inode.c 99 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443
  1. /*
  2. * linux/fs/ext4/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext4_jbd2.h>
  28. #include <linux/jbd2.h>
  29. #include <linux/highuid.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/quotaops.h>
  32. #include <linux/string.h>
  33. #include <linux/buffer_head.h>
  34. #include <linux/writeback.h>
  35. #include <linux/mpage.h>
  36. #include <linux/uio.h>
  37. #include <linux/bio.h>
  38. #include "xattr.h"
  39. #include "acl.h"
  40. /*
  41. * Test whether an inode is a fast symlink.
  42. */
  43. static int ext4_inode_is_fast_symlink(struct inode *inode)
  44. {
  45. int ea_blocks = EXT4_I(inode)->i_file_acl ?
  46. (inode->i_sb->s_blocksize >> 9) : 0;
  47. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  48. }
  49. /*
  50. * The ext4 forget function must perform a revoke if we are freeing data
  51. * which has been journaled. Metadata (eg. indirect blocks) must be
  52. * revoked in all cases.
  53. *
  54. * "bh" may be NULL: a metadata block may have been freed from memory
  55. * but there may still be a record of it in the journal, and that record
  56. * still needs to be revoked.
  57. */
  58. int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
  59. struct buffer_head *bh, ext4_fsblk_t blocknr)
  60. {
  61. int err;
  62. might_sleep();
  63. BUFFER_TRACE(bh, "enter");
  64. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  65. "data mode %lx\n",
  66. bh, is_metadata, inode->i_mode,
  67. test_opt(inode->i_sb, DATA_FLAGS));
  68. /* Never use the revoke function if we are doing full data
  69. * journaling: there is no need to, and a V1 superblock won't
  70. * support it. Otherwise, only skip the revoke on un-journaled
  71. * data blocks. */
  72. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
  73. (!is_metadata && !ext4_should_journal_data(inode))) {
  74. if (bh) {
  75. BUFFER_TRACE(bh, "call jbd2_journal_forget");
  76. return ext4_journal_forget(handle, bh);
  77. }
  78. return 0;
  79. }
  80. /*
  81. * data!=journal && (is_metadata || should_journal_data(inode))
  82. */
  83. BUFFER_TRACE(bh, "call ext4_journal_revoke");
  84. err = ext4_journal_revoke(handle, blocknr, bh);
  85. if (err)
  86. ext4_abort(inode->i_sb, __FUNCTION__,
  87. "error %d when attempting revoke", err);
  88. BUFFER_TRACE(bh, "exit");
  89. return err;
  90. }
  91. /*
  92. * Work out how many blocks we need to proceed with the next chunk of a
  93. * truncate transaction.
  94. */
  95. static unsigned long blocks_for_truncate(struct inode *inode)
  96. {
  97. ext4_lblk_t needed;
  98. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  99. /* Give ourselves just enough room to cope with inodes in which
  100. * i_blocks is corrupt: we've seen disk corruptions in the past
  101. * which resulted in random data in an inode which looked enough
  102. * like a regular file for ext4 to try to delete it. Things
  103. * will go a bit crazy if that happens, but at least we should
  104. * try not to panic the whole kernel. */
  105. if (needed < 2)
  106. needed = 2;
  107. /* But we need to bound the transaction so we don't overflow the
  108. * journal. */
  109. if (needed > EXT4_MAX_TRANS_DATA)
  110. needed = EXT4_MAX_TRANS_DATA;
  111. return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  112. }
  113. /*
  114. * Truncate transactions can be complex and absolutely huge. So we need to
  115. * be able to restart the transaction at a conventient checkpoint to make
  116. * sure we don't overflow the journal.
  117. *
  118. * start_transaction gets us a new handle for a truncate transaction,
  119. * and extend_transaction tries to extend the existing one a bit. If
  120. * extend fails, we need to propagate the failure up and restart the
  121. * transaction in the top-level truncate loop. --sct
  122. */
  123. static handle_t *start_transaction(struct inode *inode)
  124. {
  125. handle_t *result;
  126. result = ext4_journal_start(inode, blocks_for_truncate(inode));
  127. if (!IS_ERR(result))
  128. return result;
  129. ext4_std_error(inode->i_sb, PTR_ERR(result));
  130. return result;
  131. }
  132. /*
  133. * Try to extend this transaction for the purposes of truncation.
  134. *
  135. * Returns 0 if we managed to create more room. If we can't create more
  136. * room, and the transaction must be restarted we return 1.
  137. */
  138. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  139. {
  140. if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
  141. return 0;
  142. if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
  143. return 0;
  144. return 1;
  145. }
  146. /*
  147. * Restart the transaction associated with *handle. This does a commit,
  148. * so before we call here everything must be consistently dirtied against
  149. * this transaction.
  150. */
  151. static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
  152. {
  153. jbd_debug(2, "restarting handle %p\n", handle);
  154. return ext4_journal_restart(handle, blocks_for_truncate(inode));
  155. }
  156. /*
  157. * Called at the last iput() if i_nlink is zero.
  158. */
  159. void ext4_delete_inode (struct inode * inode)
  160. {
  161. handle_t *handle;
  162. truncate_inode_pages(&inode->i_data, 0);
  163. if (is_bad_inode(inode))
  164. goto no_delete;
  165. handle = start_transaction(inode);
  166. if (IS_ERR(handle)) {
  167. /*
  168. * If we're going to skip the normal cleanup, we still need to
  169. * make sure that the in-core orphan linked list is properly
  170. * cleaned up.
  171. */
  172. ext4_orphan_del(NULL, inode);
  173. goto no_delete;
  174. }
  175. if (IS_SYNC(inode))
  176. handle->h_sync = 1;
  177. inode->i_size = 0;
  178. if (inode->i_blocks)
  179. ext4_truncate(inode);
  180. /*
  181. * Kill off the orphan record which ext4_truncate created.
  182. * AKPM: I think this can be inside the above `if'.
  183. * Note that ext4_orphan_del() has to be able to cope with the
  184. * deletion of a non-existent orphan - this is because we don't
  185. * know if ext4_truncate() actually created an orphan record.
  186. * (Well, we could do this if we need to, but heck - it works)
  187. */
  188. ext4_orphan_del(handle, inode);
  189. EXT4_I(inode)->i_dtime = get_seconds();
  190. /*
  191. * One subtle ordering requirement: if anything has gone wrong
  192. * (transaction abort, IO errors, whatever), then we can still
  193. * do these next steps (the fs will already have been marked as
  194. * having errors), but we can't free the inode if the mark_dirty
  195. * fails.
  196. */
  197. if (ext4_mark_inode_dirty(handle, inode))
  198. /* If that failed, just do the required in-core inode clear. */
  199. clear_inode(inode);
  200. else
  201. ext4_free_inode(handle, inode);
  202. ext4_journal_stop(handle);
  203. return;
  204. no_delete:
  205. clear_inode(inode); /* We must guarantee clearing of inode... */
  206. }
  207. typedef struct {
  208. __le32 *p;
  209. __le32 key;
  210. struct buffer_head *bh;
  211. } Indirect;
  212. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  213. {
  214. p->key = *(p->p = v);
  215. p->bh = bh;
  216. }
  217. /**
  218. * ext4_block_to_path - parse the block number into array of offsets
  219. * @inode: inode in question (we are only interested in its superblock)
  220. * @i_block: block number to be parsed
  221. * @offsets: array to store the offsets in
  222. * @boundary: set this non-zero if the referred-to block is likely to be
  223. * followed (on disk) by an indirect block.
  224. *
  225. * To store the locations of file's data ext4 uses a data structure common
  226. * for UNIX filesystems - tree of pointers anchored in the inode, with
  227. * data blocks at leaves and indirect blocks in intermediate nodes.
  228. * This function translates the block number into path in that tree -
  229. * return value is the path length and @offsets[n] is the offset of
  230. * pointer to (n+1)th node in the nth one. If @block is out of range
  231. * (negative or too large) warning is printed and zero returned.
  232. *
  233. * Note: function doesn't find node addresses, so no IO is needed. All
  234. * we need to know is the capacity of indirect blocks (taken from the
  235. * inode->i_sb).
  236. */
  237. /*
  238. * Portability note: the last comparison (check that we fit into triple
  239. * indirect block) is spelled differently, because otherwise on an
  240. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  241. * if our filesystem had 8Kb blocks. We might use long long, but that would
  242. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  243. * i_block would have to be negative in the very beginning, so we would not
  244. * get there at all.
  245. */
  246. static int ext4_block_to_path(struct inode *inode,
  247. ext4_lblk_t i_block,
  248. ext4_lblk_t offsets[4], int *boundary)
  249. {
  250. int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  251. int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  252. const long direct_blocks = EXT4_NDIR_BLOCKS,
  253. indirect_blocks = ptrs,
  254. double_blocks = (1 << (ptrs_bits * 2));
  255. int n = 0;
  256. int final = 0;
  257. if (i_block < 0) {
  258. ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
  259. } else if (i_block < direct_blocks) {
  260. offsets[n++] = i_block;
  261. final = direct_blocks;
  262. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  263. offsets[n++] = EXT4_IND_BLOCK;
  264. offsets[n++] = i_block;
  265. final = ptrs;
  266. } else if ((i_block -= indirect_blocks) < double_blocks) {
  267. offsets[n++] = EXT4_DIND_BLOCK;
  268. offsets[n++] = i_block >> ptrs_bits;
  269. offsets[n++] = i_block & (ptrs - 1);
  270. final = ptrs;
  271. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  272. offsets[n++] = EXT4_TIND_BLOCK;
  273. offsets[n++] = i_block >> (ptrs_bits * 2);
  274. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  275. offsets[n++] = i_block & (ptrs - 1);
  276. final = ptrs;
  277. } else {
  278. ext4_warning(inode->i_sb, "ext4_block_to_path",
  279. "block %lu > max",
  280. i_block + direct_blocks +
  281. indirect_blocks + double_blocks);
  282. }
  283. if (boundary)
  284. *boundary = final - 1 - (i_block & (ptrs - 1));
  285. return n;
  286. }
  287. /**
  288. * ext4_get_branch - read the chain of indirect blocks leading to data
  289. * @inode: inode in question
  290. * @depth: depth of the chain (1 - direct pointer, etc.)
  291. * @offsets: offsets of pointers in inode/indirect blocks
  292. * @chain: place to store the result
  293. * @err: here we store the error value
  294. *
  295. * Function fills the array of triples <key, p, bh> and returns %NULL
  296. * if everything went OK or the pointer to the last filled triple
  297. * (incomplete one) otherwise. Upon the return chain[i].key contains
  298. * the number of (i+1)-th block in the chain (as it is stored in memory,
  299. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  300. * number (it points into struct inode for i==0 and into the bh->b_data
  301. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  302. * block for i>0 and NULL for i==0. In other words, it holds the block
  303. * numbers of the chain, addresses they were taken from (and where we can
  304. * verify that chain did not change) and buffer_heads hosting these
  305. * numbers.
  306. *
  307. * Function stops when it stumbles upon zero pointer (absent block)
  308. * (pointer to last triple returned, *@err == 0)
  309. * or when it gets an IO error reading an indirect block
  310. * (ditto, *@err == -EIO)
  311. * or when it reads all @depth-1 indirect blocks successfully and finds
  312. * the whole chain, all way to the data (returns %NULL, *err == 0).
  313. *
  314. * Need to be called with
  315. * down_read(&EXT4_I(inode)->i_data_sem)
  316. */
  317. static Indirect *ext4_get_branch(struct inode *inode, int depth,
  318. ext4_lblk_t *offsets,
  319. Indirect chain[4], int *err)
  320. {
  321. struct super_block *sb = inode->i_sb;
  322. Indirect *p = chain;
  323. struct buffer_head *bh;
  324. *err = 0;
  325. /* i_data is not going away, no lock needed */
  326. add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
  327. if (!p->key)
  328. goto no_block;
  329. while (--depth) {
  330. bh = sb_bread(sb, le32_to_cpu(p->key));
  331. if (!bh)
  332. goto failure;
  333. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  334. /* Reader: end */
  335. if (!p->key)
  336. goto no_block;
  337. }
  338. return NULL;
  339. failure:
  340. *err = -EIO;
  341. no_block:
  342. return p;
  343. }
  344. /**
  345. * ext4_find_near - find a place for allocation with sufficient locality
  346. * @inode: owner
  347. * @ind: descriptor of indirect block.
  348. *
  349. * This function returns the prefered place for block allocation.
  350. * It is used when heuristic for sequential allocation fails.
  351. * Rules are:
  352. * + if there is a block to the left of our position - allocate near it.
  353. * + if pointer will live in indirect block - allocate near that block.
  354. * + if pointer will live in inode - allocate in the same
  355. * cylinder group.
  356. *
  357. * In the latter case we colour the starting block by the callers PID to
  358. * prevent it from clashing with concurrent allocations for a different inode
  359. * in the same block group. The PID is used here so that functionally related
  360. * files will be close-by on-disk.
  361. *
  362. * Caller must make sure that @ind is valid and will stay that way.
  363. */
  364. static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
  365. {
  366. struct ext4_inode_info *ei = EXT4_I(inode);
  367. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  368. __le32 *p;
  369. ext4_fsblk_t bg_start;
  370. ext4_grpblk_t colour;
  371. /* Try to find previous block */
  372. for (p = ind->p - 1; p >= start; p--) {
  373. if (*p)
  374. return le32_to_cpu(*p);
  375. }
  376. /* No such thing, so let's try location of indirect block */
  377. if (ind->bh)
  378. return ind->bh->b_blocknr;
  379. /*
  380. * It is going to be referred to from the inode itself? OK, just put it
  381. * into the same cylinder group then.
  382. */
  383. bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
  384. colour = (current->pid % 16) *
  385. (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  386. return bg_start + colour;
  387. }
  388. /**
  389. * ext4_find_goal - find a prefered place for allocation.
  390. * @inode: owner
  391. * @block: block we want
  392. * @chain: chain of indirect blocks
  393. * @partial: pointer to the last triple within a chain
  394. * @goal: place to store the result.
  395. *
  396. * Normally this function find the prefered place for block allocation,
  397. * stores it in *@goal and returns zero.
  398. */
  399. static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
  400. Indirect chain[4], Indirect *partial)
  401. {
  402. struct ext4_block_alloc_info *block_i;
  403. block_i = EXT4_I(inode)->i_block_alloc_info;
  404. /*
  405. * try the heuristic for sequential allocation,
  406. * failing that at least try to get decent locality.
  407. */
  408. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  409. && (block_i->last_alloc_physical_block != 0)) {
  410. return block_i->last_alloc_physical_block + 1;
  411. }
  412. return ext4_find_near(inode, partial);
  413. }
  414. /**
  415. * ext4_blks_to_allocate: Look up the block map and count the number
  416. * of direct blocks need to be allocated for the given branch.
  417. *
  418. * @branch: chain of indirect blocks
  419. * @k: number of blocks need for indirect blocks
  420. * @blks: number of data blocks to be mapped.
  421. * @blocks_to_boundary: the offset in the indirect block
  422. *
  423. * return the total number of blocks to be allocate, including the
  424. * direct and indirect blocks.
  425. */
  426. static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  427. int blocks_to_boundary)
  428. {
  429. unsigned long count = 0;
  430. /*
  431. * Simple case, [t,d]Indirect block(s) has not allocated yet
  432. * then it's clear blocks on that path have not allocated
  433. */
  434. if (k > 0) {
  435. /* right now we don't handle cross boundary allocation */
  436. if (blks < blocks_to_boundary + 1)
  437. count += blks;
  438. else
  439. count += blocks_to_boundary + 1;
  440. return count;
  441. }
  442. count++;
  443. while (count < blks && count <= blocks_to_boundary &&
  444. le32_to_cpu(*(branch[0].p + count)) == 0) {
  445. count++;
  446. }
  447. return count;
  448. }
  449. /**
  450. * ext4_alloc_blocks: multiple allocate blocks needed for a branch
  451. * @indirect_blks: the number of blocks need to allocate for indirect
  452. * blocks
  453. *
  454. * @new_blocks: on return it will store the new block numbers for
  455. * the indirect blocks(if needed) and the first direct block,
  456. * @blks: on return it will store the total number of allocated
  457. * direct blocks
  458. */
  459. static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
  460. ext4_fsblk_t goal, int indirect_blks, int blks,
  461. ext4_fsblk_t new_blocks[4], int *err)
  462. {
  463. int target, i;
  464. unsigned long count = 0;
  465. int index = 0;
  466. ext4_fsblk_t current_block = 0;
  467. int ret = 0;
  468. /*
  469. * Here we try to allocate the requested multiple blocks at once,
  470. * on a best-effort basis.
  471. * To build a branch, we should allocate blocks for
  472. * the indirect blocks(if not allocated yet), and at least
  473. * the first direct block of this branch. That's the
  474. * minimum number of blocks need to allocate(required)
  475. */
  476. target = blks + indirect_blks;
  477. while (1) {
  478. count = target;
  479. /* allocating blocks for indirect blocks and direct blocks */
  480. current_block = ext4_new_blocks(handle,inode,goal,&count,err);
  481. if (*err)
  482. goto failed_out;
  483. target -= count;
  484. /* allocate blocks for indirect blocks */
  485. while (index < indirect_blks && count) {
  486. new_blocks[index++] = current_block++;
  487. count--;
  488. }
  489. if (count > 0)
  490. break;
  491. }
  492. /* save the new block number for the first direct block */
  493. new_blocks[index] = current_block;
  494. /* total number of blocks allocated for direct blocks */
  495. ret = count;
  496. *err = 0;
  497. return ret;
  498. failed_out:
  499. for (i = 0; i <index; i++)
  500. ext4_free_blocks(handle, inode, new_blocks[i], 1);
  501. return ret;
  502. }
  503. /**
  504. * ext4_alloc_branch - allocate and set up a chain of blocks.
  505. * @inode: owner
  506. * @indirect_blks: number of allocated indirect blocks
  507. * @blks: number of allocated direct blocks
  508. * @offsets: offsets (in the blocks) to store the pointers to next.
  509. * @branch: place to store the chain in.
  510. *
  511. * This function allocates blocks, zeroes out all but the last one,
  512. * links them into chain and (if we are synchronous) writes them to disk.
  513. * In other words, it prepares a branch that can be spliced onto the
  514. * inode. It stores the information about that chain in the branch[], in
  515. * the same format as ext4_get_branch() would do. We are calling it after
  516. * we had read the existing part of chain and partial points to the last
  517. * triple of that (one with zero ->key). Upon the exit we have the same
  518. * picture as after the successful ext4_get_block(), except that in one
  519. * place chain is disconnected - *branch->p is still zero (we did not
  520. * set the last link), but branch->key contains the number that should
  521. * be placed into *branch->p to fill that gap.
  522. *
  523. * If allocation fails we free all blocks we've allocated (and forget
  524. * their buffer_heads) and return the error value the from failed
  525. * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  526. * as described above and return 0.
  527. */
  528. static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
  529. int indirect_blks, int *blks, ext4_fsblk_t goal,
  530. ext4_lblk_t *offsets, Indirect *branch)
  531. {
  532. int blocksize = inode->i_sb->s_blocksize;
  533. int i, n = 0;
  534. int err = 0;
  535. struct buffer_head *bh;
  536. int num;
  537. ext4_fsblk_t new_blocks[4];
  538. ext4_fsblk_t current_block;
  539. num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
  540. *blks, new_blocks, &err);
  541. if (err)
  542. return err;
  543. branch[0].key = cpu_to_le32(new_blocks[0]);
  544. /*
  545. * metadata blocks and data blocks are allocated.
  546. */
  547. for (n = 1; n <= indirect_blks; n++) {
  548. /*
  549. * Get buffer_head for parent block, zero it out
  550. * and set the pointer to new one, then send
  551. * parent to disk.
  552. */
  553. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  554. branch[n].bh = bh;
  555. lock_buffer(bh);
  556. BUFFER_TRACE(bh, "call get_create_access");
  557. err = ext4_journal_get_create_access(handle, bh);
  558. if (err) {
  559. unlock_buffer(bh);
  560. brelse(bh);
  561. goto failed;
  562. }
  563. memset(bh->b_data, 0, blocksize);
  564. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  565. branch[n].key = cpu_to_le32(new_blocks[n]);
  566. *branch[n].p = branch[n].key;
  567. if ( n == indirect_blks) {
  568. current_block = new_blocks[n];
  569. /*
  570. * End of chain, update the last new metablock of
  571. * the chain to point to the new allocated
  572. * data blocks numbers
  573. */
  574. for (i=1; i < num; i++)
  575. *(branch[n].p + i) = cpu_to_le32(++current_block);
  576. }
  577. BUFFER_TRACE(bh, "marking uptodate");
  578. set_buffer_uptodate(bh);
  579. unlock_buffer(bh);
  580. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  581. err = ext4_journal_dirty_metadata(handle, bh);
  582. if (err)
  583. goto failed;
  584. }
  585. *blks = num;
  586. return err;
  587. failed:
  588. /* Allocation failed, free what we already allocated */
  589. for (i = 1; i <= n ; i++) {
  590. BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
  591. ext4_journal_forget(handle, branch[i].bh);
  592. }
  593. for (i = 0; i <indirect_blks; i++)
  594. ext4_free_blocks(handle, inode, new_blocks[i], 1);
  595. ext4_free_blocks(handle, inode, new_blocks[i], num);
  596. return err;
  597. }
  598. /**
  599. * ext4_splice_branch - splice the allocated branch onto inode.
  600. * @inode: owner
  601. * @block: (logical) number of block we are adding
  602. * @chain: chain of indirect blocks (with a missing link - see
  603. * ext4_alloc_branch)
  604. * @where: location of missing link
  605. * @num: number of indirect blocks we are adding
  606. * @blks: number of direct blocks we are adding
  607. *
  608. * This function fills the missing link and does all housekeeping needed in
  609. * inode (->i_blocks, etc.). In case of success we end up with the full
  610. * chain to new block and return 0.
  611. */
  612. static int ext4_splice_branch(handle_t *handle, struct inode *inode,
  613. ext4_lblk_t block, Indirect *where, int num, int blks)
  614. {
  615. int i;
  616. int err = 0;
  617. struct ext4_block_alloc_info *block_i;
  618. ext4_fsblk_t current_block;
  619. block_i = EXT4_I(inode)->i_block_alloc_info;
  620. /*
  621. * If we're splicing into a [td]indirect block (as opposed to the
  622. * inode) then we need to get write access to the [td]indirect block
  623. * before the splice.
  624. */
  625. if (where->bh) {
  626. BUFFER_TRACE(where->bh, "get_write_access");
  627. err = ext4_journal_get_write_access(handle, where->bh);
  628. if (err)
  629. goto err_out;
  630. }
  631. /* That's it */
  632. *where->p = where->key;
  633. /*
  634. * Update the host buffer_head or inode to point to more just allocated
  635. * direct blocks blocks
  636. */
  637. if (num == 0 && blks > 1) {
  638. current_block = le32_to_cpu(where->key) + 1;
  639. for (i = 1; i < blks; i++)
  640. *(where->p + i ) = cpu_to_le32(current_block++);
  641. }
  642. /*
  643. * update the most recently allocated logical & physical block
  644. * in i_block_alloc_info, to assist find the proper goal block for next
  645. * allocation
  646. */
  647. if (block_i) {
  648. block_i->last_alloc_logical_block = block + blks - 1;
  649. block_i->last_alloc_physical_block =
  650. le32_to_cpu(where[num].key) + blks - 1;
  651. }
  652. /* We are done with atomic stuff, now do the rest of housekeeping */
  653. inode->i_ctime = ext4_current_time(inode);
  654. ext4_mark_inode_dirty(handle, inode);
  655. /* had we spliced it onto indirect block? */
  656. if (where->bh) {
  657. /*
  658. * If we spliced it onto an indirect block, we haven't
  659. * altered the inode. Note however that if it is being spliced
  660. * onto an indirect block at the very end of the file (the
  661. * file is growing) then we *will* alter the inode to reflect
  662. * the new i_size. But that is not done here - it is done in
  663. * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
  664. */
  665. jbd_debug(5, "splicing indirect only\n");
  666. BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
  667. err = ext4_journal_dirty_metadata(handle, where->bh);
  668. if (err)
  669. goto err_out;
  670. } else {
  671. /*
  672. * OK, we spliced it into the inode itself on a direct block.
  673. * Inode was dirtied above.
  674. */
  675. jbd_debug(5, "splicing direct\n");
  676. }
  677. return err;
  678. err_out:
  679. for (i = 1; i <= num; i++) {
  680. BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
  681. ext4_journal_forget(handle, where[i].bh);
  682. ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  683. }
  684. ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  685. return err;
  686. }
  687. /*
  688. * Allocation strategy is simple: if we have to allocate something, we will
  689. * have to go the whole way to leaf. So let's do it before attaching anything
  690. * to tree, set linkage between the newborn blocks, write them if sync is
  691. * required, recheck the path, free and repeat if check fails, otherwise
  692. * set the last missing link (that will protect us from any truncate-generated
  693. * removals - all blocks on the path are immune now) and possibly force the
  694. * write on the parent block.
  695. * That has a nice additional property: no special recovery from the failed
  696. * allocations is needed - we simply release blocks and do not touch anything
  697. * reachable from inode.
  698. *
  699. * `handle' can be NULL if create == 0.
  700. *
  701. * The BKL may not be held on entry here. Be sure to take it early.
  702. * return > 0, # of blocks mapped or allocated.
  703. * return = 0, if plain lookup failed.
  704. * return < 0, error case.
  705. *
  706. *
  707. * Need to be called with
  708. * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
  709. * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
  710. */
  711. int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
  712. ext4_lblk_t iblock, unsigned long maxblocks,
  713. struct buffer_head *bh_result,
  714. int create, int extend_disksize)
  715. {
  716. int err = -EIO;
  717. ext4_lblk_t offsets[4];
  718. Indirect chain[4];
  719. Indirect *partial;
  720. ext4_fsblk_t goal;
  721. int indirect_blks;
  722. int blocks_to_boundary = 0;
  723. int depth;
  724. struct ext4_inode_info *ei = EXT4_I(inode);
  725. int count = 0;
  726. ext4_fsblk_t first_block = 0;
  727. J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
  728. J_ASSERT(handle != NULL || create == 0);
  729. depth = ext4_block_to_path(inode, iblock, offsets,
  730. &blocks_to_boundary);
  731. if (depth == 0)
  732. goto out;
  733. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  734. /* Simplest case - block found, no allocation needed */
  735. if (!partial) {
  736. first_block = le32_to_cpu(chain[depth - 1].key);
  737. clear_buffer_new(bh_result);
  738. count++;
  739. /*map more blocks*/
  740. while (count < maxblocks && count <= blocks_to_boundary) {
  741. ext4_fsblk_t blk;
  742. blk = le32_to_cpu(*(chain[depth-1].p + count));
  743. if (blk == first_block + count)
  744. count++;
  745. else
  746. break;
  747. }
  748. goto got_it;
  749. }
  750. /* Next simple case - plain lookup or failed read of indirect block */
  751. if (!create || err == -EIO)
  752. goto cleanup;
  753. /*
  754. * Okay, we need to do block allocation. Lazily initialize the block
  755. * allocation info here if necessary
  756. */
  757. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  758. ext4_init_block_alloc_info(inode);
  759. goal = ext4_find_goal(inode, iblock, chain, partial);
  760. /* the number of blocks need to allocate for [d,t]indirect blocks */
  761. indirect_blks = (chain + depth) - partial - 1;
  762. /*
  763. * Next look up the indirect map to count the totoal number of
  764. * direct blocks to allocate for this branch.
  765. */
  766. count = ext4_blks_to_allocate(partial, indirect_blks,
  767. maxblocks, blocks_to_boundary);
  768. /*
  769. * Block out ext4_truncate while we alter the tree
  770. */
  771. err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
  772. offsets + (partial - chain), partial);
  773. /*
  774. * The ext4_splice_branch call will free and forget any buffers
  775. * on the new chain if there is a failure, but that risks using
  776. * up transaction credits, especially for bitmaps where the
  777. * credits cannot be returned. Can we handle this somehow? We
  778. * may need to return -EAGAIN upwards in the worst case. --sct
  779. */
  780. if (!err)
  781. err = ext4_splice_branch(handle, inode, iblock,
  782. partial, indirect_blks, count);
  783. /*
  784. * i_disksize growing is protected by i_data_sem. Don't forget to
  785. * protect it if you're about to implement concurrent
  786. * ext4_get_block() -bzzz
  787. */
  788. if (!err && extend_disksize && inode->i_size > ei->i_disksize)
  789. ei->i_disksize = inode->i_size;
  790. if (err)
  791. goto cleanup;
  792. set_buffer_new(bh_result);
  793. got_it:
  794. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  795. if (count > blocks_to_boundary)
  796. set_buffer_boundary(bh_result);
  797. err = count;
  798. /* Clean up and exit */
  799. partial = chain + depth - 1; /* the whole chain */
  800. cleanup:
  801. while (partial > chain) {
  802. BUFFER_TRACE(partial->bh, "call brelse");
  803. brelse(partial->bh);
  804. partial--;
  805. }
  806. BUFFER_TRACE(bh_result, "returned");
  807. out:
  808. return err;
  809. }
  810. #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
  811. int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
  812. unsigned long max_blocks, struct buffer_head *bh,
  813. int create, int extend_disksize)
  814. {
  815. int retval;
  816. /*
  817. * Try to see if we can get the block without requesting
  818. * for new file system block.
  819. */
  820. down_read((&EXT4_I(inode)->i_data_sem));
  821. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  822. retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
  823. bh, 0, 0);
  824. } else {
  825. retval = ext4_get_blocks_handle(handle,
  826. inode, block, max_blocks, bh, 0, 0);
  827. }
  828. up_read((&EXT4_I(inode)->i_data_sem));
  829. if (!create || (retval > 0))
  830. return retval;
  831. /*
  832. * We need to allocate new blocks which will result
  833. * in i_data update
  834. */
  835. down_write((&EXT4_I(inode)->i_data_sem));
  836. /*
  837. * We need to check for EXT4 here because migrate
  838. * could have changed the inode type in between
  839. */
  840. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  841. retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
  842. bh, create, extend_disksize);
  843. } else {
  844. retval = ext4_get_blocks_handle(handle, inode, block,
  845. max_blocks, bh, create, extend_disksize);
  846. }
  847. up_write((&EXT4_I(inode)->i_data_sem));
  848. return retval;
  849. }
  850. static int ext4_get_block(struct inode *inode, sector_t iblock,
  851. struct buffer_head *bh_result, int create)
  852. {
  853. handle_t *handle = ext4_journal_current_handle();
  854. int ret = 0;
  855. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  856. if (!create)
  857. goto get_block; /* A read */
  858. if (max_blocks == 1)
  859. goto get_block; /* A single block get */
  860. if (handle->h_transaction->t_state == T_LOCKED) {
  861. /*
  862. * Huge direct-io writes can hold off commits for long
  863. * periods of time. Let this commit run.
  864. */
  865. ext4_journal_stop(handle);
  866. handle = ext4_journal_start(inode, DIO_CREDITS);
  867. if (IS_ERR(handle))
  868. ret = PTR_ERR(handle);
  869. goto get_block;
  870. }
  871. if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
  872. /*
  873. * Getting low on buffer credits...
  874. */
  875. ret = ext4_journal_extend(handle, DIO_CREDITS);
  876. if (ret > 0) {
  877. /*
  878. * Couldn't extend the transaction. Start a new one.
  879. */
  880. ret = ext4_journal_restart(handle, DIO_CREDITS);
  881. }
  882. }
  883. get_block:
  884. if (ret == 0) {
  885. ret = ext4_get_blocks_wrap(handle, inode, iblock,
  886. max_blocks, bh_result, create, 0);
  887. if (ret > 0) {
  888. bh_result->b_size = (ret << inode->i_blkbits);
  889. ret = 0;
  890. }
  891. }
  892. return ret;
  893. }
  894. /*
  895. * `handle' can be NULL if create is zero
  896. */
  897. struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
  898. ext4_lblk_t block, int create, int *errp)
  899. {
  900. struct buffer_head dummy;
  901. int fatal = 0, err;
  902. J_ASSERT(handle != NULL || create == 0);
  903. dummy.b_state = 0;
  904. dummy.b_blocknr = -1000;
  905. buffer_trace_init(&dummy.b_history);
  906. err = ext4_get_blocks_wrap(handle, inode, block, 1,
  907. &dummy, create, 1);
  908. /*
  909. * ext4_get_blocks_handle() returns number of blocks
  910. * mapped. 0 in case of a HOLE.
  911. */
  912. if (err > 0) {
  913. if (err > 1)
  914. WARN_ON(1);
  915. err = 0;
  916. }
  917. *errp = err;
  918. if (!err && buffer_mapped(&dummy)) {
  919. struct buffer_head *bh;
  920. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  921. if (!bh) {
  922. *errp = -EIO;
  923. goto err;
  924. }
  925. if (buffer_new(&dummy)) {
  926. J_ASSERT(create != 0);
  927. J_ASSERT(handle != NULL);
  928. /*
  929. * Now that we do not always journal data, we should
  930. * keep in mind whether this should always journal the
  931. * new buffer as metadata. For now, regular file
  932. * writes use ext4_get_block instead, so it's not a
  933. * problem.
  934. */
  935. lock_buffer(bh);
  936. BUFFER_TRACE(bh, "call get_create_access");
  937. fatal = ext4_journal_get_create_access(handle, bh);
  938. if (!fatal && !buffer_uptodate(bh)) {
  939. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  940. set_buffer_uptodate(bh);
  941. }
  942. unlock_buffer(bh);
  943. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  944. err = ext4_journal_dirty_metadata(handle, bh);
  945. if (!fatal)
  946. fatal = err;
  947. } else {
  948. BUFFER_TRACE(bh, "not a new buffer");
  949. }
  950. if (fatal) {
  951. *errp = fatal;
  952. brelse(bh);
  953. bh = NULL;
  954. }
  955. return bh;
  956. }
  957. err:
  958. return NULL;
  959. }
  960. struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
  961. ext4_lblk_t block, int create, int *err)
  962. {
  963. struct buffer_head * bh;
  964. bh = ext4_getblk(handle, inode, block, create, err);
  965. if (!bh)
  966. return bh;
  967. if (buffer_uptodate(bh))
  968. return bh;
  969. ll_rw_block(READ_META, 1, &bh);
  970. wait_on_buffer(bh);
  971. if (buffer_uptodate(bh))
  972. return bh;
  973. put_bh(bh);
  974. *err = -EIO;
  975. return NULL;
  976. }
  977. static int walk_page_buffers( handle_t *handle,
  978. struct buffer_head *head,
  979. unsigned from,
  980. unsigned to,
  981. int *partial,
  982. int (*fn)( handle_t *handle,
  983. struct buffer_head *bh))
  984. {
  985. struct buffer_head *bh;
  986. unsigned block_start, block_end;
  987. unsigned blocksize = head->b_size;
  988. int err, ret = 0;
  989. struct buffer_head *next;
  990. for ( bh = head, block_start = 0;
  991. ret == 0 && (bh != head || !block_start);
  992. block_start = block_end, bh = next)
  993. {
  994. next = bh->b_this_page;
  995. block_end = block_start + blocksize;
  996. if (block_end <= from || block_start >= to) {
  997. if (partial && !buffer_uptodate(bh))
  998. *partial = 1;
  999. continue;
  1000. }
  1001. err = (*fn)(handle, bh);
  1002. if (!ret)
  1003. ret = err;
  1004. }
  1005. return ret;
  1006. }
  1007. /*
  1008. * To preserve ordering, it is essential that the hole instantiation and
  1009. * the data write be encapsulated in a single transaction. We cannot
  1010. * close off a transaction and start a new one between the ext4_get_block()
  1011. * and the commit_write(). So doing the jbd2_journal_start at the start of
  1012. * prepare_write() is the right place.
  1013. *
  1014. * Also, this function can nest inside ext4_writepage() ->
  1015. * block_write_full_page(). In that case, we *know* that ext4_writepage()
  1016. * has generated enough buffer credits to do the whole page. So we won't
  1017. * block on the journal in that case, which is good, because the caller may
  1018. * be PF_MEMALLOC.
  1019. *
  1020. * By accident, ext4 can be reentered when a transaction is open via
  1021. * quota file writes. If we were to commit the transaction while thus
  1022. * reentered, there can be a deadlock - we would be holding a quota
  1023. * lock, and the commit would never complete if another thread had a
  1024. * transaction open and was blocking on the quota lock - a ranking
  1025. * violation.
  1026. *
  1027. * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
  1028. * will _not_ run commit under these circumstances because handle->h_ref
  1029. * is elevated. We'll still have enough credits for the tiny quotafile
  1030. * write.
  1031. */
  1032. static int do_journal_get_write_access(handle_t *handle,
  1033. struct buffer_head *bh)
  1034. {
  1035. if (!buffer_mapped(bh) || buffer_freed(bh))
  1036. return 0;
  1037. return ext4_journal_get_write_access(handle, bh);
  1038. }
  1039. static int ext4_write_begin(struct file *file, struct address_space *mapping,
  1040. loff_t pos, unsigned len, unsigned flags,
  1041. struct page **pagep, void **fsdata)
  1042. {
  1043. struct inode *inode = mapping->host;
  1044. int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
  1045. handle_t *handle;
  1046. int retries = 0;
  1047. struct page *page;
  1048. pgoff_t index;
  1049. unsigned from, to;
  1050. index = pos >> PAGE_CACHE_SHIFT;
  1051. from = pos & (PAGE_CACHE_SIZE - 1);
  1052. to = from + len;
  1053. retry:
  1054. page = __grab_cache_page(mapping, index);
  1055. if (!page)
  1056. return -ENOMEM;
  1057. *pagep = page;
  1058. handle = ext4_journal_start(inode, needed_blocks);
  1059. if (IS_ERR(handle)) {
  1060. unlock_page(page);
  1061. page_cache_release(page);
  1062. ret = PTR_ERR(handle);
  1063. goto out;
  1064. }
  1065. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1066. ext4_get_block);
  1067. if (!ret && ext4_should_journal_data(inode)) {
  1068. ret = walk_page_buffers(handle, page_buffers(page),
  1069. from, to, NULL, do_journal_get_write_access);
  1070. }
  1071. if (ret) {
  1072. ext4_journal_stop(handle);
  1073. unlock_page(page);
  1074. page_cache_release(page);
  1075. }
  1076. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  1077. goto retry;
  1078. out:
  1079. return ret;
  1080. }
  1081. int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1082. {
  1083. int err = jbd2_journal_dirty_data(handle, bh);
  1084. if (err)
  1085. ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
  1086. bh, handle, err);
  1087. return err;
  1088. }
  1089. /* For write_end() in data=journal mode */
  1090. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1091. {
  1092. if (!buffer_mapped(bh) || buffer_freed(bh))
  1093. return 0;
  1094. set_buffer_uptodate(bh);
  1095. return ext4_journal_dirty_metadata(handle, bh);
  1096. }
  1097. /*
  1098. * Generic write_end handler for ordered and writeback ext4 journal modes.
  1099. * We can't use generic_write_end, because that unlocks the page and we need to
  1100. * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
  1101. * after block_write_end.
  1102. */
  1103. static int ext4_generic_write_end(struct file *file,
  1104. struct address_space *mapping,
  1105. loff_t pos, unsigned len, unsigned copied,
  1106. struct page *page, void *fsdata)
  1107. {
  1108. struct inode *inode = file->f_mapping->host;
  1109. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1110. if (pos+copied > inode->i_size) {
  1111. i_size_write(inode, pos+copied);
  1112. mark_inode_dirty(inode);
  1113. }
  1114. return copied;
  1115. }
  1116. /*
  1117. * We need to pick up the new inode size which generic_commit_write gave us
  1118. * `file' can be NULL - eg, when called from page_symlink().
  1119. *
  1120. * ext4 never places buffers on inode->i_mapping->private_list. metadata
  1121. * buffers are managed internally.
  1122. */
  1123. static int ext4_ordered_write_end(struct file *file,
  1124. struct address_space *mapping,
  1125. loff_t pos, unsigned len, unsigned copied,
  1126. struct page *page, void *fsdata)
  1127. {
  1128. handle_t *handle = ext4_journal_current_handle();
  1129. struct inode *inode = file->f_mapping->host;
  1130. unsigned from, to;
  1131. int ret = 0, ret2;
  1132. from = pos & (PAGE_CACHE_SIZE - 1);
  1133. to = from + len;
  1134. ret = walk_page_buffers(handle, page_buffers(page),
  1135. from, to, NULL, ext4_journal_dirty_data);
  1136. if (ret == 0) {
  1137. /*
  1138. * generic_write_end() will run mark_inode_dirty() if i_size
  1139. * changes. So let's piggyback the i_disksize mark_inode_dirty
  1140. * into that.
  1141. */
  1142. loff_t new_i_size;
  1143. new_i_size = pos + copied;
  1144. if (new_i_size > EXT4_I(inode)->i_disksize)
  1145. EXT4_I(inode)->i_disksize = new_i_size;
  1146. copied = ext4_generic_write_end(file, mapping, pos, len, copied,
  1147. page, fsdata);
  1148. if (copied < 0)
  1149. ret = copied;
  1150. }
  1151. ret2 = ext4_journal_stop(handle);
  1152. if (!ret)
  1153. ret = ret2;
  1154. unlock_page(page);
  1155. page_cache_release(page);
  1156. return ret ? ret : copied;
  1157. }
  1158. static int ext4_writeback_write_end(struct file *file,
  1159. struct address_space *mapping,
  1160. loff_t pos, unsigned len, unsigned copied,
  1161. struct page *page, void *fsdata)
  1162. {
  1163. handle_t *handle = ext4_journal_current_handle();
  1164. struct inode *inode = file->f_mapping->host;
  1165. int ret = 0, ret2;
  1166. loff_t new_i_size;
  1167. new_i_size = pos + copied;
  1168. if (new_i_size > EXT4_I(inode)->i_disksize)
  1169. EXT4_I(inode)->i_disksize = new_i_size;
  1170. copied = ext4_generic_write_end(file, mapping, pos, len, copied,
  1171. page, fsdata);
  1172. if (copied < 0)
  1173. ret = copied;
  1174. ret2 = ext4_journal_stop(handle);
  1175. if (!ret)
  1176. ret = ret2;
  1177. unlock_page(page);
  1178. page_cache_release(page);
  1179. return ret ? ret : copied;
  1180. }
  1181. static int ext4_journalled_write_end(struct file *file,
  1182. struct address_space *mapping,
  1183. loff_t pos, unsigned len, unsigned copied,
  1184. struct page *page, void *fsdata)
  1185. {
  1186. handle_t *handle = ext4_journal_current_handle();
  1187. struct inode *inode = mapping->host;
  1188. int ret = 0, ret2;
  1189. int partial = 0;
  1190. unsigned from, to;
  1191. from = pos & (PAGE_CACHE_SIZE - 1);
  1192. to = from + len;
  1193. if (copied < len) {
  1194. if (!PageUptodate(page))
  1195. copied = 0;
  1196. page_zero_new_buffers(page, from+copied, to);
  1197. }
  1198. ret = walk_page_buffers(handle, page_buffers(page), from,
  1199. to, &partial, write_end_fn);
  1200. if (!partial)
  1201. SetPageUptodate(page);
  1202. if (pos+copied > inode->i_size)
  1203. i_size_write(inode, pos+copied);
  1204. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1205. if (inode->i_size > EXT4_I(inode)->i_disksize) {
  1206. EXT4_I(inode)->i_disksize = inode->i_size;
  1207. ret2 = ext4_mark_inode_dirty(handle, inode);
  1208. if (!ret)
  1209. ret = ret2;
  1210. }
  1211. ret2 = ext4_journal_stop(handle);
  1212. if (!ret)
  1213. ret = ret2;
  1214. unlock_page(page);
  1215. page_cache_release(page);
  1216. return ret ? ret : copied;
  1217. }
  1218. /*
  1219. * bmap() is special. It gets used by applications such as lilo and by
  1220. * the swapper to find the on-disk block of a specific piece of data.
  1221. *
  1222. * Naturally, this is dangerous if the block concerned is still in the
  1223. * journal. If somebody makes a swapfile on an ext4 data-journaling
  1224. * filesystem and enables swap, then they may get a nasty shock when the
  1225. * data getting swapped to that swapfile suddenly gets overwritten by
  1226. * the original zero's written out previously to the journal and
  1227. * awaiting writeback in the kernel's buffer cache.
  1228. *
  1229. * So, if we see any bmap calls here on a modified, data-journaled file,
  1230. * take extra steps to flush any blocks which might be in the cache.
  1231. */
  1232. static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
  1233. {
  1234. struct inode *inode = mapping->host;
  1235. journal_t *journal;
  1236. int err;
  1237. if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
  1238. /*
  1239. * This is a REALLY heavyweight approach, but the use of
  1240. * bmap on dirty files is expected to be extremely rare:
  1241. * only if we run lilo or swapon on a freshly made file
  1242. * do we expect this to happen.
  1243. *
  1244. * (bmap requires CAP_SYS_RAWIO so this does not
  1245. * represent an unprivileged user DOS attack --- we'd be
  1246. * in trouble if mortal users could trigger this path at
  1247. * will.)
  1248. *
  1249. * NB. EXT4_STATE_JDATA is not set on files other than
  1250. * regular files. If somebody wants to bmap a directory
  1251. * or symlink and gets confused because the buffer
  1252. * hasn't yet been flushed to disk, they deserve
  1253. * everything they get.
  1254. */
  1255. EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
  1256. journal = EXT4_JOURNAL(inode);
  1257. jbd2_journal_lock_updates(journal);
  1258. err = jbd2_journal_flush(journal);
  1259. jbd2_journal_unlock_updates(journal);
  1260. if (err)
  1261. return 0;
  1262. }
  1263. return generic_block_bmap(mapping,block,ext4_get_block);
  1264. }
  1265. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1266. {
  1267. get_bh(bh);
  1268. return 0;
  1269. }
  1270. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1271. {
  1272. put_bh(bh);
  1273. return 0;
  1274. }
  1275. static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1276. {
  1277. if (buffer_mapped(bh))
  1278. return ext4_journal_dirty_data(handle, bh);
  1279. return 0;
  1280. }
  1281. /*
  1282. * Note that we always start a transaction even if we're not journalling
  1283. * data. This is to preserve ordering: any hole instantiation within
  1284. * __block_write_full_page -> ext4_get_block() should be journalled
  1285. * along with the data so we don't crash and then get metadata which
  1286. * refers to old data.
  1287. *
  1288. * In all journalling modes block_write_full_page() will start the I/O.
  1289. *
  1290. * Problem:
  1291. *
  1292. * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1293. * ext4_writepage()
  1294. *
  1295. * Similar for:
  1296. *
  1297. * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1298. *
  1299. * Same applies to ext4_get_block(). We will deadlock on various things like
  1300. * lock_journal and i_data_sem
  1301. *
  1302. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1303. * allocations fail.
  1304. *
  1305. * 16May01: If we're reentered then journal_current_handle() will be
  1306. * non-zero. We simply *return*.
  1307. *
  1308. * 1 July 2001: @@@ FIXME:
  1309. * In journalled data mode, a data buffer may be metadata against the
  1310. * current transaction. But the same file is part of a shared mapping
  1311. * and someone does a writepage() on it.
  1312. *
  1313. * We will move the buffer onto the async_data list, but *after* it has
  1314. * been dirtied. So there's a small window where we have dirty data on
  1315. * BJ_Metadata.
  1316. *
  1317. * Note that this only applies to the last partial page in the file. The
  1318. * bit which block_write_full_page() uses prepare/commit for. (That's
  1319. * broken code anyway: it's wrong for msync()).
  1320. *
  1321. * It's a rare case: affects the final partial page, for journalled data
  1322. * where the file is subject to bith write() and writepage() in the same
  1323. * transction. To fix it we'll need a custom block_write_full_page().
  1324. * We'll probably need that anyway for journalling writepage() output.
  1325. *
  1326. * We don't honour synchronous mounts for writepage(). That would be
  1327. * disastrous. Any write() or metadata operation will sync the fs for
  1328. * us.
  1329. *
  1330. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1331. * we don't need to open a transaction here.
  1332. */
  1333. static int ext4_ordered_writepage(struct page *page,
  1334. struct writeback_control *wbc)
  1335. {
  1336. struct inode *inode = page->mapping->host;
  1337. struct buffer_head *page_bufs;
  1338. handle_t *handle = NULL;
  1339. int ret = 0;
  1340. int err;
  1341. J_ASSERT(PageLocked(page));
  1342. /*
  1343. * We give up here if we're reentered, because it might be for a
  1344. * different filesystem.
  1345. */
  1346. if (ext4_journal_current_handle())
  1347. goto out_fail;
  1348. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1349. if (IS_ERR(handle)) {
  1350. ret = PTR_ERR(handle);
  1351. goto out_fail;
  1352. }
  1353. if (!page_has_buffers(page)) {
  1354. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1355. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1356. }
  1357. page_bufs = page_buffers(page);
  1358. walk_page_buffers(handle, page_bufs, 0,
  1359. PAGE_CACHE_SIZE, NULL, bget_one);
  1360. ret = block_write_full_page(page, ext4_get_block, wbc);
  1361. /*
  1362. * The page can become unlocked at any point now, and
  1363. * truncate can then come in and change things. So we
  1364. * can't touch *page from now on. But *page_bufs is
  1365. * safe due to elevated refcount.
  1366. */
  1367. /*
  1368. * And attach them to the current transaction. But only if
  1369. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1370. * and generally junk.
  1371. */
  1372. if (ret == 0) {
  1373. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1374. NULL, jbd2_journal_dirty_data_fn);
  1375. if (!ret)
  1376. ret = err;
  1377. }
  1378. walk_page_buffers(handle, page_bufs, 0,
  1379. PAGE_CACHE_SIZE, NULL, bput_one);
  1380. err = ext4_journal_stop(handle);
  1381. if (!ret)
  1382. ret = err;
  1383. return ret;
  1384. out_fail:
  1385. redirty_page_for_writepage(wbc, page);
  1386. unlock_page(page);
  1387. return ret;
  1388. }
  1389. static int ext4_writeback_writepage(struct page *page,
  1390. struct writeback_control *wbc)
  1391. {
  1392. struct inode *inode = page->mapping->host;
  1393. handle_t *handle = NULL;
  1394. int ret = 0;
  1395. int err;
  1396. if (ext4_journal_current_handle())
  1397. goto out_fail;
  1398. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1399. if (IS_ERR(handle)) {
  1400. ret = PTR_ERR(handle);
  1401. goto out_fail;
  1402. }
  1403. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  1404. ret = nobh_writepage(page, ext4_get_block, wbc);
  1405. else
  1406. ret = block_write_full_page(page, ext4_get_block, wbc);
  1407. err = ext4_journal_stop(handle);
  1408. if (!ret)
  1409. ret = err;
  1410. return ret;
  1411. out_fail:
  1412. redirty_page_for_writepage(wbc, page);
  1413. unlock_page(page);
  1414. return ret;
  1415. }
  1416. static int ext4_journalled_writepage(struct page *page,
  1417. struct writeback_control *wbc)
  1418. {
  1419. struct inode *inode = page->mapping->host;
  1420. handle_t *handle = NULL;
  1421. int ret = 0;
  1422. int err;
  1423. if (ext4_journal_current_handle())
  1424. goto no_write;
  1425. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1426. if (IS_ERR(handle)) {
  1427. ret = PTR_ERR(handle);
  1428. goto no_write;
  1429. }
  1430. if (!page_has_buffers(page) || PageChecked(page)) {
  1431. /*
  1432. * It's mmapped pagecache. Add buffers and journal it. There
  1433. * doesn't seem much point in redirtying the page here.
  1434. */
  1435. ClearPageChecked(page);
  1436. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1437. ext4_get_block);
  1438. if (ret != 0) {
  1439. ext4_journal_stop(handle);
  1440. goto out_unlock;
  1441. }
  1442. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1443. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1444. err = walk_page_buffers(handle, page_buffers(page), 0,
  1445. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1446. if (ret == 0)
  1447. ret = err;
  1448. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1449. unlock_page(page);
  1450. } else {
  1451. /*
  1452. * It may be a page full of checkpoint-mode buffers. We don't
  1453. * really know unless we go poke around in the buffer_heads.
  1454. * But block_write_full_page will do the right thing.
  1455. */
  1456. ret = block_write_full_page(page, ext4_get_block, wbc);
  1457. }
  1458. err = ext4_journal_stop(handle);
  1459. if (!ret)
  1460. ret = err;
  1461. out:
  1462. return ret;
  1463. no_write:
  1464. redirty_page_for_writepage(wbc, page);
  1465. out_unlock:
  1466. unlock_page(page);
  1467. goto out;
  1468. }
  1469. static int ext4_readpage(struct file *file, struct page *page)
  1470. {
  1471. return mpage_readpage(page, ext4_get_block);
  1472. }
  1473. static int
  1474. ext4_readpages(struct file *file, struct address_space *mapping,
  1475. struct list_head *pages, unsigned nr_pages)
  1476. {
  1477. return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
  1478. }
  1479. static void ext4_invalidatepage(struct page *page, unsigned long offset)
  1480. {
  1481. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  1482. /*
  1483. * If it's a full truncate we just forget about the pending dirtying
  1484. */
  1485. if (offset == 0)
  1486. ClearPageChecked(page);
  1487. jbd2_journal_invalidatepage(journal, page, offset);
  1488. }
  1489. static int ext4_releasepage(struct page *page, gfp_t wait)
  1490. {
  1491. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  1492. WARN_ON(PageChecked(page));
  1493. if (!page_has_buffers(page))
  1494. return 0;
  1495. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  1496. }
  1497. /*
  1498. * If the O_DIRECT write will extend the file then add this inode to the
  1499. * orphan list. So recovery will truncate it back to the original size
  1500. * if the machine crashes during the write.
  1501. *
  1502. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1503. * crashes then stale disk data _may_ be exposed inside the file.
  1504. */
  1505. static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
  1506. const struct iovec *iov, loff_t offset,
  1507. unsigned long nr_segs)
  1508. {
  1509. struct file *file = iocb->ki_filp;
  1510. struct inode *inode = file->f_mapping->host;
  1511. struct ext4_inode_info *ei = EXT4_I(inode);
  1512. handle_t *handle = NULL;
  1513. ssize_t ret;
  1514. int orphan = 0;
  1515. size_t count = iov_length(iov, nr_segs);
  1516. if (rw == WRITE) {
  1517. loff_t final_size = offset + count;
  1518. handle = ext4_journal_start(inode, DIO_CREDITS);
  1519. if (IS_ERR(handle)) {
  1520. ret = PTR_ERR(handle);
  1521. goto out;
  1522. }
  1523. if (final_size > inode->i_size) {
  1524. ret = ext4_orphan_add(handle, inode);
  1525. if (ret)
  1526. goto out_stop;
  1527. orphan = 1;
  1528. ei->i_disksize = inode->i_size;
  1529. }
  1530. }
  1531. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1532. offset, nr_segs,
  1533. ext4_get_block, NULL);
  1534. /*
  1535. * Reacquire the handle: ext4_get_block() can restart the transaction
  1536. */
  1537. handle = ext4_journal_current_handle();
  1538. out_stop:
  1539. if (handle) {
  1540. int err;
  1541. if (orphan && inode->i_nlink)
  1542. ext4_orphan_del(handle, inode);
  1543. if (orphan && ret > 0) {
  1544. loff_t end = offset + ret;
  1545. if (end > inode->i_size) {
  1546. ei->i_disksize = end;
  1547. i_size_write(inode, end);
  1548. /*
  1549. * We're going to return a positive `ret'
  1550. * here due to non-zero-length I/O, so there's
  1551. * no way of reporting error returns from
  1552. * ext4_mark_inode_dirty() to userspace. So
  1553. * ignore it.
  1554. */
  1555. ext4_mark_inode_dirty(handle, inode);
  1556. }
  1557. }
  1558. err = ext4_journal_stop(handle);
  1559. if (ret == 0)
  1560. ret = err;
  1561. }
  1562. out:
  1563. return ret;
  1564. }
  1565. /*
  1566. * Pages can be marked dirty completely asynchronously from ext4's journalling
  1567. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1568. * much here because ->set_page_dirty is called under VFS locks. The page is
  1569. * not necessarily locked.
  1570. *
  1571. * We cannot just dirty the page and leave attached buffers clean, because the
  1572. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1573. * or jbddirty because all the journalling code will explode.
  1574. *
  1575. * So what we do is to mark the page "pending dirty" and next time writepage
  1576. * is called, propagate that into the buffers appropriately.
  1577. */
  1578. static int ext4_journalled_set_page_dirty(struct page *page)
  1579. {
  1580. SetPageChecked(page);
  1581. return __set_page_dirty_nobuffers(page);
  1582. }
  1583. static const struct address_space_operations ext4_ordered_aops = {
  1584. .readpage = ext4_readpage,
  1585. .readpages = ext4_readpages,
  1586. .writepage = ext4_ordered_writepage,
  1587. .sync_page = block_sync_page,
  1588. .write_begin = ext4_write_begin,
  1589. .write_end = ext4_ordered_write_end,
  1590. .bmap = ext4_bmap,
  1591. .invalidatepage = ext4_invalidatepage,
  1592. .releasepage = ext4_releasepage,
  1593. .direct_IO = ext4_direct_IO,
  1594. .migratepage = buffer_migrate_page,
  1595. };
  1596. static const struct address_space_operations ext4_writeback_aops = {
  1597. .readpage = ext4_readpage,
  1598. .readpages = ext4_readpages,
  1599. .writepage = ext4_writeback_writepage,
  1600. .sync_page = block_sync_page,
  1601. .write_begin = ext4_write_begin,
  1602. .write_end = ext4_writeback_write_end,
  1603. .bmap = ext4_bmap,
  1604. .invalidatepage = ext4_invalidatepage,
  1605. .releasepage = ext4_releasepage,
  1606. .direct_IO = ext4_direct_IO,
  1607. .migratepage = buffer_migrate_page,
  1608. };
  1609. static const struct address_space_operations ext4_journalled_aops = {
  1610. .readpage = ext4_readpage,
  1611. .readpages = ext4_readpages,
  1612. .writepage = ext4_journalled_writepage,
  1613. .sync_page = block_sync_page,
  1614. .write_begin = ext4_write_begin,
  1615. .write_end = ext4_journalled_write_end,
  1616. .set_page_dirty = ext4_journalled_set_page_dirty,
  1617. .bmap = ext4_bmap,
  1618. .invalidatepage = ext4_invalidatepage,
  1619. .releasepage = ext4_releasepage,
  1620. };
  1621. void ext4_set_aops(struct inode *inode)
  1622. {
  1623. if (ext4_should_order_data(inode))
  1624. inode->i_mapping->a_ops = &ext4_ordered_aops;
  1625. else if (ext4_should_writeback_data(inode))
  1626. inode->i_mapping->a_ops = &ext4_writeback_aops;
  1627. else
  1628. inode->i_mapping->a_ops = &ext4_journalled_aops;
  1629. }
  1630. /*
  1631. * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
  1632. * up to the end of the block which corresponds to `from'.
  1633. * This required during truncate. We need to physically zero the tail end
  1634. * of that block so it doesn't yield old data if the file is later grown.
  1635. */
  1636. int ext4_block_truncate_page(handle_t *handle, struct page *page,
  1637. struct address_space *mapping, loff_t from)
  1638. {
  1639. ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1640. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1641. unsigned blocksize, length, pos;
  1642. ext4_lblk_t iblock;
  1643. struct inode *inode = mapping->host;
  1644. struct buffer_head *bh;
  1645. int err = 0;
  1646. blocksize = inode->i_sb->s_blocksize;
  1647. length = blocksize - (offset & (blocksize - 1));
  1648. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1649. /*
  1650. * For "nobh" option, we can only work if we don't need to
  1651. * read-in the page - otherwise we create buffers to do the IO.
  1652. */
  1653. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  1654. ext4_should_writeback_data(inode) && PageUptodate(page)) {
  1655. zero_user_page(page, offset, length, KM_USER0);
  1656. set_page_dirty(page);
  1657. goto unlock;
  1658. }
  1659. if (!page_has_buffers(page))
  1660. create_empty_buffers(page, blocksize, 0);
  1661. /* Find the buffer that contains "offset" */
  1662. bh = page_buffers(page);
  1663. pos = blocksize;
  1664. while (offset >= pos) {
  1665. bh = bh->b_this_page;
  1666. iblock++;
  1667. pos += blocksize;
  1668. }
  1669. err = 0;
  1670. if (buffer_freed(bh)) {
  1671. BUFFER_TRACE(bh, "freed: skip");
  1672. goto unlock;
  1673. }
  1674. if (!buffer_mapped(bh)) {
  1675. BUFFER_TRACE(bh, "unmapped");
  1676. ext4_get_block(inode, iblock, bh, 0);
  1677. /* unmapped? It's a hole - nothing to do */
  1678. if (!buffer_mapped(bh)) {
  1679. BUFFER_TRACE(bh, "still unmapped");
  1680. goto unlock;
  1681. }
  1682. }
  1683. /* Ok, it's mapped. Make sure it's up-to-date */
  1684. if (PageUptodate(page))
  1685. set_buffer_uptodate(bh);
  1686. if (!buffer_uptodate(bh)) {
  1687. err = -EIO;
  1688. ll_rw_block(READ, 1, &bh);
  1689. wait_on_buffer(bh);
  1690. /* Uhhuh. Read error. Complain and punt. */
  1691. if (!buffer_uptodate(bh))
  1692. goto unlock;
  1693. }
  1694. if (ext4_should_journal_data(inode)) {
  1695. BUFFER_TRACE(bh, "get write access");
  1696. err = ext4_journal_get_write_access(handle, bh);
  1697. if (err)
  1698. goto unlock;
  1699. }
  1700. zero_user_page(page, offset, length, KM_USER0);
  1701. BUFFER_TRACE(bh, "zeroed end of block");
  1702. err = 0;
  1703. if (ext4_should_journal_data(inode)) {
  1704. err = ext4_journal_dirty_metadata(handle, bh);
  1705. } else {
  1706. if (ext4_should_order_data(inode))
  1707. err = ext4_journal_dirty_data(handle, bh);
  1708. mark_buffer_dirty(bh);
  1709. }
  1710. unlock:
  1711. unlock_page(page);
  1712. page_cache_release(page);
  1713. return err;
  1714. }
  1715. /*
  1716. * Probably it should be a library function... search for first non-zero word
  1717. * or memcmp with zero_page, whatever is better for particular architecture.
  1718. * Linus?
  1719. */
  1720. static inline int all_zeroes(__le32 *p, __le32 *q)
  1721. {
  1722. while (p < q)
  1723. if (*p++)
  1724. return 0;
  1725. return 1;
  1726. }
  1727. /**
  1728. * ext4_find_shared - find the indirect blocks for partial truncation.
  1729. * @inode: inode in question
  1730. * @depth: depth of the affected branch
  1731. * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
  1732. * @chain: place to store the pointers to partial indirect blocks
  1733. * @top: place to the (detached) top of branch
  1734. *
  1735. * This is a helper function used by ext4_truncate().
  1736. *
  1737. * When we do truncate() we may have to clean the ends of several
  1738. * indirect blocks but leave the blocks themselves alive. Block is
  1739. * partially truncated if some data below the new i_size is refered
  1740. * from it (and it is on the path to the first completely truncated
  1741. * data block, indeed). We have to free the top of that path along
  1742. * with everything to the right of the path. Since no allocation
  1743. * past the truncation point is possible until ext4_truncate()
  1744. * finishes, we may safely do the latter, but top of branch may
  1745. * require special attention - pageout below the truncation point
  1746. * might try to populate it.
  1747. *
  1748. * We atomically detach the top of branch from the tree, store the
  1749. * block number of its root in *@top, pointers to buffer_heads of
  1750. * partially truncated blocks - in @chain[].bh and pointers to
  1751. * their last elements that should not be removed - in
  1752. * @chain[].p. Return value is the pointer to last filled element
  1753. * of @chain.
  1754. *
  1755. * The work left to caller to do the actual freeing of subtrees:
  1756. * a) free the subtree starting from *@top
  1757. * b) free the subtrees whose roots are stored in
  1758. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1759. * c) free the subtrees growing from the inode past the @chain[0].
  1760. * (no partially truncated stuff there). */
  1761. static Indirect *ext4_find_shared(struct inode *inode, int depth,
  1762. ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
  1763. {
  1764. Indirect *partial, *p;
  1765. int k, err;
  1766. *top = 0;
  1767. /* Make k index the deepest non-null offest + 1 */
  1768. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1769. ;
  1770. partial = ext4_get_branch(inode, k, offsets, chain, &err);
  1771. /* Writer: pointers */
  1772. if (!partial)
  1773. partial = chain + k-1;
  1774. /*
  1775. * If the branch acquired continuation since we've looked at it -
  1776. * fine, it should all survive and (new) top doesn't belong to us.
  1777. */
  1778. if (!partial->key && *partial->p)
  1779. /* Writer: end */
  1780. goto no_top;
  1781. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1782. ;
  1783. /*
  1784. * OK, we've found the last block that must survive. The rest of our
  1785. * branch should be detached before unlocking. However, if that rest
  1786. * of branch is all ours and does not grow immediately from the inode
  1787. * it's easier to cheat and just decrement partial->p.
  1788. */
  1789. if (p == chain + k - 1 && p > chain) {
  1790. p->p--;
  1791. } else {
  1792. *top = *p->p;
  1793. /* Nope, don't do this in ext4. Must leave the tree intact */
  1794. #if 0
  1795. *p->p = 0;
  1796. #endif
  1797. }
  1798. /* Writer: end */
  1799. while(partial > p) {
  1800. brelse(partial->bh);
  1801. partial--;
  1802. }
  1803. no_top:
  1804. return partial;
  1805. }
  1806. /*
  1807. * Zero a number of block pointers in either an inode or an indirect block.
  1808. * If we restart the transaction we must again get write access to the
  1809. * indirect block for further modification.
  1810. *
  1811. * We release `count' blocks on disk, but (last - first) may be greater
  1812. * than `count' because there can be holes in there.
  1813. */
  1814. static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
  1815. struct buffer_head *bh, ext4_fsblk_t block_to_free,
  1816. unsigned long count, __le32 *first, __le32 *last)
  1817. {
  1818. __le32 *p;
  1819. if (try_to_extend_transaction(handle, inode)) {
  1820. if (bh) {
  1821. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  1822. ext4_journal_dirty_metadata(handle, bh);
  1823. }
  1824. ext4_mark_inode_dirty(handle, inode);
  1825. ext4_journal_test_restart(handle, inode);
  1826. if (bh) {
  1827. BUFFER_TRACE(bh, "retaking write access");
  1828. ext4_journal_get_write_access(handle, bh);
  1829. }
  1830. }
  1831. /*
  1832. * Any buffers which are on the journal will be in memory. We find
  1833. * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
  1834. * on them. We've already detached each block from the file, so
  1835. * bforget() in jbd2_journal_forget() should be safe.
  1836. *
  1837. * AKPM: turn on bforget in jbd2_journal_forget()!!!
  1838. */
  1839. for (p = first; p < last; p++) {
  1840. u32 nr = le32_to_cpu(*p);
  1841. if (nr) {
  1842. struct buffer_head *tbh;
  1843. *p = 0;
  1844. tbh = sb_find_get_block(inode->i_sb, nr);
  1845. ext4_forget(handle, 0, inode, tbh, nr);
  1846. }
  1847. }
  1848. ext4_free_blocks(handle, inode, block_to_free, count);
  1849. }
  1850. /**
  1851. * ext4_free_data - free a list of data blocks
  1852. * @handle: handle for this transaction
  1853. * @inode: inode we are dealing with
  1854. * @this_bh: indirect buffer_head which contains *@first and *@last
  1855. * @first: array of block numbers
  1856. * @last: points immediately past the end of array
  1857. *
  1858. * We are freeing all blocks refered from that array (numbers are stored as
  1859. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1860. *
  1861. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1862. * blocks are contiguous then releasing them at one time will only affect one
  1863. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1864. * actually use a lot of journal space.
  1865. *
  1866. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1867. * block pointers.
  1868. */
  1869. static void ext4_free_data(handle_t *handle, struct inode *inode,
  1870. struct buffer_head *this_bh,
  1871. __le32 *first, __le32 *last)
  1872. {
  1873. ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1874. unsigned long count = 0; /* Number of blocks in the run */
  1875. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1876. corresponding to
  1877. block_to_free */
  1878. ext4_fsblk_t nr; /* Current block # */
  1879. __le32 *p; /* Pointer into inode/ind
  1880. for current block */
  1881. int err;
  1882. if (this_bh) { /* For indirect block */
  1883. BUFFER_TRACE(this_bh, "get_write_access");
  1884. err = ext4_journal_get_write_access(handle, this_bh);
  1885. /* Important: if we can't update the indirect pointers
  1886. * to the blocks, we can't free them. */
  1887. if (err)
  1888. return;
  1889. }
  1890. for (p = first; p < last; p++) {
  1891. nr = le32_to_cpu(*p);
  1892. if (nr) {
  1893. /* accumulate blocks to free if they're contiguous */
  1894. if (count == 0) {
  1895. block_to_free = nr;
  1896. block_to_free_p = p;
  1897. count = 1;
  1898. } else if (nr == block_to_free + count) {
  1899. count++;
  1900. } else {
  1901. ext4_clear_blocks(handle, inode, this_bh,
  1902. block_to_free,
  1903. count, block_to_free_p, p);
  1904. block_to_free = nr;
  1905. block_to_free_p = p;
  1906. count = 1;
  1907. }
  1908. }
  1909. }
  1910. if (count > 0)
  1911. ext4_clear_blocks(handle, inode, this_bh, block_to_free,
  1912. count, block_to_free_p, p);
  1913. if (this_bh) {
  1914. BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
  1915. ext4_journal_dirty_metadata(handle, this_bh);
  1916. }
  1917. }
  1918. /**
  1919. * ext4_free_branches - free an array of branches
  1920. * @handle: JBD handle for this transaction
  1921. * @inode: inode we are dealing with
  1922. * @parent_bh: the buffer_head which contains *@first and *@last
  1923. * @first: array of block numbers
  1924. * @last: pointer immediately past the end of array
  1925. * @depth: depth of the branches to free
  1926. *
  1927. * We are freeing all blocks refered from these branches (numbers are
  1928. * stored as little-endian 32-bit) and updating @inode->i_blocks
  1929. * appropriately.
  1930. */
  1931. static void ext4_free_branches(handle_t *handle, struct inode *inode,
  1932. struct buffer_head *parent_bh,
  1933. __le32 *first, __le32 *last, int depth)
  1934. {
  1935. ext4_fsblk_t nr;
  1936. __le32 *p;
  1937. if (is_handle_aborted(handle))
  1938. return;
  1939. if (depth--) {
  1940. struct buffer_head *bh;
  1941. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  1942. p = last;
  1943. while (--p >= first) {
  1944. nr = le32_to_cpu(*p);
  1945. if (!nr)
  1946. continue; /* A hole */
  1947. /* Go read the buffer for the next level down */
  1948. bh = sb_bread(inode->i_sb, nr);
  1949. /*
  1950. * A read failure? Report error and clear slot
  1951. * (should be rare).
  1952. */
  1953. if (!bh) {
  1954. ext4_error(inode->i_sb, "ext4_free_branches",
  1955. "Read failure, inode=%lu, block=%llu",
  1956. inode->i_ino, nr);
  1957. continue;
  1958. }
  1959. /* This zaps the entire block. Bottom up. */
  1960. BUFFER_TRACE(bh, "free child branches");
  1961. ext4_free_branches(handle, inode, bh,
  1962. (__le32*)bh->b_data,
  1963. (__le32*)bh->b_data + addr_per_block,
  1964. depth);
  1965. /*
  1966. * We've probably journalled the indirect block several
  1967. * times during the truncate. But it's no longer
  1968. * needed and we now drop it from the transaction via
  1969. * jbd2_journal_revoke().
  1970. *
  1971. * That's easy if it's exclusively part of this
  1972. * transaction. But if it's part of the committing
  1973. * transaction then jbd2_journal_forget() will simply
  1974. * brelse() it. That means that if the underlying
  1975. * block is reallocated in ext4_get_block(),
  1976. * unmap_underlying_metadata() will find this block
  1977. * and will try to get rid of it. damn, damn.
  1978. *
  1979. * If this block has already been committed to the
  1980. * journal, a revoke record will be written. And
  1981. * revoke records must be emitted *before* clearing
  1982. * this block's bit in the bitmaps.
  1983. */
  1984. ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
  1985. /*
  1986. * Everything below this this pointer has been
  1987. * released. Now let this top-of-subtree go.
  1988. *
  1989. * We want the freeing of this indirect block to be
  1990. * atomic in the journal with the updating of the
  1991. * bitmap block which owns it. So make some room in
  1992. * the journal.
  1993. *
  1994. * We zero the parent pointer *after* freeing its
  1995. * pointee in the bitmaps, so if extend_transaction()
  1996. * for some reason fails to put the bitmap changes and
  1997. * the release into the same transaction, recovery
  1998. * will merely complain about releasing a free block,
  1999. * rather than leaking blocks.
  2000. */
  2001. if (is_handle_aborted(handle))
  2002. return;
  2003. if (try_to_extend_transaction(handle, inode)) {
  2004. ext4_mark_inode_dirty(handle, inode);
  2005. ext4_journal_test_restart(handle, inode);
  2006. }
  2007. ext4_free_blocks(handle, inode, nr, 1);
  2008. if (parent_bh) {
  2009. /*
  2010. * The block which we have just freed is
  2011. * pointed to by an indirect block: journal it
  2012. */
  2013. BUFFER_TRACE(parent_bh, "get_write_access");
  2014. if (!ext4_journal_get_write_access(handle,
  2015. parent_bh)){
  2016. *p = 0;
  2017. BUFFER_TRACE(parent_bh,
  2018. "call ext4_journal_dirty_metadata");
  2019. ext4_journal_dirty_metadata(handle,
  2020. parent_bh);
  2021. }
  2022. }
  2023. }
  2024. } else {
  2025. /* We have reached the bottom of the tree. */
  2026. BUFFER_TRACE(parent_bh, "free data blocks");
  2027. ext4_free_data(handle, inode, parent_bh, first, last);
  2028. }
  2029. }
  2030. /*
  2031. * ext4_truncate()
  2032. *
  2033. * We block out ext4_get_block() block instantiations across the entire
  2034. * transaction, and VFS/VM ensures that ext4_truncate() cannot run
  2035. * simultaneously on behalf of the same inode.
  2036. *
  2037. * As we work through the truncate and commmit bits of it to the journal there
  2038. * is one core, guiding principle: the file's tree must always be consistent on
  2039. * disk. We must be able to restart the truncate after a crash.
  2040. *
  2041. * The file's tree may be transiently inconsistent in memory (although it
  2042. * probably isn't), but whenever we close off and commit a journal transaction,
  2043. * the contents of (the filesystem + the journal) must be consistent and
  2044. * restartable. It's pretty simple, really: bottom up, right to left (although
  2045. * left-to-right works OK too).
  2046. *
  2047. * Note that at recovery time, journal replay occurs *before* the restart of
  2048. * truncate against the orphan inode list.
  2049. *
  2050. * The committed inode has the new, desired i_size (which is the same as
  2051. * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
  2052. * that this inode's truncate did not complete and it will again call
  2053. * ext4_truncate() to have another go. So there will be instantiated blocks
  2054. * to the right of the truncation point in a crashed ext4 filesystem. But
  2055. * that's fine - as long as they are linked from the inode, the post-crash
  2056. * ext4_truncate() run will find them and release them.
  2057. */
  2058. void ext4_truncate(struct inode *inode)
  2059. {
  2060. handle_t *handle;
  2061. struct ext4_inode_info *ei = EXT4_I(inode);
  2062. __le32 *i_data = ei->i_data;
  2063. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  2064. struct address_space *mapping = inode->i_mapping;
  2065. ext4_lblk_t offsets[4];
  2066. Indirect chain[4];
  2067. Indirect *partial;
  2068. __le32 nr = 0;
  2069. int n;
  2070. ext4_lblk_t last_block;
  2071. unsigned blocksize = inode->i_sb->s_blocksize;
  2072. struct page *page;
  2073. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  2074. S_ISLNK(inode->i_mode)))
  2075. return;
  2076. if (ext4_inode_is_fast_symlink(inode))
  2077. return;
  2078. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2079. return;
  2080. /*
  2081. * We have to lock the EOF page here, because lock_page() nests
  2082. * outside jbd2_journal_start().
  2083. */
  2084. if ((inode->i_size & (blocksize - 1)) == 0) {
  2085. /* Block boundary? Nothing to do */
  2086. page = NULL;
  2087. } else {
  2088. page = grab_cache_page(mapping,
  2089. inode->i_size >> PAGE_CACHE_SHIFT);
  2090. if (!page)
  2091. return;
  2092. }
  2093. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  2094. ext4_ext_truncate(inode, page);
  2095. return;
  2096. }
  2097. handle = start_transaction(inode);
  2098. if (IS_ERR(handle)) {
  2099. if (page) {
  2100. clear_highpage(page);
  2101. flush_dcache_page(page);
  2102. unlock_page(page);
  2103. page_cache_release(page);
  2104. }
  2105. return; /* AKPM: return what? */
  2106. }
  2107. last_block = (inode->i_size + blocksize-1)
  2108. >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
  2109. if (page)
  2110. ext4_block_truncate_page(handle, page, mapping, inode->i_size);
  2111. n = ext4_block_to_path(inode, last_block, offsets, NULL);
  2112. if (n == 0)
  2113. goto out_stop; /* error */
  2114. /*
  2115. * OK. This truncate is going to happen. We add the inode to the
  2116. * orphan list, so that if this truncate spans multiple transactions,
  2117. * and we crash, we will resume the truncate when the filesystem
  2118. * recovers. It also marks the inode dirty, to catch the new size.
  2119. *
  2120. * Implication: the file must always be in a sane, consistent
  2121. * truncatable state while each transaction commits.
  2122. */
  2123. if (ext4_orphan_add(handle, inode))
  2124. goto out_stop;
  2125. /*
  2126. * The orphan list entry will now protect us from any crash which
  2127. * occurs before the truncate completes, so it is now safe to propagate
  2128. * the new, shorter inode size (held for now in i_size) into the
  2129. * on-disk inode. We do this via i_disksize, which is the value which
  2130. * ext4 *really* writes onto the disk inode.
  2131. */
  2132. ei->i_disksize = inode->i_size;
  2133. /*
  2134. * From here we block out all ext4_get_block() callers who want to
  2135. * modify the block allocation tree.
  2136. */
  2137. down_write(&ei->i_data_sem);
  2138. if (n == 1) { /* direct blocks */
  2139. ext4_free_data(handle, inode, NULL, i_data+offsets[0],
  2140. i_data + EXT4_NDIR_BLOCKS);
  2141. goto do_indirects;
  2142. }
  2143. partial = ext4_find_shared(inode, n, offsets, chain, &nr);
  2144. /* Kill the top of shared branch (not detached) */
  2145. if (nr) {
  2146. if (partial == chain) {
  2147. /* Shared branch grows from the inode */
  2148. ext4_free_branches(handle, inode, NULL,
  2149. &nr, &nr+1, (chain+n-1) - partial);
  2150. *partial->p = 0;
  2151. /*
  2152. * We mark the inode dirty prior to restart,
  2153. * and prior to stop. No need for it here.
  2154. */
  2155. } else {
  2156. /* Shared branch grows from an indirect block */
  2157. BUFFER_TRACE(partial->bh, "get_write_access");
  2158. ext4_free_branches(handle, inode, partial->bh,
  2159. partial->p,
  2160. partial->p+1, (chain+n-1) - partial);
  2161. }
  2162. }
  2163. /* Clear the ends of indirect blocks on the shared branch */
  2164. while (partial > chain) {
  2165. ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
  2166. (__le32*)partial->bh->b_data+addr_per_block,
  2167. (chain+n-1) - partial);
  2168. BUFFER_TRACE(partial->bh, "call brelse");
  2169. brelse (partial->bh);
  2170. partial--;
  2171. }
  2172. do_indirects:
  2173. /* Kill the remaining (whole) subtrees */
  2174. switch (offsets[0]) {
  2175. default:
  2176. nr = i_data[EXT4_IND_BLOCK];
  2177. if (nr) {
  2178. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2179. i_data[EXT4_IND_BLOCK] = 0;
  2180. }
  2181. case EXT4_IND_BLOCK:
  2182. nr = i_data[EXT4_DIND_BLOCK];
  2183. if (nr) {
  2184. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2185. i_data[EXT4_DIND_BLOCK] = 0;
  2186. }
  2187. case EXT4_DIND_BLOCK:
  2188. nr = i_data[EXT4_TIND_BLOCK];
  2189. if (nr) {
  2190. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2191. i_data[EXT4_TIND_BLOCK] = 0;
  2192. }
  2193. case EXT4_TIND_BLOCK:
  2194. ;
  2195. }
  2196. ext4_discard_reservation(inode);
  2197. up_write(&ei->i_data_sem);
  2198. inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
  2199. ext4_mark_inode_dirty(handle, inode);
  2200. /*
  2201. * In a multi-transaction truncate, we only make the final transaction
  2202. * synchronous
  2203. */
  2204. if (IS_SYNC(inode))
  2205. handle->h_sync = 1;
  2206. out_stop:
  2207. /*
  2208. * If this was a simple ftruncate(), and the file will remain alive
  2209. * then we need to clear up the orphan record which we created above.
  2210. * However, if this was a real unlink then we were called by
  2211. * ext4_delete_inode(), and we allow that function to clean up the
  2212. * orphan info for us.
  2213. */
  2214. if (inode->i_nlink)
  2215. ext4_orphan_del(handle, inode);
  2216. ext4_journal_stop(handle);
  2217. }
  2218. static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
  2219. unsigned long ino, struct ext4_iloc *iloc)
  2220. {
  2221. unsigned long desc, group_desc;
  2222. ext4_group_t block_group;
  2223. unsigned long offset;
  2224. ext4_fsblk_t block;
  2225. struct buffer_head *bh;
  2226. struct ext4_group_desc * gdp;
  2227. if (!ext4_valid_inum(sb, ino)) {
  2228. /*
  2229. * This error is already checked for in namei.c unless we are
  2230. * looking at an NFS filehandle, in which case no error
  2231. * report is needed
  2232. */
  2233. return 0;
  2234. }
  2235. block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
  2236. if (block_group >= EXT4_SB(sb)->s_groups_count) {
  2237. ext4_error(sb,"ext4_get_inode_block","group >= groups count");
  2238. return 0;
  2239. }
  2240. smp_rmb();
  2241. group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
  2242. desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
  2243. bh = EXT4_SB(sb)->s_group_desc[group_desc];
  2244. if (!bh) {
  2245. ext4_error (sb, "ext4_get_inode_block",
  2246. "Descriptor not loaded");
  2247. return 0;
  2248. }
  2249. gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
  2250. desc * EXT4_DESC_SIZE(sb));
  2251. /*
  2252. * Figure out the offset within the block group inode table
  2253. */
  2254. offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
  2255. EXT4_INODE_SIZE(sb);
  2256. block = ext4_inode_table(sb, gdp) +
  2257. (offset >> EXT4_BLOCK_SIZE_BITS(sb));
  2258. iloc->block_group = block_group;
  2259. iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
  2260. return block;
  2261. }
  2262. /*
  2263. * ext4_get_inode_loc returns with an extra refcount against the inode's
  2264. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2265. * data in memory that is needed to recreate the on-disk version of this
  2266. * inode.
  2267. */
  2268. static int __ext4_get_inode_loc(struct inode *inode,
  2269. struct ext4_iloc *iloc, int in_mem)
  2270. {
  2271. ext4_fsblk_t block;
  2272. struct buffer_head *bh;
  2273. block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2274. if (!block)
  2275. return -EIO;
  2276. bh = sb_getblk(inode->i_sb, block);
  2277. if (!bh) {
  2278. ext4_error (inode->i_sb, "ext4_get_inode_loc",
  2279. "unable to read inode block - "
  2280. "inode=%lu, block=%llu",
  2281. inode->i_ino, block);
  2282. return -EIO;
  2283. }
  2284. if (!buffer_uptodate(bh)) {
  2285. lock_buffer(bh);
  2286. if (buffer_uptodate(bh)) {
  2287. /* someone brought it uptodate while we waited */
  2288. unlock_buffer(bh);
  2289. goto has_buffer;
  2290. }
  2291. /*
  2292. * If we have all information of the inode in memory and this
  2293. * is the only valid inode in the block, we need not read the
  2294. * block.
  2295. */
  2296. if (in_mem) {
  2297. struct buffer_head *bitmap_bh;
  2298. struct ext4_group_desc *desc;
  2299. int inodes_per_buffer;
  2300. int inode_offset, i;
  2301. ext4_group_t block_group;
  2302. int start;
  2303. block_group = (inode->i_ino - 1) /
  2304. EXT4_INODES_PER_GROUP(inode->i_sb);
  2305. inodes_per_buffer = bh->b_size /
  2306. EXT4_INODE_SIZE(inode->i_sb);
  2307. inode_offset = ((inode->i_ino - 1) %
  2308. EXT4_INODES_PER_GROUP(inode->i_sb));
  2309. start = inode_offset & ~(inodes_per_buffer - 1);
  2310. /* Is the inode bitmap in cache? */
  2311. desc = ext4_get_group_desc(inode->i_sb,
  2312. block_group, NULL);
  2313. if (!desc)
  2314. goto make_io;
  2315. bitmap_bh = sb_getblk(inode->i_sb,
  2316. ext4_inode_bitmap(inode->i_sb, desc));
  2317. if (!bitmap_bh)
  2318. goto make_io;
  2319. /*
  2320. * If the inode bitmap isn't in cache then the
  2321. * optimisation may end up performing two reads instead
  2322. * of one, so skip it.
  2323. */
  2324. if (!buffer_uptodate(bitmap_bh)) {
  2325. brelse(bitmap_bh);
  2326. goto make_io;
  2327. }
  2328. for (i = start; i < start + inodes_per_buffer; i++) {
  2329. if (i == inode_offset)
  2330. continue;
  2331. if (ext4_test_bit(i, bitmap_bh->b_data))
  2332. break;
  2333. }
  2334. brelse(bitmap_bh);
  2335. if (i == start + inodes_per_buffer) {
  2336. /* all other inodes are free, so skip I/O */
  2337. memset(bh->b_data, 0, bh->b_size);
  2338. set_buffer_uptodate(bh);
  2339. unlock_buffer(bh);
  2340. goto has_buffer;
  2341. }
  2342. }
  2343. make_io:
  2344. /*
  2345. * There are other valid inodes in the buffer, this inode
  2346. * has in-inode xattrs, or we don't have this inode in memory.
  2347. * Read the block from disk.
  2348. */
  2349. get_bh(bh);
  2350. bh->b_end_io = end_buffer_read_sync;
  2351. submit_bh(READ_META, bh);
  2352. wait_on_buffer(bh);
  2353. if (!buffer_uptodate(bh)) {
  2354. ext4_error(inode->i_sb, "ext4_get_inode_loc",
  2355. "unable to read inode block - "
  2356. "inode=%lu, block=%llu",
  2357. inode->i_ino, block);
  2358. brelse(bh);
  2359. return -EIO;
  2360. }
  2361. }
  2362. has_buffer:
  2363. iloc->bh = bh;
  2364. return 0;
  2365. }
  2366. int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
  2367. {
  2368. /* We have all inode data except xattrs in memory here. */
  2369. return __ext4_get_inode_loc(inode, iloc,
  2370. !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
  2371. }
  2372. void ext4_set_inode_flags(struct inode *inode)
  2373. {
  2374. unsigned int flags = EXT4_I(inode)->i_flags;
  2375. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2376. if (flags & EXT4_SYNC_FL)
  2377. inode->i_flags |= S_SYNC;
  2378. if (flags & EXT4_APPEND_FL)
  2379. inode->i_flags |= S_APPEND;
  2380. if (flags & EXT4_IMMUTABLE_FL)
  2381. inode->i_flags |= S_IMMUTABLE;
  2382. if (flags & EXT4_NOATIME_FL)
  2383. inode->i_flags |= S_NOATIME;
  2384. if (flags & EXT4_DIRSYNC_FL)
  2385. inode->i_flags |= S_DIRSYNC;
  2386. }
  2387. /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
  2388. void ext4_get_inode_flags(struct ext4_inode_info *ei)
  2389. {
  2390. unsigned int flags = ei->vfs_inode.i_flags;
  2391. ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
  2392. EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
  2393. if (flags & S_SYNC)
  2394. ei->i_flags |= EXT4_SYNC_FL;
  2395. if (flags & S_APPEND)
  2396. ei->i_flags |= EXT4_APPEND_FL;
  2397. if (flags & S_IMMUTABLE)
  2398. ei->i_flags |= EXT4_IMMUTABLE_FL;
  2399. if (flags & S_NOATIME)
  2400. ei->i_flags |= EXT4_NOATIME_FL;
  2401. if (flags & S_DIRSYNC)
  2402. ei->i_flags |= EXT4_DIRSYNC_FL;
  2403. }
  2404. static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
  2405. struct ext4_inode_info *ei)
  2406. {
  2407. blkcnt_t i_blocks ;
  2408. struct inode *inode = &(ei->vfs_inode);
  2409. struct super_block *sb = inode->i_sb;
  2410. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  2411. EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
  2412. /* we are using combined 48 bit field */
  2413. i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
  2414. le32_to_cpu(raw_inode->i_blocks_lo);
  2415. if (ei->i_flags & EXT4_HUGE_FILE_FL) {
  2416. /* i_blocks represent file system block size */
  2417. return i_blocks << (inode->i_blkbits - 9);
  2418. } else {
  2419. return i_blocks;
  2420. }
  2421. } else {
  2422. return le32_to_cpu(raw_inode->i_blocks_lo);
  2423. }
  2424. }
  2425. void ext4_read_inode(struct inode * inode)
  2426. {
  2427. struct ext4_iloc iloc;
  2428. struct ext4_inode *raw_inode;
  2429. struct ext4_inode_info *ei = EXT4_I(inode);
  2430. struct buffer_head *bh;
  2431. int block;
  2432. #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
  2433. ei->i_acl = EXT4_ACL_NOT_CACHED;
  2434. ei->i_default_acl = EXT4_ACL_NOT_CACHED;
  2435. #endif
  2436. ei->i_block_alloc_info = NULL;
  2437. if (__ext4_get_inode_loc(inode, &iloc, 0))
  2438. goto bad_inode;
  2439. bh = iloc.bh;
  2440. raw_inode = ext4_raw_inode(&iloc);
  2441. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2442. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2443. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2444. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2445. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2446. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2447. }
  2448. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2449. ei->i_state = 0;
  2450. ei->i_dir_start_lookup = 0;
  2451. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2452. /* We now have enough fields to check if the inode was active or not.
  2453. * This is needed because nfsd might try to access dead inodes
  2454. * the test is that same one that e2fsck uses
  2455. * NeilBrown 1999oct15
  2456. */
  2457. if (inode->i_nlink == 0) {
  2458. if (inode->i_mode == 0 ||
  2459. !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
  2460. /* this inode is deleted */
  2461. brelse (bh);
  2462. goto bad_inode;
  2463. }
  2464. /* The only unlinked inodes we let through here have
  2465. * valid i_mode and are being read by the orphan
  2466. * recovery code: that's fine, we're about to complete
  2467. * the process of deleting those. */
  2468. }
  2469. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2470. inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
  2471. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
  2472. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  2473. cpu_to_le32(EXT4_OS_HURD)) {
  2474. ei->i_file_acl |=
  2475. ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
  2476. }
  2477. inode->i_size = ext4_isize(raw_inode);
  2478. ei->i_disksize = inode->i_size;
  2479. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2480. ei->i_block_group = iloc.block_group;
  2481. /*
  2482. * NOTE! The in-memory inode i_data array is in little-endian order
  2483. * even on big-endian machines: we do NOT byteswap the block numbers!
  2484. */
  2485. for (block = 0; block < EXT4_N_BLOCKS; block++)
  2486. ei->i_data[block] = raw_inode->i_block[block];
  2487. INIT_LIST_HEAD(&ei->i_orphan);
  2488. if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
  2489. EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  2490. /*
  2491. * When mke2fs creates big inodes it does not zero out
  2492. * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
  2493. * so ignore those first few inodes.
  2494. */
  2495. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2496. if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2497. EXT4_INODE_SIZE(inode->i_sb)) {
  2498. brelse (bh);
  2499. goto bad_inode;
  2500. }
  2501. if (ei->i_extra_isize == 0) {
  2502. /* The extra space is currently unused. Use it. */
  2503. ei->i_extra_isize = sizeof(struct ext4_inode) -
  2504. EXT4_GOOD_OLD_INODE_SIZE;
  2505. } else {
  2506. __le32 *magic = (void *)raw_inode +
  2507. EXT4_GOOD_OLD_INODE_SIZE +
  2508. ei->i_extra_isize;
  2509. if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
  2510. ei->i_state |= EXT4_STATE_XATTR;
  2511. }
  2512. } else
  2513. ei->i_extra_isize = 0;
  2514. EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
  2515. EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
  2516. EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
  2517. EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
  2518. if (S_ISREG(inode->i_mode)) {
  2519. inode->i_op = &ext4_file_inode_operations;
  2520. inode->i_fop = &ext4_file_operations;
  2521. ext4_set_aops(inode);
  2522. } else if (S_ISDIR(inode->i_mode)) {
  2523. inode->i_op = &ext4_dir_inode_operations;
  2524. inode->i_fop = &ext4_dir_operations;
  2525. } else if (S_ISLNK(inode->i_mode)) {
  2526. if (ext4_inode_is_fast_symlink(inode))
  2527. inode->i_op = &ext4_fast_symlink_inode_operations;
  2528. else {
  2529. inode->i_op = &ext4_symlink_inode_operations;
  2530. ext4_set_aops(inode);
  2531. }
  2532. } else {
  2533. inode->i_op = &ext4_special_inode_operations;
  2534. if (raw_inode->i_block[0])
  2535. init_special_inode(inode, inode->i_mode,
  2536. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2537. else
  2538. init_special_inode(inode, inode->i_mode,
  2539. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2540. }
  2541. brelse (iloc.bh);
  2542. ext4_set_inode_flags(inode);
  2543. return;
  2544. bad_inode:
  2545. make_bad_inode(inode);
  2546. return;
  2547. }
  2548. static int ext4_inode_blocks_set(handle_t *handle,
  2549. struct ext4_inode *raw_inode,
  2550. struct ext4_inode_info *ei)
  2551. {
  2552. struct inode *inode = &(ei->vfs_inode);
  2553. u64 i_blocks = inode->i_blocks;
  2554. struct super_block *sb = inode->i_sb;
  2555. int err = 0;
  2556. if (i_blocks <= ~0U) {
  2557. /*
  2558. * i_blocks can be represnted in a 32 bit variable
  2559. * as multiple of 512 bytes
  2560. */
  2561. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  2562. raw_inode->i_blocks_high = 0;
  2563. ei->i_flags &= ~EXT4_HUGE_FILE_FL;
  2564. } else if (i_blocks <= 0xffffffffffffULL) {
  2565. /*
  2566. * i_blocks can be represented in a 48 bit variable
  2567. * as multiple of 512 bytes
  2568. */
  2569. err = ext4_update_rocompat_feature(handle, sb,
  2570. EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
  2571. if (err)
  2572. goto err_out;
  2573. /* i_block is stored in the split 48 bit fields */
  2574. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  2575. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  2576. ei->i_flags &= ~EXT4_HUGE_FILE_FL;
  2577. } else {
  2578. /*
  2579. * i_blocks should be represented in a 48 bit variable
  2580. * as multiple of file system block size
  2581. */
  2582. err = ext4_update_rocompat_feature(handle, sb,
  2583. EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
  2584. if (err)
  2585. goto err_out;
  2586. ei->i_flags |= EXT4_HUGE_FILE_FL;
  2587. /* i_block is stored in file system block size */
  2588. i_blocks = i_blocks >> (inode->i_blkbits - 9);
  2589. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  2590. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  2591. }
  2592. err_out:
  2593. return err;
  2594. }
  2595. /*
  2596. * Post the struct inode info into an on-disk inode location in the
  2597. * buffer-cache. This gobbles the caller's reference to the
  2598. * buffer_head in the inode location struct.
  2599. *
  2600. * The caller must have write access to iloc->bh.
  2601. */
  2602. static int ext4_do_update_inode(handle_t *handle,
  2603. struct inode *inode,
  2604. struct ext4_iloc *iloc)
  2605. {
  2606. struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
  2607. struct ext4_inode_info *ei = EXT4_I(inode);
  2608. struct buffer_head *bh = iloc->bh;
  2609. int err = 0, rc, block;
  2610. /* For fields not not tracking in the in-memory inode,
  2611. * initialise them to zero for new inodes. */
  2612. if (ei->i_state & EXT4_STATE_NEW)
  2613. memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
  2614. ext4_get_inode_flags(ei);
  2615. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2616. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2617. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2618. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2619. /*
  2620. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2621. * re-used with the upper 16 bits of the uid/gid intact
  2622. */
  2623. if(!ei->i_dtime) {
  2624. raw_inode->i_uid_high =
  2625. cpu_to_le16(high_16_bits(inode->i_uid));
  2626. raw_inode->i_gid_high =
  2627. cpu_to_le16(high_16_bits(inode->i_gid));
  2628. } else {
  2629. raw_inode->i_uid_high = 0;
  2630. raw_inode->i_gid_high = 0;
  2631. }
  2632. } else {
  2633. raw_inode->i_uid_low =
  2634. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2635. raw_inode->i_gid_low =
  2636. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2637. raw_inode->i_uid_high = 0;
  2638. raw_inode->i_gid_high = 0;
  2639. }
  2640. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2641. EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
  2642. EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
  2643. EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
  2644. EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
  2645. if (ext4_inode_blocks_set(handle, raw_inode, ei))
  2646. goto out_brelse;
  2647. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2648. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2649. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  2650. cpu_to_le32(EXT4_OS_HURD))
  2651. raw_inode->i_file_acl_high =
  2652. cpu_to_le16(ei->i_file_acl >> 32);
  2653. raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
  2654. ext4_isize_set(raw_inode, ei->i_disksize);
  2655. if (ei->i_disksize > 0x7fffffffULL) {
  2656. struct super_block *sb = inode->i_sb;
  2657. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
  2658. EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2659. EXT4_SB(sb)->s_es->s_rev_level ==
  2660. cpu_to_le32(EXT4_GOOD_OLD_REV)) {
  2661. /* If this is the first large file
  2662. * created, add a flag to the superblock.
  2663. */
  2664. err = ext4_journal_get_write_access(handle,
  2665. EXT4_SB(sb)->s_sbh);
  2666. if (err)
  2667. goto out_brelse;
  2668. ext4_update_dynamic_rev(sb);
  2669. EXT4_SET_RO_COMPAT_FEATURE(sb,
  2670. EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
  2671. sb->s_dirt = 1;
  2672. handle->h_sync = 1;
  2673. err = ext4_journal_dirty_metadata(handle,
  2674. EXT4_SB(sb)->s_sbh);
  2675. }
  2676. }
  2677. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2678. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2679. if (old_valid_dev(inode->i_rdev)) {
  2680. raw_inode->i_block[0] =
  2681. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2682. raw_inode->i_block[1] = 0;
  2683. } else {
  2684. raw_inode->i_block[0] = 0;
  2685. raw_inode->i_block[1] =
  2686. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2687. raw_inode->i_block[2] = 0;
  2688. }
  2689. } else for (block = 0; block < EXT4_N_BLOCKS; block++)
  2690. raw_inode->i_block[block] = ei->i_data[block];
  2691. if (ei->i_extra_isize)
  2692. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2693. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  2694. rc = ext4_journal_dirty_metadata(handle, bh);
  2695. if (!err)
  2696. err = rc;
  2697. ei->i_state &= ~EXT4_STATE_NEW;
  2698. out_brelse:
  2699. brelse (bh);
  2700. ext4_std_error(inode->i_sb, err);
  2701. return err;
  2702. }
  2703. /*
  2704. * ext4_write_inode()
  2705. *
  2706. * We are called from a few places:
  2707. *
  2708. * - Within generic_file_write() for O_SYNC files.
  2709. * Here, there will be no transaction running. We wait for any running
  2710. * trasnaction to commit.
  2711. *
  2712. * - Within sys_sync(), kupdate and such.
  2713. * We wait on commit, if tol to.
  2714. *
  2715. * - Within prune_icache() (PF_MEMALLOC == true)
  2716. * Here we simply return. We can't afford to block kswapd on the
  2717. * journal commit.
  2718. *
  2719. * In all cases it is actually safe for us to return without doing anything,
  2720. * because the inode has been copied into a raw inode buffer in
  2721. * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2722. * knfsd.
  2723. *
  2724. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2725. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2726. * which we are interested.
  2727. *
  2728. * It would be a bug for them to not do this. The code:
  2729. *
  2730. * mark_inode_dirty(inode)
  2731. * stuff();
  2732. * inode->i_size = expr;
  2733. *
  2734. * is in error because a kswapd-driven write_inode() could occur while
  2735. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2736. * will no longer be on the superblock's dirty inode list.
  2737. */
  2738. int ext4_write_inode(struct inode *inode, int wait)
  2739. {
  2740. if (current->flags & PF_MEMALLOC)
  2741. return 0;
  2742. if (ext4_journal_current_handle()) {
  2743. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2744. dump_stack();
  2745. return -EIO;
  2746. }
  2747. if (!wait)
  2748. return 0;
  2749. return ext4_force_commit(inode->i_sb);
  2750. }
  2751. /*
  2752. * ext4_setattr()
  2753. *
  2754. * Called from notify_change.
  2755. *
  2756. * We want to trap VFS attempts to truncate the file as soon as
  2757. * possible. In particular, we want to make sure that when the VFS
  2758. * shrinks i_size, we put the inode on the orphan list and modify
  2759. * i_disksize immediately, so that during the subsequent flushing of
  2760. * dirty pages and freeing of disk blocks, we can guarantee that any
  2761. * commit will leave the blocks being flushed in an unused state on
  2762. * disk. (On recovery, the inode will get truncated and the blocks will
  2763. * be freed, so we have a strong guarantee that no future commit will
  2764. * leave these blocks visible to the user.)
  2765. *
  2766. * Called with inode->sem down.
  2767. */
  2768. int ext4_setattr(struct dentry *dentry, struct iattr *attr)
  2769. {
  2770. struct inode *inode = dentry->d_inode;
  2771. int error, rc = 0;
  2772. const unsigned int ia_valid = attr->ia_valid;
  2773. error = inode_change_ok(inode, attr);
  2774. if (error)
  2775. return error;
  2776. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2777. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2778. handle_t *handle;
  2779. /* (user+group)*(old+new) structure, inode write (sb,
  2780. * inode block, ? - but truncate inode update has it) */
  2781. handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
  2782. EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  2783. if (IS_ERR(handle)) {
  2784. error = PTR_ERR(handle);
  2785. goto err_out;
  2786. }
  2787. error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
  2788. if (error) {
  2789. ext4_journal_stop(handle);
  2790. return error;
  2791. }
  2792. /* Update corresponding info in inode so that everything is in
  2793. * one transaction */
  2794. if (attr->ia_valid & ATTR_UID)
  2795. inode->i_uid = attr->ia_uid;
  2796. if (attr->ia_valid & ATTR_GID)
  2797. inode->i_gid = attr->ia_gid;
  2798. error = ext4_mark_inode_dirty(handle, inode);
  2799. ext4_journal_stop(handle);
  2800. }
  2801. if (attr->ia_valid & ATTR_SIZE) {
  2802. if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
  2803. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  2804. if (attr->ia_size > sbi->s_bitmap_maxbytes) {
  2805. error = -EFBIG;
  2806. goto err_out;
  2807. }
  2808. }
  2809. }
  2810. if (S_ISREG(inode->i_mode) &&
  2811. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2812. handle_t *handle;
  2813. handle = ext4_journal_start(inode, 3);
  2814. if (IS_ERR(handle)) {
  2815. error = PTR_ERR(handle);
  2816. goto err_out;
  2817. }
  2818. error = ext4_orphan_add(handle, inode);
  2819. EXT4_I(inode)->i_disksize = attr->ia_size;
  2820. rc = ext4_mark_inode_dirty(handle, inode);
  2821. if (!error)
  2822. error = rc;
  2823. ext4_journal_stop(handle);
  2824. }
  2825. rc = inode_setattr(inode, attr);
  2826. /* If inode_setattr's call to ext4_truncate failed to get a
  2827. * transaction handle at all, we need to clean up the in-core
  2828. * orphan list manually. */
  2829. if (inode->i_nlink)
  2830. ext4_orphan_del(NULL, inode);
  2831. if (!rc && (ia_valid & ATTR_MODE))
  2832. rc = ext4_acl_chmod(inode);
  2833. err_out:
  2834. ext4_std_error(inode->i_sb, error);
  2835. if (!error)
  2836. error = rc;
  2837. return error;
  2838. }
  2839. /*
  2840. * How many blocks doth make a writepage()?
  2841. *
  2842. * With N blocks per page, it may be:
  2843. * N data blocks
  2844. * 2 indirect block
  2845. * 2 dindirect
  2846. * 1 tindirect
  2847. * N+5 bitmap blocks (from the above)
  2848. * N+5 group descriptor summary blocks
  2849. * 1 inode block
  2850. * 1 superblock.
  2851. * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
  2852. *
  2853. * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
  2854. *
  2855. * With ordered or writeback data it's the same, less the N data blocks.
  2856. *
  2857. * If the inode's direct blocks can hold an integral number of pages then a
  2858. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2859. * and dindirect block, and the "5" above becomes "3".
  2860. *
  2861. * This still overestimates under most circumstances. If we were to pass the
  2862. * start and end offsets in here as well we could do block_to_path() on each
  2863. * block and work out the exact number of indirects which are touched. Pah.
  2864. */
  2865. int ext4_writepage_trans_blocks(struct inode *inode)
  2866. {
  2867. int bpp = ext4_journal_blocks_per_page(inode);
  2868. int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
  2869. int ret;
  2870. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
  2871. return ext4_ext_writepage_trans_blocks(inode, bpp);
  2872. if (ext4_should_journal_data(inode))
  2873. ret = 3 * (bpp + indirects) + 2;
  2874. else
  2875. ret = 2 * (bpp + indirects) + 2;
  2876. #ifdef CONFIG_QUOTA
  2877. /* We know that structure was already allocated during DQUOT_INIT so
  2878. * we will be updating only the data blocks + inodes */
  2879. ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
  2880. #endif
  2881. return ret;
  2882. }
  2883. /*
  2884. * The caller must have previously called ext4_reserve_inode_write().
  2885. * Give this, we know that the caller already has write access to iloc->bh.
  2886. */
  2887. int ext4_mark_iloc_dirty(handle_t *handle,
  2888. struct inode *inode, struct ext4_iloc *iloc)
  2889. {
  2890. int err = 0;
  2891. /* the do_update_inode consumes one bh->b_count */
  2892. get_bh(iloc->bh);
  2893. /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
  2894. err = ext4_do_update_inode(handle, inode, iloc);
  2895. put_bh(iloc->bh);
  2896. return err;
  2897. }
  2898. /*
  2899. * On success, We end up with an outstanding reference count against
  2900. * iloc->bh. This _must_ be cleaned up later.
  2901. */
  2902. int
  2903. ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
  2904. struct ext4_iloc *iloc)
  2905. {
  2906. int err = 0;
  2907. if (handle) {
  2908. err = ext4_get_inode_loc(inode, iloc);
  2909. if (!err) {
  2910. BUFFER_TRACE(iloc->bh, "get_write_access");
  2911. err = ext4_journal_get_write_access(handle, iloc->bh);
  2912. if (err) {
  2913. brelse(iloc->bh);
  2914. iloc->bh = NULL;
  2915. }
  2916. }
  2917. }
  2918. ext4_std_error(inode->i_sb, err);
  2919. return err;
  2920. }
  2921. /*
  2922. * Expand an inode by new_extra_isize bytes.
  2923. * Returns 0 on success or negative error number on failure.
  2924. */
  2925. static int ext4_expand_extra_isize(struct inode *inode,
  2926. unsigned int new_extra_isize,
  2927. struct ext4_iloc iloc,
  2928. handle_t *handle)
  2929. {
  2930. struct ext4_inode *raw_inode;
  2931. struct ext4_xattr_ibody_header *header;
  2932. struct ext4_xattr_entry *entry;
  2933. if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
  2934. return 0;
  2935. raw_inode = ext4_raw_inode(&iloc);
  2936. header = IHDR(inode, raw_inode);
  2937. entry = IFIRST(header);
  2938. /* No extended attributes present */
  2939. if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
  2940. header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
  2941. memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
  2942. new_extra_isize);
  2943. EXT4_I(inode)->i_extra_isize = new_extra_isize;
  2944. return 0;
  2945. }
  2946. /* try to expand with EAs present */
  2947. return ext4_expand_extra_isize_ea(inode, new_extra_isize,
  2948. raw_inode, handle);
  2949. }
  2950. /*
  2951. * What we do here is to mark the in-core inode as clean with respect to inode
  2952. * dirtiness (it may still be data-dirty).
  2953. * This means that the in-core inode may be reaped by prune_icache
  2954. * without having to perform any I/O. This is a very good thing,
  2955. * because *any* task may call prune_icache - even ones which
  2956. * have a transaction open against a different journal.
  2957. *
  2958. * Is this cheating? Not really. Sure, we haven't written the
  2959. * inode out, but prune_icache isn't a user-visible syncing function.
  2960. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  2961. * we start and wait on commits.
  2962. *
  2963. * Is this efficient/effective? Well, we're being nice to the system
  2964. * by cleaning up our inodes proactively so they can be reaped
  2965. * without I/O. But we are potentially leaving up to five seconds'
  2966. * worth of inodes floating about which prune_icache wants us to
  2967. * write out. One way to fix that would be to get prune_icache()
  2968. * to do a write_super() to free up some memory. It has the desired
  2969. * effect.
  2970. */
  2971. int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
  2972. {
  2973. struct ext4_iloc iloc;
  2974. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  2975. static unsigned int mnt_count;
  2976. int err, ret;
  2977. might_sleep();
  2978. err = ext4_reserve_inode_write(handle, inode, &iloc);
  2979. if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
  2980. !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
  2981. /*
  2982. * We need extra buffer credits since we may write into EA block
  2983. * with this same handle. If journal_extend fails, then it will
  2984. * only result in a minor loss of functionality for that inode.
  2985. * If this is felt to be critical, then e2fsck should be run to
  2986. * force a large enough s_min_extra_isize.
  2987. */
  2988. if ((jbd2_journal_extend(handle,
  2989. EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
  2990. ret = ext4_expand_extra_isize(inode,
  2991. sbi->s_want_extra_isize,
  2992. iloc, handle);
  2993. if (ret) {
  2994. EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
  2995. if (mnt_count !=
  2996. le16_to_cpu(sbi->s_es->s_mnt_count)) {
  2997. ext4_warning(inode->i_sb, __FUNCTION__,
  2998. "Unable to expand inode %lu. Delete"
  2999. " some EAs or run e2fsck.",
  3000. inode->i_ino);
  3001. mnt_count =
  3002. le16_to_cpu(sbi->s_es->s_mnt_count);
  3003. }
  3004. }
  3005. }
  3006. }
  3007. if (!err)
  3008. err = ext4_mark_iloc_dirty(handle, inode, &iloc);
  3009. return err;
  3010. }
  3011. /*
  3012. * ext4_dirty_inode() is called from __mark_inode_dirty()
  3013. *
  3014. * We're really interested in the case where a file is being extended.
  3015. * i_size has been changed by generic_commit_write() and we thus need
  3016. * to include the updated inode in the current transaction.
  3017. *
  3018. * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
  3019. * are allocated to the file.
  3020. *
  3021. * If the inode is marked synchronous, we don't honour that here - doing
  3022. * so would cause a commit on atime updates, which we don't bother doing.
  3023. * We handle synchronous inodes at the highest possible level.
  3024. */
  3025. void ext4_dirty_inode(struct inode *inode)
  3026. {
  3027. handle_t *current_handle = ext4_journal_current_handle();
  3028. handle_t *handle;
  3029. handle = ext4_journal_start(inode, 2);
  3030. if (IS_ERR(handle))
  3031. goto out;
  3032. if (current_handle &&
  3033. current_handle->h_transaction != handle->h_transaction) {
  3034. /* This task has a transaction open against a different fs */
  3035. printk(KERN_EMERG "%s: transactions do not match!\n",
  3036. __FUNCTION__);
  3037. } else {
  3038. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3039. current_handle);
  3040. ext4_mark_inode_dirty(handle, inode);
  3041. }
  3042. ext4_journal_stop(handle);
  3043. out:
  3044. return;
  3045. }
  3046. #if 0
  3047. /*
  3048. * Bind an inode's backing buffer_head into this transaction, to prevent
  3049. * it from being flushed to disk early. Unlike
  3050. * ext4_reserve_inode_write, this leaves behind no bh reference and
  3051. * returns no iloc structure, so the caller needs to repeat the iloc
  3052. * lookup to mark the inode dirty later.
  3053. */
  3054. static int ext4_pin_inode(handle_t *handle, struct inode *inode)
  3055. {
  3056. struct ext4_iloc iloc;
  3057. int err = 0;
  3058. if (handle) {
  3059. err = ext4_get_inode_loc(inode, &iloc);
  3060. if (!err) {
  3061. BUFFER_TRACE(iloc.bh, "get_write_access");
  3062. err = jbd2_journal_get_write_access(handle, iloc.bh);
  3063. if (!err)
  3064. err = ext4_journal_dirty_metadata(handle,
  3065. iloc.bh);
  3066. brelse(iloc.bh);
  3067. }
  3068. }
  3069. ext4_std_error(inode->i_sb, err);
  3070. return err;
  3071. }
  3072. #endif
  3073. int ext4_change_inode_journal_flag(struct inode *inode, int val)
  3074. {
  3075. journal_t *journal;
  3076. handle_t *handle;
  3077. int err;
  3078. /*
  3079. * We have to be very careful here: changing a data block's
  3080. * journaling status dynamically is dangerous. If we write a
  3081. * data block to the journal, change the status and then delete
  3082. * that block, we risk forgetting to revoke the old log record
  3083. * from the journal and so a subsequent replay can corrupt data.
  3084. * So, first we make sure that the journal is empty and that
  3085. * nobody is changing anything.
  3086. */
  3087. journal = EXT4_JOURNAL(inode);
  3088. if (is_journal_aborted(journal))
  3089. return -EROFS;
  3090. jbd2_journal_lock_updates(journal);
  3091. jbd2_journal_flush(journal);
  3092. /*
  3093. * OK, there are no updates running now, and all cached data is
  3094. * synced to disk. We are now in a completely consistent state
  3095. * which doesn't have anything in the journal, and we know that
  3096. * no filesystem updates are running, so it is safe to modify
  3097. * the inode's in-core data-journaling state flag now.
  3098. */
  3099. if (val)
  3100. EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
  3101. else
  3102. EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
  3103. ext4_set_aops(inode);
  3104. jbd2_journal_unlock_updates(journal);
  3105. /* Finally we can mark the inode as dirty. */
  3106. handle = ext4_journal_start(inode, 1);
  3107. if (IS_ERR(handle))
  3108. return PTR_ERR(handle);
  3109. err = ext4_mark_inode_dirty(handle, inode);
  3110. handle->h_sync = 1;
  3111. ext4_journal_stop(handle);
  3112. ext4_std_error(inode->i_sb, err);
  3113. return err;
  3114. }