *ti;
  133. prepare_to_copy(orig);
  134. tsk = alloc_task_struct();
  135. if (!tsk)
  136. return NULL;
  137. ti = alloc_thread_info(tsk);
  138. if (!ti) {
  139. free_task_struct(tsk);
  140. return NULL;
  141. }
  142. *tsk = *orig;
  143. tsk->thread_info = ti;
  144. setup_thread_stack(tsk, orig);
  145. /* One for us, one for whoever does the "release_task()" (usually parent) */
  146. atomic_set(&tsk->usage,2);
  147. atomic_set(&tsk->fs_excl, 0);
  148. tsk->btrace_seq = 0;
  149. tsk->splice_pipe = NULL;
  150. return tsk;
  151. }
  152. #ifdef CONFIG_MMU
  153. static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  154. {
  155. struct vm_area_struct *mpnt, *tmp, **pprev;
  156. struct rb_node **rb_link, *rb_parent;
  157. int retval;
  158. unsigned long charge;
  159. struct mempolicy *pol;
  160. down_write(&oldmm->mmap_sem);
  161. flush_cache_mm(oldmm);
  162. down_write(&mm->mmap_sem);
  163. mm->locked_vm = 0;
  164. mm->mmap = NULL;
  165. mm->mmap_cache = NULL;
  166. mm->free_area_cache = oldmm->mmap_base;
  167. mm->cached_hole_size = ~0UL;
  168. mm->map_count = 0;
  169. cpus_clear(mm->cpu_vm_mask);
  170. mm->mm_rb = RB_ROOT;
  171. rb_link = &mm->mm_rb.rb_node;
  172. rb_parent = NULL;
  173. pprev = &mm->mmap;
  174. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  175. struct file *file;
  176. if (mpnt->vm_flags & VM_DONTCOPY) {
  177. long pages = vma_pages(mpnt);
  178. mm->total_vm -= pages;
  179. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  180. -pages);
  181. continue;
  182. }
  183. charge = 0;
  184. if (mpnt->vm_flags & VM_ACCOUNT) {
  185. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  186. if (security_vm_enough_memory(len))
  187. goto fail_nomem;
  188. charge = len;
  189. }
  190. tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
  191. if (!tmp)
  192. goto fail_nomem;
  193. *tmp = *mpnt;
  194. pol = mpol_copy(vma_policy(mpnt));
  195. retval = PTR_ERR(pol);
  196. if (IS_ERR(pol))
  197. goto fail_nomem_policy;
  198. vma_set_policy(tmp, pol);
  199. tmp->vm_flags &= ~VM_LOCKED;
  200. tmp->vm_mm = mm;
  201. tmp->vm_next = NULL;
  202. anon_vma_link(tmp);
  203. file = tmp->vm_file;
  204. if (file) {
  205. struct inode *inode = file->f_dentry->d_inode;
  206. get_file(file);
  207. if (tmp->vm_flags & VM_DENYWRITE)
  208. atomic_dec(&inode->i_writecount);
  209. /* insert tmp into the share list, just after mpnt */
  210. spin_lock(&file->f_mapping->i_mmap_lock);
  211. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  212. flush_dcache_mmap_lock(file->f_mapping);
  213. vma_prio_tree_add(tmp, mpnt);
  214. flush_dcache_mmap_unlock(file->f_mapping);
  215. spin_unlock(&file->f_mapping->i_mmap_lock);
  216. }
  217. /*
  218. * Link in the new vma and copy the page table entries.
  219. */
  220. *pprev = tmp;
  221. pprev = &tmp->vm_next;
  222. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  223. rb_link = &tmp->vm_rb.rb_right;
  224. rb_parent = &tmp->vm_rb;
  225. mm->map_count++;
  226. retval = copy_page_range(mm, oldmm, mpnt);
  227. if (tmp->vm_ops && tmp->vm_ops->open)
  228. tmp->vm_ops->open(tmp);
  229. if (retval)
  230. goto out;
  231. }
  232. retval = 0;
  233. out:
  234. up_write(&mm->mmap_sem);
  235. flush_tlb_mm(oldmm);
  236. up_write(&oldmm->mmap_sem);
  237. return retval;
  238. fail_nomem_policy:
  239. kmem_cache_free(vm_area_cachep, tmp);
  240. fail_nomem:
  241. retval = -ENOMEM;
  242. vm_unacct_memory(charge);
  243. goto out;
  244. }
  245. static inline int mm_alloc_pgd(struct mm_struct * mm)
  246. {
  247. mm->pgd = pgd_alloc(mm);
  248. if (unlikely(!mm->pgd))
  249. return -ENOMEM;
  250. return 0;
  251. }
  252. static inline void mm_free_pgd(struct mm_struct * mm)
  253. {
  254. pgd_free(mm->pgd);
  255. }
  256. #else
  257. #define dup_mmap(mm, oldmm) (0)
  258. #define mm_alloc_pgd(mm) (0)
  259. #define mm_free_pgd(mm)
  260. #endif /* CONFIG_MMU */
  261. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  262. #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
  263. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  264. #include <linux/init_task.h>
  265. static struct mm_struct * mm_init(struct mm_struct * mm)
  266. {
  267. atomic_set(&mm->mm_users, 1);
  268. atomic_set(&mm->mm_count, 1);
  269. init_rwsem(&mm->mmap_sem);
  270. INIT_LIST_HEAD(&mm->mmlist);
  271. mm->core_waiters = 0;
  272. mm->nr_ptes = 0;
  273. set_mm_counter(mm, file_rss, 0);
  274. set_mm_counter(mm, anon_rss, 0);
  275. spin_lock_init(&mm->page_table_lock);
  276. rwlock_init(&mm->ioctx_list_lock);
  277. mm->ioctx_list = NULL;
  278. mm->free_area_cache = TASK_UNMAPPED_BASE;
  279. mm->cached_hole_size = ~0UL;
  280. if (likely(!mm_alloc_pgd(mm))) {
  281. mm->def_flags = 0;
  282. return mm;
  283. }
  284. free_mm(mm);
  285. return NULL;
  286. }
  287. /*
  288. * Allocate and initialize an mm_struct.
  289. */
  290. struct mm_struct * mm_alloc(void)
  291. {
  292. struct mm_struct * mm;
  293. mm = allocate_mm();
  294. if (mm) {
  295. memset(mm, 0, sizeof(*mm));
  296. mm = mm_init(mm);
  297. }
  298. return mm;
  299. }
  300. /*
  301. * Called when the last reference to the mm
  302. * is dropped: either by a lazy thread or by
  303. * mmput. Free the page directory and the mm.
  304. */
  305. void fastcall __mmdrop(struct mm_struct *mm)
  306. {
  307. BUG_ON(mm == &init_mm);
  308. mm_free_pgd(mm);
  309. destroy_context(mm);
  310. free_mm(mm);
  311. }
  312. /*
  313. * Decrement the use count and release all resources for an mm.
  314. */
  315. void mmput(struct mm_struct *mm)
  316. {
  317. might_sleep();
  318. if (atomic_dec_and_test(&mm->mm_users)) {
  319. exit_aio(mm);
  320. exit_mmap(mm);
  321. if (!list_empty(&mm->mmlist)) {
  322. spin_lock(&mmlist_lock);
  323. list_del(&mm->mmlist);
  324. spin_unlock(&mmlist_lock);
  325. }
  326. put_swap_token(mm);
  327. mmdrop(mm);
  328. }
  329. }
  330. EXPORT_SYMBOL_GPL(mmput);
  331. /**
  332. * get_task_mm - acquire a reference to the task's mm
  333. *
  334. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  335. * this kernel workthread has transiently adopted a user mm with use_mm,
  336. * to do its AIO) is not set and if so returns a reference to it, after
  337. * bumping up the use count. User must release the mm via mmput()
  338. * after use. Typically used by /proc and ptrace.
  339. */
  340. struct mm_struct *get_task_mm(struct task_struct *task)
  341. {
  342. struct mm_struct *mm;
  343. task_lock(task);
  344. mm = task->mm;
  345. if (mm) {
  346. if (task->flags & PF_BORROWED_MM)
  347. mm = NULL;
  348. else
  349. atomic_inc(&mm->mm_users);
  350. }
  351. task_unlock(task);
  352. return mm;
  353. }
  354. EXPORT_SYMBOL_GPL(get_task_mm);
  355. /* Please note the differences between mmput and mm_release.
  356. * mmput is called whenever we stop holding onto a mm_struct,
  357. * error success whatever.
  358. *
  359. * mm_release is called after a mm_struct has been removed
  360. * from the current process.
  361. *
  362. * This difference is important for error handling, when we
  363. * only half set up a mm_struct for a new process and need to restore
  364. * the old one. Because we mmput the new mm_struct before
  365. * restoring the old one. . .
  366. * Eric Biederman 10 January 1998
  367. */
  368. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  369. {
  370. struct completion *vfork_done = tsk->vfork_done;
  371. /* Get rid of any cached register state */
  372. deactivate_mm(tsk, mm);
  373. /* notify parent sleeping on vfork() */
  374. if (vfork_done) {
  375. tsk->vfork_done = NULL;
  376. complete(vfork_done);
  377. }
  378. if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
  379. u32 __user * tidptr = tsk->clear_child_tid;
  380. tsk->clear_child_tid = NULL;
  381. /*
  382. * We don't check the error code - if userspace has
  383. * not set up a proper pointer then tough luck.
  384. */
  385. put_user(0, tidptr);
  386. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  387. }
  388. }
  389. /*
  390. * Allocate a new mm structure and copy contents from the
  391. * mm structure of the passed in task structure.
  392. */
  393. static struct mm_struct *dup_mm(struct task_struct *tsk)
  394. {
  395. struct mm_struct *mm, *oldmm = current->mm;
  396. int err;
  397. if (!oldmm)
  398. return NULL;
  399. mm = allocate_mm();
  400. if (!mm)
  401. goto fail_nomem;
  402. memcpy(mm, oldmm, sizeof(*mm));
  403. if (!mm_init(mm))
  404. goto fail_nomem;
  405. if (init_new_context(tsk, mm))
  406. goto fail_nocontext;
  407. err = dup_mmap(mm, oldmm);
  408. if (err)
  409. goto free_pt;
  410. mm->hiwater_rss = get_mm_rss(mm);
  411. mm->hiwater_vm = mm->total_vm;
  412. return mm;
  413. free_pt:
  414. mmput(mm);
  415. fail_nomem:
  416. return NULL;
  417. fail_nocontext:
  418. /*
  419. * If init_new_context() failed, we cannot use mmput() to free the mm
  420. * because it calls destroy_context()
  421. */
  422. mm_free_pgd(mm);
  423. free_mm(mm);
  424. return NULL;
  425. }
  426. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  427. {
  428. struct mm_struct * mm, *oldmm;
  429. int retval;
  430. tsk->min_flt = tsk->maj_flt = 0;
  431. tsk->nvcsw = tsk->nivcsw = 0;
  432. tsk->mm = NULL;
  433. tsk->active_mm = NULL;
  434. /*
  435. * Are we cloning a kernel thread?
  436. *
  437. * We need to steal a active VM for that..
  438. */
  439. oldmm = current->mm;
  440. if (!oldmm)
  441. return 0;
  442. if (clone_flags & CLONE_VM) {
  443. atomic_inc(&oldmm->mm_users);
  444. mm = oldmm;
  445. goto good_mm;
  446. }
  447. retval = -ENOMEM;
  448. mm = dup_mm(tsk);
  449. if (!mm)
  450. goto fail_nomem;
  451. good_mm:
  452. tsk->mm = mm;
  453. tsk->active_mm = mm;
  454. return 0;
  455. fail_nomem:
  456. return retval;
  457. }
  458. static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  459. {
  460. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  461. /* We don't need to lock fs - think why ;-) */
  462. if (fs) {
  463. atomic_set(&fs->count, 1);
  464. rwlock_init(&fs->lock);
  465. fs->umask = old->umask;
  466. read_lock(&old->lock);
  467. fs->rootmnt = mntget(old->rootmnt);
  468. fs->root = dget(old->root);
  469. fs->pwdmnt = mntget(old->pwdmnt);
  470. fs->pwd = dget(old->pwd);
  471. if (old->altroot) {
  472. fs->altrootmnt = mntget(old->altrootmnt);
  473. fs->altroot = dget(old->altroot);
  474. } else {
  475. fs->altrootmnt = NULL;
  476. fs->altroot = NULL;
  477. }
  478. read_unlock(&old->lock);
  479. }
  480. return fs;
  481. }
  482. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  483. {
  484. return __copy_fs_struct(old);
  485. }
  486. EXPORT_SYMBOL_GPL(copy_fs_struct);
  487. static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
  488. {
  489. if (clone_flags & CLONE_FS) {
  490. atomic_inc(&current->fs->count);
  491. return 0;
  492. }
  493. tsk->fs = __copy_fs_struct(current->fs);
  494. if (!tsk->fs)
  495. return -ENOMEM;
  496. return 0;
  497. }
  498. static int count_open_files(struct fdtable *fdt)
  499. {
  500. int size = fdt->max_fdset;
  501. int i;
  502. /* Find the last open fd */
  503. for (i = size/(8*sizeof(long)); i > 0; ) {
  504. if (fdt->open_fds->fds_bits[--i])
  505. break;
  506. }
  507. i = (i+1) * 8 * sizeof(long);
  508. return i;
  509. }
  510. static struct files_struct *alloc_files(void)
  511. {
  512. struct files_struct *newf;
  513. struct fdtable *fdt;
  514. newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
  515. if (!newf)
  516. goto out;
  517. atomic_set(&newf->count, 1);
  518. spin_lock_init(&newf->file_lock);
  519. newf->next_fd = 0;
  520. fdt = &newf->fdtab;
  521. fdt->max_fds = NR_OPEN_DEFAULT;
  522. fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
  523. fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  524. fdt->open_fds = (fd_set *)&newf->open_fds_init;
  525. fdt->fd = &newf->fd_array[0];
  526. INIT_RCU_HEAD(&fdt->rcu);
  527. fdt->free_files = NULL;
  528. fdt->next = NULL;
  529. rcu_assign_pointer(newf->fdt, fdt);
  530. out:
  531. return newf;
  532. }
  533. /*
  534. * Allocate a new files structure and copy contents from the
  535. * passed in files structure.
  536. * errorp will be valid only when the returned files_struct is NULL.
  537. */
  538. static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  539. {
  540. struct files_struct *newf;
  541. struct file **old_fds, **new_fds;
  542. int open_files, size, i, expand;
  543. struct fdtable *old_fdt, *new_fdt;
  544. *errorp = -ENOMEM;
  545. newf = alloc_files();
  546. if (!newf)
  547. goto out;
  548. spin_lock(&oldf->file_lock);
  549. old_fdt = files_fdtable(oldf);
  550. new_fdt = files_fdtable(newf);
  551. size = old_fdt->max_fdset;
  552. open_files = count_open_files(old_fdt);
  553. expand = 0;
  554. /*
  555. * Check whether we need to allocate a larger fd array or fd set.
  556. * Note: we're not a clone task, so the open count won't change.
  557. */
  558. if (open_files > new_fdt->max_fdset) {
  559. new_fdt->max_fdset = 0;
  560. expand = 1;
  561. }
  562. if (open_files > new_fdt->max_fds) {
  563. new_fdt->max_fds = 0;
  564. expand = 1;
  565. }
  566. /* if the old fdset gets grown now, we'll only copy up to "size" fds */
  567. if (expand) {
  568. spin_unlock(&oldf->file_lock);
  569. spin_lock(&newf->file_lock);
  570. *errorp = expand_files(newf, open_files-1);
  571. spin_unlock(&newf->file_lock);
  572. if (*errorp < 0)
  573. goto out_release;
  574. new_fdt = files_fdtable(newf);
  575. /*
  576. * Reacquire the oldf lock and a pointer to its fd table
  577. * who knows it may have a new bigger fd table. We need
  578. * the latest pointer.
  579. */
  580. spin_lock(&oldf->file_lock);
  581. old_fdt = files_fdtable(oldf);
  582. }
  583. old_fds = old_fdt->fd;
  584. new_fds = new_fdt->fd;
  585. memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
  586. memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
  587. for (i = open_files; i != 0; i--) {
  588. struct file *f = *old_fds++;
  589. if (f) {
  590. get_file(f);
  591. } else {
  592. /*
  593. * The fd may be claimed in the fd bitmap but not yet
  594. * instantiated in the files array if a sibling thread
  595. * is partway through open(). So make sure that this
  596. * fd is available to the new process.
  597. */
  598. FD_CLR(open_files - i, new_fdt->open_fds);
  599. }
  600. rcu_assign_pointer(*new_fds++, f);
  601. }
  602. spin_unlock(&oldf->file_lock);
  603. /* compute the remainder to be cleared */
  604. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  605. /* This is long word aligned thus could use a optimized version */
  606. memset(new_fds, 0, size);
  607. if (new_fdt->max_fdset > open_files) {
  608. int left = (new_fdt->max_fdset-open_files)/8;
  609. int start = open_files / (8 * sizeof(unsigned long));
  610. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  611. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  612. }
  613. out:
  614. return newf;
  615. out_release:
  616. free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
  617. free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
  618. free_fd_array(new_fdt->fd, new_fdt->max_fds);
  619. kmem_cache_free(files_cachep, newf);
  620. return NULL;
  621. }
  622. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  623. {
  624. struct files_struct *oldf, *newf;
  625. int error = 0;
  626. /*
  627. * A background process may not have any files ...
  628. */
  629. oldf = current->files;
  630. if (!oldf)
  631. goto out;
  632. if (clone_flags & CLONE_FILES) {
  633. atomic_inc(&oldf->count);
  634. goto out;
  635. }
  636. /*
  637. * Note: we may be using current for both targets (See exec.c)
  638. * This works because we cache current->files (old) as oldf. Don't
  639. * break this.
  640. */
  641. tsk->files = NULL;
  642. newf = dup_fd(oldf, &error);
  643. if (!newf)
  644. goto out;
  645. tsk->files = newf;
  646. error = 0;
  647. out:
  648. return error;
  649. }
  650. /*
  651. * Helper to unshare the files of the current task.
  652. * We don't want to expose copy_files internals to
  653. * the exec layer of the kernel.
  654. */
  655. int unshare_files(void)
  656. {
  657. struct files_struct *files = current->files;
  658. int rc;
  659. BUG_ON(!files);
  660. /* This can race but the race causes us to copy when we don't
  661. need to and drop the copy */
  662. if(atomic_read(&files->count) == 1)
  663. {
  664. atomic_inc(&files->count);
  665. return 0;
  666. }
  667. rc = copy_files(0, current);
  668. if(rc)
  669. current->files = files;
  670. return rc;
  671. }
  672. EXPORT_SYMBOL(unshare_files);
  673. static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
  674. {
  675. struct sighand_struct *sig;
  676. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  677. atomic_inc(&current->sighand->count);
  678. return 0;
  679. }
  680. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  681. rcu_assign_pointer(tsk->sighand, sig);
  682. if (!sig)
  683. return -ENOMEM;
  684. atomic_set(&sig->count, 1);
  685. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  686. return 0;
  687. }
  688. void __cleanup_sighand(struct sighand_struct *sighand)
  689. {
  690. if (atomic_dec_and_test(&sighand->count))
  691. kmem_cache_free(sighand_cachep, sighand);
  692. }
  693. static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
  694. {
  695. struct signal_struct *sig;
  696. int ret;
  697. if (clone_flags & CLONE_THREAD) {
  698. atomic_inc(&current->signal->count);
  699. atomic_inc(&current->signal->live);
  700. return 0;
  701. }
  702. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  703. tsk->signal = sig;
  704. if (!sig)
  705. return -ENOMEM;
  706. ret = copy_thread_group_keys(tsk);
  707. if (ret < 0) {
  708. kmem_cache_free(signal_cachep, sig);
  709. return ret;
  710. }
  711. atomic_set(&sig->count, 1);
  712. atomic_set(&sig->live, 1);
  713. init_waitqueue_head(&sig->wait_chldexit);
  714. sig->flags = 0;
  715. sig->group_exit_code = 0;
  716. sig->group_exit_task = NULL;
  717. sig->group_stop_count = 0;
  718. sig->curr_target = NULL;
  719. init_sigpending(&sig->shared_pending);
  720. INIT_LIST_HEAD(&sig->posix_timers);
  721. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
  722. sig->it_real_incr.tv64 = 0;
  723. sig->real_timer.function = it_real_fn;
  724. sig->tsk = tsk;
  725. sig->it_virt_expires = cputime_zero;
  726. sig->it_virt_incr = cputime_zero;
  727. sig->it_prof_expires = cputime_zero;
  728. sig->it_prof_incr = cputime_zero;
  729. sig->leader = 0; /* session leadership doesn't inherit */
  730. sig->tty_old_pgrp = 0;
  731. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  732. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  733. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  734. sig->sched_time = 0;
  735. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  736. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  737. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  738. task_lock(current->group_leader);
  739. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  740. task_unlock(current->group_leader);
  741. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  742. /*
  743. * New sole thread in the process gets an expiry time
  744. * of the whole CPU time limit.
  745. */
  746. tsk->it_prof_expires =
  747. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  748. }
  749. return 0;
  750. }
  751. void __cleanup_signal(struct signal_struct *sig)
  752. {
  753. exit_thread_group_keys(sig);
  754. kmem_cache_free(signal_cachep, sig);
  755. }
  756. static inline void cleanup_signal(struct task_struct *tsk)
  757. {
  758. struct signal_struct *sig = tsk->signal;
  759. atomic_dec(&sig->live);
  760. if (atomic_dec_and_test(&sig->count))
  761. __cleanup_signal(sig);
  762. }
  763. static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
  764. {
  765. unsigned long new_flags = p->flags;
  766. new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
  767. new_flags |= PF_FORKNOEXEC;
  768. if (!(clone_flags & CLONE_PTRACE))
  769. p->ptrace = 0;
  770. p->flags = new_flags;
  771. }
  772. asmlinkage long sys_set_tid_address(int __user *tidptr)
  773. {
  774. current->clear_child_tid = tidptr;
  775. return current->pid;
  776. }
  777. /*
  778. * This creates a new process as a copy of the old one,
  779. * but does not actually start it yet.
  780. *
  781. * It copies the registers, and all the appropriate
  782. * parts of the process environment (as per the clone
  783. * flags). The actual kick-off is left to the caller.
  784. */
  785. static task_t *copy_process(unsigned long clone_flags,
  786. unsigned long stack_start,
  787. struct pt_regs *regs,
  788. unsigned long stack_size,
  789. int __user *parent_tidptr,
  790. int __user *child_tidptr,
  791. int pid)
  792. {
  793. int retval;
  794. struct task_struct *p = NULL;
  795. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  796. return ERR_PTR(-EINVAL);
  797. /*
  798. * Thread groups must share signals as well, and detached threads
  799. * can only be started up within the thread group.
  800. */
  801. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  802. return ERR_PTR(-EINVAL);
  803. /*
  804. * Shared signal handlers imply shared VM. By way of the above,
  805. * thread groups also imply shared VM. Blocking this case allows
  806. * for various simplifications in other code.
  807. */
  808. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  809. return ERR_PTR(-EINVAL);
  810. retval = security_task_create(clone_flags);
  811. if (retval)
  812. goto fork_out;
  813. retval = -ENOMEM;
  814. p = dup_task_struct(current);
  815. if (!p)
  816. goto fork_out;
  817. retval = -EAGAIN;
  818. if (atomic_read(&p->user->processes) >=
  819. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  820. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  821. p->user != &root_user)
  822. goto bad_fork_free;
  823. }
  824. atomic_inc(&p->user->__count);
  825. atomic_inc(&p->user->processes);
  826. get_group_info(p->group_info);
  827. /*
  828. * If multiple threads are within copy_process(), then this check
  829. * triggers too late. This doesn't hurt, the check is only there
  830. * to stop root fork bombs.
  831. */
  832. if (nr_threads >= max_threads)
  833. goto bad_fork_cleanup_count;
  834. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  835. goto bad_fork_cleanup_count;
  836. if (p->binfmt && !try_module_get(p->binfmt->module))
  837. goto bad_fork_cleanup_put_domain;
  838. p->did_exec = 0;
  839. copy_flags(clone_flags, p);
  840. p->pid = pid;
  841. retval = -EFAULT;
  842. if (clone_flags & CLONE_PARENT_SETTID)
  843. if (put_user(p->pid, parent_tidptr))
  844. goto bad_fork_cleanup;
  845. p->proc_dentry = NULL;
  846. INIT_LIST_HEAD(&p->children);
  847. INIT_LIST_HEAD(&p->sibling);
  848. p->vfork_done = NULL;
  849. spin_lock_init(&p->alloc_lock);
  850. spin_lock_init(&p->proc_lock);
  851. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  852. init_sigpending(&p->pending);
  853. p->utime = cputime_zero;
  854. p->stime = cputime_zero;
  855. p->sched_time = 0;
  856. p->rchar = 0; /* I/O counter: bytes read */
  857. p->wchar = 0; /* I/O counter: bytes written */
  858. p->syscr = 0; /* I/O counter: read syscalls */
  859. p->syscw = 0; /* I/O counter: write syscalls */
  860. acct_clear_integrals(p);
  861. p->it_virt_expires = cputime_zero;
  862. p->it_prof_expires = cputime_zero;
  863. p->it_sched_expires = 0;
  864. INIT_LIST_HEAD(&p->cpu_timers[0]);
  865. INIT_LIST_HEAD(&p->cpu_timers[1]);
  866. INIT_LIST_HEAD(&p->cpu_timers[2]);
  867. p->lock_depth = -1; /* -1 = no lock */
  868. do_posix_clock_monotonic_gettime(&p->start_time);
  869. p->security = NULL;
  870. p->io_context = NULL;
  871. p->io_wait = NULL;
  872. p->audit_context = NULL;
  873. cpuset_fork(p);
  874. #ifdef CONFIG_NUMA
  875. p->mempolicy = mpol_copy(p->mempolicy);
  876. if (IS_ERR(p->mempolicy)) {
  877. retval = PTR_ERR(p->mempolicy);
  878. p->mempolicy = NULL;
  879. goto bad_fork_cleanup_cpuset;
  880. }
  881. mpol_fix_fork_child_flag(p);
  882. #endif
  883. #ifdef CONFIG_DEBUG_MUTEXES
  884. p->blocked_on = NULL; /* not blocked yet */
  885. #endif
  886. p->tgid = p->pid;
  887. if (clone_flags & CLONE_THREAD)
  888. p->tgid = current->tgid;
  889. if ((retval = security_task_alloc(p)))
  890. goto bad_fork_cleanup_policy;
  891. if ((retval = audit_alloc(p)))
  892. goto bad_fork_cleanup_security;
  893. /* copy all the process information */
  894. if ((retval = copy_semundo(clone_flags, p)))
  895. goto bad_fork_cleanup_audit;
  896. if ((retval = copy_files(clone_flags, p)))
  897. goto bad_fork_cleanup_semundo;
  898. if ((retval = copy_fs(clone_flags, p)))
  899. goto bad_fork_cleanup_files;
  900. if ((retval = copy_sighand(clone_flags, p)))
  901. goto bad_fork_cleanup_fs;
  902. if ((retval = copy_signal(clone_flags, p)))
  903. goto bad_fork_cleanup_sighand;
  904. if ((retval = copy_mm(clone_flags, p)))
  905. goto bad_fork_cleanup_signal;
  906. if ((retval = copy_keys(clone_flags, p)))
  907. goto bad_fork_cleanup_mm;
  908. if ((retval = copy_namespace(clone_flags, p)))
  909. goto bad_fork_cleanup_keys;
  910. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  911. if (retval)
  912. goto bad_fork_cleanup_namespace;
  913. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  914. /*
  915. * Clear TID on mm_release()?
  916. */
  917. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  918. p->robust_list = NULL;
  919. #ifdef CONFIG_COMPAT
  920. p->compat_robust_list = NULL;
  921. #endif
  922. /*
  923. * sigaltstack should be cleared when sharing the same VM
  924. */
  925. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  926. p->sas_ss_sp = p->sas_ss_size = 0;
  927. /*
  928. * Syscall tracing should be turned off in the child regardless
  929. * of CLONE_PTRACE.
  930. */
  931. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  932. #ifdef TIF_SYSCALL_EMU
  933. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  934. #endif
  935. /* Our parent execution domain becomes current domain
  936. These must match for thread signalling to apply */
  937. p->parent_exec_id = p->self_exec_id;
  938. /* ok, now we should be set up.. */
  939. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  940. p->pdeath_signal = 0;
  941. p->exit_state = 0;
  942. /*
  943. * Ok, make it visible to the rest of the system.
  944. * We dont wake it up yet.
  945. */
  946. p->group_leader = p;
  947. INIT_LIST_HEAD(&p->thread_group);
  948. INIT_LIST_HEAD(&p->ptrace_children);
  949. INIT_LIST_HEAD(&p->ptrace_list);
  950. /* Perform scheduler related setup. Assign this task to a CPU. */
  951. sched_fork(p, clone_flags);
  952. /* Need tasklist lock for parent etc handling! */
  953. write_lock_irq(&tasklist_lock);
  954. /*
  955. * The task hasn't been attached yet, so its cpus_allowed mask will
  956. * not be changed, nor will its assigned CPU.
  957. *
  958. * The cpus_allowed mask of the parent may have changed after it was
  959. * copied first time - so re-copy it here, then check the child's CPU
  960. * to ensure it is on a valid CPU (and if not, just force it back to
  961. * parent's CPU). This avoids alot of nasty races.
  962. */
  963. p->cpus_allowed = current->cpus_allowed;
  964. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  965. !cpu_online(task_cpu(p))))
  966. set_task_cpu(p, smp_processor_id());
  967. /* CLONE_PARENT re-uses the old parent */
  968. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  969. p->real_parent = current->real_parent;
  970. else
  971. p->real_parent = current;
  972. p->parent = p->real_parent;
  973. spin_lock(&current->sighand->siglock);
  974. /*
  975. * Process group and session signals need to be delivered to just the
  976. * parent before the fork or both the parent and the child after the
  977. * fork. Restart if a signal comes in before we add the new process to
  978. * it's process group.
  979. * A fatal signal pending means that current will exit, so the new
  980. * thread can't slip out of an OOM kill (or normal SIGKILL).
  981. */
  982. recalc_sigpending();
  983. if (signal_pending(current)) {
  984. spin_unlock(&current->sighand->siglock);
  985. write_unlock_irq(&tasklist_lock);
  986. retval = -ERESTARTNOINTR;
  987. goto bad_fork_cleanup_namespace;
  988. }
  989. if (clone_flags & CLONE_THREAD) {
  990. /*
  991. * Important: if an exit-all has been started then
  992. * do not create this new thread - the whole thread
  993. * group is supposed to exit anyway.
  994. */
  995. if (current->signal->flags & SIGNAL_GROUP_EXIT) {
  996. spin_unlock(&current->sighand->siglock);
  997. write_unlock_irq(&tasklist_lock);
  998. retval = -EAGAIN;
  999. goto bad_fork_cleanup_namespace;
  1000. }
  1001. p->group_leader = current->group_leader;
  1002. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1003. if (!cputime_eq(current->signal->it_virt_expires,
  1004. cputime_zero) ||
  1005. !cputime_eq(current->signal->it_prof_expires,
  1006. cputime_zero) ||
  1007. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  1008. !list_empty(&current->signal->cpu_timers[0]) ||
  1009. !list_empty(&current->signal->cpu_timers[1]) ||
  1010. !list_empty(&current->signal->cpu_timers[2])) {
  1011. /*
  1012. * Have child wake up on its first tick to check
  1013. * for process CPU timers.
  1014. */
  1015. p->it_prof_expires = jiffies_to_cputime(1);
  1016. }
  1017. }
  1018. /*
  1019. * inherit ioprio
  1020. */
  1021. p->ioprio = current->ioprio;
  1022. if (likely(p->pid)) {
  1023. add_parent(p);
  1024. if (unlikely(p->ptrace & PT_PTRACED))
  1025. __ptrace_link(p, current->parent);
  1026. if (thread_group_leader(p)) {
  1027. p->signal->tty = current->signal->tty;
  1028. p->signal->pgrp = process_group(current);
  1029. p->signal->session = current->signal->session;
  1030. attach_pid(p, PIDTYPE_PGID, process_group(p));
  1031. attach_pid(p, PIDTYPE_SID, p->signal->session);
  1032. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1033. __get_cpu_var(process_counts)++;
  1034. }
  1035. attach_pid(p, PIDTYPE_PID, p->pid);
  1036. nr_threads++;
  1037. }
  1038. total_forks++;
  1039. spin_unlock(&current->sighand->siglock);
  1040. write_unlock_irq(&tasklist_lock);
  1041. proc_fork_connector(p);
  1042. return p;
  1043. bad_fork_cleanup_namespace:
  1044. exit_namespace(p);
  1045. bad_fork_cleanup_keys:
  1046. exit_keys(p);
  1047. bad_fork_cleanup_mm:
  1048. if (p->mm)
  1049. mmput(p->mm);
  1050. bad_fork_cleanup_signal:
  1051. cleanup_signal(p);
  1052. bad_fork_cleanup_sighand:
  1053. __cleanup_sighand(p->sighand);
  1054. bad_fork_cleanup_fs:
  1055. exit_fs(p); /* blocking */
  1056. bad_fork_cleanup_files:
  1057. exit_files(p); /* blocking */
  1058. bad_fork_cleanup_semundo:
  1059. exit_sem(p);
  1060. bad_fork_cleanup_audit:
  1061. audit_free(p);
  1062. bad_fork_cleanup_security:
  1063. security_task_free(p);
  1064. bad_fork_cleanup_policy:
  1065. #ifdef CONFIG_NUMA
  1066. mpol_free(p->mempolicy);
  1067. bad_fork_cleanup_cpuset:
  1068. #endif
  1069. cpuset_exit(p);
  1070. bad_fork_cleanup:
  1071. if (p->binfmt)
  1072. module_put(p->binfmt->module);
  1073. bad_fork_cleanup_put_domain:
  1074. module_put(task_thread_info(p)->exec_domain->module);
  1075. bad_fork_cleanup_count:
  1076. put_group_info(p->group_info);
  1077. atomic_dec(&p->user->processes);
  1078. free_uid(p->user);
  1079. bad_fork_free:
  1080. free_task(p);
  1081. fork_out:
  1082. return ERR_PTR(retval);
  1083. }
  1084. struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1085. {
  1086. memset(regs, 0, sizeof(struct pt_regs));
  1087. return regs;
  1088. }
  1089. task_t * __devinit fork_idle(int cpu)
  1090. {
  1091. task_t *task;
  1092. struct pt_regs regs;
  1093. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
  1094. if (!task)
  1095. return ERR_PTR(-ENOMEM);
  1096. init_idle(task, cpu);
  1097. return task;
  1098. }
  1099. static inline int fork_traceflag (unsigned clone_flags)
  1100. {
  1101. if (clone_flags & CLONE_UNTRACED)
  1102. return 0;
  1103. else if (clone_flags & CLONE_VFORK) {
  1104. if (current->ptrace & PT_TRACE_VFORK)
  1105. return PTRACE_EVENT_VFORK;
  1106. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1107. if (current->ptrace & PT_TRACE_CLONE)
  1108. return PTRACE_EVENT_CLONE;
  1109. } else if (current->ptrace & PT_TRACE_FORK)
  1110. return PTRACE_EVENT_FORK;
  1111. return 0;
  1112. }
  1113. /*
  1114. * Ok, this is the main fork-routine.
  1115. *
  1116. * It copies the process, and if successful kick-starts
  1117. * it and waits for it to finish using the VM if required.
  1118. */
  1119. long do_fork(unsigned long clone_flags,
  1120. unsigned long stack_start,
  1121. struct pt_regs *regs,
  1122. unsigned long stack_size,
  1123. int __user *parent_tidptr,
  1124. int __user *child_tidptr)
  1125. {
  1126. struct task_struct *p;
  1127. int trace = 0;
  1128. struct pid *pid = alloc_pid();
  1129. long nr;
  1130. if (!pid)
  1131. return -EAGAIN;
  1132. nr = pid->nr;
  1133. if (unlikely(current->ptrace)) {
  1134. trace = fork_traceflag (clone_flags);
  1135. if (trace)
  1136. clone_flags |= CLONE_PTRACE;
  1137. }
  1138. p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
  1139. /*
  1140. * Do this prior waking up the new thread - the thread pointer
  1141. * might get invalid after that point, if the thread exits quickly.
  1142. */
  1143. if (!IS_ERR(p)) {
  1144. struct completion vfork;
  1145. if (clone_flags & CLONE_VFORK) {
  1146. p->vfork_done = &vfork;
  1147. init_completion(&vfork);
  1148. }
  1149. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1150. /*
  1151. * We'll start up with an immediate SIGSTOP.
  1152. */
  1153. sigaddset(&p->pending.signal, SIGSTOP);
  1154. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1155. }
  1156. if (!(clone_flags & CLONE_STOPPED))
  1157. wake_up_new_task(p, clone_flags);
  1158. else
  1159. p->state = TASK_STOPPED;
  1160. if (unlikely (trace)) {
  1161. current->ptrace_message = nr;
  1162. ptrace_notify ((trace << 8) | SIGTRAP);
  1163. }
  1164. if (clone_flags & CLONE_VFORK) {
  1165. wait_for_completion(&vfork);
  1166. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
  1167. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1168. }
  1169. } else {
  1170. free_pid(pid);
  1171. nr = PTR_ERR(p);
  1172. }
  1173. return nr;
  1174. }
  1175. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1176. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1177. #endif
  1178. static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
  1179. {
  1180. struct sighand_struct *sighand = data;
  1181. if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
  1182. SLAB_CTOR_CONSTRUCTOR)
  1183. spin_lock_init(&sighand->siglock);
  1184. }
  1185. void __init proc_caches_init(void)
  1186. {
  1187. sighand_cachep = kmem_cache_create("sighand_cache",
  1188. sizeof(struct sighand_struct), 0,
  1189. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1190. sighand_ctor, NULL);
  1191. signal_cachep = kmem_cache_create("signal_cache",
  1192. sizeof(struct signal_struct), 0,
  1193. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1194. files_cachep = kmem_cache_create("files_cache",
  1195. sizeof(struct files_struct), 0,
  1196. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1197. fs_cachep = kmem_cache_create("fs_cache",
  1198. sizeof(struct fs_struct), 0,
  1199. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1200. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1201. sizeof(struct vm_area_struct), 0,
  1202. SLAB_PANIC, NULL, NULL);
  1203. mm_cachep = kmem_cache_create("mm_struct",
  1204. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1205. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1206. }
  1207. /*
  1208. * Check constraints on flags passed to the unshare system call and
  1209. * force unsharing of additional process context as appropriate.
  1210. */
  1211. static inline void check_unshare_flags(unsigned long *flags_ptr)
  1212. {
  1213. /*
  1214. * If unsharing a thread from a thread group, must also
  1215. * unshare vm.
  1216. */
  1217. if (*flags_ptr & CLONE_THREAD)
  1218. *flags_ptr |= CLONE_VM;
  1219. /*
  1220. * If unsharing vm, must also unshare signal handlers.
  1221. */
  1222. if (*flags_ptr & CLONE_VM)
  1223. *flags_ptr |= CLONE_SIGHAND;
  1224. /*
  1225. * If unsharing signal handlers and the task was created
  1226. * using CLONE_THREAD, then must unshare the thread
  1227. */
  1228. if ((*flags_ptr & CLONE_SIGHAND) &&
  1229. (atomic_read(&current->signal->count) > 1))
  1230. *flags_ptr |= CLONE_THREAD;
  1231. /*
  1232. * If unsharing namespace, must also unshare filesystem information.
  1233. */
  1234. if (*flags_ptr & CLONE_NEWNS)
  1235. *flags_ptr |= CLONE_FS;
  1236. }
  1237. /*
  1238. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1239. */
  1240. static int unshare_thread(unsigned long unshare_flags)
  1241. {
  1242. if (unshare_flags & CLONE_THREAD)
  1243. return -EINVAL;
  1244. return 0;
  1245. }
  1246. /*
  1247. * Unshare the filesystem structure if it is being shared
  1248. */
  1249. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1250. {
  1251. struct fs_struct *fs = current->fs;
  1252. if ((unshare_flags & CLONE_FS) &&
  1253. (fs && atomic_read(&fs->count) > 1)) {
  1254. *new_fsp = __copy_fs_struct(current->fs);
  1255. if (!*new_fsp)
  1256. return -ENOMEM;
  1257. }
  1258. return 0;
  1259. }
  1260. /*
  1261. * Unshare the namespace structure if it is being shared
  1262. */
  1263. static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
  1264. {
  1265. struct namespace *ns = current->namespace;
  1266. if ((unshare_flags & CLONE_NEWNS) &&
  1267. (ns && atomic_read(&ns->count) > 1)) {
  1268. if (!capable(CAP_SYS_ADMIN))
  1269. return -EPERM;
  1270. *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
  1271. if (!*new_nsp)
  1272. return -ENOMEM;
  1273. }
  1274. return 0;
  1275. }
  1276. /*
  1277. * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
  1278. * supported yet
  1279. */
  1280. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1281. {
  1282. struct sighand_struct *sigh = current->sighand;
  1283. if ((unshare_flags & CLONE_SIGHAND) &&
  1284. (sigh && atomic_read(&sigh->count) > 1))
  1285. return -EINVAL;
  1286. else
  1287. return 0;
  1288. }
  1289. /*
  1290. * Unshare vm if it is being shared
  1291. */
  1292. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1293. {
  1294. struct mm_struct *mm = current->mm;
  1295. if ((unshare_flags & CLONE_VM) &&
  1296. (mm && atomic_read(&mm->mm_users) > 1)) {
  1297. return -EINVAL;
  1298. }
  1299. return 0;
  1300. }
  1301. /*
  1302. * Unshare file descriptor table if it is being shared
  1303. */
  1304. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1305. {
  1306. struct files_struct *fd = current->files;
  1307. int error = 0;
  1308. if ((unshare_flags & CLONE_FILES) &&
  1309. (fd && atomic_read(&fd->count) > 1)) {
  1310. *new_fdp = dup_fd(fd, &error);
  1311. if (!*new_fdp)
  1312. return error;
  1313. }
  1314. return 0;
  1315. }
  1316. /*
  1317. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1318. * supported yet
  1319. */
  1320. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1321. {
  1322. if (unshare_flags & CLONE_SYSVSEM)
  1323. return -EINVAL;
  1324. return 0;
  1325. }
  1326. /*
  1327. * unshare allows a process to 'unshare' part of the process
  1328. * context which was originally shared using clone. copy_*
  1329. * functions used by do_fork() cannot be used here directly
  1330. * because they modify an inactive task_struct that is being
  1331. * constructed. Here we are modifying the current, active,
  1332. * task_struct.
  1333. */
  1334. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1335. {
  1336. int err = 0;
  1337. struct fs_struct *fs, *new_fs = NULL;
  1338. struct namespace *ns, *new_ns = NULL;
  1339. struct sighand_struct *sigh, *new_sigh = NULL;
  1340. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1341. struct files_struct *fd, *new_fd = NULL;
  1342. struct sem_undo_list *new_ulist = NULL;
  1343. check_unshare_flags(&unshare_flags);
  1344. /* Return -EINVAL for all unsupported flags */
  1345. err = -EINVAL;
  1346. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1347. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
  1348. goto bad_unshare_out;
  1349. if ((err = unshare_thread(unshare_flags)))
  1350. goto bad_unshare_out;
  1351. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1352. goto bad_unshare_cleanup_thread;
  1353. if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
  1354. goto bad_unshare_cleanup_fs;
  1355. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1356. goto bad_unshare_cleanup_ns;
  1357. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1358. goto bad_unshare_cleanup_sigh;
  1359. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1360. goto bad_unshare_cleanup_vm;
  1361. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1362. goto bad_unshare_cleanup_fd;
  1363. if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
  1364. task_lock(current);
  1365. if (new_fs) {
  1366. fs = current->fs;
  1367. current->fs = new_fs;
  1368. new_fs = fs;
  1369. }
  1370. if (new_ns) {
  1371. ns = current->namespace;
  1372. current->namespace = new_ns;
  1373. new_ns = ns;
  1374. }
  1375. if (new_sigh) {
  1376. sigh = current->sighand;
  1377. rcu_assign_pointer(current->sighand, new_sigh);
  1378. new_sigh = sigh;
  1379. }
  1380. if (new_mm) {
  1381. mm = current->mm;
  1382. active_mm = current->active_mm;
  1383. current->mm = new_mm;
  1384. current->active_mm = new_mm;
  1385. activate_mm(active_mm, new_mm);
  1386. new_mm = mm;
  1387. }
  1388. if (new_fd) {
  1389. fd = current->files;
  1390. current->files = new_fd;
  1391. new_fd = fd;
  1392. }
  1393. task_unlock(current);
  1394. }
  1395. bad_unshare_cleanup_fd:
  1396. if (new_fd)
  1397. put_files_struct(new_fd);
  1398. bad_unshare_cleanup_vm:
  1399. if (new_mm)
  1400. mmput(new_mm);
  1401. bad_unshare_cleanup_sigh:
  1402. if (new_sigh)
  1403. if (atomic_dec_and_test(&new_sigh->count))
  1404. kmem_cache_free(sighand_cachep, new_sigh);
  1405. bad_unshare_cleanup_ns:
  1406. if (new_ns)
  1407. put_namespace(new_ns);
  1408. bad_unshare_cleanup_fs:
  1409. if (new_fs)
  1410. put_fs_struct(new_fs);
  1411. bad_unshare_cleanup_thread:
  1412. bad_unshare_out:
  1413. return err;
  1414. }